2020年高考数学平面向量专题复习(含答案)

合集下载

2020届高考数学一轮复习学霸提分秘籍专题6.3 平面向量的数量积及其应用(解析版)

2020届高考数学一轮复习学霸提分秘籍专题6.3 平面向量的数量积及其应用(解析版)

第六篇 平面向量与复数 专题6.03 平面向量的数量积及其应用【考试要求】1.理解平面向量数量积的含义及其物理意义;2.了解平面向量的数量积与向量投影的关系;3.掌握数量积的坐标表达式,会进行平面向量数量积的运算;4.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系;5.会用向量的方法解决某些简单的平面几何问题. 【知识梳理】1.平面向量数量积的有关概念(1)向量的夹角:已知两个非零向量a 和b ,记OA →=a ,OB →=b ,则∠AOB =θ(0°≤θ≤180°)叫做向量a 与b 的夹角.(2)数量积的定义:已知两个非零向量a 与b ,它们的夹角为θ,则a 与b 的数量积(或内积)a ·b =|a ||b |cos__θ.规定:零向量与任一向量的数量积为0,即0·a =0.(3)数量积的几何意义:数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积. 2.平面向量数量积的性质及其坐标表示设向量a =(x 1,y 1),b =(x 2,y 2),θ为向量a ,b 的夹角. (1)数量积:a ·b =|a ||b |cos θ=x 1x 2+y 1y 2.(2)模:|a |=a ·a =x 21+y 21.(3)夹角:cos θ=a ·b |a ||b |=x 1x 2+y 1y 2x 21+y 21·x 22+y 22. (4)两非零向量a ⊥b 的充要条件:a·b =0⇔x 1x 2+y 1y 2=0.(5)|a·b|≤|a||b|(当且仅当a ∥b 时等号成立)⇔|x 1x 2+y 1y 2. 3.平面向量数量积的运算律(1)a ·b =b ·a (交换律).(2)λa ·b =λ(a ·b )=a ·(λb )(结合律). (3)(a +b )·c =a ·c +b ·c (分配律).【微点提醒】1.两个向量a ,b 的夹角为锐角⇔a·b>0且a ,b 不共线;两个向量a ,b 的夹角为钝角⇔a·b<0且a ,b 不共线.2.平面向量数量积运算的常用公式 (1)(a +b )·(a -b )=a 2-b 2. (2)(a +b )2=a 2+2a ·b +b 2. (3)(a -b )2=a 2-2a ·b +b 2. 【疑误辨析】1.判断下列结论正误(在括号内打“√”或“×”) (1)两个向量的夹角的范围是⎣⎡⎦⎤0,π2.( ) (2)向量在另一个向量方向上的投影为数量,而不是向量.( )(3)两个向量的数量积是一个实数,向量的加、减、数乘运算的运算结果是向量.( ) (4)若a ·b =a ·c (a ≠0),则b =c .( ) 【答案】 (1)× (2)√ (3)√ (4)× 【解析】 (1)两个向量夹角的范围是[0,π].(4)由a ·b =a ·c (a ≠0)得|a ||b |·cos 〈a ,b 〉=|a ||c |·cos 〈a ,c 〉,所以向量b 和c 不一定相等. 【教材衍化】2.(必修4P108A10改编)设a ,b 是非零向量.“a ·b =|a ||b |”是“a ∥b ”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件D.既不充分也不必要条件【答案】 A【解析】 设a 与b 的夹角为θ.因为a ·b =|a |·|b |cos θ=|a |·|b |,所以cos θ=1,即a 与b 的夹角为0°,故a ∥b .当a ∥b 时,a 与b 的夹角为0°或180°, 所以a ·b =|a |·|b |cos θ=±|a |·|b |,所以“a ·b =|a |·|b |”是“a ∥b ”的充分而不必要条件.3.(必修4P108A2改编)在圆O 中,长度为2的弦AB 不经过圆心,则AO →·AB →的值为________. 【答案】 1【解析】 设向量AO →,AB →的夹角为θ,则AO →·AB →=|AO →||AB →|·cos θ=|AO →|cos θ·|AB →|=12|AB →|·|AB→|=12×(2)2=1. 【真题体验】4.(2018·全国Ⅱ卷)已知向量a ,b 满足|a |=1,a ·b =-1,则a ·(2a -b )=( ) A.4 B.3C.2D.0【答案】 B【解析】 a ·(2a -b )=2|a |2-a ·b =2×12-(-1)=3.5.(2018·上海嘉定区调研)平面向量a 与b 的夹角为45°,a =(1,1),|b |=2,则|3a +b |等于( ) A.13+6 2 B.2 5 C.30D.34【答案】 D【解析】 依题意得a 2=2,a ·b =2×2×cos 45°=2,|3a +b |=(3a +b )2=9a 2+6a ·b +b 2=18+12+4=34.6.(2017·全国Ⅰ卷)已知向量a =(-1,2),b =(m ,1).若向量a +b 与a 垂直,则m =________. 【答案】 7【解析】 由题意得a +b =(m -1,3),因为a +b 与a 垂直,所以(a +b )·a =0,所以-(m -1)+2×3=0,解得m =7. 【考点聚焦】考点一 平面向量数量积的运算【例1】 (1)若向量m =(2k -1,k )与向量n =(4,1)共线,则m ·n =( ) A.0B.4C.-92D.-172(2)(2018·天津卷)在如图的平面图形中,已知OM =1,ON =2,∠MON =120°,BM →=2MA →,CN →=2NA →,则BC →·OM →的值为( )A.-15B.-9C.-6D.0【答案】 (1)D (2)C【解析】 (1)由题意得2k -1-4k =0,解得k =-12,即m =⎝⎛⎭⎫-2,-12, 所以m ·n =-2×4+⎝⎛⎭⎫-12×1=-172. (2)连接OA .在△ABC 中,BC →=AC →-AB →=3AN →-3AM →=3(ON →-OA →)-3(OM →-OA →)=3(ON →-OM →),∴BC →·OM →=3(ON →-OM →)·OM →=3(ON →·OM →-OM →2)=3×(2×1×cos 120°-12)=3×(-2)=-6.【规律方法】 1.数量积公式a ·b =|a ||b |cos θ在解题中的运用,解题过程具有一定的技巧性,需要借助向量加、减法的运算及其几何意义进行适当变形;也可建立平面直角坐标系,借助数量积的坐标运算公式a ·b =x 1x 2+y 1y 2求解,较为简捷、明了.2.在分析两向量的夹角时,必须使两个向量的起点重合,如果起点不重合,可通过“平移”实现.【训练1】 (1)在△ABC 中,AB =4,BC =6,∠ABC =π2,D 是AC 的中点,E 在BC 上,且AE ⊥BD ,则AE →·BC →等于( ) A.16B.12C.8D.-4(2)(2019·皖南八校三模)已知|a |=|b |=1,向量a 与b 的夹角为45°,则(a +2b )·a =________. 【答案】 (1)A (2)1+ 2【解析】 (1)以B 为原点,BA ,BC 所在直线分别为x ,y 轴建立平面直角坐标系(图略),A (4,0),B (0,0),C (0,6),D (2,3).设E (0,t ),BD →·AE →=(2,3)·(-4,t )=-8+3t =0,∴t=83,即E ⎝⎛⎭⎫0,83, AE →·BC →=⎝⎛⎭⎫-4,83·(0,6)=16. (2)因为|a |=|b |=1,向量a 与b 的夹角为45°, 所以(a +2b )·a =a 2+2a ·b =|a |2+2|a |·|b |cos 45°=1+ 2. 考点二 平面向量数量积的应用 角度1 平面向量的垂直【例2-1】 (1)(2018·北京卷)设向量a =(1,0),b =(-1,m ).若a ⊥(m a -b ),则m =________. (2)(2019·宜昌二模)已知△ABC 中,∠A =120°,且AB =3,AC =4,若AP →=λAB →+AC →,且AP →⊥BC →,则实数λ的值为( ) A.2215B.103C.6D.127【答案】 (1)-1 (2)A【解析】 (1)a =(1,0),b =(-1,m ),∴a 2=1,a ·b =-1, 由a ⊥(m a -b )得a ·(m a -b )=0,即m a 2-a ·b =0. ∴m -(-1)=0,∴m =-1. (2)因为AP →=λAB →+AC →,且AP →⊥BC →,所以有AP →·BC →=(λAB →+AC →)·(AC →-AB →)=λAB →·AC →-λAB →2+AC →2-AB →·AC →=(λ-1)AB →·AC →-λAB →2+AC →2=0,整理可得(λ-1)×3×4×cos 120°-9λ+16=0, 解得λ=2215.【规律方法】1.当向量a ,b 是非坐标形式时,要把a ,b 用已知的不共线向量作为基底来表示且不共线的向量要知道其模与夹角,从而进行运算.2.数量积的运算a·b =0⇔a ⊥b 中,是对非零向量而言的,若a =0,虽然有a·b =0,但不能说a ⊥b.角度2 平面向量的模【例2-2】 (1)已知平面向量α,β,|α|=1,|β|=2,α⊥(α-2β),则|2α+β|的值是________. (2)(2019·杭州调研)已知直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|PA →+3PB →|的最小值为________. 【答案】 (1)10 (2)5【解析】 (1)由α⊥(α-2β)得α·(α-2β)=α2-2α·β=0, 所以α·β=12,所以(2α+β)2=4α2+β2+4α·β=4×12+22+4×12=10,所以|2α+β|=10.(2)建立平面直角坐标系如图所示,则A (2,0),设P (0,y ),C (0,b ),则B (1,b ).所以PA →+3PB →=(2,-y )+3(1,b -y )=(5,3b -4y ), 所以|PA →+3PB →|=25+(3b -4y )2(0≤y ≤b ),所以当y =34b 时,|PA →+3PB →|取得最小值5.【规律方法】1.求向量的模的方法:(1)公式法,利用|a |=a ·a 及(a ±b )2=|a |2±2a ·b +|b |2,把向量的模的运算转化为数量积运算;(2)几何法,利用向量的几何意义.2.求向量模的最值(范围)的方法:(1)代数法,把所求的模表示成某个变量的函数,再用求最值的方法求解;(2)几何法(数形结合法),弄清所求的模表示的几何意义,结合动点表示的图形求解.角度3 平面向量的夹角【例2-3】 (1)(2019·衡水中学调研)已知非零向量a ,b 满足|a +b |=|a -b |=233|a |,则向量a +b 与a -b 的夹角为________.(2)若向量a =(k ,3),b =(1,4),c =(2,1),已知2a -3b 与c 的夹角为钝角,则k 的取值范围是________.【答案】 (1)π3(2)⎝⎛⎭⎫-∞,-92∪⎝⎛⎭⎫-92,3 【解析】 (1)将|a +b |=|a -b |两边平方,得a 2+b 2+2a ·b =a 2+b 2-2a ·b ,∴a ·b =0. 将|a +b |=233|a |两边平方,得a 2+b 2+2a ·b =43a 2,∴b 2=13a 2.设a +b 与a -b 的夹角为θ,∴cos θ=(a +b )·(a -b )|a +b |·|a -b |=a 2-b 2233|a |·233|a |=23a 243a 2=12.又∵θ∈[0,π],∴θ=π3.(2)∵2a -3b 与c 的夹角为钝角, ∴(2a -3b )·c <0,即(2k -3,-6)·(2,1)<0,解得k <3. 又若(2a -3b )∥c ,则2k -3=-12,即k =-92.当k =-92时,2a -3b =(-12,-6)=-6c ,此时2a -3b 与c 反向,不合题意.综上,k 的取值范围为⎝⎛⎭⎫-∞,-92∪⎝⎛⎭⎫-92,3. 【规律方法】1.研究向量的夹角应注意“共起点”;两个非零共线向量的夹角可能是0或π;注意向量夹角的取值范围是[0,π];若题目给出向量的坐标表示,可直接套用公式cos θ=x 1x 2+y 1y 2x 21+y 21·x 22+y 22求解.2.数量积大于0说明不共线的两向量的夹角为锐角,数量积等于0说明不共线的两向量的夹角为直角,数量积小于0且两向量不共线时两向量的夹角为钝角.【训练2】 (1)已知向量a =(-2,3),b =(3,m ),且a ⊥b ,则m =________.(2)(一题多解)(2017·全国Ⅰ卷)已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=________.(3)(2017·山东卷)已知e 1,e 2是互相垂直的单位向量,若3e 1-e 2与e 1+λe 2的夹角为60°,则实数λ的值是________. 【答案】 (1)2 (2)23 (3)33【解析】 (1)由a ⊥b ,得a ·b =0, 又a =(-2,3),b =(3,m ), ∴-6+3m =0,则m =2. (2)法一 |a +2b |=(a +2b )2=a 2+4a ·b +4b 2=22+4×2×1×cos 60°+4×12=12=2 3.法二 (数形结合法)由|a |=|2b |=2知,以a 与2b 为邻边可作出边长为2的菱形OACB ,如图,则|a +2b |=|OC →|.又∠AOB =60°,所以|a +2b |=2 3. (3)由题意知|e 1|=|e 2|=1,e 1·e 2=0,|3e 1-e 2|=(3e 1-e 2)2=3e 21-23e 1·e 2+e 22=3-0+1=2.同理|e 1+λe 2|=1+λ2.所以cos 60°=(3e 1-e 2)·(e 1+λe 2)|3e 1-e 2||e 1+λe 2|=3e 21+(3λ-1)e 1·e 2-λe 2221+λ2=3-λ21+λ2=12, 解得λ=33. 考点三 平面向量与三角函数【例3】 (2019·潍坊摸底)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m =(cos(A -B ),sin(A -B )),n =(cos B ,-sin B ),且m ·n =-35.(1)求sin A 的值;(2)若a =42,b =5,求角B 的大小及向量BA →在BC →方向上的投影. 【答案】见解析【解析】(1)由m ·n =-35,得cos(A -B )cos B -sin(A -B )sin B =-35,所以cos A =-35.因为0<A <π,所以sin A =1-cos 2A =1-⎝⎛⎭⎫-352=45. (2)由正弦定理,得a sin A =bsin B ,则sin B =b sin A a =5×4542=22,因为a >b ,所以A >B ,且B 是△ABC 一内角,则B =π4.由余弦定理得(42)2=52+c 2-2×5c ×⎝⎛⎭⎫-35, 解得c =1,c =-7舍去,故向量BA →在BC →方向上的投影为|BA →|cos B =c cos B =1×22=22.【规律方法】 平面向量与三角函数的综合问题的解题思路:(1)题目条件给出向量的坐标中含有三角函数的形式,运用向量共线或垂直或等式成立等,得到三角函数的关系式,然后求解.(2)给出用三角函数表示的向量坐标,要求的是向量的模或者其他向量的表达形式,解题思路是经过向量的运算,利用三角函数在定义域内的有界性,求得值域等.【训练3】 (2019·石家庄模拟)已知A ,B ,C 分别为△ABC 的三边a ,b ,c 所对的角,向量m =(sin A ,sin B ),n =(cos B ,cos A ),且m ·n =sin 2C . (1)求角C 的大小;(2)若sin A ,sin C ,sin B 成等差数列,且CA →·(AB →-AC →)=18,求边c 的长. 【答案】见解析【解析】(1)由已知得m ·n =sin A cos B +cos A sin B =sin(A +B ), 因为A +B +C =π,所以sin(A +B )=sin(π-C )=sin C , 所以m ·n =sin C ,又m ·n =sin 2C , 所以sin 2C =sin C ,所以cos C =12.又0<C <π,所以C =π3.(2)由已知及正弦定理得2c =a +b . 因为CA →·(AB →-AC →)=CA →·CB →=18, 所以ab cos C =18,所以ab =36.由余弦定理得c 2=a 2+b 2-2ab cos C =(a +b )2-3ab 所以c 2=4c 2-3×36, 所以c 2=36,所以c =6. 【反思与感悟】1.计算向量数量积的三种方法定义、坐标运算、数量积的几何意义,要灵活运用,与图形有关的不要忽略数量积几何意义的应用.2.求向量模的常用方法利用公式|a |2=a 2,将模的运算转化为向量的数量积的运算.3.利用向量垂直或平行的条件构造方程或函数是求参数或最值问题常用的方法与技巧. 【易错防范】数量积运算律要准确理解、应用,例如,a ·b =a ·c (a ≠0)不能得出b =c ,两边不能约去一个向量.数量积运算不满足结合律,(a ·b )·c 不一定等于a ·(b ·c ). 【核心素养提升】【数学运算、数学建模】——平面向量与三角形的“四心”1.数学运算是指在明晰运算的基础上,依据运算法则解决数学问题的素养.通过学习平面向量与三角形的“四心”,学生能进一步发展数学运算能力,形成规范化思考问题的品质,养成一丝不苟、严谨求实的科学精神.2.数学建模要求在熟悉的情境中,发现问题并转化为数学问题,能够在关联的情境中,经历数学建模的过程,理解数学建模的意义.本系列通过学习平面向量与三角形的“四心”模型,能够培养学生用模型的思想解决相关问题.设O 为△ABC 所在平面上一点,内角A ,B ,C 所对的边分别为a ,b ,c ,则 (1)O 为△ABC 的外心⇔|OA →|=|OB →|=|OC →|=a2sin A. (2)O 为△ABC 的重心⇔OA →+OB →+OC →=0. (3)O 为△ABC 的垂心⇔OA →·OB →=OB →·OC →=OC →·OA →. (4)O 为△ABC 的内心⇔aOA →+bOB →+cOC →=0. 类型1 平面向量与三角形的“重心”【例1】 已知A ,B ,C 是平面上不共线的三点,O 为坐标原点,动点P 满足OP →=13[(1-λ)OA→+(1-λ)OB →+(1+2λ)·OC →],λ∈R ,则点P 的轨迹一定经过( ) A.△ABC 的内心 B.△ABC 的垂心 C.△ABC 的重心D.AB 边的中点 【答案】 C【解析】 取AB 的中点D ,则2OD →=OA →+OB →, ∵OP →=13[(1-λ)OA →+(1-λ)OB →+(1+2λ)OC →],∴OP →=13[2(1-λ)OD →+(1+2λ)OC →]=2(1-λ)3OD →+1+2λ3OC →,而2(1-λ)3+1+2λ3=1,∴P ,C ,D 三点共线,∴点P 的轨迹一定经过△ABC 的重心. 类型2 平面向量与三角形的“内心”问题【例2】 在△ABC 中,AB =5,AC =6,cos A =15,O 是△ABC 的内心,若OP →=xOB →+yOC →,其中x ,y ∈[0,1],则动点P 的轨迹所覆盖图形的面积为( ) A.1063B.1463C.4 3D.6 2【答案】 B【解析】 根据向量加法的平行四边形法则可知,动点P 的轨迹是以OB ,OC 为邻边的平行四边形及其内部,其面积为△BOC 的面积的2倍.在△ABC 中,设内角A ,B ,C 所对的边分别为a ,b ,c ,由余弦定理a 2=b 2+c 2-2bc cos A ,得a =7.设△ABC 的内切圆的半径为r ,则 12bc sin A =12(a +b +c )r ,解得r =263, 所以S △BOC =12×a ×r =12×7×263=763.故动点P 的轨迹所覆盖图形的面积为2S △BOC =1463.类型3 平面向量与三角形的“垂心”问题【例3】 已知O 是平面上的一个定点,A ,B ,C 是平面上不共线的三个点,动点P 满足OP→=OA →+λ⎝⎛⎭⎪⎫AB →|AB →|cos B + AC →|AC →|cos C ,λ∈(0,+∞),则动点P 的轨迹一定通过△ABC 的( ) A.重心 B.垂心C.外心D.内心【答案】 B【解析】 因为OP →=OA →+λ⎝ ⎛⎭⎪⎫AB →|AB →|cos B + AC →|AC →|cos C , 所以AP →=OP →-OA →=λ⎝⎛⎭⎪⎫AB →|AB →|cos B + AC →|AC →|cos C , 所以BC →·AP →=BC →·λ⎝ ⎛⎭⎪⎫AB→|AB →|cos B + AC →|AC →|cos C =λ(-|BC →|+|BC →|)=0,所以BC →⊥AP →,所以点P 在BC 的高线上, 即动点P 的轨迹一定通过△ABC 的垂心. 类型4 平面向量与三角形的“外心”问题【例4】 已知在△ABC 中,AB =1,BC =6,AC =2,点O 为△ABC 的外心,若AO →=xAB →+yAC →,则有序实数对(x ,y )为( ) A.⎝⎛⎭⎫45,35 B.⎝⎛⎭⎫35,45 C.⎝⎛⎭⎫-45,35D.⎝⎛⎭⎫-35,45 【答案】 A【解析】 取AB 的中点M 和AC 的中点N ,连接OM ,ON ,则OM →⊥AB →,ON →⊥AC →, OM →=AM →-AO →=12AB →-(xAB →+yAC →)=⎝⎛⎭⎫12-x AB →-yAC →, ON →=AN →-AO →=12AC →-(xAB →+yAC →)=⎝⎛⎭⎫12-y AC →-xAB →. 由OM →⊥AB →,得⎝⎛⎭⎫12-x AB →2-yAC →·AB →=0,① 由ON →⊥AC →,得⎝⎛⎭⎫12-y AC →2-xAC →·AB →=0,② 又因为BC →2=(AC →-AB →)2=AC →2-2AC →·AB →+AB →2,所以AC →·AB →=AC →2+AB →2-BC→22=-12,③把③代入①、②得⎩⎪⎨⎪⎧1-2x +y =0,4+x -8y =0,解得x =45,y =35.故实数对(x ,y )为⎝⎛⎭⎫45,35.【分层训练】【基础巩固题组】(建议用时:40分钟) 一、选择题1.已知向量a =(m -1,1),b =(m ,-2),则“m =2”是“a ⊥b ”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件 【答案】 A【解析】 当m =2时,a =(1,1),b =(2,-2), 所以a ·b =(1,1)·(2,-2)=2-2=0, 所以a ⊥b ,充分性成立;当a ⊥b 时,a ·b =(m -1,1)·(m ,-2)=m (m -1)-2=0, 解得m =2或m =-1,必要性不成立. 所以“m =2”是“a ⊥b ”的充分不必要条件.2.(2019·北京通州区二模)已知非零向量a ,b 的夹角为60°,且|b |=1,|2a -b |=1,则|a |=( ) A.12B.1C. 2D.2【答案】 A【解析】 由题意得a ·b =|a |×1×12=|a |2,又|2a -b |=1,∴|2a -b |2=4a 2-4a ·b +b 2=4|a |2-2|a |+1=1,即4|a |2-2|a |=0,又|a |≠0, 解得|a |=12.3.(2019·石家庄二模)若两个非零向量a ,b 满足|a +b |=|a -b |=2|b |,则向量a +b 与a 的夹角为( ) A.π3B.2π3C.5π6D.π6【答案】 D【解析】 设|b |=1,则|a +b |=|a -b |=2. 由|a +b |=|a -b |,得a ·b =0,故以a 、b 为邻边的平行四边形是矩形,且|a |=3, 设向量a +b 与a 的夹角为θ,则cos θ=a ·(a +b )|a |·|a +b |=a 2+a ·b |a |·|a +b |=|a ||a +b |=32,又0≤θ≤π,所以θ=π6.4.如图,在等腰梯形ABCD 中,AB =4,BC =CD =2,若E ,F 分别是边BC ,AB 上的点,且满足BE BC =AF AB=λ,则当AE →·DF →=0时,λ的值所在的区间是( )A.⎝⎛⎭⎫18,14B.⎝⎛⎭⎫14,38 C.⎝⎛⎭⎫38,12D.⎝⎛⎭⎫12,58【答案】 B【解析】 在等腰梯形ABCD 中,AB =4,BC =CD =2, 可得〈AD →,BC →〉=60°,所以〈AB →,AD →〉=60°,〈AB →,BC →〉=120°,所以AB →·AD →=4×2×12=4,AB →·BC →=4×2×⎝⎛⎭⎫-12=-4,AD →·BC →=2×2×12=2, 又BE BC =AF AB=λ,所以BE →=λBC →,AF →=λAB →, 则AE →=AB →+BE →=AB →+λBC →, DF →=AF →-AD →=λAB →-AD →, 所以AE →·DF →=(AB →+λBC →)·(λAB →-AD →) =λAB →2-AB →·AD →+λ2AB →·BC →-λAD →·BC →=0,即2λ2-7λ+2=0,解得λ=7+334(舍去)或λ=7-334∈⎝⎛⎭⎫14,38. 5.(2017·浙江卷)如图,已知平面四边形ABCD ,AB ⊥BC ,AB =BC =AD =2,CD =3,AC 与BD 交于点O .记I 1=OA →·OB →,I 2=OB →·OC →,I 3=OC →·OD →,则( )A.I 1<I 2<I 3B.I 1<I 3<I 2C.I 3<I 1<I 2D.I 2<I 1<I 3【答案】 C【解析】 如图所示,四边形ABCE 是正方形,F 为正方形的对角线的交点,易得AO <AF ,而∠AFB =90°,∴∠AOB 与∠COD 为钝角,∠AOD 与∠BOC 为锐角,根据题意,I 1-I 2=OA →·OB →-OB →·OC →=OB →·(OA →-OC →)=OB →·CA →=|OB →||CA →|·cos ∠AOB <0,∴I 1<I 2,同理I 2>I 3,作AG ⊥BD 于G ,又AB =AD ,∴OB <BG =GD <OD ,而OA <AF =FC <OC ,∴|OA →||OB →|<|OC →||OD →|, 而cos ∠AOB =cos ∠COD <0,∴OA →·OB →>OC →·OD →, 即I 1>I 3.∴I 3<I 1<I 2. 二、填空题6.(2019·杭州二模)在△ABC 中,三个顶点的坐标分别为A (3,t ),B (t ,-1),C (-3,-1),若△ABC 是以B 为直角顶点的直角三角形,则t =________. 【答案】 3【解析】 由已知,得BA →·BC →=0, 则(3-t ,t +1)·(-3-t ,0)=0,∴(3-t )(-3-t )=0,解得t =3或t =-3, 当t =-3时,点B 与点C 重合,舍去.故t =3.7.若非零向量a ,b 满足|a |=3|b |=|a +2b |,则a ,b 夹角θ的余弦值为________. 【答案】 -13【解析】 |a |=|a +2b |,两边平方得, |a |2=|a |2+4|b |2+4a ·b =|a |2+4|b |2+4|a ||b |·cos θ. 又|a |=3|b |,所以0=4|b |2+12|b |2cos θ,得cos θ=-13.8.(2019·佛山二模)在Rt △ABC 中,∠B =90°,BC =2,AB =1,D 为BC 的中点,E 在斜边AC 上,若AE →=2EC →,则DE →·AC →=________. 【答案】 13【解析】 如图,以B 为坐标原点,AB 所在直线为x 轴,BC 所在直线为y 轴,建立平面直角坐标系,则B (0,0),A (1,0),C (0,2),所以AC →=(-1,2).因为D 为BC 的中点,所以D (0,1), 因为AE →=2EC →,所以E ⎝⎛⎭⎫13,43, 所以DE →=⎝⎛⎭⎫13,13,所以DE →·AC →=⎝⎛⎭⎫13,13·(-1,2)=-13+23=13.三、解答题9.在平面直角坐标系xOy 中,点A (-1,-2),B (2,3),C (-2,-1). (1)求以线段AB ,AC 为邻边的平行四边形两条对角线的长; (2)设实数t 满足(AB →-tOC →)·OC →=0,求t 的值. 【答案】见解析【解析】(1)由题设知AB →=(3,5),AC →=(-1,1), 则AB →+AC →=(2,6),AB →-AC →=(4,4). 所以|AB →+AC →|=210,|AB →-AC →|=4 2. 故所求的两条对角线的长分别为42,210.(2)由题设知:OC →=(-2,-1),AB →-tOC →=(3+2t ,5+t ). 由(AB →-tOC →)·OC →=0,得 (3+2t ,5+t )·(-2,-1)=0, 从而5t =-11,所以t =-115.10.在平面直角坐标系中,O 为坐标原点,已知向量a =(-1,2),又点A (8,0),B (n ,t ),C (k sin θ,t )(0≤θ≤π2).(1)若AB →⊥a ,且|AB →|=5|OA →|,求向量OB →;(2)若向量AC →与向量a 共线,当k >4,且t sin θ取最大值4时,求OA →·OC →.【答案】见解析【解析】(1)由题设知AB →=(n -8,t ), ∵AB →⊥a ,∴8-n +2t =0. 又∵5|OA →|=|AB →|,∴5×64=(n -8)2+t 2=5t 2,得t =±8. 当t =8时,n =24;当t =-8时,n =-8, ∴OB →=(24,8)或OB →=(-8,-8). (2)由题设知AC →=(k sin θ-8,t ), ∵AC →与a 共线,∴t =-2k sin θ+16, t sin θ=(-2k sin θ+16)sin θ =-2k (sin θ-4k )2+32k .∵k >4,∴0<4k<1,∴当sin θ=4k 时,t sin θ取得最大值32k .由32k =4,得k =8, 此时θ=π6,OC →=(4,8),∴OA →·OC →=(8,0)·(4,8)=32. 【能力提升题组】(建议用时:20分钟)11.在△ABC 中,∠C =90°,AB =6,点P 满足CP =2,则PA →·PB →的最大值为( ) A.9 B.16C.18D.25【答案】 B【解析】 ∵∠C =90°,AB =6,∴CA →·CB →=0,∴|CA →+CB →|=|CA →-CB →|=|BA →|=6,∴PA →·PB →=(PC →+CA →)·(PC →+CB →)=PC →2+PC →·(CA →+CB →)+CA →·CB → =PC →·(CA →+CB →)+4,∴当PC →与CA →+CB →方向相同时,PC →·(CA →+CB →)取得最大值2×6=12, ∴PA →·PB →的最大值为16.12.(2018·浙江卷)已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为π3,向量b 满足b 2-4e ·b +3=0,则|a -b |的最小值是( ) A.3-1 B.3+1 C.2D.2- 3【答案】 A【解析】 设O 为坐标原点,a =OA →,b =OB →=(x ,y ),e =(1,0),由b 2-4e ·b +3=0得x 2+y 2-4x +3=0,即(x -2)2+y 2=1,所以点B 的轨迹是以C (2,0)为圆心,1为半径的圆.因为a 与e 的夹角为π3,所以不妨令点A 在射线y =3x (x >0)上,如图,数形结合可知|a -b |min=|CA →|-|CB →|=3-1.13.(2019·安徽师大附中二模)在△ABC 中,AB =2AC =6,BA →·BC →=BA →2,点P 是△ABC 所在平面内一点,则当PA →2+PB →2+PC →2取得最小值时,AP →·BC →=________. 【答案】 -9【解析】 ∵BA →·BC →=|BA →|·|BC →|·cos B =|BA →|2, ∴|BC →|·cos B =|BA →|=6, ∴CA →⊥AB →,即A =π2,以A 为坐标原点建立如图所示的坐标系,则B (6,0),C (0,3),设P (x ,y ),则PA →2+PB →2+PC →2=x 2+y 2+(x -6)2+y 2+x 2+(y -3)2=3x 2-12x +3y 2-6y +45=3[(x -2)2+(y -1)2+10]∴当x =2,y =1时,PA →2+PB →2+PC →2取得最小值,此时AP →·BC →=(2,1)·(-6,3)=-9.14.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足(2a -c )BA →·BC →=cCB →·CA →.(1)求角B 的大小;(2)若|BA →-BC →|=6,求△ABC 面积的最大值.【答案】见解析【解析】(1)由题意得(2a -c )cos B =b cos C .根据正弦定理得(2sin A -sin C )cos B =sin B cos C , 所以2sin A cos B =sin(C +B ), 即2sin A cos B =sin A ,因为A ∈(0,π),所以sin A >0,所以cos B =22,又B ∈(0,π),所以B =π4. (2)因为|BA →-BC →|=6,所以|CA →|=6,即b =6,根据余弦定理及基本不等式得6=a 2+c 2-2ac ≥2ac -2ac =(2-2)ac (当且仅当a =c 时取等号),即ac ≤3(2+2).故△ABC 的面积S =12ac sin B ≤3(2+1)2, 因此△ABC 的面积的最大值为32+32. 【新高考创新预测】15.(新定义题型)对任意两个非零的平面向量α和β,定义α⊗β=|α||β|cos θ,其中θ为α和β的夹角.若两个非零的平面向量a 和b 满足:①|a |≥|b |;②a 和b 的夹角θ∈⎝⎛⎭⎫0,π4;③a ⊗b 和b ⊗a 的值都在集合{x |x =n 2,n ∈N }中,则a ⊗b 的值为________. 【答案】 32【解析】 a ⊗b =|a ||b |cos θ=n 2,b ⊗a =|b ||a |cos θ=m 2,m ,n ∈N .由a 与b 的夹角θ∈⎝⎛⎭⎫0,π4,知cos 2θ=mn 4∈⎝⎛⎭⎫12,1,故mn =3,m ,n ∈N .因为|a |≥|b |,所以0<b ⊗a =m 2<1,所以m =1,n =3,所以a ⊗b =32.。

2020届高考数学一轮复习第六篇平面向量与复数专题6.4复数练习含解析

2020届高考数学一轮复习第六篇平面向量与复数专题6.4复数练习含解析

专题6.4 复 数【考试要求】1.通过方程的解,认识复数;2.理解复数的代数表示及其几何意义,理解两个复数相等的含义;3.掌握复数代数表示式的四则运算,了解复数加、减运算的几何意义. 【知识梳理】 1.复数的有关概念内容 意义 备注复数的概念形如a +b i(a ∈R ,b ∈R )的数叫复数,其中实部为a ,虚部为b若b =0,则a +b i 为实数;若a =0且b ≠0,则a +b i 为纯虚数复数相等a +bi =c +di ⇔a =c 且b =d(a ,b ,c ,d∈R)共轭复数a +bi 与c +di 共轭⇔a =c 且b =-d(a ,b ,c ,d∈R)复平面建立平面直角坐标系来表示复数的平面叫做复平面,x 轴叫实轴,y 轴叫虚轴实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数,各象限内的点都表示虚数复数的模设OZ →对应的复数为z =a +b i ,则向量OZ →的长度叫做复数z =a +b i 的模|z |=|a +b i|=a 2+b 22.复数的几何意义复数集C 和复平面内所有的点组成的集合是一一对应的,复数集C 与复平面内所有以原点O 为起点的向量组成的集合也是一一对应的,即 (1)复数z =a +b i复平面内的点Z (a ,b )(a ,b ∈R ).(2)复数z =a +b i(a ,b ∈R )平面向量OZ →.3.复数的运算设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R ),则(1)加法:z 1+z 2=(a +b i)+(c +d i)=(a +c )+(b +d )i ;(2)减法:z 1-z 2=(a +b i)-(c +d i)=(a -c )+(b -d )i ; (3)乘法:z 1·z 2=(a +b i)·(c +d i)=(ac -bd )+(ad +bc )i ; (4)除法:z 1z 2=a +b i c +d i =(a +b i )(c -d i )(c +d i )(c -d i )=ac +bd +(bc -ad )ic 2+d 2(c +d i≠0).【微点提醒】 1.i 的乘方具有周期性 i n=⎩⎪⎨⎪⎧1,n =4k ,i ,n =4k +1,-1,n =4k +2,-i ,n =4k +3(k ∈Z ).2.复数的模与共轭复数的关系z ·z -=|z |2=|z -|2.3.两个注意点(1)两个虚数不能比较大小;(2)利用复数相等a +b i =c +d i 列方程时,注意a ,b ,c ,d ∈R 的前提条件. 【疑误辨析】1.判断下列结论正误(在括号内打“√”或“×”) (1)复数z =a +b i(a ,b ∈R )中,虚部为b i.( )(2)复数中有相等复数的概念,因此复数可以比较大小.( ) (3)原点是实轴与虚轴的交点.( )(4)复数的模实质上就是复平面内复数对应的点到原点的距离,也就是复数对应的向量的模.( ) 【答案】 (1)× (2)× (3)√ (4)√【解析】 (1)虚部为b ;(2)虚数不可以比较大小. 【教材衍化】2.(选修2-2P106A2改编)若复数(a 2-3a +2)+(a -1)i 是纯虚数,则实数a 的值为( ) A.1 B.2 C.1或2 D.-1【答案】 B【解析】 依题意,有⎩⎪⎨⎪⎧a 2-3a +2=0,a -1≠0,解得a =2,故选B.3.(选修2-2P116A1改编)复数⎝ ⎛⎭⎪⎫52-i 2的共轭复数是( )A.2-iB.2+iC.3-4iD.3+4i【答案】 C【解析】 ⎝ ⎛⎭⎪⎫52-i 2=⎣⎢⎡⎦⎥⎤5(2+i )(2-i )(2+i )2=(2+i)2=3+4i ,所以其共轭复数是3-4i.【真题体验】4.(2017·全国Ⅱ卷)3+i1+i =( )A.1+2iB.1-2iC.2+iD.2-i【答案】 D 【解析】3+i 1+i =(3+i )(1-i )(1+i )(1-i )=2-i. 5.(2018·北京卷)在复平面内,复数11-i 的共轭复数对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限【答案】 D 【解析】11-i =1+i 2=12+12i ,其共轭复数为12-12i ,∴复数11-i 的共轭复数对应的点的坐标为⎝ ⎛⎭⎪⎫12,-12,位于第四象限,故选D.6.(2019·青岛一模)已知复数z =-1+i(i 是虚数单位),则z +2z 2+z=________. 【答案】 -1【解析】 ∵z =-1+i ,则z 2=-2i , ∴z +2z 2+z =1+i -1-i =(1+i )(-1+i )(-1-i )(-1+i )=-22=-1. 【考点聚焦】考点一 复数的相关概念【例1】 (1)(2019·上海崇明区质检)已知z =2-ii ,则复数z 的虚部为( )A.-iB.2C.-2iD.-2(2)已知在复平面内,复数z 对应的点是Z (1,-2),则复数z 的共轭复数z -=( )A.2-iB.2+iC.1-2iD.1+2i(3)(2019·大连一模)若复数z =1+i1+a i 为纯虚数,则实数a 的值为( )A.1B.0C.-12D.-1【答案】 (1)D (2)D (3)D【解析】 (1)∵z =2-i i =(2-i )(-i )i·(-i )=-1-2i ,则复数z 的虚部为-2.故选D.(2)∵复数z 对应的点是Z (1,-2),∴z =1-2i ,∴复数z 的共轭复数z -=1+2i ,故选D. (3)设z =b i ,b ∈R 且b ≠0, 则1+i1+a i=b i ,得到1+i =-ab +b i , ∴1=-ab ,且1=b , 解得a =-1,故选D. 【规律方法】1.复数的分类及对应点的位置都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可.2.解题时一定要先看复数是否为a +b i(a ,b ∈R )的形式,以确定实部和虚部.【训练1】 (1)已知复数z 满足:(2+i)z =1-i ,其中i 是虚数单位,则z 的共轭复数为( ) A.15-35i B.15+35i C.13-iD.13+i (2)(2019·株洲二模)设i 为虚数单位,1-i =2+a i1+i ,则实数a =( )A.2B.1C.0D.-1【答案】 (1)B (2)C【解析】 (1)由(2+i)z =1-i ,得z =1-i 2+i =(1-i )(2-i )(2+i )(2-i )=15-35i ,∴z -=15+35i.故选B.(2)∵1-i =2+a i1+i ,∴2+a i =(1-i)(1+i)=2,解得a =0.故选C. 考点二 复数的几何意义【例2】 (1)已知i 是虚数单位,设复数z 1=1+i ,z 2=1+2i ,则z 1z 2在复平面内对应的点在( ) A.第一象限 B.第二象限 C.第三象限D.第四象限(2)(2019·北京新高考调研考试)在复平面内,复数z 对应的点与21-i 对应的点关于实轴对称,则z =( )A.1+iB.-1-iC.-1+iD.1-i【答案】 (1)D (2)D 【解析】 (1)由题可得,z 1z 2=1+i 1+2i =(1+i )(1-2i )(1+2i )(1-2i )=35-15i ,对应在复平面上的点的坐标为⎝ ⎛⎭⎪⎫35,-15,在第四象限.(2)∵复数z 对应的点与21-i =2(1+i )(1-i )(1+i )=1+i 对应的点关于实轴对称,∴z =1-i.故选D.【规律方法】1.复数z =a +b i(a ,b ∈R )Z (a ,b )OZ →=(a ,b ).2.由于复数、点、向量之间建立了一一对应的关系,因此可把复数、向量与解析几何联系在一起,解题时可运用数形结合的方法,使问题的解决更加直观.【训练2】 (1)设i 是虚数单位,则复数11+i 在复平面内对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限(2)如图,若向量OZ →对应的复数为z ,则z +4z表示的复数为( )A.1+3iB.-3-iC.3-iD.3+i【答案】 (1)D (2)D【解析】 (1)11+i =1-i (1+i )(1-i )=12-12i ,则复数z 对应的点为⎝ ⎛⎭⎪⎫12,-12,在第四象限,故选D.(2)由题图可得Z (1,-1),即z =1-i ,所以z +4z =1-i +41-i =1-i +4(1+i )(1-i )(1+i )=1-i +4+4i2=1-i +2+2i =3+i.故选D. 考点三 复数的运算【例3】 (1)(2018·全国Ⅲ卷)(1+i)(2-i)=( ) A.-3-i B.-3+i C.3-iD.3+i(2)(2018·全国Ⅰ卷)设z =1-i1+i+2i ,则|z |=( ) A.0B.12C.1D. 2(3)设复数z =1+2i ,则z 2+3z -1=( )A.2iB.-2iC.2D.-2(4)⎝⎛⎭⎪⎫1+i 1-i 6+2+3i 3-2i=________.【答案】 (1)D (2)C (3)C (4)-1+i【解析】 (1)(1+i)(2-i)=2-i +2i -i 2=3+i.故选D.(2)∵z =1-i 1+i +2i =(1-i )2(1+i )(1-i )+2i =1-2i -12+2i =i ,∴|z |=|i|=1.故选C.(3)z 2+3z -1=(1+2i )2+31+2i -1=12+4i +4i 2+32i =4i2i=2.故选C.(4)原式=⎣⎢⎡⎦⎥⎤(1+i )226+(2+3i )(3+2i )(3)2+(2)2=i 6+6+2i +3i -65=-1+i.【规律方法】 复数代数形式运算问题的常见类型及解题策略(1)复数的乘法.复数的乘法类似于多项式的四则运算,可将含有虚数单位i 的看作一类同类项,不含i 的看作另一类同类项,分别合并即可.(2)复数的除法.除法的关键是分子分母同乘以分母的共轭复数,解题时要注意把i 的幂写成最简形式. (3)复数的运算与复数概念的综合题.先利用复数的运算法则化简,一般化为a +b i(a ,b ∈R )的形式,再结合相关定义解答.(4)复数的运算与复数几何意义的综合题.先利用复数的运算法则化简,一般化为a +b i(a ,b ∈R )的形式,再结合复数的几何意义解答.【训练3】 (1)(2018·全国Ⅱ卷)i(2+3i)=( ) A.3-2i B.3+2i C.-3-2iD.-3+2i(2)已知i 为虚数单位,则1+i3-i =( )A.2-i5B.2+i5C.1-2i5D.1+2i5(3)设z =1+i(i 是虚数单位),则z 2-2z=( )A.1+3iB.1-3iC.-1+3iD.-1-3i【答案】 (1)D (2)D (3)C【解析】 (1)i(2+3i)=2i +3i 2=-3+2i ,故选D. (2)1+i 3-i =(1+i )(3+i )(3-i )(3+i )=1+2i 5. (3)因为z =1+i ,所以z 2=(1+i)2=1+2i +i 2=2i ,2z =21+i =2(1-i )(1+i )(1-i )=2(1-i )1-i 2=2(1-i )2=1-i ,则z 2-2z=2i -(1-i)=-1+3i.故选C.【反思与感悟】1.复数的代数形式的运算主要有加、减、乘、除及求低次方根.除法实际上是分母实数化的过程.2.复数z =a +b i(a ,b ∈R )是由它的实部和虚部唯一确定的,两个复数相等的充要条件是把复数问题转化为实数问题的主要方法.对于一个复数z =a +b i(a ,b ∈R ),既要从整体的角度去认识它,把复数看成一个整体;又要从实部、虚部的角度分解成两部分去认识. 【易错防范】1.判定复数是实数,仅注重虚部等于0是不够的,还需考虑它的实部是否有意义.2.注意复数的虚部是指在a +b i(a ,b ∈R )中的实数b ,即虚部是一个实数. 【分层训练】【基础巩固题组】(建议用时:30分钟) 一、选择题1.已知复数(1+2i)i =a +b i ,a ∈R ,b ∈R ,则a +b =( ) A.-3 B.-1 C.1 D.3【答案】 B【解析】 因为(1+2i)i =-2+i ,所以a =-2,b =1,则a +b =-1,选B. 2.(2018·浙江卷)复数21-i (i 为虚数单位)的共轭复数是( )A.1+iB.1-iC.-1+iD.-1-i【答案】 B【解析】 因为21-i =2(1+i )(1-i )(1+i )=2(1+i )1-i 2=1+i ,所以复数21-i的共轭复数为1-i.故选B. 3.设复数z 满足z -=|1-i|+i(i 为虚数单位),则复数z =( ) A.2-i B.2+i C.1D.-1-2i【答案】 A【解析】 复数z 满足z -=|1-i|+i =2+i ,则复数z =2-i ,故选A. 4.下列各式的运算结果为纯虚数的是( ) A.i(1+i)2B.i 2(1-i) C.(1+i)2D.i(1+i)【答案】 C【解析】 i(1+i)2=i·2i=-2,不是纯虚数,排除A ;i 2(1-i)=-(1-i)=-1+i ,不是纯虚数,排除B ;(1+i)2=2i ,2i 是纯虚数.故选C. 5.设z =11+i +i(i 为虚数单位),则|z |=( )A.12B.22C.32D.2【答案】 B【解析】 因为z =11+i +i =1-i (1+i )(1-i )+i =1-i 2+i =12+12i ,所以|z |=⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫122=22. 6.若a 为实数,且1+2ia +i 为实数,则a =( )A.1B.12C.-13D.-2【答案】 B【解析】 因为1+2i a +i =(1+2i )(a -i )(a +i )(a -i )=a +2+(2a -1)i a 2+1是一个实数,所以2a -1=0,∴a =12.故选B.7.(2019·豫南九校质量考评)已知复数a +i2+i=x +y i(a ,x ,y ∈R ,i 是虚数单位),则x +2y =( )A.1B.35C.-35D.-1【答案】 A【解析】 由题意得a +i =(x +y i)(2+i)=2x -y +(x +2y )i ,∴x +2y =1,故选A.8.(2019·福建省普通高中质量检查)若复数z 满足(1+i)z =|3+i|,则在复平面内,z -对应的点位于( ) A.第一象限 B.第二象限 C.第三象限D.第四象限【答案】 A【解析】 由题意,得z =(3)2+121+i =2(1-i )(1+i )(1-i )=1-i ,所以z -=1+i ,其在复平面内对应的点为(1,1),位于第一象限,故选A. 二、填空题9.(2018·天津卷)i 是虚数单位,复数6+7i1+2i =________.【答案】 4-i 【解析】6+7i 1+2i =(6+7i )(1-2i )(1+2i )(1-2i )=20-5i5=4-i. 10.复数z =(1+2i)(3-i),其中i 为虚数单位,则z 的实部是________. 【答案】 5【解析】 (1+2i)(3-i)=3+5i -2i 2=5+5i ,所以z 的实部为5. 11.(2019·西安八校联考)若a +b ii(a ,b ∈R )与(2-i)2互为共轭复数,则a -b =________.【答案】 -7 【解析】 ∵a +b i i=(a +b i )(-i )-i2=b -a i ,(2-i)2=4-4i -1=3-4i ,a +b ii(a ,b ∈R )与(2-i)2互为共轭复数,∴b =3,a =-4,则a -b =-7,故答案为-7.12.在复平面内,O 为原点,向量OA →对应的复数为-1+2i ,若点A 关于直线y =-x 的对称点为B ,则向量OB →对应的复数为________. 【答案】 -2+i【解析】 因为A (-1,2)关于直线y =-x 的对称点B (-2,1),所以向量OB →对应的复数为-2+i. 【能力提升题组】(建议用时:15分钟)13.(2019·烟台检测)设a ,b ∈R ,a =3+b i3-2i (i 是虚数单位),则b =( )A.-2B.-1C.1D.2【答案】 A【解析】 因为a =3+b i 3-2i =(3+b i )(3+2i )(3-2i )(3+2i )=9-2b 13+(6+3b )i 13,a ∈R ,所以6+3b13=0⇒b =-2,故选A.14.设x ∈R ,i 是虚数单位,则“x =2”是“复数z =(x 2-4)+(x +2)i 为纯虚数”的( ) A.充分不必要条件 B.充要条件C.必要不充分条件D.既不充分也不必要条件 【答案】 B【解析】 由复数z =(x 2-4)+(x +2)i 为纯虚数,得⎩⎪⎨⎪⎧x 2-4=0,x +2≠0,解得x =2, 所以“x =2”是“复数z =(x 2-4)+(x +2)i 为纯虚数”的充要条件,故选B.15.计算⎝⎛⎭⎪⎫1+i 1-i 2 019+⎝⎛⎭⎪⎫1-i 1+i 2 019=( )A.-2iB.0C.2iD.2【答案】 B【解析】 ∵1+i 1-i =(1+i )2(1+i )(1-i )=2i 2=i ,1-i1+i=-i ,∴⎝ ⎛⎭⎪⎫1+i 1-i 2 019+⎝ ⎛⎭⎪⎫1-i 1+i 2 019=(i 4)504·i 3+[(-i)4]504·(-i)3=-i +i =0.16.(2019·湖南三湘名校联考)已知i 为虚数单位,复数z =3+2i2-i ,则以下为真命题的是( )A.z 的共轭复数为75-4i5B.z 的虚部为85C.|z |=3D.z 在复平面内对应的点在第一象限 【答案】 D【解析】 ∵z =3+2i 2-i =(3+2i )(2+i )(2-i )(2+i )=45+7i5,11 ∴z 的共轭复数为45-7i 5,z 的虚部为75, |z |=⎝ ⎛⎭⎪⎫452+⎝ ⎛⎭⎪⎫752=655,z 在复平面内对应的点为⎝ ⎛⎭⎪⎫45,75,在第一象限,故选D.。

2023届高考数学复习:历年经典好题专项(平面向量的概念及线性运算)练习(附答案)

2023届高考数学复习:历年经典好题专项(平面向量的概念及线性运算)练习(附答案)
⃗ =0,|⃗|=|⃗|=|⃗ |=2,则△ABC 的面积等于(
A.√3
B.2√3
C.3√3
D.4√3
)
)
10.(多选)设 M 是△ABC 所在平面内一点,则下列说法正确的是(
A.若⃗
1 ⃗

2
1 ⃗
,则
2

M 是边 BC 的中点
B.若⃗=2⃗
⃗ ,则点 M 在边 BC 的延长线上
C.若⃗=-⃗
⃗,则 M 是△ABC 的重心
1
1
D.若⃗=x⃗+y⃗ ,且 x+y= ,则△MBC 的面积是△ABC 面积的
2
2
1
4
11.(历年山东德州高三模拟)设向量 a,b 不平行,向量 a+ λb 与-a+b 平行.则实数 λ=
.
12.(历年浙江杭州二中高二期中)在等腰梯形 ABCD 中,设⃗=a,⃗=b,⃗ =2⃗,M 为 BC 的中点,则
2
3
1
3
A. a+ b
2
3
1
3
C. a- b
2
3
)
(
)
1
3
B.- a+ b
2
3
1
3
D.- a- b
5.(历年四川宜宾叙州区第一中学月考)在▱ABCD 中,若|⃗
A.▱ABCD 为菱形
(
⃗|=|⃗
⃗|,则必有(
)
B.▱ABCD 为矩形
C.▱ABCD 为正方形 D.▱ABCD 为梯形
6.设 a,b 是非零向量,则“a=2b”是“|a+b|≥|a|+|b|”的
A.充分不必要条件

2020版《微点教程》高考人教A版文科数学一轮复习文档:第四章 第一节 平面向量的概念及其线性运算 含答案

2020版《微点教程》高考人教A版文科数学一轮复习文档:第四章 第一节 平面向量的概念及其线性运算 含答案
答案A
1.(配合例2使用)已知P为△ABC所在平面内一点, + + =0,| |=| |=| |=2,则△ABC的面积等于( )
A. B.2
C.3 D.4
解析由| |=| |得,△PBC是等腰三角形,取BC的中点为D,则PD⊥BC,又 + + =0,所以 =-( + )=-2 ,所以PD= AB=1,且PD∥AB,故AB⊥BC,即△ABC是直角三角形,由| |=2,PD=1可得| |= ,则| |=2 ,所以△ABC的面积为 ×2×2 =2 。故选B。
三角形法则
a-b=a+(-b)
数乘
求实数λ与向量a的积的运算
(1)|λa|=|λ||a|;
(2)当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;当λ=0时,λa=0
λ(μa)=(λμ)a;
(λ+μ)a=λa+μa;
λ(a+b)=λa+λb
3.共线向量定理
向量a(a≠0)与b共线的充要条件是存在唯一一个实数λ,使得b=λa。
定义
备注
向量
既有大小又有方向的量;向量的大小叫做向量的长度(或称模)
平面向量是自由向量
零向量
长度为零的向量,其方向是任意的
记作0
单位向量
长度等于1个单位的向量
非零向量a的单位向量为±
平行向量
方向相同或相反的非零向量
0与任一向量平行或共线
共线向量
方向相同或相反的非零向量,又叫做共线向量
相等向量
长度相等且方向相同的向量
答案(1)A(2)D
考点三共线定理及应用微点小专题
方向1:共线定理
【例3】已知e1,e2是两个不共线的向量,若a=2e1-e2与b=e1+λe2共线,则λ=( )

2020年高考数学一轮复习专题5.2平面向量的基本定理练习(含解析)

2020年高考数学一轮复习专题5.2平面向量的基本定理练习(含解析)

5.2 平面向量的坐标运算一、平面向量的坐标运算 1.向量坐标的求法(1)若向量的起点是坐标原点,则终点坐标即为向量的坐标. (2)设A (x 1,y 1),B (x 2,y 2),则AB =(x 2-x 1,y 2-y 1). 2.向量加法、减法、数乘向量及向量的模设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 2+x 1,y 2+y 1),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1), |a |a +b 3.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),则a ∥b ⇔x 1y 2-x 2y 1=0. 4.向量的夹角已知两个非零向量a 和b ,作OA =a ,OB =b ,则∠AOB =θ(0°≤θ≤180°)叫做向量a 与b 的夹角.如果向量a 与b 的夹角是90°,我们说a 与b 垂直,记作a ⊥b .考向一 坐标运算【例1】(1)已知点M (5,-6)和向量a =(1,-2),若MN →=-3a ,则点N 的坐标为.(2)已知A (-2,4),B (3,-1),C (-3,-4).设AB →=a ,BC →=b ,CA →=c ,a =m b +n c (m ,n ∈R ),则m +n = 【答案】(1)(2,0) (2)-2【解析】(1) 设N (x ,y ),则(x -5,y +6)=(-3,6),∴x =2,y =0. (2)由已知得a =(5,-5),b =(-6,-3),c =(1,8).∵m b +n c =(-6m +n ,-3m +8n ),∴⎩⎪⎨⎪⎧-6m +n =5,-3m +8n =-5,解得⎩⎪⎨⎪⎧m =-1,n =-1.∴m +n =-2.【举一反三】1.设OA →=(1,-2),OB →=(a ,-1),OC →=(-b,0),a >0,b >0,O 为坐标原点,若A ,B ,C 三点共线,则1a+2b的最小值是( )A .2B .4C .6D .8【答案】 D【解析】 由题意可得,OA →=(1,-2),OB →=(a ,-1),OC →=(-b,0),所以AB →=OB →-OA →=(a -1,1),AC →=OC →-OA →=(-b -1,2).又∵A ,B ,C 三点共线,∴AB →∥AC →,即(a -1)×2-1×(-b -1)=0,∴2a +b =1,又∵a >0,b >0,∴1a +2b =⎝ ⎛⎭⎪⎫1a +2b (2a +b )=4+⎝ ⎛⎭⎪⎫b a +4a b ≥4+4=8,当且仅当b a =4a b时,取“=”.故选D.2.已知点P (-1,2),线段PQ 的中点M 的坐标为(1,-1).若向量PQ →与向量a =(λ,1)共线,则λ=________. 【答案】 -23【解析】 点P (-1,2),线段PQ 的中点M 的坐标为(1,-1), ∴向量PQ →=2PM →=2(1+1,-1-2)=(4,-6).又PQ →与向量a =(λ,1)共线,∴4×1+6λ=0,即λ=-23.3.已知a =(5,-2),b =(-4,-3),若a -2b +3c =0,则c 等于( )A.⎝ ⎛⎭⎪⎫1,83 B.⎝ ⎛⎭⎪⎫-133,83 C.⎝⎛⎭⎪⎫133,43D.⎝ ⎛⎭⎪⎫-133,-43【解析】 由已知3c =-a +2b =(-5,2)+(-8,-6)=(-13,-4).所以c =⎝ ⎛⎭⎪⎫-133,-43.考向二 平面向量在几何中 的运用【例2】已知△ABC 的三个顶点的坐标为A (0,1),B (1,0),C (0,-2),O 为坐标原点,动点M 满足|CM →|=1,则|OA →+OB →+OM →|的最大值是( )A.2+1B.7+1C.2-1D.7-1 【答案】 A【解析】 设点M 的坐标是(x ,y ),∵C (0,-2),且|CM →|=1,∴x 2+(y +2)2=1,则x 2+(y +2)2=1, 即动点M 的轨迹是以C 为圆心、1为半径的圆, ∵A (0,1),B (1,0),∴OA →+OB →+OM →=(x +1,y +1),则|OA →+OB →+OM →|=(x +1)2+(y +1)2,几何意义表示:点M (x ,y )与点N (-1,-1)之间的距离,即圆C 上的点与点N (-1,-1)的距离,∵点N (-1,-1)在圆C 外部,∴|OA →+OB →+OM →|的最大值是|NC |+1=(0+1)2+(-2+1)2+1=2+1.故选A. 【举一反三】1.在平面直角坐标系中,为坐标原点,直线与圆相交于两点,.若点在圆上,则实数( )A .B .C .D .O :10l x ky -+=22:4C x y +=, A B OM OA OB =+M C k =2-1-01考向三 向量中的坐标【例3】给定两个长度为1的平面向量,OA OB ,它们的夹角为120.如图1所示,点C 在以O 为圆心的圆弧AB 上变动.若,OC xOA yOB =+其中,x y R ∈,则x y +的最大值是______. 【答案】2【解析】解法1( 考虑特值法) 当C 与A 重合时,10,OC OA OB =⨯+⨯1x y +=,当C 与B 重合时,01,OC OA OB =⨯+⨯1x y +=, 当C 从AB 的端点向圆弧内部运动时,1x y +>, 于是猜想当C 是AB 的中点时,x y +取到最大值.当C 是AB 的中点时,由平面几何知识OACB 是菱形, ∴,OC OA OB =+∴11 2.x y +=+= 猜想x y +的最大值是2.解法二(考虑坐标法)建立如图3,所示的平面直角坐标系,设AOC α∠=,则1(1,0),((cos ,sin )2A B C αα-.于是OC xOA yOB =+可化为:1(cos ,sin )(1,0)(,22x y αα=+-,∴1cos ,2sin .x y y αα⎧=-⎪⎪⎨⎪=⎪⎩(1)解法2 函数法求最值由方程组(1)得:cos ,.x y ααα⎧=+⎪⎪⎨⎪=⎪⎩∴cos 2sin(30)x y ααα+=+=+,又0120α≤≤, ∴当30α=时,max () 2.x y += 解法3 不等式法求最值由方程组(1)得:222221sin cos ()3x y xy x y xy αα=+=+-=+-,∴211()33xy x y =+-, 由0,0x y >>,及x y +≥2()4x y xy +≥, ∴2()4x y +≤,∴2x y +≤,当且仅当1x y ==时取等号. ∴max () 2.x y +=思考方向三 考虑向量的数量积的运算 解法4 两边点乘同一个向量∵,OC xOA yOB =+∴,.OC OA xOA OA yOB OA OC OB xOA OB yOB OB ⎧⋅=⋅+⋅⎪⎨⋅=⋅+⋅⎪⎩ 设AOC α∠=,则 120BOC α∠=-,又||||||1OC OA OB ===,∴1cos ,21cos(120).2x y x y αα⎧=-⎪⎪⎨⎪-=-+⎪⎩∴2[cos cos(120)]2sin(30)x y ααα+=+-=+, ∴当30α=时,max () 2.x y += 解法5 两边平方法∵,OC xOA yOB =+∴22(),OC xOA yOB =+∴2221()3x y xy x y xy =+-=+-222()()()344x y x y x y ++≥+-⋅=, ∴2x y +≤,当且仅当1x y ==时取等号, ∴max () 2.x y +=思考方向四 考虑平行四边形法则过C 作CM ∥OB 交OA 于M ,作CN ∥OA 交OB 于N ,则OM CN 是平行四边形,由向量加法的平行四边形法则得:OC OM ON =+,在OMC ∆中,设AOC α∠=,则 120BOC α∠=-, 且||,||.OM x MC y == 解法6 利用正弦定理sin sin sin OM MC OCOCM COM OMC==∠∠∠, 1sin(60)sin sin 60x y αα==+,由等比性值得:1sin(60)sin sin 60x y αα+=++,∴2sin(30)x y α+=+,∴当30α=时,max () 2.x y += 解法7 利用余弦定理222||||||2||||cos60,OC OM MC OM MC =+-⋅∴2221()3x y xy x y xy =+-=+-222()()()344x y x y x y ++≥+-⋅=,∴2x y +≤,当且仅当1x y ==时取等号, ∴max () 2.x y += 【举一反三】1.如图,已知平面内有三个向量OA →,OB →,OC →,其中OA →与OB →的夹角为120°,OA →与OC →的夹角为30°,且|OA →|=|OB →|=1,|OC →|=2 3.若OC →=λOA →+μOB →(λ,μ∈R ),求λ+μ的值.【答案】6【解析】 方法一 如图,作平行四边形OB 1CA 1,则OC →=OB 1→+OA 1→,因为OA →与OB →的夹角为120°,OA →与OC →的夹角为30°, 所以∠B 1OC =90°.在Rt △OB 1C 中,∠OCB 1=30°,|OC →|=23, 所以|OB 1→|=2,|B 1C →|=4,所以|OA 1→|=|B 1C →|=4, 所以OC →=4OA →+2OB →,所以λ=4,μ=2,所以λ+μ=6.方法二 以O 为原点,建立如图所示的平面直角坐标系,则A (1,0),B ⎝ ⎛⎭⎪⎫-12,32,C (3,3).由OC →=λOA →+μOB →,得⎩⎪⎨⎪⎧3=λ-12μ,3=32μ,解得⎩⎪⎨⎪⎧λ=4,μ=2.所以λ+μ=6.2.如图,四边形ABCD 是正方形,延长CD 至E ,使得DE =CD ,若点P 为CD 的中点,且AP →=λAB →+μAE →,则λ+μ=.【答案】 52【解析】 由题意,设正方形的边长为1,建立平面直角坐标系如图,则B (1,0),E (-1,1), ∴AB →=(1,0),AE →=(-1,1), ∵AP →=λAB →+μAE →=(λ-μ,μ), 又∵P 为CD 的中点,∴AP →=⎝ ⎛⎭⎪⎫12,1,∴⎩⎪⎨⎪⎧λ-μ=12,μ=1,∴λ=32,μ=1,∴λ+μ=52.1.在▱ABCD 中,AC 为一条对角线,AB →=(2,4),AC →=(1,3),则向量BD →的坐标为__________. 【答案】 (-3,-5)【解析】 ∵AB →+BC →=AC →,∴BC →=AC →-AB →=(-1,-1),∴BD →=AD →-AB →=BC →-AB →=(-3,-5).2.已知向量a =(3,1),b =(0,-1),c =(k ,3),若a -2b 与c 共线,则k =________. 【答案】 1【解析】 ∵a -2b =(3,3),且a -2b ∥c ,∴3×3-3k =0,解得k =1.3.线段AB 的端点为A (x,5),B (-2,y ),直线AB 上的点C (1,1),使|AC →|=2|BC →|,则x +y =. 【答案】 -2或6【解析】 由已知得AC →=(1-x ,-4),2BC →=2(3,1-y ).由|AC →|=2|BC →|,可得AC →=±2BC →,则当AC →=2BC →时,有⎩⎪⎨⎪⎧1-x =6,-4=2-2y ,解得⎩⎪⎨⎪⎧x =-5,y =3,此时x +y =-2;当AC →=-2BC →时,有⎩⎪⎨⎪⎧1-x =-6,-4=-2+2y ,解得⎩⎪⎨⎪⎧x =7,y =-1,此时x +y =6.综上可知,x +y =-2或6.4. 已知O 为坐标原点,点A (4,0),B (4,4),C (2,6),则AC 与OB 的交点P 的坐标为. 【答案】 (3,3)【解析】 方法一 由O ,P ,B 三点共线,可设OP →=λOB →=(4λ,4λ),则AP →=OP →-OA →=(4λ-4,4λ).又AC →=OC →-OA →=(-2,6),由AP →与AC →共线,得(4λ-4)×6-4λ×(-2)=0, 解得λ=34,所以OP →=34OB →=(3,3),所以点P 的坐标为(3,3).方法二 设点P (x ,y ),则OP →=(x ,y ),因为OB →=(4,4),且OP →与OB →共线,所以x 4=y 4,即x =y .又AP →=(x -4,y ),AC →=(-2,6),且AP →与AC →共线,所以(x -4)×6-y ×(-2)=0,解得x =y =3,所以点P 的坐标为(3,3).5.已知向量a =⎝ ⎛⎭⎪⎫8,x 2,b =(x,1),其中x >0,若(a -2b )∥(2a +b ),则x =.【答案】 4【解析】 ∵向量a =⎝ ⎛⎭⎪⎫8,x 2,b =(x,1),∴a -2b =⎝ ⎛⎭⎪⎫8-2x ,x2-2,2a +b =(16+x ,x +1),∵(a -2b )∥(2a +b ),∴(8-2x )(x +1)-(16+x )⎝ ⎛⎭⎪⎫x2-2=0,即-52x 2+40=0,又∵x >0,∴x =4.6.在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP →=λAB →+μAD →,则λ+μ的最大值为. 【答案】 3【解析】 建立如图所示的平面直角坐标系,则C 点坐标为(2,1).设BD 与圆C 切于点E ,连结CE ,则CE ⊥BD . ∵CD =1,BC =2, ∴BD =12+22=5,EC =BC ·CD BD =25=255,即圆C 的半径为255,∴P 点的轨迹方程为(x -2)2+(y -1)2=45.设P (x 0,y 0),则⎩⎪⎨⎪⎧x 0=2+255cos θ,y 0=1+255sin θ(θ为参数),而AP →=(x 0,y 0),AB →=(0,1),AD →=(2,0).∵AP →=λAB →+μAD →=λ(0,1)+μ(2,0)=(2μ,λ), ∴μ=12x 0=1+55cos θ,λ=y 0=1+255sin θ.两式相加,得λ+μ=1+255sin θ+1+55cos θ=2+sin(θ+φ)≤3⎝ ⎛⎭⎪⎫其中sin φ=55,cos φ=255, 当且仅当θ=π2+2k π-φ,k ∈Z 时,λ+μ取得最大值3.7.在直角梯形ABCD 中,AB ⊥AD ,DC ∥AB ,AD =DC =2,AB =4,E ,F 分别为AB ,BC 的中点,点P 在以A 为圆心,AD 为半径的圆弧DEM 上变动(如图所示).若AP →=λED →+μAF →,其中λ,μ∈R ,则2λ-μ的取值范围是.【答案】 ⎣⎢⎡⎦⎥⎤-22,12 【解析】 建立如图所示的平面直角坐标系,则A (0,0),E (2,0),D (0,2),F (3,1),P (cos α,sin α)⎝⎛⎭⎪⎫-π2≤α≤π2,即AP →=(cos α,sin α),ED →=(-2,2),AF →=(3,1). ∵AP →=λED →+μAF →,∴(cos α,sin α)=λ(-2,2)+μ(3,1), ∴cos α=-2λ+3μ,sin α=2λ+μ,∴λ=18(3sin α-cos α),μ=14(cos α+sin α),∴2λ-μ=12sin α-12cos α=22sin ⎝ ⎛⎭⎪⎫α-π4.∵-π2≤α≤π2,∴-3π4≤α-π4≤π4.∴-22≤22sin ⎝⎛⎭⎪⎫α-π4≤12.8.如图,在边长为2的正六边形ABCDEF 中,动圆Q 的半径为1,圆心在线段CD (含端点)上运动,P 是圆Q 上及内部的动点,设向量AP →=mAB →+nAF →(m ,n 为实数),求m +n 的最大值.【答案】5【解析】如图所示,①设点O 为正六边形的中心, 则AO →=AB →+AF →.当动圆Q 的圆心经过点C 时,与边BC 交于点P ,点P 为边BC 的中点.连结OP , 则AP →=AO →+OP →, ∵OP →与FB →共线,∴存在实数t ,使得OP →=tFB →, 则AP →=AO →+tFB →=AB →+AF →+t (AB →-AF →) =(1+t )AB →+(1-t )AF →,∴此时m +n =1+t +1-t =2,取得最小值.②当动圆Q 的圆心经过点D 时,取AD 的延长线与圆Q 的交点为P ,则AP →=52AO →=52()AB →+AF →=52AB →+52AF →,此时m +n =5,为最大值.9.在△ABC 中,AB =3,AC =2,∠BAC =60°,点P 是△ABC 内一点(含边界),若AP →=23AB →+λAC →,则|AP →|的最大值为________. 【答案】2133【解析】 以A 为原点,以AB 所在的直线为x 轴,建立如图所示的坐标系,∵AB =3,AC =2,∠BAC =60°, ∴A (0,0),B (3,0),C (1,3),设点P 为(x ,y ),0≤x ≤3,0≤y ≤3, ∵AP →=23AB →+λAC →,∴(x ,y )=23(3,0)+λ(1,3)=(2+λ,3λ),∴⎩⎨⎧x =2+λ,y =3λ,∴y =3(x -2),① 直线BC 的方程为y =-32(x -3),② 联立①②,解得⎩⎪⎨⎪⎧x =73,y =33,此时|AP →|最大,∴|AP →|=499+13=2133. 10.已知三角形ABC 中,AB =AC ,BC =4,∠BAC =120°,BE →=3EC →,若点P 是BC 边上的动点,则AP →·AE →的取值范围是________.【答案】 ⎣⎢⎡⎦⎥⎤-23,103 【解析】 因为AB =AC ,BC =4,∠BAC =120°,所以∠ABC =30°,AB =433.因为BE →=3EC →,所以BE →=34BC →.设BP →=tBC →,则0≤t ≤1,所以AP →=AB →+BP →=AB →+tBC →,又AE →=AB →+BE →=AB →+34BC →,所以AP →·AE →=(AB →+tBC →)·⎝⎛⎭⎪⎫AB →+34BC →=AB →2+tBC →·AB →+34BC →·AB →+34tBC →2=163+t ×4×433cos150°+34×4×433cos150°+34t ×42=4t -23, 因为0≤t ≤1,所以-23≤4t -23≤103,即AP →·AE →的取值范围是⎣⎢⎡⎦⎥⎤-23,103.11在矩形ABCD 中,AB =5,BC =3,P 为矩形内一点,且AP =52,若AP →=λAB →+μAD →(λ,μ∈R ),则5λ+3μ的最大值为______. 【答案】102【解析】 建立如图所示的平面直角坐标系,设P (x ,y ),B (5,0),C (5,3),D (0,3).∵AP =52,∴x 2+y 2=54. 点P 满足的约束条件为 ⎩⎪⎨⎪⎧0≤x ≤5,0≤y ≤3,x 2+y 2=54,∵AP →=λAB →+μAD →(λ,μ∈R ), ∴(x ,y )=λ(5,0)+μ(0,3),∴⎩⎨⎧x =5λ,y =3μ,∴x +y =5λ+3μ.∵x +y ≤2(x 2+y 2)=2×54=102, 当且仅当x =y 时取等号, ∴5λ+3μ的最大值为102. 12.如图所示,A ,B ,C 是圆O 上的三点,线段CO 的延长线与BA 的延长线交于圆O 外的一点D ,若OC →=mOA →+nOB →,则m +n 的取值范围是________.【答案】 (-1,0)【解析】 由题意得,OC →=kOD →(k <0), 又|k |=|OC →||OD →|<1,∴-1<k <0.又∵B ,A ,D 三点共线,∴OD →=λOA →+(1-λ)OB →, ∴mOA →+nOB →=k λOA →+k (1-λ)OB →, ∴m =k λ,n =k (1-λ), ∴m +n =k ,从而m +n ∈(-1,0).。

2024届高考数学易错题专项(平面向量) 练习(附答案)

2024届高考数学易错题专项(平面向量) 练习(附答案)

2024届高考数学易错题专项(平面向量) 练习易错点一:注意零向量书写及三角形与平行四边形适用前提(平面向量线性运算)1.已知a 、b为不共线的向量,5AB a b =+ ,28BC a b =-+ ,()3CD a b =-uu u r r r ,则( )A .1233AB AD -+C .15AB AD -A .43a +23b C .23a 43-b1.在梯形ABCD 中,//AB CD ,2AB CD =,E ,F 分别是AB ,CD 的中点,AC 与BD 交于M ,设AB a =,,则下列结论正确的是()A .1233AE AB AC =+ B .若0AB AC ⋅= ,则易错点三:忽视数量积不满足结合律(平面向量的数量积及其应用)1.如图,在三棱柱111ABC A B C -中,M ,N 分别是1A B ,11B C 上的点,且12BM A M =,112C N B N =.设AB a=,AC b = ,1AA c = ,若90BAC ∠= ,1160BAA CAA ∠=∠=,11AB AC AA ===,则( )A .112333MN a b c =++C .11AB BC ⊥A .1AC BD ⊥ C .185BD =10.(多选)下列说法中正确的是(参考答案易错点一:注意零向量书写及三角形与平行四边形适用前提(平面向量线性运算)1.已知a 、b为不共线的向量,5AB a b =+ ,28BC a b =-+ ,()3CD a b =-uu u r r r ,则( ) A .1233AB AD -+C .15AB AD -A.43a+23bC.23a43 -b故选:B.y= 10.已知抛物线C:24∵3FA FB = ,由ABH 与△AFM ∵||2MF =,∴2||23BH =⨯=由抛物线定义得||||BF BH =,∴即4AF = ,3AF BH =,故故选:BC .易错点二:忽略基底选取原则(平面向量的基本定理及坐标表示)【答案详解】由题意可得,12AC AD DC b a=+=+,故A112对于A ,12||||||OF OF OA ==,因此对于B ,直线2:1AF y x =-,由⎧⎨⎩A .1233AE AB AC =+ B .若0AB AC ⋅= ,则易错点三:忽视数量积不满足结合律(平面向量的数量积及其应用)1.如图,在三棱柱111ABC A B C -中,M ,N 分别是1A B ,11B C 上的点,且12BM A M =,112C N B N =.设AB a=,AC b = ,1AA c = ,若90BAC ∠= ,1160BAA CAA ∠=∠=,11AB AC AA ===,则( )A .112333MN a b c =++C .11AB BC ⊥7.已知向量()()2,11,,,1a b c ==-=A .a 与b的夹角为钝角B .向量a 在b 方向上的投影为C .24m n +=对于C ,由PA PB PB PC ⋅=⋅ ,得(PA - 所以点P 是ABC 的垂心,故C 正确;A .1AC BD ⊥ C .185BD =【答案】AB由题意得,2216AB AD == ,1AA cos 4AB AD AB AD BAD ⋅=⋅∠=⨯111cos 4AB AA AB AA BAA ⋅=⋅∠=,其中四边形ABDC 为平行四边形,因为又|OA |=|CA|=|OC |,所以所以∠ACB=60°,且BC。

高考数学《平面向量的基本定理及坐标表示》一轮复习练习题(含答案)

高考数学《平面向量的基本定理及坐标表示》一轮复习练习题(含答案)

高考数学《平面向量的基本定理及坐标表示》一轮复习练习题(含答案)一、单选题1.已知向量(2,1)(2,4)a b ==-,,则a b -( ) A .2B .3C .4D .52.已知在平行四边形ABCD 中,()2,6AD =,()4,4AB =-,对角线AC 与BD 相交于点M ,AM =( )A .()2,5--B .()1,5--C .2,5D .()1,5-3.已知ABC 中,G 是BC 的中点,若2AB =,10AC =,则AG BC ⋅的值为( ) A .2B .3C .2-D .3-4.在ABC 中,点D 在边AB 上,2BD DA =.记CA m CD n ==,,则CB =( ) A .32m n -B .23m n -+C .32m n +D .23m n +5.已知a ,b 是不共线的向量,且2AB a b =+,2AC a b =+,33CD a b =-,则( ) A .A ,B ,C 三点共线 B .A ,C ,D 三点共线 C .B ,C ,D 三点共线D .A ,B ,D 三点共线 6.若M 为△ABC 的边AB 上一点,且52AB AM =,则CB =( ) A .3522CA CM --B .3522CA CM -C .3522CA CM +D .3522CA CM -+7.如图,在斜棱柱1111ABCD A B C D -中,AC 与BD 的交点为点M ,AB a =,AD b =,1AA c =,则1MC =( )A .1122a b c ++B .1122---a b cC .1122-++a b cD .1122a b c --+8.如图,在ABC 中,4BD DC =,则AD =( )A .3144ABAC B .1455AB AC +C .4155AB AC +D .1344ABAC 9.已知正三角形ABC 的边长为4,点P 在边BC 上,则AP BP ⋅的最小值为( ) A .2B .1C .2-D .1-10.在ABC 中,AD 是BC 边上的中线,点M 满足2AM MD =,则CM =( )A .1233AB AC -+B .2133AB AC -+ C .1233AB AC -D .2133AB AC -11.在平行四边形ABCD 中,E ,F 分别是BC ,CD 的中点,DE 交AF 于H ,记AB ,BC 分别为a ,b ,则AH =( )A .2455a b -B .2455a b +C .2455a b -+D .25a b --12.在△ABC 中,点D 在边BC 上,且2CD BD =,E 是AD 的中点,则BE =( ) A .2136AB AC -B .2136AB AC +C .2136AB AC -- D .2136AB AC -+二、填空题13.已知平面向量()2,1a =-,(),2b k =-,若ab ,则+=a b ________.14.锐角ABC ,角A ,B ,C 所对的边分别为a ,b ,c ,3tan tan aB C =+,若3c =,D 为AB 的中点,则中线CD 的范围为______________.15.已知向量()22OC =,,()2cos CA αα= ,则向量OA 的模的最大值是________.16.在ABC 中,M 为AB 的中点,N 为线段CM 上一点(异于端点),AN xAB yAC =+,则11x y+的最小值为______.三、解答题17.已知向量(),1a m =,()1,2b =-,()2,3c = (1)若a b +与c 垂直, 求实数m 的值; (2)若a b -与c 共线, 求实数m 的值.18.设向量()1,2a =-,()1,1b =-,()4,5c =-. (1)求2a b +;(2)若c a b λμ=+,,λμ∈R ,求λμ+的值;(3)若AB a b =+,2BC a b =-,42CD a b =-,求证:A ,C ,D 三点共线.19.已知()1,2,2a m m =-,()3,21,1b n =-. (1)若a b ∥,求m 与n 的值; (2)若()3,,3c m =-且a c ⊥,求a .20.已知O 是平面直角坐标系的原点,()1,2A -,()1,1B ,记OA a =,OB b =. (1)求a 在b 上的投影数量;(2)若四边形OABC 为平行四边形,求点C 的坐标;21.已知向量(1,2),(,1),()//(2)a b x a b a b ==+-. (1)求x 的值;(2)若ka b +与ka b -相互垂直,求k 的值.22.在△ABC 中,P 为AB 的中点,O 在边AC 上,BO 交CP 于R ,且|AO |=2|OC |,设AB a =,AC b =.(1)试用a ,b 表示AR ;(2)若H 在BC 上,且RH ⊥BC ,设|a |=2,|b |=1,a θ∈<,b >,若θ=[3π,23π],求CH CB 的取值范围.23.在①2cos cos cos a A b C c B =+;②tan tan 33tan B C B C +=这两个条件中任选一个,补充在下面的问题中,并加以解答.在ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,已知______. (1)求角A 的大小;(2)若ABC 3G 为ABC 重心,点M 为线段AC 的中点,点N 在线段AB 上,且2AN NB =,线段BM 与线段CN 相交于点P ,求GP 的取值范围. 注:如果选择多个方案分别解答,按 第一个方案解答计分。

2020版高考数学大一轮复习-第1节平面向量的概念及线性运算讲义(理)(含解析)新人教A版

2020版高考数学大一轮复习-第1节平面向量的概念及线性运算讲义(理)(含解析)新人教A版

第1节平面向量的概念及线性运算考试要求 1.了解向量的实际背景;2.理解平面向量的意义和两个向量相等的含义;3.理解向量的几何表示和基本要素;4.掌握向量加法、减法的运算,并理解其几何意义;5.掌握向量数乘的运算及其几何意义,理解两个向量共线的含义;6.了解向量线性运算的性质及其几何意义.知识梳理1.向量的有关概念(1)向量:既有大小又有方向的量叫做向量,向量的大小叫做向量的长度(或模).(2)零向量:长度为0的向量,其方向是任意的.(3)单位向量:长度等于1个单位的向量.(4)平行向量:方向相同或相反的非零向量.平行向量又叫共线向量.规定:0与任一向量平行.(5)相等向量:长度相等且方向相同的向量.(6)相反向量:长度相等且方向相反的向量.2.向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算(1)交换律:a+b=b+a.(2)结合律:(a+b)+c=a+(b+c)减法减去一个向量相当于加上这个向量的相反向量a-b=a+(-b)数乘求实数λ与向量a的积的运算(1)|λa|=|λ||a|;(2)当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向λ(μa)=λμa;(λ+μ)a=λa+μa;λ(a+b)=λa+λb相反;当λ=0时,λa =03.共线向量定理向量a (a ≠0)与b 共线的充要条件是存在唯一一个实数λ,使得b =λa . [微点提醒]1.一般地,首尾顺次相接的多个向量的和等于从第一个向量起点指向最后一个向量终点的向量,即A 1A 2→+A 2A 3→+A 3A 4→+…+A n -1A n =A 1A n →,特别地, 一个封闭图形,首尾连接而成的向量和为零向量.2.若P 为线段AB 的中点,O 为平面内任一点,则OP →=12(OA →+OB →).基 础 自 测1.判断下列结论正误(在括号内打“√”或“×”) (1)零向量与任意向量平行.( ) (2)若a ∥b ,b ∥c ,则a ∥c .( )(3)向量AB →与向量CD →是共线向量,则A ,B ,C ,D 四点在一条直线上.( ) (4)当两个非零向量a ,b 共线时,一定有b =λa ,反之成立.( ) 解析 (2)若b =0,则a 与c 不一定平行.(3)共线向量所在的直线可以重合,也可以平行,则A ,B ,C ,D 四点不一定在一条直线上. 答案 (1)√ (2)× (3)× (4)√2.(必修4P78A6改编)给出下列命题:①零向量的长度为零,方向是任意的;②若a ,b 都是单位向量,则a =b ;③向量AB →与BA →相等.则所有正确命题的序号是( ) A.①B.③C.①③D.①②解析 根据零向量的定义可知①正确;根据单位向量的定义可知,单位向量的模相等,但方向不一定相同,故两个单位向量不一定相等,故②错误;向量AB →与BA →互为相反向量,故③错误. 答案 A3.(必修4P92A12改编)设M 为平行四边形ABCD 对角线的交点,O 为平行四边形ABCD 所在平面内任意一点,则OA →+OB →+OC →+OD →等于( )A.OM →B.2OM →C.3OM →D.4OM →解析 OA →+OB →+OC →+OD →=(OA →+OC →)+(OB →+OD →)=2OM →+2OM →=4OM →. 答案 D4.(2019·东莞调研)如图所示,已知AC →=3BC →,OA →=a ,OB →=b ,OC →=c ,则下列等式中成立的是( )A.c =32b -12aB.c =2b -aC.c =2a -bD.c =32a -12b解析 因为AC →=3BC →,OA →=a ,OB →=b ,所以OC →=OA →+AC →=OA →+32AB →=OA →+32(OB →-OA →)=32OB →-12OA→=32b -12a . 答案 A5.(2018·上海静安区月考)若四边形ABCD 满足AD →=12BC →且|AB →|=|DC →|,则四边形ABCD 的形状是( ) A.等腰梯形 B.矩形 C.正方形D.菱形解析 因为AD →=12BC →,所以AD →∥BC →,且|AD →|=12|BC →|,所以四边形ABCD 为以AD 为上底,BC为下底的梯形.又|AB →|=|DC →|,所以梯形ABCD 的两腰相等.因此四边形ABCD 是等腰梯形. 答案 A6.(2019·菏泽调研)设a 与b 是两个不共线向量,且向量a +λb 与-(b -2a )共线,则λ=________.解析 依题意知向量a +λb 与2a -b 共线,设a +λb =k (2a -b ),则有(1-2k )a +(k +λ)b=0,所以⎩⎪⎨⎪⎧1-2k =0,k +λ=0,解得k =12,λ=-12.答案 -12考点一 平面向量的概念【例1】 (1)设a ,b 都是非零向量,下列四个条件中,一定能使a |a |+b|b |=0成立的是( )A.a =2bB.a ∥bC.a =-13bD.a ⊥b(2)给出下列四个命题: ①若|a |=|b |,则a =b ;②若A ,B ,C ,D 是不共线的四点,则“AB →=DC →”是“四边形ABCD 为平行四边形”的充要条件;③若a =b ,b =c ,则a =c ;④a =b 的充要条件是|a |=|b |且a ∥b . 其中正确命题的序号是( ) A.②③B.①②C.③④D.②④解析 (1)由a |a |+b |b |=0得a |a |=-b |b |≠0,即a =-b|b |·|a |≠0,则a 与b 共线且方向相反,因此当向量a 与向量b 共线且方向相反时,能使a |a |+b|b |=0成立.对照各个选项可知,选项A 中a 与b 的方向相同;选项B 中a 与b 共线,方向相同或相反;选项C 中a 与b 的方向相反;选项D 中a 与b 互相垂直.(2)①不正确.两个向量的长度相等,但它们的方向不一定相同.②正确.∵AB →=DC →,∴|AB →|=|DC →|且AB →∥DC →,又A ,B ,C ,D 是不共线的四点,∴四边形ABCD 为平行四边形;反之,若四边形ABCD 为平行四边形,则|AB →|=|DC →|, AB →∥DC →且AB →,DC →方向相同,因此AB →=DC →.③正确.∵a =b ,∴a ,b 的长度相等且方向相同,又b =c ,∴b ,c 的长度相等且方向相同,∴a ,c 的长度相等且方向相同,故a =c .④不正确.当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,故|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件. 综上所述,正确命题的序号是②③. 答案 (1)C (2)A规律方法 对于向量的有关概念应注意以下几点:(1)平行向量就是共线向量,二者是等价的,它们均与起点无关;非零向量的平行具有传递性;相等向量一定是平行向量,而平行向量未必是相等向量;相等向量具有传递性. (2)向量与数量不同,数量可以比较大小,向量则不能,但向量的模是非负数,可以比较大小.(3)向量可以平移,平移后的向量与原向量是相等向量,解题时,不要把它与函数图象的平移混为一谈.(4)非零向量a 与a |a |的关系:a|a |是与a 同方向的单位向量.【训练1】 (1)如图,等腰梯形ABCD 中,对角线AC 与BD 交于点P ,点E ,F 分别在两腰AD ,BC 上,EF 过点P ,且EF ∥AB ,则下列等式中成立的是( )A.AD →=BC →B.AC →=BD →C.PE →=PF →D.EP →=PF →(2)给出下列说法:①非零向量a 与b 同向是a =b 的必要不充分条件; ②若AB →与BC →共线,则A ,B ,C 三点在同一条直线上; ③a 与b 是非零向量,若a 与b 同向,则a 与-b 反向; ④设λ,μ为实数,若λa =μb ,则a 与b 共线. 其中错误说法的序号是________.解析 (1)根据相等向量的定义,分析可得AD →与BC →不平行,AC →与BD →不平行,所以AD →=BC →,AC →=BD →均错误,PE →与PF →平行,但方向相反也不相等,只有EP →与PF →方向相同,且大小都等于线段EF 长度的一半,所以EP →=PF →.(2)根据向量的有关概念可知①②③正确,④错误. 答案 (1)D (2)④考点二 平面向量的线性运算 多维探究角度1 向量的线性运算【例2-1】 (2018·全国Ⅰ卷)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB →=( ) A.34AB →-14AC → B.14AB →-34AC →C.34AB →+14AC →D.14AB →+34AC → 解析 ∵E 是AD 的中点,∴EA →=-12AD →,∴EB →=EA →+AB →=-12AD →+AB →,又知D 是BC 的中点, ∴AD →=12(AB →+AC →),因此EB →=-14(AB →+AC →)+AB →=34AB →-14AC →.答案 A角度2 利用向量线性运算求参数【例2-2】 (1)如图,在平行四边形ABCD 中,AC ,BD 相交于点O ,E 为线段AO 的中点.若BE →=λBA →+μBD →(λ,μ∈R ),则λ+μ等于( )A.1B.34C.23D.12(2)在锐角△ABC 中,CM →=3MB →,AM →=xAB →+yAC →(x ,y ∈R ),则x y=________.解析 (1)∵E 为线段AO 的中点, ∴BE →=12BA →+12BO →=12BA →+12×12BD →=12BA →+14BD →=λBA →+μBD →, ∴λ+μ=12+14=34.(2)由题设可得AM →=CM →-CA →=34CB →+AC →=34(AB →-A C →)+AC →=34AB →+14AC →, 则x =34,y =14.故xy =3.答案 (1)B (2)3规律方法 1.解题的关键在于熟练地找出图形中的相等向量,并能熟练运用相反向量将加减法相互转化.2.用几个基本向量表示某个向量问题的基本技巧:(1)观察各向量的位置;(2)寻找相应的三角形或多边形;(3)运用法则找关系;(4)化简结果.【训练2】 (1)如图所示,已知AB 是圆O 的直径,点C ,D 是半圆弧的两个三等分点,AB →=a ,AC →=b ,则AD →=( )A.a -12bB.12a -bC.a +12bD.12a +b(2)设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE →=λ1AB →+λ2AC →(λ1,λ2为实数),则λ1+λ2的值为________.解析 (1)连接CD ,由点C ,D 是半圆弧的三等分点, 得CD ∥AB 且CD →=12AB →=12a ,所以AD →=AC →+CD →=b +12a .(2)DE →=DB →+BE →=12AB →+23BC →=12AB →+23(AC →-AB →)=-16AB →+23AC →,∵DE →=λ1AB →+λ2AC →, ∴λ1=-16,λ2=23,因此λ1+λ2=12.答案 (1)D (2)12考点三 共线向量定理及其应用 【例3】 设两个非零向量a 与b 不共线.(1)若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ).求证:A ,B ,D 三点共线; (2)试确定实数k ,使k a +b 和a +k b 共线. (1)证明 ∵AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ).∴BD →=BC →+CD →=2a +8b +3(a -b )=2a +8b +3a -3b =5(a +b )=5AB →.∴AB →,BD →共线,又它们有公共点B , ∴A ,B ,D 三点共线.(2)解 ∵k a +b 与a +k b 共线,∴存在实数λ, 使k a +b =λ(a +k b ),即k a +b =λa +λk b , ∴(k -λ)a =(λk -1)b .∵a ,b 是不共线的两个非零向量,∴k -λ=λk -1=0,∴k 2-1=0,∴k =±1.规律方法 1.证明三点共线问题,可用向量共线解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.2.向量a ,b 共线是指存在不全为零的实数λ1,λ2,使λ1a +λ2b =0成立.【训练3】 (1)已知a ,b 是不共线的向量,AB →=λa +b ,AC →=a +μb ,λ,μ∈R ,则A ,B ,C 三点共线的充要条件为( )A.λ+μ=2B.λ-μ=1C.λμ=-1D.λμ=1(2)(一题多解)已知A ,B ,C 是直线l 上不同的三个点,点O 不在直线l 上,则使等式x 2OA →+xOB →+BC →=0成立的实数x 的取值集合为( )A.{0}B.∅C.{-1}D.{0,-1}解析 (1)因为A ,B ,C 三点共线,所以AB →∥AC →,设AB →=mAC →(m ≠0),则λa +b =m (a +μb ),所以⎩⎪⎨⎪⎧λ=m ,1=mμ,所以λμ=1.(2)法一 若要x 2OA →+xOB →+BC →=0成立,BC →必须与x 2OA →+xOB →共线,由于OA →-OB →=BA →与BC →共线,所以OA →和OB →的系数必须互为相反数,则x 2=-x ,解得x =0或x =-1,而当x =0时,BC →=0,此时B ,C 两点重合,不合题意,舍去.故x =-1.法二 ∵BC →=OC →-OB →,∴x 2OA →+xOB →+OC →-OB →=0, 即OC →=-x 2OA →-(x -1)OB →,∵A ,B ,C 三点共线,∴-x 2-(x -1)=1,即x 2+x =0,解得x =0或x =-1.当x =0时,x 2OA →+xOB →+BC →=0,此时B ,C 两点重合,不合题意,舍去.故x =-1. 答案 (1)D (2)C[思维升华]1.向量线性运算的三要素向量的线性运算满足三角形法则和平行四边形法则,向量加法的三角形法则要素是“首尾相接,指向终点”;向量减法的三角形法则要素是“起点重合,指向被减向量”;平行四边形法则要素是“起点重合”. 2.三个常用结论(1)O 为△ABC 的重心的充要条件是OA →+OB →+OC →=0;(2)四边形ABCD 中,E 为AD 的中点,F 为BC 的中点,则AB →+DC →=2EF →;(3)对于平面上的任一点O ,OA →,OB →不共线,满足OP →=xOA →+yOB →(x ,y ∈R ),则P ,A ,B 共线⇔x +y =1.注意向量共线与三点共线的区别. [易错防范]1.解决向量的概念问题要注意两点:一是不仅要考虑向量的大小,更重要的是要考虑向量的方向;二是考虑零向量是否也满足条件.要特别注意零向量的特殊性.2.在利用向量减法时,易弄错两向量的顺序,从而求得所求向量的相反向量,导致错误.基础巩固题组 (建议用时:35分钟)一、选择题1.已知下列各式:①AB →+BC →+CA →;②AB →+MB →+BO →+OM →;③OA →+OB →+BO →+CO →;④AB →-AC →+BD →-CD →,其中结果为零向量的个数为( )A.1B.2C.3D.4解析 由题知结果为零向量的是①④,故选B. 答案 B2.如图,在正六边形ABCDEF 中,BA →+CD →+EF →=( )A.0B.BE →C.AD →D.CF →解析 由题图知BA →+CD →+EF →=BA →+AF →+CB →=CB →+BF →=CF →. 答案 D3.设a 是非零向量,λ是非零实数,下列结论中正确的是( ) A.a 与λa 的方向相反 B.a 与λ2a 的方向相同 C.|-λa |≥|a |D.|-λa |≥|λ|·a解析 对于A ,当λ>0时,a 与λa 的方向相同,当λ<0时,a 与λa 的方向相反,B 正确;对于C ,|-λa |=|-λ||a |,由于|-λ|的大小不确定,故|-λa |与|a |的大小关系不确定;对于D ,|λ|a 是向量,而|-λa |表示长度,两者不能比较大小. 答案 B4.已知AB →=a +2b ,BC →=-5a +6b ,CD →=7a -2b ,则下列一定共线的三点是( ) A.A ,B ,C B.A ,B ,D C.B ,C ,DD.A ,C ,D解析 因为AD →=AB →+BC →+CD →=3a +6b =3(a +2b )=3AB →,又AB →,AD →有公共点A ,所以A ,B ,D 三点共线. 答案 B5.设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB →+FC →=( ) A.BC →B.12AD → C.AD →D.12BC → 解析 如图,EB →+FC →=EC →+CB →+FB →+BC →=EC →+FB →=12(AC →+AB →)=12·2AD →=AD →.答案 C6.(2019·唐山二模)已知O 是正方形ABCD 的中心.若DO →=λAB →+μAC →,其中λ,μ∈R ,则λμ=( ) A.-2B.-12C.- 2D. 2解析 DO →=DA →+AO →=CB →+AO →=AB →-AC →+12AC →=AB →-12AC →,∴λ=1,μ=-12,因此λμ=-2.答案 A7.如图所示,在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M ,N ,若AB →=mAM →,AC →=nAN →,则m +n 的值为( )A.1B.2C.3D.4解析 ∵O 为BC 的中点,∴AO →=12(AB →+AC →)=12(mAM →+nAN →)=m 2AM →+n 2AN →, ∵M ,O ,N 三点共线,∴m 2+n2=1,∴m +n =2. 答案 B8.在△ABC 中,点D 在线段BC 的延长线上,且BC →=3CD →,点O 在线段CD 上(与点C ,D 不重合),若AO →=xAB →+(1-x )AC →,则x 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,12B.⎝ ⎛⎭⎪⎫0,13C.⎝ ⎛⎭⎪⎫-12,0D.⎝ ⎛⎭⎪⎫-13,0 解析 设CO →=yBC →,因为AO →=AC →+CO →=AC →+yBC →=AC →+y (AC →-AB →)=-yAB →+(1+y )AC →. 因为BC →=3CD →,点O 在线段CD 上(与点C ,D 不重合),所以y ∈⎝ ⎛⎭⎪⎫0,13, 因为AO →=xAB →+(1-x )AC →,所以x =-y ,所以x ∈⎝ ⎛⎭⎪⎫-13,0. 答案 D 二、填空题9.如图,点O 是正六边形ABCDEF 的中心,在分别以正六边形的顶点和中心为始点和终点的向量中,与向量OA →相等的向量有________个.解析 根据正六边形的性质和相等向量的定义,易知与向量OA →相等的向量有CB →,DO →,EF →,共3个.答案 310.设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=____________. 解析 ∵向量a ,b 不平行,∴a +2b ≠0,又向量λa +b 与a +2b 平行,则存在唯一的实数μ,使λa +b =μ(a +2b )成立,即λa +b =μa +2μb ,则得⎩⎪⎨⎪⎧λ=μ,1=2μ,解得λ=μ=12.答案 1211.在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →.若MN →=xAB →+yAC →,则x +y =________. 解析 由题中条件得,MN →=MC →+CN →=13AC →+12CB →=13AC →+12(AB →-AC →)=12AB →-16AC →=xAB →+yAC →, 所以x =12,y =-16,因此x +y =12-16=13.答案 1312.(2019·清华大学自主招生能力测试)设O 在△ABC 的内部,D 为AB 的中点,且OA →+OB →+2OC →=0,则△ABC 的面积与△AOC 的面积的比值为________. 解析 ∵D 为AB 的中点, 则OD →=12(OA →+OB →),又OA →+OB →+2OC →=0,∴OD →=-OC →,∴O 为CD 的中点. 又∵D 为AB 的中点,∴S △AOC =12S △ADC =14S △ABC ,则S △ABCS △AOC=4.答案 4能力提升题组 (建议用时:15分钟)13.已知点O ,A ,B 不在同一条直线上,点P 为该平面上一点,且2OP →=2OA →+BA →,则( ) A.点P 在线段AB 上B.点P 在线段AB 的反向延长线上C.点P 在线段AB 的延长线上D.点P 不在直线AB 上解析 因为2OP →=2OA →+BA →,所以2AP →=BA →,所以点P 在线段AB 的反向延长线上,故选B. 答案 B14.(2019·青岛二模)设D ,E ,F 分别为△ABC 三边BC ,CA ,AB 的中点,则DA →+2EB →+3FC →=( ) A.12AD → B.32AD → C.12AC →D.32AC → 解析 因为D ,E ,F 分别为△ABC 三边BC ,CA ,AB 的中点,所以DA →+2EB →+3FC →=12(BA →+CA →)+2×12(AB →+CB →)+3×12×(AC →+BC →)=12BA →+AB →+CB →+32BC →+32AC →+12CA →=12AB →+12BC →+AC →=12AC →+AC →=32AC →.答案 D15.已知△ABC 和点M 满足MA →+MB →+MC →=0,若存在实数m 使得AB →+AC →=mAM →成立,则m =________.解析 由已知条件得MB →+MC →=-MA →,如图,延长AM 交BC 于D 点,则D 为BC 的中点.同理E ,F 分别是AC ,AB 的中点,因此点M 是△ABC 的重心, ∴AM →=23AD →=13(AB →+AC →),则m =3.答案 316.(2019·郑州模拟)设e 1与e 2是两个不共线向量,AB →=3e 1+2e 2,CB →=k e 1+e 2,CD →=3e 1-2k e 2,若A ,B ,D 三点共线,则k 的值为________.解析 由题意,A ,B ,D 三点共线,故必存在一个实数λ,使得AB →=λBD →. 又AB →=3e 1+2e 2,CB →=k e 1+e 2,CD →=3e 1-2k e 2, 所以BD →=CD →-CB →=3e 1-2k e 2-(k e 1+e 2) =(3-k )e 1-(2k +1)e 2,所以3e 1+2e 2=λ(3-k )e 1-λ(2k +1)e 2, 又e 1与e 2不共线,所以⎩⎪⎨⎪⎧3=λ(3-k ),2=-λ(2k +1),解得k =-94.答案 -94新高考创新预测17.(多填题)在△ABC 中有如下结论:“若点M 为△ABC 的重心,则MA →+MB →+MC →=0.”设a ,b ,c 分别为△ABC 的内角A ,B ,C 的对边,点M 为△ABC 的重心. 若aMA →+bMB →+33cMC →=0,则内角A 的大小为________,当a =3时,△ABC 的面积为________.解析 由aMA →+bMB →+33cMC →=aMA →+bMB →+33c (-MA →-MB →)=⎝ ⎛⎭⎪⎫a -33c MA →+⎝ ⎛⎭⎪⎫b -33c MB →=0,且MA →与MB →不共线,∴a -33c =b -33c =0,∴a =b =33c .△ABC 中,由余弦定理可求得cosA =32,∴A =π6.若a =3,则b =3,c =33,S △ABC =12bc sin A =12×3×33×12=934. 答案 π6 934。

2020届高考数学(理)一轮必刷题 专题25 平面向量基本定理及坐标表示(解析版)

2020届高考数学(理)一轮必刷题 专题25 平面向量基本定理及坐标表示(解析版)

考点25 平面向量基本定理及坐标表示1、已知向量a =(3,-4),b =(x ,y ).若a ∥b ,则( ) A .3x -4y =0 B .3x +4y =0 C .4x +3y =0 D .4x -3y =0【答案】C【解析】∵a ∥b ,∴3y +4x =0.故选C.2、已知向量a =(5,2),b =(-4,-3),c =(x ,y ).若3a -2b +c =0,则c =( ) A .(-23,-12) B .(23,12) C .(7,0) D .(-7,0)【答案】A【解析】由题意可得3a -2b +c =3(5,2)-2(-4,-3)+(x ,y )=(23+x ,12+y )=(0,0),所以⎩⎪⎨⎪⎧ 23+x =0,12+y =0,解得⎩⎪⎨⎪⎧x =-23,y =-12,所以c =(-23,-12).3、若AC 为平行四边形ABCD 的一条对角线,AB →=(3,5),AC →=(2,4),则AD →=( ) A .(-1,-1) B .(5,9) C .(1,1) D .(3,5)【答案】A【解析】由题意可得AD →=BC →=AC →-AB →=(2,4)-(3,5)=(-1,-1). 4、已知平面向量a =(1,-2),b =(2,m ).若a ∥b ,则3a +2b =( ) A .(7,2) B .(7,-14) C .(7,-4) D .(7,-8)【答案】B【解析】∵a ∥b ,∴m +4=0,∴m =-4,∴b =(2,-4),∴3a +2b =3(1,-2)+2(2,-4)=(7,-14). 5、设向量a =(x,1),b =(4,x ),且a ,b 方向相反,则x 的值是( ) A .2 B .-2 C .±2 D .0【答案】B【解析】因为a 与b 方向相反,故可设b =m a ,m <0,则有(4,x )=m (x,1),所以⎩⎪⎨⎪⎧4=mx ,x =m ,解得m =±2.又m <0,所以m =-2,x =m =-2.6、设向量a =(1,-3),b =(-2,4),c =(-1,-2).若表示向量4a,4b -2c,2(a -c ),d 的有向线段首尾相连能构成四边形,则向量d =( ) A .(2,6) B .(-2,6) C .(2,-6) D .(-2,-6)【答案】D【解析】设d =(x ,y ),由题意知4a =4(1,-3)=(4,-12),4b -2c =4(-2,4)-2(-1,-2)=(-6,20),2(a -c )=2[(1,-3)-(-1,-2)]=(4,-2).又4a +(4b -2c )+2(a -c )+d =0,所以(4,-12)+(-6,20)+(4,-2)+(x ,y )=(0,0),解得x =-2,y =-6,所以d =(-2,-6).7、已知平行四边形ABCD 中,AD →=(3,7),AB →=(-2,3),对角线AC 与BD 交于点O ,则CO →的坐标为( ) A.⎝⎛⎭⎫-12,5 B .⎝⎛⎭⎫12,5 C.⎝⎛⎭⎫12,-5 D .⎝⎛⎭⎫-12,-5 【答案】D【解析】AC →=AB →+AD →=(-2,3)+(3,7)=(1,10).∴OC →=12AC →=⎝⎛⎭⎫12,5.∴CO →=⎝⎛⎭⎫-12,-5. 8、在平面直角坐标系xOy 中,已知A (1,0),B (0,1),C 为坐标平面内第一象限内一点且∠AOC =π4,|OC →|=2.若OC →=λOA →+μOB →,则λ+μ=( ) A .2 2B . 2C .2D .42【答案】A【解析】因为|OC →|=2,∠AOC =π4,所以点C 的坐标为(2,2).又OC →=λOA +μOB →,所以(2,2)=λ(1,0)+μ(0,1)=(λ,μ),所以λ=μ=2,λ+μ=22.9、已知向量()sin ,2x =a ,()cos ,1x =b ,满足∥a b ,则.【答案】【解析】因为向量()sin ,2x =a ,()cos ,1x =b ,∥a b ,sin 2cos 0x x ∴-=,tan 2x =,10、若A (1,-5),B (a ,-2),C (-2,-1)三点共线,则实数a 的值为________. 【答案】-54【解析】AB →=(a -1,3),AC →=(-3,4),由题意知AB →∥AC →,∴4(a -1)=3×(-3),即4a =-5,∴a =-54.11、已知向量()12,=-m ,(),4x =n ,若⊥m n ,则2+=m n __________. 【答案】10【解析】由题意可得:240x ⋅=-+⨯=m n ,8x ∴=, 即()1,2=-m ,()8,4=n ,则()()()22,48,46,8+=-+=m n , 据此可知:210+=m n .12、在△ABC 中,点P 在BC 上,且BP →=2PC →,点Q 是AC 的中点.若 P A →=(4,3),PQ →=(1,5),则BC →=________. 【答案】(-6,21)【解析】∵AQ →=PQ →-P A →=(1,5)-(4,3)=(-3,2),∴AC →=2AQ →=2(-3,2)=(-6,4).又PC →=P A →+AC →=(4,3)+(-6,4)=(-2,7),∴BC →=3PC →=3(-2,7)=(-6,21).11.(2018青海西宁质检)已知向量AC →,AD →和AB →在正方形网格中的位置如图所示.若AC →=λAB →+μAD →,则λμ=________. 【答案】-3【解析】建立如题图所示的平面直角坐标系xAy ,则AC →=(2,-2),AB →=(1,2),AD →=(1,0).由题意可知(2,-2)=λ(1,2)+μ(1,0),即⎩⎪⎨⎪⎧ 2=λ+μ,-2=2λ,解得⎩⎪⎨⎪⎧λ=-1,μ=3,所以λμ=-3.13、P ={a|a =(-1,1)+m (1,2),m ∈R },Q ={b|b =(1,-2)+n (2,3),n ∈R }是两个向量集合,则P ∩Q =________. 【答案】{(-13,-23)}【解析】集合P 中,a =(-1+m,1+2m ),集合Q 中,b =(1+2n ,-2+3n ).则⎩⎪⎨⎪⎧-1+m =1+2n ,1+2m =-2+3n .得⎩⎪⎨⎪⎧m =-12,n =-7.此时a =b =(-13,-23).14、已知点()4,1A ,()1,5B ,则与向量AB 方向相同的单位向量为________. 【答案】34,55⎛⎫- ⎪⎝⎭【解析】()()()154134AB =-=-,,,,5AB =,∴与向量AB 方向相同的单位向量为34,55⎛⎫- ⎪⎝⎭. 16.已知()2,3A ,()4,3B -,点P 在线段AB 的延长线上,3AP PB =,则点P 的坐标是____________. 【答案】()8,15-【解析】因为P 在AB 的延长线上,故AP ,PB 共线反向,故3AP PB =-,设(),P x y , ,解得815x y ==-⎧⎨⎩,P 的坐标为()8,15-,故填()8,15-.15、给定两个长度为1的平面向量OA →和OB →,它们的夹角为2π3.如图所示,点C 在以O 为圆心的圆弧AB →上运动.若OC →=xOA →+yOB →,其中x ,y ∈R ,求x +y 的最大值.【解】以O 为坐标原点,OA →所在的直线为x 轴建立平面直角坐标系,如图所示,则点A 的坐标为(1,0),点B 的坐标为⎝⎛⎭⎫-12,32,设∠AOC =α⎝⎛⎭⎫α∈⎝⎛⎭⎫0,2π3,则点C 的坐标为(cos α,sin α), 由OC →=xOA →+yOB →,得⎩⎨⎧cos α=x -12y ,sin α=32y ,所以x =cos α+33sin α,y =2 33sin α, 所以x +y =cos α+3sin α=2sin ⎝⎛⎭⎫α+π6, 又α∈⎣⎡⎦⎤0,2π3,则α+π6∈⎣⎡⎦⎤π6,5π6. 所以当α+π6=π2,即α=π3时,x +y 取得最大值2.16、已知向量()1,3=a ,()2,2=-b , (1)设2=+c a b ,求()⋅b a c ; (2)求向量a 在b 方向上的投影.【答案】(1)()16,16--;(2) 【解析】(1)()()()2,62,24,4=+-=c ,()()26416,16⋅=-=-⇒⋅=--b a b a c .(2)向量a 在b 方向的投影17,()sin ,cos x x =n , (1)若⊥m n ,求tan x 的值;(2)若向量m ,n【答案】(1)tan 1x =;(2)12.【解析】(1)由⊥m n 可得0⋅=m n ,即sin cos 022x x -=, 化简可得sin cos x x =,则tan 1x =.(2而由m ,n )1sin cos 2x x -=,18、如图,在OAB △中,点P 为直线AB 上的一个动点,且满足AP AB λ=. (1)若13λ=,用向量OA ,OB 表示OP ; (2)若4OA =,3OB =,且60AOB ∠=︒,请问λ取何值时使得OP AB ⊥?)213OP OA OB =+;213)由题意得1AP AB =,∴()1OP OA OB OA -=-,∴21OP OA OB =+.(2)由题意知43cos606OA OB ⋅=⨯⨯︒=.∵AP AB λ=, ∴()OP OA OB OA λ-=-,∴()1OP OA OB λλ=-+.∵OP AB ⊥,∴()()10OP AB OA OB OB OA λλ⎡⎤⋅=-+⋅-=⎣⎦,∴()()()()2212161216190OA OB OA OB λλλλλλ+-⋅--=---+=,。

高考数学(人教a版,理科)题库:平面向量的基本定理及向量坐标运算(含答案)

高考数学(人教a版,理科)题库:平面向量的基本定理及向量坐标运算(含答案)

第2讲 平面向量的基本定理及向量坐标运算一、选择题1.已知平面向量a =(x,1),b =(-x ,x 2),则向量a +b ( ). A .平行于x 轴B .平行于第一、三象限的角平分线C .平行于y 轴D .平行于第二、四象限的角平分线解析 由题意得a +b =(x -x,1+x 2)=(0,1+x 2),易知a +b 平行于y 轴. 答案 C2.已知平面向量a =(1,2),b =(-2,m ),且a ∥b ,则2a +3b =( ). A .(-2,-4) B .(-3,-6) C .(-4,-8)D .(-5,-10)解析 由a =(1,2),b =(-2,m ),且a ∥b ,得1×m =2×(-2)⇒m =-4,从而b =(-2,-4),那么2a +3b =2×(1,2)+3×(-2,-4)=(-4,-8). 答案 C3.设向量a =(1,-3),b =(-2,4),c =(-1,-2),若表示向量4a,4b -2c,2(a -c ),d 的有向线段首尾相连能构成四边形,则向量d 为( ).A .(2,6)B .(-2,6)C .(2,-6)D .(-2,-6)解析 设d =(x ,y ),由题意知4a =(4,-12),4b -2c =(-6,20),2(a -c )=(4,-2),又4a +4b -2c +2(a -c )+d =0,解得x =-2,y =-6,所以d =(-2,-6).故选D. 答案 D4. 已知向量a =(1,2),b =(1,0),c =(3,4).若λ为实数,(a +λb )∥c ,则λ= ( ). A.14B.12C .1D .2解析 依题意得a +λb =(1+λ,2),由(a +λb )∥c ,得(1+λ)×4-3×2=0,∴λ=12. 答案 B5. 若向量AB =(1,2),BC =(3,4),则AC =( )A (4,6)B (-4,-6)C (-2,-2)D (2,2) 解析 因为AC =AB +BC =(4,6),所以选A. 答案 A6.若α,β是一组基底,向量γ=x α+y β(x ,y ∈R ),则称(x ,y )为向量γ在基底α,β下的坐标,现已知向量a 在基底p =(1,-1),q =(2,1)下的坐标为(-2,2),则a 在另一组基底m =(-1,1),n =(1,2)下的坐标为( ).A .(2,0)B .(0,-2)C .(-2,0)D .(0,2)解析 ∵a 在基底p ,q 下的坐标为(-2,2), 即a =-2p +2q =(2,4),令a =x m +y n =(-x +y ,x +2y ), ∴⎩⎨⎧ -x +y =2,x +2y =4,即⎩⎨⎧x =0,y =2. ∴a 在基底m ,n 下的坐标为(0,2). 答案 D 二、填空题7.若三点A (2,2),B (a,0),C (0,b )(ab ≠0)共线,则1a +1b 的值为________. 解析 AB →=(a -2,-2),AC →=(-2,b -2),依题意,有(a -2)(b -2)-4=0,即ab -2a -2b =0,所以1a +1b =12. 答案 128.设向量a ,b 满足|a |=25,b =(2,1),且a 与b 的方向相反,则a 的坐标为________.解析 设a =λb (λ<0),则|a |=|λ||b |,∴|λ|=|a ||b |, 又|b |=5,|a |=2 5. ∴|λ|=2,∴λ=-2.∴a =λb =-2(2,1)=(-4,-2). 答案 (-4,-2)9.设OA→=(1,-2),OB →=(a ,-1),OC →=(-b,0),a >0,b >0,O 为坐标原点,若A ,B ,C 三点共线,则1a +2b 的最小值为________. 解析 AB→=OB →-OA →=(a -1,1),AC →=OC →-OA →=(-b -1,2).∵A ,B ,C 三点共线,∴AB→∥AC →.∴2(a -1)-(-b -1)=0,∴2a +b =1. ∴1a +2b =⎝ ⎛⎭⎪⎫1a +2b (2a +b )=4+b a +4ab ≥4+2b a ·4a b =8.当且仅当b a =4a b ,即a =14,b =12时取等号. ∴1a +2b 的最小值是8. 答案 810.在平面直角坐标系xOy 中,四边形ABCD 的边AB ∥DC ,AD ∥BC .已知点A (-2,0),B (6,8),C (8,6),则D 点的坐标为________.解析 由条件中的四边形ABCD 的对边分别平行,可以判断该四边形ABCD 是平行四边形.设D (x ,y ),则有AB →=DC →,即(6,8)-(-2,0)=(8,6)-(x ,y ),解得(x ,y )=(0,-2). 答案 (0,-2) 三、解答题11.已知点A (-1,2),B (2,8)以及AC →=13AB →,DA →=-13BA →,求点C ,D 的坐标和CD →的坐标.解析 设点C ,D 的坐标分别为(x 1,y 1)、(x 2,y 2),由题意得AC →=(x 1+1,y 1-2),AB →=(3,6),DA →=(-1-x 2,2-y 2),BA →=(-3,-6). 因为AC →=13AB →,DA →=-13BA →,所以有⎩⎨⎧ x 1+1=1,y 1-2=2,和⎩⎨⎧ -1-x 2=1,2-y 2=2.解得⎩⎨⎧x 1=0,y 1=4,和⎩⎨⎧x 2=-2,y 2=0.所以点C ,D 的坐标分别是(0,4)、(-2,0),从而CD →=(-2,-4). 12.已知a =(1,2),b =(-3,2),当k 为何值时,k a +b 与a -3b 平行?平行时它们是同向还是反向?解 法一 k a +b =k (1,2)+(-3,2)=(k -3,2k +2), a -3b =(1,2)-3(-3,2)=(10,-4),当k a +b 与a -3b 平行时,存在唯一实数λ使k a +b =λ(a -3b ),由(k -3,2k +2)=λ(10,-4)得,⎩⎨⎧k -3=10λ,2k +2=-4λ.解得k =λ=-13, ∴当k =-13时,k a +b 与a -3b 平行, 这时k a +b =-13a +b =-13(a -3b ). ∵λ=-13<0,∴k a +b 与a -3b 反向. 法二 由法一知k a +b =(k -3,2k +2), a -3b =(10,-4),∵k a +b 与a -3b 平行 ∴(k -3)×(-4)-10×(2k +2)=0,解得k =-13, 此时k a +b =⎝⎛⎭⎪⎫-13-3,-23+2=-13(a -3b ).∴当k =-13时,k a +b 与a -3b 平行,并且反向.13.在平面直角坐标系中,O 为坐标原点,已知向量a =(2,1),A (1,0),B (cos θ,t ),(1)若a ∥AB→,且|AB →|=5|OA →|,求向量OB →的坐标;(2)若a ∥AB→,求y =cos 2θ-cos θ+t 2的最小值.解 (1)∵AB→=(cos θ-1,t ),又a ∥AB →,∴2t -cos θ+1=0. ∴cos θ-1=2t .①又∵|AB→|=5|OA →|,∴(cos θ-1)2+t 2=5.② 由①②得,5t 2=5,∴t 2=1.∴t =±1. 当t =1时,cos θ=3(舍去), 当t =-1时,cos θ=-1,∴B (-1,-1),∴OB →=(-1,-1). (2)由(1)可知t =cos θ-12, ∴y =cos 2θ-cos θ+(cos θ-1)24=54cos 2θ-32cos θ+14=54⎝ ⎛⎭⎪⎫cos 2θ-65cos θ+14=54⎝ ⎛⎭⎪⎫cos θ-352-15, ∴当cos θ=35时,y min =-15.14.已知O (0,0),A (1,2),B (4,5)及OP →=OA →+tAB →,求 (1)t 为何值时,P 在x 轴上?P 在y 轴上?P 在第二象限?(2)四边形OABP 能否成为平行四边形?若能,求出相应的t 值;若不能,请说明理由.解 (1)OP →=OA →+tAB →=(1+3t,2+3t ).若P 在x 轴上,则2+3t =0,∴t =-23;若P 在y 轴上,只需1+3t =0,∴t =-13;若P 在第二象限,则⎩⎨⎧1+3t <0,2+3t >0.∴-23<t <-13.(2)因为OA →=(1,2),PB →=(3-3t,3-3t ).若OABP 为平行四边形,则OA →=PB →,∵⎩⎨⎧3-3t =1,3-3t =2无解.所以四边形OABP 不能成为平行四边形.。

2020届高考数学一轮复习第6单元 平面向量 A卷

2020届高考数学一轮复习第6单元  平面向量 A卷

第6单元 平面向量第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知向量(2,)m =a ,(3,1)=b ,若∥a b ,则实数m 的值为( ) A .14B .13C .23D .12【答案】C【解析】由题意,向量(2,)m =a ,(3,1)=b ,因为∥a b ,则231m =,即32m =,解得23m =.故选C .2.已知向量(2,1)=a ,(,1)m =-b ,且()⊥-a a b ,则m 的值为( ) A .1 B .3C .1或3D .4【答案】B【解析】因为(2,1)=a ,(,1)m =-b ,所以(2,2)m -=-a b ,因为()⊥-a a b ,则()2(2)20m ⋅-=-+=a a b ,解得3m =,所以答案选B . 3.已知向量a ,b 满足||1=a,=b ,a 与b 的夹角为2π3,则2-a b 为( ) A .21 BCD【答案】B【解析】2||12b ==,2π1||||cos12132a b a b 骣琪?=创-=-琪桫,|2|a b \-=故选B .4.已知向量a ,b 满足||1=a ,⊥a b ,则向量2-a b 在向量a 方向上的投影为( ) A .0 B .1C .2D .1-【答案】B【解析】根据向量的投影公式可知,向量2-a b 在向量a 方向上的投影为2(2)()1||||-⋅==a b a a a a ,故选B .5.设a ,b 是非零向量,则“存在实数λ,使得λ=a b ”是“+=+a b a b ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B【解析】存在实数λ,使得λ=a b ,说明向量a ,b 共线, 当a ,b 同向时,+=+a b a b 成立,当a ,b 反向时,+=+a b a b 不成立,所以充分性不成立.当+=+a b a b 成立时,有a ,b 同向,存在实数λ,使得λ=a b 成立,必要性成立, 即“存在实数λ,使得λ=a b ”是“+=+a b a b ”的必要而不充分条件. 故选B .6.已知非零向量a ,b ,若(3)0⋅+=a a b ,2=a b ,则向量a 和b 夹角的余弦值为( ) A .23B .23-C .32D .32-【答案】B【解析】设向量a 与向量b 的夹角为θ,||2||=a b ,∴由(3)0⋅+=a a b ,可得2222()33cos 46cos 0θθ+⋅=+⋅=+=a a b a a b b b , 化简即可得到2cos 3θ=-,故答案选B . 7.如图所示,在正方形ABCD 中,E 为AB 的中点,F 为CE 的中点,则AF=( )A .3144AB AD + B .1344AB AD + C .12AB AD + D .3142AB AD + 【答案】D【解析】根据题意得1()2AF AC AE =+, 又AC AB AD =+,12AE AB =,所以1131()2242AF AB AD AB AB AD =++=+,故选D .8.设D 为所在平面内一点,1433AD AB AC =-+,若,则( )A .2B .3C .D .【答案】D【解析】因为D 为所在平面内一点,由1433AD AB AC =-+, 可得34AD AB AC =-+,即44AD AC AD AB -=-, 则4CD BD =,即4BD DC =-,可得3BD DC DC +=-,故3BC DC =-,则,故选D .9.在四边形中,2AB =+a b ,43BC =--a b ,55CD =--a b ,那么四边形的形状是( ) A .矩形 B .平行四边形C .梯形D .以上都不对【答案】C【解析】86AD AB BC CD =++=--a b ,2AD BC ∴=,AD BC ∴∥,AB CD ∥,四边形是梯形,答案选C .10.在中,为的重心,为上一点,且满足3MC AM =,则( )A .11312GM AB AC =+ B .11312GM AB AC =-- C .17312GM AB AC =-+ D .17312GM AB AC =- 【答案】B【解析】由题意,画出几何图形如下图所示:根据向量加法运算可得GM GA AM =+, 因为G 为△ABC 的重心,M 满足3MC AM =,所以()()211323AG AB AC AB AC =⨯+=+,14AM AC =, 所以11111334312GM AB AC AC AB AC ⎛⎫=-++=--⎪⎝⎭,所以选B .11.如图所示,设为所在平面内的一点,并且1142AP AB AC =+,则与的面积之比等于( )A .25B .35C .34D .14【答案】D【解析】延长AP 交BC 于点D ,因为A 、P 、D 三点共线, 所以()1CP mCA nCD m n =++=,设CD kCB =,代入可得CP mCA nkCB =+,即()()1AP AC mAC nk AB AC AP m nk AC nk AB -=-+-⇒=--+, 又因为1142AP AB AC =+,即14nk =,112m nk --=,且,解得1344m n ==,,所以1344CP CA CD =+,可得4AD PD =, 因为与有相同的底边,所以面积之比就等于DP 与AD 之比,所以与的面积之比为14.故选D . 12.已知向量a ,b 满足4=a ,b 在a 上投影为,则3-a b 的最小值为( ) A .B .C .D .【答案】B【解析】b 在a 上投影为,即cos ,2=-b a b ,0>b ,cos ,0∴<a b ,又[)cos ,1,0∈-a b ,min 2∴=b ,2222223696cos ,9964-=-⋅+=-+=+a b a a b b a a b a b b b ,min 310∴-==a b ,本题正确选项B .第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.若向量(1,2)x =+a 和向量(1,2)=-b 垂直,则-=a b _______. 【答案】5 【解析】向量()1,2x =+a 和向量()1,2=-b 垂直,140x ∴⋅=+-=a b ,解得3x =,()3,4∴-=a b,5∴-==a b ,本题正确结果5.14.已知向量()2,3=a ,(,6)m =-b ,若⊥a b ,则m =________. 【答案】9【解析】因为⊥a b ,所以(2,3)(,6)2180m m ⋅=⋅-=-=a b ,解得m =9,故填9.15.已知向量=a ,向量b 为单位向量,且1⋅=a b ,则2-b a 与2b 夹角为__________. 【答案】60︒【解析】很明显2=a ,设向量,a b 的夹角为θ,则21cos 1θ⋅=⨯⨯=a b ,1cos 2θ∴=,π3θ=, 据此有()()22224242-⋅=-⋅=-=b a b b a b ,且22==-=b a ,22=b ,向量2-b a 与2b 的夹角为β,则21cos 222β==⨯,60β=︒, 综上可得:2-b a 与2b 夹角为60︒.16.在直角坐标系xOy 中,已知点(1,1),(2,3),(3,2)A B C ,若点P 满足PA PB PC ++=0, 则OP =_____.【答案】12x x 【解析】因为PA PB PC ++=0,所以P 为ABC △的重心,故P 的坐标为123123,33++++⎛⎫⎪⎝⎭,即()2,2,故22OP =.填12x x .三、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知向量(1,2)=a ,(3,4)=-b . (1)求3-a b 的值;(2)若()λ⊥+a a b ,求λ的值.【答案】(1)3-=a b ;(2)1λ=-.【解析】(1)因为向量(1,2)=a ,(3,4)=-b ,则3(6,2)-=a b ,则3-==a b .(2)因为向量(1,2)=a ,(3,4)=-b ,则(13,24)λλλ+=-+a b , 若()λ⊥+a a b ,则()1(13)2(24)550λλλλ⋅+=⨯-+⨯+=+=a a b , 解得1λ=-.18.(12分)如图,在平行四边形ABCD 中,M 为DC 的中点,13BN BC =,设AB =a,AD =b .(1)用向量,a b 表示向量AM ,AN ,MN ; (2)若2=a ,3=b ,a 与b 的夹角为π3,求AM MN ⋅的值. 【答案】(1)见解析;(2)92-. 【解析】(1)因为在平行四边形ABCD 中,M 为DC 的中点,13BN BC =,又AB =a ,AD =b ,故1122AM AD DM AD AB ===+++a b , 1133AN AB BN AB AD ===+++a b ,11123223MN AN AM ⎛⎫⎛⎫-+-+=- ⎪ ⎪⎝⎭=⎝=⎭a b a a b b .(2)2211212192234362AM MN ⎛⎫⎛⎫+⋅-=-⋅=-⎪ ⎪⋅⎝⎭⎝=⎭+a b a a b a b b ,故答案为92-.19.(12分)如图,点是单位圆与轴正半轴的交点,34,55B ⎛⎫- ⎪⎝⎭.(1)若,求的值;(2)设点为单位圆上的一个动点,点满足OQ OA OP =+.若,π6π2θ≤≤, 表示OQ ,并求OQ 的最大值.【答案】(1)15;(2).【解析】(1)点是单位圆与轴正半轴的交点,34,55B ⎛⎫- ⎪⎝⎭. 可得4sin 5α=,3cos 5α=-,∴341cos sin 555αα+=-+=. (2)因为,,所以()1cos2,sin 2OQ OA OP θθ=+=+,所以(12cos OQ θ===,因为π6π2θ≤≤,所以2cos OQ θ⎡=∈⎣, OQ 的最大值.20.(12分)设向量()()()11,cos22,14sin 1sin,12θθ⎛⎫==== ⎪⎝⎭,,,,a b c d ,其中4π0,θ⎛⎫∈ ⎪⎝⎭. (1)求⋅-⋅a b c d 的取值范围; (2)若函数,比较()f ⋅a b 与()f ⋅c d 的大小. 【答案】(1);(2)()()f f ⋅>⋅a b c d .【解析】(1)∵2cos2θ⋅=+a b ,22sin 12cos2θθ⋅=+=-c d ,∴2cos2θ⋅-⋅=a b c d , ∵0π4θ<<,∴0π22θ<<,∴,∴()0,2⋅-⋅的取值范围是a b c d .(2)∵()22cos211cos22cos f θθθ⋅=+-=+=a b ,()22cos211cos22sin f θθθ⋅=--=-=c d ,∴()()()222cos sin 2cos2f f θθθ⋅-⋅=-=a b c d ,∵0π4θ<<,∴0π22θ<<,∴,∴()()f f ⋅>⋅a b c d . 21.(12分)在中,三内角的对边分别为,已知向量()2sin ,cos2x x =m ,),1x =n ,函数()f x =⋅m n 且.(1)求角的值;(2)若23BA BC +=且成等差数列,求.【答案】(1)π3B =;(2)2. 【解析】(1)()cos cos2cos2f x x x x x x =⋅=+=+m n , 整理得()2sin 2π6f x x ⎛⎫=+⎪⎝⎭,∵,∴12sin 21si 62ππn 26B B ⎛⎫⎛⎫+=⇒+= ⎪ ⎪⎝⎭⎝⎭,∵,∴π3B =. (2)由成等差数列,得,由余弦定理得,由23BA BC +=,得,三个等式联立解得.22.(12分)如图,在平行四边形中,分别是上的点,且满足,记AB =a ,AD =b ,试以,a b 为平面向量的一组基底.利用向量的有关知识解决下列问题.(1)用,a b 来表示向量DE ,BF ;(2)若,且3BF =,求.【答案】(1)见解析;(2).【解析】(1)∵在中,2DF FC =,∴111222DE DC CE AB CB AB AD =+=+=-=-a b , 111333BF BC CF AD CD AD AB =+=+=-=-b a .(2)由(1)可知:13BF AD AB =-,12DE AB AD =-, ∴2222121·339BF AD AB AD AD AB AB ⎛⎫=-=-+ ⎪⎝⎭,∵且,∴22221223cos 339BAD ∠=-⨯⨯⨯+⨯,∴1cos 2BAD ∠=,∴222211·24DE AB AD AB AB AD AD ⎛⎫=-=-+ ⎪⎝⎭2211332cos 2961742BAD =-⨯⨯∠+⨯=-⨯+=,∴7DE =。

2020年高考数学专题复习平面向量的数量积及应用举例

2020年高考数学专题复习平面向量的数量积及应用举例

第3讲平面向量的数量积及应用举例1.向量的夹角2.平面向量的数量积3.向量数量积的运算律(1)a·b=b·a;(2)(λa)·b=λ(a·b)=a·(λb);(3)(a+b)·c=a·c+b·c.4.平面向量数量积的有关结论已知非零向量a=(x1,y1),b=(x2,y2),a与b的夹角为θ.判断正误(正确的打“√”,错误的打“×”)(1)向量在另一个向量方向上的投影为数量,而不是向量.( )(2)两个向量的数量积是一个实数,向量的加、减、数乘运算的运算结果是向量.( ) (3)由a ·b =0可得a =0或b =0.( ) (4)(a ·b )c =a (b ·c ).( )(5)两个向量的夹角的范围是⎣⎢⎡⎦⎥⎤0,π2.( )(6)若a ·b >0,则a 和b 的夹角为锐角;若a ·b <0,则a 和b 的夹角为钝角.( ) 答案:(1)√ (2)√ (3)× (4)× (5)× (6)×在边长为1的等边△ABC 中,设BC →=a ,CA →=b ,AB →=c ,则a ·b +b ·c +c ·a =( ) A .-32B .0C .32D .3解析:选A.依题意有a ·b +b ·c +c ·a =⎝ ⎛⎭⎪⎫-12+⎝ ⎛⎭⎪⎫-12+⎝ ⎛⎭⎪⎫-12=-32,故选A. 已知向量BA →=⎝ ⎛⎭⎪⎫12,32,BC →=⎝ ⎛⎭⎪⎫32,12,则∠ABC =( )A .30°B .45°C .60°D .120°解析:选A.由两向量的夹角公式,可得cos ∠ABC =BA →·BC →|BA →|·|BC →|=12×32+32×121×1=32,则∠ABC =30°.(2019·温州市高考模拟)已知向量a ,b 满足|b |=4,a 在b 方向上的投影是12,则a ·b=________.解析:a 在b 方向上的投影是12,设θ为a 与b 的夹角,则|a |·cos θ=12,a ·b =|a|·|b |·cos θ=2.答案:2(2017·高考浙江卷)已知向量a ,b 满足|a |=1,|b |=2,则|a +b |+|a -b |的最小值是________,最大值是________.解析:法一:(|a +b |+|a -b |)2=(a +b )2+(a -b )2+2|a +b |·|a -b |=2a 2+2b 2+2|a+b |·|a -b |=10+2|a +b |·|a -b |,而|a +b |·|a -b |≥|(a +b )·(a -b )|=|a 2-b 2|=3,所以(|a +b |+|a -b |)2≥16,即|a +b |+|a -b |≥4,即|a +b |+|a -b |的最小值为4.又|a +b |+|a -b |2≤(a +b )2+(a -b )22=a 2+b 2=5,所以|a +b |+|a -b |的最大值为2 5.法二:由向量三角不等式得,|a +b |+|a -b |≥|(a +b )-(a -b )|=|2b |=4.又|a +b |+|a -b |2≤(a +b )2+(a -b )22=a 2+b 2=5,所以|a +b |+|a -b |的最大值为2 5.答案:4 2 5平面向量数量积的运算(1)(2017·高考浙江卷) 如图,已知平面四边形ABCD ,AB ⊥BC ,AB =BC =AD =2,CD =3,AC 与BD 交于点O .记I 1=OA →·OB →,I 2=OB →·OC →,I 3=OC →·OD →,则( )A .I 1<I 2<I 3B .I 1<I 3<I 2C .I 3 < I 1<I 2D .I 2<I 1<I 3(2)(2017·高考全国卷Ⅱ)已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则PA →·(PB →+PC →)的最小值是( )A .-2B .-32C .-43D .-1【解析】 (1) 如图所示,四边形ABCE 是正方形,F 为正方形的对角线的交点,易得AO <AF ,而∠AFB =90°,所以∠AOB 与∠COD 为钝角,∠AOD 与∠BOC 为锐角.根据题意,I 1-I 2=OA →·OB →-OB →·OC →=OB →·(OA →-OC →)=OB →·CA →=|OB →|·|CA →|·cos ∠AOB <0,所以I 1<I 2,同理得,I 2>I 3,作AG ⊥BD 于G ,又AB =AD ,所以OB <BG =GD <OD ,而OA <AF =FC <OC ,所以|OA →|·|OB →|<|OC →|·|OD →|,而cos ∠AOB =cos ∠COD <0,所以OA →·OB →>OC →·OD →,即I 1>I 3.所以I 3<I 1<I 2.(2) 如图,以等边三角形ABC 的底边BC 所在直线为x 轴,以BC 的垂直平分线为y 轴建立平面直角坐标系,则A (0,3),B (-1,0),C (1,0),设P (x ,y ),则PA →=(-x ,3-y ),PB →=(-1-x ,-y ),PC →=(1-x ,-y ),所以PA →·(PB →+PC →)=(-x ,3-y )·(-2x ,-2y )=2x 2+2(y -32)2-32,当x =0,y =32时,PA →·(PB →+PC →)取得最小值,为-32,选择B.【答案】 (1)C (2)B在本例(2)的条件下,若D ,E 是边BC 的两个三等分点(D 靠近点B ),则AD →·AE →等于________.解析:法一:(通性通法)因为D ,E 是边BC 的两个三等分点,所以BD =DE =CE =23,在△ABD 中,AD 2=BD 2+AB2-2BD ·AB ·cos 60°=⎝ ⎛⎭⎪⎫232+22-2×23×2×12=289,即AD =273,同理可得AE =273,在△ADE 中,由余弦定理得cos ∠DAE =AD 2+AE 2-DE 22AD ·AE=289+289-⎝ ⎛⎭⎪⎫2322×273×273=1314,所以AD →·AE →=|AD→|·|AE →|cos ∠DAE =273×273×1314=269.法二:(光速解法)如图,建立平面直角坐标系,由正三角形的性质易得A (0,3),D ⎝ ⎛⎭⎪⎫-13,0,E ⎝ ⎛⎭⎪⎫13,0,所以AD →=⎝ ⎛⎭⎪⎫-13,-3,AE →=⎝ ⎛⎭⎪⎫13,-3,所以AD →·AE →=⎝ ⎛⎭⎪⎫-13,-3·⎝ ⎛⎭⎪⎫13,-3=269.答案:269(1)向量数量积的两种运算方法①当已知向量的模和夹角时,可利用定义法求解,即a ·b =|a ||b |cos 〈a ,b 〉. ②当已知向量的坐标时,可利用坐标法求解,即若a =(x 1,y 1),b =(x 2,y 2),则a ·b =x 1x 2+y 1y 2.(2)数量积在平面几何中的应用解决涉及几何图形的向量的数量积运算问题时,常利用解析法,巧妙构造坐标系,利用坐标求解.1.(2019·杭州中学高三月考)若A ,B ,C 三点不共线,|AB →|=2,|CA →|=3|CB →|,则CA →·CB →的取值范围是( )A .⎝ ⎛⎭⎪⎫13,3B .⎝ ⎛⎭⎪⎫-13,3C .⎝ ⎛⎭⎪⎫34,3 D .⎝ ⎛⎭⎪⎫-34,3 解析:选D.设|CB →|=x ,则|CA →|=3|CB →|=3x ,由于A ,B ,C 三点不共线,能构成三角形,如图:由三角形三边的性质得,⎩⎪⎨⎪⎧x +3x >23x +2>x x +2>3x,解得12<x <1,由余弦定理的推论得,cos C =AC 2+BC 2-AB 22AC ·BC =x 2+9x 2-46x 2=10x 2-46x2, 所以CA →·CB →=|CA →||CB →|cos C =3x 2×10x 2-46x2=5x 2-2, 由12<x <1得,-34<5x 2-2<3, 故选D.2.已知向量a ,b ,|a |=1,|b |=2.若对任意单位向量e ,均有|a ·e |+|b ·e |≤6,则a ·b 的最大值是________.解析:由题意,令e =(1,0),a =(cos α,sin α),b =(2cos β,2sin β),则由|a ·e |+|b ·e |≤6,可得|cos α|+2|cos β|≤ 6.①令sin α+2sin β=m ,②①2+②2得4[|cos αcos β|+sin αsin β]≤1+m 2对一切实数α,β恒成立,所以4[|cos αcos β|+sin αsin β]≤1,故a ·b =2(cos αcos β+sin αsin β)≤2[|cos αcos β|+sin αsin β]≤12.答案:12平面向量的夹角与模(高频考点)平面向量的夹角与模是高考的热点,题型多为选择题、填空题,难度适中,属中档题.主要命题角度有:(1)求两向量的夹角; (2)求向量的模; (3)两向量垂直问题;(4)求参数值或范围.角度一 求两向量的夹角(2019·绍兴一中高三期中)若|a +b |=|a -b |=2|a |,则向量a +b 与a 的夹角为( )A .π6B .π3C .2π3D .5π6【解析】 因为|a +b |=|a -b |=2|a |, 所以|a +b |2=|a -b |2,两边平方 可得a 2+2a ·b +b 2=a 2-2a ·b +b 2, 化简可得a ·b =0,设向量a +b 与a 的夹角为θ,则可得cos θ=(a +b )·a |a +b ||a |=a 2+a ·b|a +b ||a |=|a |22|a |2=12,又θ∈[0,π],故θ=π3. 【答案】 B角度二 求向量的模(2018·高考浙江卷)已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e的夹角为π3,向量b 满足b 2-4e ·b +3=0,则|a -b |的最小值是( )A .3-1B .3+1C .2D .2- 3【解析】 法一:设O 为坐标原点,a =OA →,b =OB →=(x ,y ),e =(1,0),由b 2-4e ·b +3=0得x 2+y 2-4x +3=0,即(x -2)2+y 2=1,所以点B 的轨迹是以C (2,0)为圆心,1为半径的圆.因为a 与e 的夹角为π3,所以不妨令点A 在射线y =3x (x >0)上,如图,数形结合可知|a -b |min =|CA →|-|CB →|=3-1.故选A.法二:由b 2-4e ·b +3=0得b 2-4e ·b +3e 2=(b -e )·(b -3e )=0.设b =OB →,e =OE →,3e =OF →,所以b -e =EB →,b -3e =FB →,所以EB →·FB →=0,取EF 的中点为C ,则B 在以C 为圆心,EF 为直径的圆上,如图.设a =OA →,作射线OA ,使得∠AOE =π3,所以|a -b |=|(a -2e )+(2e -b )|≥|a -2e |-|2e -b |=|CA →|-|BC →|≥3-1.故选A.【答案】 A角度三 两向量垂直问题已知|a |=4,|b |=8,a 与b 的夹角是120°.求k 为何值时,(a +2b )⊥(k a -b )?【解】 由已知得,a ·b =4×8×⎝ ⎛⎭⎪⎫-12=-16.因为(a +2b )⊥(k a -b ), 所以(a +2b )·(k a -b )=0,k a 2+(2k -1)a ·b -2b 2=0,即16k -16(2k -1)-2×64=0. 所以k =-7.即k =-7时,a +2b 与k a -b 垂直.角度四 求参数值或范围已知△ABC 是正三角形,若AC →-λAB →与向量AC →的夹角大于90°,则实数λ的取值范围是________.【解析】 因为AC →-λAB →与向量AC →的夹角大于90°,所以(AC →-λAB →)·AC →<0,即|AC →|2-λ|AC →|·|AB →|cos 60°<0,解得λ>2.故填(2,+∞).【答案】 (2,+∞)(1)求平面向量的夹角的方法①定义法:利用向量数量积的定义知,cos θ=a ·b|a ||b |,其中两个向量的夹角θ的范围为[0,π],求解时应求出三个量:a ·b ,|a |,|b |或者找出这三个量之间的关系;②坐标法:若a =(x 1,y 1),b =(x 2,y 2),则cos θ=;(2)求向量的模的方法①公式法:利用|a |=a ·a 及(a ±b )2=|a |2±2a ·b +|b |2,把向量模的运算转化为数量积运算.②几何法:利用向量的几何意义,即利用向量加、减法的平行四边形法则或三角形法则作出向量,再利用余弦定理等方法求解.1.(2019·浙江新高考研究联盟)已知向量a ,b ,c 满足|a |=1,|b |=k ,|c |=2-k 且a +b +c =0,则b 与c 夹角的余弦值的取值范围是________.解析:设b 与c 的夹角为θ,由题b +c =-a , 所以b 2+c 2+2b ·c =1.即cos θ=2k 2-4k +32k 2-4k =1+32(k -1)2-2. 因为|a |=|b +c |≥|b -c |,所以|2k -2|≤1. 所以12≤k ≤32.所以-1≤cos θ≤-12.答案:⎣⎢⎡⎦⎥⎤-1,-12 2.已知向量AB →与AC →的夹角为120°,且|AB →|=3,|AC →|=2.若AP →=λAB →+AC →,且AP →⊥BC →,则实数λ的值为________.解析:因为AP →⊥BC →,所以AP →·BC →=0. 又AP →=λAB →+AC →,BC →=AC →-AB →, 所以(λAB →+AC →)·(AC →-AB →)=0, 即(λ-1)AC →·AB →-λAB →2+AC →2=0,所以(λ-1)|AC →||AB →|cos 120°-9λ+4=0.所以(λ-1)×3×2×(-12)-9λ+4=0.解得λ=712.答案:712向量数量积的综合应用(2019·金华十校联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m=(cos(A -B ),sin(A -B )),n =(cos B ,-sin B ),且m ·n =-35.(1)求sin A 的值;(2)若a =42,b =5,求角B 的大小及向量BA →在BC →方向上的投影. 【解】 (1)由m ·n =-35,得cos(A -B )cos B -sin(A -B )sin B =-35,所以cos A =-35.因为0<A <π,所以sin A =1-cos 2A =1-⎝ ⎛⎭⎪⎫-352=45. (2)由正弦定理,得a sin A =b sin B ,则sin B =b sin A a =5×4542=22,因为a >b ,所以A >B ,则B =π4,由余弦定理得()422=52+c 2-2×5c ×⎝ ⎛⎭⎪⎫-35,解得c =1.故向量BA →在BC →方向上的投影为 |BA →|cos B =c cos B =1×22=22.平面向量与三角函数的综合问题(1)题目条件给出的向量坐标中含有三角函数的形式,运用向量共线或垂直或等式成立等,得到三角函数的关系式,然后求解.(2)给出用三角函数表示的向量坐标,要求的是向量的模或者其他向量的表达形式,解题思路是经过向量的运算,利用三角函数在定义域内的有界性,求得值域等.1.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知向量m =⎝⎛⎭⎪⎫sin A2,cos A 2,n =⎝⎛⎭⎪⎫cos A 2,-cos A 2,且2m ·n +|m |=22,则∠A =________.解析:因为2m ·n =2sin A 2cos A 2-2cos 2 A 2=sin A -(cos A +1)=2sin ⎝⎛⎭⎪⎫A -π4-1,又|m |=1,所以2m ·n +|m |=2sin ⎝⎛⎭⎪⎫A -π4=22,即sin ⎝⎛⎭⎪⎫A -π4=12.因为0<A <π,所以-π4<A -π4<3π4,所以A -π4=π6,即A =5π12.答案:5π122.(2017·高考江苏卷)已知向量a =(cos x ,sin x ),b =(3,-3),x ∈[0,π]. (1)若a ∥b ,求x 的值;(2)记f (x )=a ·b ,求f (x )的最大值和最小值以及对应的x 的值. 解:(1)因为a =(cos x ,sin x ),b =(3,-3),a ∥b , 所以-3cos x =3sin x .若cos x =0,则sin x =0,与sin 2x +cos 2x =1矛盾,故cos x ≠0. 于是tan x =-33. 又x ∈[0,π], 所以x =5π6.(2)f (x )=a ·b =(cos x ,sin x )·(3,-3)=3cos x -3sin x =23cos ⎝⎛⎭⎪⎫x +π6.因为x ∈[0,π],所以x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6,从而-1≤cos ⎝⎛⎭⎪⎫x +π6≤32.于是,当x +π6=π6,即x =0时,f (x )取到最大值3;当x +π6=π,即x =5π6时,f (x )取到最小值-2 3.平面向量中的最值范围问题(1)(2019·杭州市高三模拟)在△ABC 中,∠C =90°,AC =4,BC =3,D 是AB 的中点,E ,F 分别是边BC 、AC 上的动点,且EF =1,则DE →·DF →的最小值等于( )A .54B .154C .174D .174(2)(2019·浙江新高考研究联盟联考)已知向量a ,b 满足|a +b |=4,|a -b |=3,则|a |+|b |的取值范围是( )A .[3,5]B .[4,5]C .[3,4]D .[4,7]【解析】 (1)以三角形的直角边为坐标轴建立平面直角坐标系,如图所示:则A (0,4),B (3,0),C (0,0),D ⎝ ⎛⎭⎪⎫32,2.设E (x ,0),则F (0,1-x 2),0≤x ≤1. 所以DE →=⎝ ⎛⎭⎪⎫x -32,-2,DF →=⎝ ⎛⎭⎪⎫-32,1-x 2-2.所以DE →·DF →=94-32x +4-21-x 2=254-3x 2-21-x 2.令f (x )=254-3x 2-21-x 2,当x ≠1时,则f ′(x )=-32+2x1-x 2. 令f ′(x )=0得x =35.当0≤x <35时,f ′(x )<0,当35<x <1时,f ′(x )>0.所以当x =35时,f (x )取得最小值f ⎝ ⎛⎭⎪⎫35=154.当x =1时,f (1)=254-32=194>154,故选B.(2)|a |+|b |≥max{|a +b |,|a -b |}=4,(|a |+|b |)2≤|a +b |2+|a -b |2=25,所以|a |+|b |≤5.【答案】 (1)B (2)B求解向量数量积最值问题的两种思路(1)直接利用数量积公式得出代数式,依据代数式求最值.(2)建立平面直角坐标系,通过坐标运算得出函数式,转化为求函数的最值. 1.已知平面向量a ,b ,|a |=1,|b |=2,a ·b =1,若e 为平面单位向量,则|a ·e |+|b ·e |的最大值是__________.解析:由a ·b =1,|a |=1,|b |=2可得两向量的夹角为60°,建立平面直角坐标系,可设a =(1,0),b =(1,3),e =(cos θ,sin θ),则|a ·e |+|b ·e |=|cos θ|+|cosθ+3sin θ|≤|cos θ|+|cos θ|+3|sin θ|=3|sin θ|+2|cos θ|≤7,所以|a ·e |+|b ·e |的最大值为7.答案:72.(2019·金华十校高考模拟)若非零向量a ,b 满足:a 2=(5a -4b )·b ,则cos 〈a ,b 〉的最小值为________.解析:非零向量a ,b 满足:a 2=(5a -4b )·b ,可得a ·b =15(a 2+4b 2)=15(|a |2+4|b |2)≥15·2|a |2·4|b |2=45|a |·|b |,即有cos 〈a ,b 〉=a ·b |a |·|b |≥45·|a |·|b ||a |·|b |=45,当且仅当|a |=2|b |,取得最小值45.答案:45求向量模的常用方法利用公式|a |2=a 2,将模的运算转化为向量的数量积的运算.利用向量垂直或平行的条件构造方程或函数是求参数或最值问题常用的方法与技巧.两个向量的夹角为锐角,则有a ·b >0,反之不成立;两个向量夹角为钝角,则有a ·b <0,反之也不成立.易错防范(1)a ·b =0不能推出a =0或b =0,因为a ·b =0时,有可能a ⊥b . (2)a ·b =a ·c (a ≠0)不能推出b =c ,即消去律不成立. [基础达标]1.已知A ,B ,C 为平面上不共线的三点,若向量AB →=(1,1),n =(1,-1),且n ·AC →=2,则n ·BC →等于( )A .-2B .2C .0D .2或-2解析:选B.n ·BC →=n ·(BA →+AC →)=n ·BA →+n ·AC →=(1,-1)·(-1,-1)+2=0+2=2.2.(2019·温州市十校联合体期初)设正方形ABCD 的边长为1,则|AB →-BC →+AC →|等于( )A .0B . 2C .2D .2 2解析:选C.正方形ABCD 的边长为1,则|AB →-BC →+AC →|2=|DB →+AC →|2=|DB →|2+|AC →|2+2DB →·AC →=12+12+12+12=4,所以|AB →-BC →+AC →|=2,故选C.3.(2019·温州市十校联合体期初)已知平面向量a ,b ,c 满足c =x a +y b (x ,y ∈R ),且a ·c >0,b ·c >0.( )A .若a ·b <0则x >0,y >0B .若a ·b <0则x <0,y <0C .若a ·b >0则x <0,y <0D .若a ·b >0则x >0,y >0解析:选A.由a ·c >0,b ·c >0,若a ·b <0, 可举a =(1,1),b =(-2,1),c =(0,1), 则a ·c =1>0,b ·c =1>0,a ·b =-1<0, 由c =x a +y b ,即有0=x -2y ,1=x +y , 解得x =23,y =13,则可排除B ;若a ·b >0,可举a =(1,0),b =(2,1),c =(1,1),则a ·c =1>0,b ·c =3>0,a ·b =2>0,由c =x a +y b ,即有1=x +2y ,1=y ,解得x =-1,y =1, 则可排除C ,D.故选A.4.在△ABC 中,(BC →+BA →)·AC →=|AC →|2,则△ABC 的形状一定是( ) A .等边三角形 B .等腰三角形 C .直角三角形D .等腰直角三角形解析:选C.由(BC →+BA →)·AC →=|AC →|2,得AC →·(BC →+BA →-AC →)=0,即AC →·(BC →+BA →+CA →)=0,所以2AC →·BA →=0,所以AC →⊥AB →.所以∠A =90°,又因为根据条件不能得到|AB →|=|AC →|.故选C.5.已知正方形ABCD 的边长为2,点F 是AB 的中点,点E 是对角线AC 上的动点,则DE →·FC →的最大值为( )A .1B .2C .3D .4解析:选B.以A 为坐标原点,AB →、AD →方向分别为x 轴、y 轴的正方向建立平面直角坐标系(图略),则F (1,0),C (2,2),D (0,2),设E (λ,λ)(0≤λ≤2),则DE →=(λ,λ-2),FC →=(1,2),所以DE →·FC →=3λ-4≤2.所以DE →·FC →的最大值为2.故选B.6.(2019·金华市东阳二中高三月考)若a ,b 是两个非零向量,且|a |=|b |=λ|a +b |,λ∈⎣⎢⎡⎦⎥⎤33,1,则b 与a -b 的夹角的取值范围是( ) A .⎣⎢⎡⎦⎥⎤π3,2π3B .⎣⎢⎡⎦⎥⎤2π3,5π6C .⎣⎢⎡⎭⎪⎫2π3,πD .⎣⎢⎡⎭⎪⎫5π6,π 解析:选B.因为|a |=|b |=λ|a +b |,λ∈⎣⎢⎡⎦⎥⎤33,1, 不妨设|a +b |=1,则|a |=|b |=λ.令OA →=a ,OB →=b ,以OA 、OB 为邻边作平行四边形OACB ,则平行四边形OACB 为菱形.故有△OAB 为等腰三角形,故有∠OAB =∠OBA =θ, 且0<θ<π2.而由题意可得,b 与a -b 的夹角, 即OB →与BA →的夹角,等于π-θ,△OAC 中,由余弦定理可得|OC |2=1=|OA |2+|AC |2-2|OA |·|AC |·cos 2θ=λ2+λ2-2·λ·λcos 2θ,解得cos 2θ=1-12λ2.再由33≤λ≤1,可得12≤12λ2≤32,所以-12≤cos 2θ≤12,所以π3≤2θ≤2π3,所以π6≤θ≤π3,故2π3≤π-θ≤5π6,即b 与a -b 的夹角π-θ的取值范围是⎣⎢⎡⎦⎥⎤2π3,5π6.7.(2019·温州市十校联合体期初)已知平面向量a 与b 的夹角为120°,且|a |=|b |=4,那么|a -2b |=________.解析:因为平面向量a 与b 的夹角为120°,且|a |=|b |=4,所以a ·b =4·4·cos 120°=-8,所以|a -2b |=(a -2b )2=a 2-4a ·b +4b 2=16-4·(-8)+4·16=112=47.答案:478.(2019·嘉兴一中高考适应性考试)设e 1,e 2为单位向量,其中a =2e 1+e 2,b =e 2,且a 在b 上的投影为2,则a ·b =________,e 1与e 2的夹角为________.解析:设e 1,e 2的夹角为θ,因为a 在b 上的投影为2, 所以a ·b |b |=(2e 1+e 2)·e 2|e 2|=2e 1·e 2+|e 2|2=2|e 1|·|e 2|cos θ+1=2,解得cos θ=12,则θ=π3. a ·b =(2e 1+e 2)·e 2=2e 1·e 2+|e 2|2=2|e 1|·|e 2|cos θ+1=2. 答案:2π39. 如图,在边长为2的正方形ABCD 中,点Q 为边CD 上一个动点,CQ →=λQD →,点P 为线段BQ (含端点)上一个动点.若λ=1,则PA →·PD →的取值范围为________.解析:当λ=1时,Q 为CD 的中点. 设AB →=m ,AD →=n ,BP →=μBQ →(0≤μ≤1).易知BQ →=-12m +n ,AP →=AB →+BP →=m +μ⎝ ⎛⎭⎪⎫-12m +n =⎝ ⎛⎭⎪⎫1-12μm +μn , DP →=AP →-AD →=⎝⎛⎭⎪⎫1-12μm +μn -n =⎝⎛⎭⎪⎫1-12μm +(μ-1)n ,所以PA →·PD →=AP →·DP →=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-12μm +μn ·⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-12μm +(μ-1)n =4⎝ ⎛⎭⎪⎫1-12μ2+4μ(μ-1)=5μ2-8μ+4.根据二次函数性质可知,当μ=45时上式取得最小值45;当μ=0时上式取得最大值4.所以PA →·PD →的取值范围为⎣⎢⎡⎦⎥⎤45,4.答案:⎣⎢⎡⎦⎥⎤45,4 10.(2019·温州市十五校联合体联考)已知坐标平面上的凸四边形ABCD 满足AC →=(1,3),BD →=(-3,1),则凸四边形ABCD 的面积为________;AB →·CD →的取值范围是________. 解析:由AC →=(1,3),BD →=(-3,1)得AC →⊥BD →,且|AC →|=2,|BD →|=2,所以凸四边形ABCD 的面积为12×2×2=2;因为ABCD 为凸四边形,所以AC 与BD 交于四边形内一点,记为M ,则AB →·CD →=(MB →-MA →)·(MD →-MC →)=MB →·MD →+MA →·MC →-MB →·MC →-MA →·MD →,设AM →=λAC →,BM →=μBD →,则λ,μ∈(0,1),且MA →=-λAC →,MC →=(1-λ)AC →, MB →=-μBD →,MD →=(1-μ)BD →,所以AB →·CD →=-4μ(1-μ)-4λ(1-λ)∈[-2,0),所以有λ=μ=12时,AB →·CD →取到最小值-2.答案:2 [-2,0)11.已知m =⎝ ⎛⎭⎪⎫sin ⎝⎛⎭⎪⎫x -π6,1,n =(cos x ,1).(1)若m ∥n ,求tan x 的值;(2)若函数f (x )=m ·n ,x ∈[0,π],求f (x )的单调递增区间.解:(1)由m ∥n 得,sin ⎝⎛⎭⎪⎫x -π6-cos x =0,展开变形可得,sin x =3cos x , 即tan x = 3.(2)f (x )=m ·n =12sin ⎝⎛⎭⎪⎫2x -π6+34,由-π2+2k π≤2x -π6≤π2+2k π,k ∈Z 得,-π6+k π≤x ≤π3+k π,k ∈Z .又x ∈[0,π],所以当x ∈[0,π]时,f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤0,π3和⎣⎢⎡⎦⎥⎤5π6,π.12.(2019·金华市东阳二中高三月考)设O 是△ABC 的三边中垂线的交点,a ,b ,c 分别为角A ,B ,C 对应的边,已知b 2-2b +c 2=0,求BC →·AO →的取值范围.解:因为O 是△ABC 的三边中垂线的交点,故O 是三角形外接圆的圆心, 如图所示,延长AO 交外接圆于点D .因为AD 是⊙O 的直径,所以∠ACD =∠ABD =90°. 所以cos ∠CAD =ACAD ,cos ∠BAD =AB AD. 所以AO →·BC →=12AD →·(AC →-AB →)=12AD →·AC →-12AD →·AB → =12|AD →||AC →|·cos ∠CAD -12|AD →||AB →|· cos ∠BAD =12|AC →|2-12|AB →|2=12b 2-12c 2=12b 2-12(2b -b 2)(因为c 2=2b -b 2) =b 2-b =⎝ ⎛⎭⎪⎫b -122-14.因为c 2=2b -b 2>0,解得0<b <2.令f (b )=⎝ ⎛⎭⎪⎫b -122-14.所以当b =12时,f (b )取得最小值-14.又f (0)=0,f (2)=2. 所以-14≤f (b )<2.即AO →·BC →的取值范围是⎣⎢⎡⎭⎪⎫-14,2.[能力提升]1.(2019·嘉兴市高考模拟)已知平面向量a 、b 满足|a |=|b |=1,a ·b =12,若向量c满足|a -b +c |≤1,则|c |的最大值为( )A .1B . 2C . 3D .2解析:选D.由平面向量a 、b 满足|a |=|b |=1,a ·b =12,可得|a|·|b |·cos 〈a ,b 〉=1·1·cos 〈a ,b 〉=12,由0≤〈a ,b 〉≤π,可得〈a ,b 〉=π3,设a =(1,0),b =⎝ ⎛⎭⎪⎫12,32,c =(x ,y ),则|a -b +c |≤1,即有⎪⎪⎪⎪⎪⎪⎝ ⎛⎭⎪⎫12+x ,y -32≤1,即为⎝ ⎛⎭⎪⎫x +122+⎝ ⎛⎭⎪⎫y -322≤1,故|a -b +c |≤1的几何意义是在以⎝ ⎛⎭⎪⎫-12,32为圆心,半径等于1的圆上和圆内部分,|c |的几何意义是表示向量c 的终点与原点的距离,而原点在圆上,则最大值为圆的直径,即为2.2.(2019·温州市高考模拟)记max{a ,b }=⎩⎪⎨⎪⎧a ,a ≥bb ,a <b ,已知向量a ,b ,c 满足|a |=1,|b |=2,a ·b =0,c =λa +μb (λ,μ≥0,且λ+μ=1),则当max{c ·a ,c ·b }取最小值时,|c |= ( )A .255B .223C .1D .52解析:选A.如图,设OA →=a ,OB →=b ,则a =(1,0),b =(0,2),因为λ,μ≥0,λ+μ=1,所以0≤λ≤1.又c =λa +μb ,所以c ·a =(λa +b -λb )·a =λ;c ·b =(λa +b -λb )·b =4-4λ.由λ=4-4λ,得λ=45.所以max{c ·a ,c ·b }=⎩⎪⎨⎪⎧λ,45≤λ≤14-4λ,0≤λ<45.令f (λ)=⎩⎪⎨⎪⎧λ,45≤λ≤14-4λ,0≤λ<45.则f (λ)∈⎣⎢⎡⎦⎥⎤45,1.所以f (λ)min =45,此时λ=45,μ=15,所以c =45a +15b =⎝ ⎛⎭⎪⎫45,25. 所以|c |=⎝ ⎛⎭⎪⎫452+⎝ ⎛⎭⎪⎫252=255.故选A.3.(2019·瑞安市龙翔高中高三月考)向量m =⎝⎛⎭⎪⎫22,-22,n =(sin x ,cos x ),x ∈(0,π),①若m ∥n ,则tan x =________;②若m 与n 的夹角为π3,则x =________.解析:m =⎝⎛⎭⎪⎫22,-22,n =(sin x ,cos x ),x ∈(0,π),①由m ∥n ,得22cos x +22sin x =0,即sin ⎝⎛⎭⎪⎫x +π4=0,因为0<x <π,所以π4<x +π4<5π4,则x +π4=π,x =34π.所以tan x =-1.②由m 与n 的夹角为π3,得cos π3=22sin x -22cos x ⎝ ⎛⎭⎪⎫222+⎝ ⎛⎭⎪⎫-222·sin 2x +cos 2x =sin ⎝⎛⎭⎪⎫x -π4=12,因为0<x <π,所以-π4<x -π4<3π4,则x -π4=π6,x =5π12. 答案:①-1 ②5π124.(2019·宁波市余姚中学高三期中)已知向量OA →,OB →的夹角为60°,|OA →|=2,|OB →|=23,OP →=λOA →+μOB →.若λ+3μ=2,则|OP →|的最小值是________,此时OP →,OA →夹角的大小为________.解析:向量OA →,OB →的夹角为60°,|OA →|=2,|OB →|=23,即有OA →·OB →=|OA →|·|OB →|·cos 60°=2×23×12=23,若λ+3μ=2,可得λ=2-3μ,则|OP →|=|λOA →+μOB →|=λ2OA →2+μ2OB →2+2λμOA →·OB →=4λ2+12μ2+43λμ=4(λ+3μ)2-43λμ =16-43(2-3μ)μ=12⎝ ⎛⎭⎪⎫μ-332+12≥23, 当μ=33,λ=1时,|OP →|的最小值为2 3. 由OP →=OA →+33OB →, 可得OP →·OA →=OA →2+33OA →·OB →=4+33·23=6, 则cos 〈OP →,OA →〉=OP →·OA →|OP →|·|OA →|=623·2=32, 由0°≤〈OP →,OA →〉≤180°,可得〈OP →,OA →〉=30°.答案:2 3 30°5.(2019·绍兴市柯桥区高三期中检测)已知平面向量a ,b ,c 满足|a |=4,|b |=3,|c |=2,b ·c =3,求(a -b )2(a -c )2-[(a -b )·(a -c )]2的最大值.解:设OA →=a ,OB →=b ,OC →=c ,a -b 与a -c 所成夹角为θ,则(a -b )2(a -c )2-[(a -b )·(a -c )]2=|AB |2|AC |2-|AB |2|AC |2cos 2θ=|AB |2|AC |2sin 2θ=|AB |2|AC |2sin 2∠CAB =4S 2△ABC ,因为|b |=3,|c |=2,b ·c =3,所以b ,c 的夹角为60°,设B (3,0),C (1,3),则|BC |=7,所以S △OBC =12×3×2×sin 60°=332, 设O 到BC 的距离为h ,则12·BC ·h =S △OBC =332,所以h =3217, 因为|a |=4,所以A 点落在以O 为圆心,以4为半径的圆上,所以A 到BC 的距离最大值为4+h =4+3217. 所以S △ABC 的最大值为12×7×⎝⎛⎭⎪⎫4+3217=27+332, 所以(a -b )2(a -c )2-[(a -b )·(a -c )]2的最大值为4⎝ ⎛⎭⎪⎫27+3322=(47+33)2.6. 在如图所示的平面直角坐标系中,已知点A (1,0)和点B (-1,0),|OC →|=1,且∠AOC =θ,其中O 为坐标原点.(1)若θ=34π,设点D 为线段OA 上的动点,求|OC →+OD →|的最小值; (2)若θ∈⎣⎢⎡⎦⎥⎤0,π2,向量m =BC →,n =(1-cos θ,sin θ-2cos θ),求m ·n 的最小值及对应的θ值.解:(1)设D (t ,0)(0≤t ≤1),由题意知C ⎝ ⎛⎭⎪⎫-22,22, 所以OC →+OD →=⎝ ⎛⎭⎪⎫-22+t ,22, 所以|OC →+OD →|2=12-2t +t 2+12=t 2-2t +1=⎝ ⎛⎭⎪⎫t -222+12, 所以当t =22时,|OC →+OD →|最小,为22. (2)由题意得C (cos θ,sin θ),m =BC →=(cos θ+1,sin θ),则m ·n =1-cos 2θ+sin 2θ-2sin θcos θ=1-cos 2θ-sin 2θ=1-2sin ⎝ ⎛⎭⎪⎫2θ+π4, 因为θ∈⎣⎢⎡⎦⎥⎤0,π2, 所以π4≤2θ+π4≤5π4, 所以当2θ+π4=π2, 即θ=π8时,sin ⎝⎛⎭⎪⎫2θ+π4取得最大值1. 所以m ·n 的最小值为1-2,此时θ=π8.。

2020年高考数学三角函数、三角形、平面向量 专题14 平面向量的数量积 文(含解析)

2020年高考数学三角函数、三角形、平面向量 专题14 平面向量的数量积 文(含解析)

专题14平面向量的数量积一、本专题要特别小心:1。

平面向量数量积的模夹角公式的应用2。

平面向量数量积的坐标公式应用问题3. 向量垂直的应用4.向量的数量积问题等综合问题5。

向量夹角为锐角、钝角时注意问题6。

向量数量积在解析几何中应用7.向量数量积在三角形中的应用.二.【学习目标】1.理解平面向量数量积的含义及其物理意义.2.了解平面向量的数量积与向量投影的关系.3.掌握数量积的坐标表达式,会进行平面向量数量积的运算.4.能运用数量积表示两个向量的夹角及判断两个平面向量的垂直关系.5.会用向量方法解决一些简单的平面几何问题及力学问题.三.【方法总结】1。

要准确理解两个向量的数量积的定义及几何意义,熟练掌握向量数量积的五个重要性质及三个运算规律。

向量的数量积的运算不同于实数乘法的运算律,数量积不满足结合律:(a·b )·c ≠a ·(b·c );消去律:a·b =a·c b =c ;a·b =0 a =0或b =0,但满足交换律和分配律。

2。

公式a·b =|a ||b |cos θ;a·b =x 1x 2+y 1y 2;|a |2=a 2=x 2+y 2的关系非常密切,必须能够灵活综合运用.3。

通过向量的数量积,可以计算向量的长度,平面内两点间的距离,两个向量的夹角,判断相应的两直线是否垂直.4.a∥b ⇔x 1y 2-x 2y 1=0与a ⊥b ⇔x 1x 2+y 1y 2=0要区分清楚. 四.【题型方法】 (一)向量的数量积 例1. 在矩形ABCD 中,2AB =,2BC =,点E 为BC 的中点,点F在CD ,若,则AE BF ⋅的值( )A .2B .2C .0D .1【答案】A【解析】建立如图所示的坐标系,可得()0,0A ,()20B ,,()2,1E,(),2F x ,,(),2AF x =, 解得1x =,()1,2F ∴,,.故选A项.练习1. 在中,,,点是所在平面内的一点,则当取得最小值时,A.B.C.D.【答案】B【解析】,,,,以A为坐标原点建如图所示的平面直角坐标系,则,设,则,所以当x=2,y=1时取最小值,此时.故选:B.练习2. 如图所示,已知点O为ABC的重心,OA OBAB=,则AC BC⋅的值⊥,6为___________。

高考数学必考点专项第13练 平面向量的概念及其线性运算(练习及答案)(全国通用)(新高考专用)

高考数学必考点专项第13练 平面向量的概念及其线性运算(练习及答案)(全国通用)(新高考专用)

高考数学必考点专项第13练 平面向量的概念及其线性运算小题精选一、单选题1. 设D 是ABC ∆所以平面内一点,3BC CD =,则AD =( ) A.4133AB AC + B. 4133AB AC - C. 1433AB AC - D. 1433AB AC -+ 2. 两个非零向量a ,b 满足||||2||a b a b a +=-=,则向量a b +与a 的夹角为 ( ) A.6π B.3π C.23π D.56π 3. 已知等边三角形ABC 的边长为6,点P 满足20PA PB PC +-=,则||PA = ( )A. B. C. D. 4. 设非零向量a ,b 满足|+|=||a b a b -,则( ) A. a b ⊥B. ||=||a bC. //a bD. ||||a b >5. 已知向量3AB a b =+,53BC a b =+,33CD a b =-+,则( ) A. A ,B ,C 三点共线 B. A ,B ,D 三点共线 C. A ,C ,D 三点共线D. B ,C ,D 三点共线6. 在四边形ABCD 中,2AB a b =+,4BC a b =--,53CD a b =--,其中a ,b不共线,则四边形ABCD 为( )A. 平行四边形B. 矩形C. 梯形D. 菱形7. O 为ABC 内一点,且20OA OB OC ++=,AD t AC =,若B ,O ,D 三点共线,则t 的值为( )A.14B.13C.12D.238. 设a ,b 是非零向量,则“存在实数λ,使得a b λ=”是“||||||a b a b +=+”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件9. 如图所示,O 为线段0201A A 外一点,若0A ,1A ,2A ,3A ,…,201A 中任意相邻两点间的距离相等,0OA a =,201OA b =,则用a ,b 表示012OA OA OA +++…201OA +,其结果为( )A. 100()a b +B. 101()a b +C. 201()a b +D. 202()a b +10. 在ABC 中,下列命题正确的个数是( )①AB AC BC -=; ②0AB BC CA ++=;③点O 为ABC 的内心,且()(2)0OB OC OB OC OA -⋅+-=,则ABC 为等腰三角形;④0AC AB ⋅>,则ABC 为锐角三角形.A. 1B. 2C. 3D. 411. 在ABC 中,点M 是AB 的中点,23AN AC =,线段CM 与BN 交于点O ,动点P 在BOC 内部活动(不含边界),且AP AB AN λμ=+,其中λ、R μ∈,则λμ+的取值范围是( )A.B. C. 11(1,)8 D. 3(1,)2二、多选题12. 已知O 是平行四边形ABCD 对角线的交点,则( ) A. AB DC = B. DA DC DB +=C. AB AD BD -=D. 1()2OB DA BA =+13. 在ABC 中,D ,E ,F 分别是边BC ,AC ,AB 中点,下列说法正确的是( )A. 0AB AC AD +-=B. 0DA EB FC ++=C.是的平分线所在直线的方向向量D. 若点P 是线段AD 上的动点,且满足BP BA BC λμ=+,则λμ的最大值为18三、填空题14. 设向量a ,b 不平行,向量a b λ+与2a b +平行,则实数λ=__________. 15. 设a ,b 为单位向量,且|a b +|1=,则|a b -|=__________.16. 已知向量a ,b 满足||1a =,||2b =,则||||a b a b ++-的最小值是__________,最大值是__________.17. 给出下列命题:①若||||a b →→=,则a b →→=;②若A ,B ,C ,D 是不共线四点,则AB DC =是四边形ABCD 为平行四边形的充要条件;③若a b →→=,b c →→=,则a c →→=; ④若//a b →→,//b c →→,则//.a c →→其中正确命题的序号是__________.18. 已知非零向量a ,b 满足||||||a b a b ==-,则||||a b a b +=-__________.19. 若三点(2,2)A ,(,0)B a ,(0,)(0)C b ab ≠共线,则11a b+的值等于__________;若满足0a >,0b >,则a b +的最小值等于__________.20. 如图ABC 是直角边等于4的等腰直角三角形,D 是斜边BC 的中点,14AM AB m AC =+⋅,向量AM 的终点M 在ACD 的内部(不含边界),则实数m 的取值范围是__________.答案和解析1.【答案】D解:因为3BC CD =,所以33AC AB AD AC -=-, 所以14.33AD AB AC =-+ 故选.D2.【答案】B解:设||1a =,则||||2a b a b +=-=,故以a 、b 为邻边的平行四边形是矩形, 且||3b =,设向量a b +与a 的夹角为θ,则||1cos 2||a a b θ==+,3πθ∴=,故选.B3.【答案】C解:因为20PA PB PC +-=,所以2()()0PA PA AB PA AC ++-+=, 整理得,12PA AC AB =-, 由等边三角形ABC 的边长为6, 得166182AB AC =⨯⨯=, 两边平方得,222113636182744PA AC AB AC AB =+-=⨯+-=,则||3 3.PA = 故选:.C4.【答案】A解:非零向量a ,b 满足||||a b a b +=-,22()()a b a b ∴+=-,即222222a b a b a b a b ++⋅=+-⋅,整理得40a b ⋅=, 解得0a b ⋅=,.a b ∴⊥故本题选.A5.【答案】B解:262(3)2BD BC CD a b a b AB =+=+=+=,BD ∴,AB 共线,且有公共点B ,A ∴,B ,D 三点共线.故选.B6.【答案】C解:2,4,AB a b BC a b =+=--53CD a b =--, AD AB BC CD ∴=++ 822a b BC =--=,2AD BC ∴=,//AD BC ∴,且AD BC ≠,∴四边形ABCD 为梯形.故选.C7.【答案】B解:以OB ,OC 为邻边作平行四边形OBFC ,连接OF 与BC 相交于点E ,E 为BC 的中点.20OA OB OC ++=,22OB OC OA OF OE ∴+=-==,∴点O 是线段AE 的中点.B ,O ,D 三点共线,AD t AC =,∴点D 是BO 与AC 的交点.过点O 作//OM BC 交AC 于点M ,则点M 为AC 的中点. 则1124OM EC BC ==, 14DM DC ∴=, 13DM MC ∴=,2133AD AM AC ∴==,AD t AC =, 1.3t ∴=故选.B8.【答案】B解:若“||||||a b a b +=+”,则平方得22||2||a a b b +⋅+22||||2||||a b a b =++⋅,即||||a b a b ⋅=⋅,即||||cos a b a b a ⋅=<,||||b a b >=⋅, 则cos a <,1b >=,即a <,0b >=,即a ,b 同向共线,则存在实数λ,使得a b λ=, 反之当a <,b π>=时,满足a b λ=,但a <,0b >=不成立,即“存在实数λ,使得a b λ=”是“||||||a b a b +=+”的必要不充分条件, 故选:.B9.【答案】B解:设0201A A 的中点为A ,则A 也是1200A A ,…,100101A A 的中点, 可得02012OA OA OA a b +==+,同理可得,12002199OA OA OA OA +=+=…100101OA OA a b =+=+, 故012OA OA OA +++…2011012101().OA OA a b +=⨯=+ 故选.B10.【答案】B解:由ABC ,得:在①中,AB AC CB -=,故①错误; 在②中,0AB BC CA ++=,故②正确;在③中,点 O 为ABC 的内心, 且()(2)0OB OC OB OC OA -⋅+-=, 即,即()0CB AB AC ⋅+=,因为AB AC +表示A ∠的平分线,设AB AC AF +=, 故0CB AF ⋅=,故CB AF ⊥,则AB AC =,ABC 为等腰三角形,故③正确;在④中,0AC AB ⋅>,则BAC ∠是锐角,但是不能保证另外两个角均为锐角,即ABC 不一定为锐角三角形,故④错误. 共计2个正确, 故选:.B11.【答案】D解:若点P 为交点O 时,易知13.44AP AB AN =+ ①若点P 在线段BO 上运动时,1λμ+=; ②若点P 在线段BC 上运动时,23AP AB AC μλ=+,213μλ+=, 33(1),[0,1]222λλμλλλ+=+-=-∈,3[1,]2λμ+∈;③若点P 在线段OC 上运动时,223AP AM AC μλ=+,2213μλ+=,331(12)2,[0,]224λμλλλλ+=+-=-∈,3[1,]2λμ+∈;综上,由于不含边界,3(1,).2λμ∴+∈另解:按照三点共线定理可知,当点P 在直线BN 上时,1λμ+=, 当点P 在直线BN 的下方且平行于直线BN 的直线上时, 随着直线向下平行移动,λμ+的值越来越大, 因为点P 在BOC 内部活动(不含边界)上运动, 所以到达临界点C 时λμ+的值为上限值32, 3(1,).2λμ∴+∈故选:.D12.【答案】AB解:因为O 是平行四边形ABCD 对角线的交点,对于选项A ,结合相等向量的概念可得, AB DC =,即A 正确; 对于选项B ,由平行四边形法则可得DA DC DB +=,即B 正确; 对于选项C ,由向量的减法可得AB AD DB -=,即C 错误; 对于选项D ,由向量的加法运算可得1()2CO DA BA OB =+≠,即D 错误, 综上可得A ,B 正确, 故选:.AB13.【答案】BCD解:如图所示:对选项A ,20AB AC AD AD AD AD +-=-=≠,故A 错误.对选项B ,,故B 正确.对选项C ,,分别表示与,同向的单位向量,由平面向量加法可知C 正确;对选项D ,如图所示:因为在上,即三点共线, 设,0 1.t又因为,所以.因为,则,0 1.t令,当时,取得最大值为.故选项D 正确.故选:.BCD14.【答案】12解:向量a ,b 不平行,向量a b λ+与2a b +平行,(2)2a b t a b ta tb λ∴+=+=+, ,解得实数1.2λ= 故答案为1.215.解:222||2221a b a b a b a b +=++⋅=+⋅=,12a b ⋅=-, 222||2223a b a b a b a b -=+-⋅=-⋅=,|| 3.a b ∴-=16.【答案】4【解析】解:设a OA =,b OB =,记AOB α∠=,则0απ,如图,由余弦定理可得:||54cos a b α+=+,||54cos a b α-=-,令54cos x α=-,54cos y α=+,则2210(x y x +=、1)y ,其图象为一段圆弧MN ,如图,令z x y =+,则y x z =-+,则直线y x z =-+过M 、N 时,z 最小,min 13314z =+=+=,当直线y x z =-+与圆弧MN 相切时,z 最大,由平面几何知识易知max z 即为原点到切线的距离的2倍,也就是圆弧MN 所在圆的半径的2倍,所以max 2102 5.z =⨯=综上所述,||||a b a b ++-的最小值是4,最大值是2 5.故答案为:4;17.【答案】②③解:①不正确.两个向量的长度相等,但它们的方向不一定相同;②正确.AB DC =,||||AB DC ∴=且//AB DC ,又A ,B ,C ,D 是不共线的四点,∴四边形ABCD 为平行四边形;反之,若四边形ABCD 为平行四边形,则//AB DC 且||||AB DC =,AB DC ∴=;③正确.a b →→=,a →∴,b →的长度相等且方向相同, 又b c →→=,b →∴,c →的长度相等且方向相同,a →∴,c →的长度相等且方向相同,故a c →→=;④不正确.当0b =时,满足////a b c ,但是推不出//a c ,综上所述,正确命题的序号是②③.故答案为②③.18.解:如图,设OA a =,OB b =,则OC OA OB a b =+=+,.BA OA OB a b =-=-||||||a b a b ==-,.BA OA OB ∴==OAB ∴为正三角形,设其边长为1,则||||1a b BA -==,3||22a b +=⨯= ||31||a b a b +∴==-19.【答案】128解:(2,2)AB a =--,(2,2)AC b =--,依题意知//AB AC ,有(2)(2)40a b -⋅--= 即220ab a b --=,变形为2()ab a b =+, 所以1112a b a b ab ++== 又0a >,0b >,当且仅当4a b ==时等号成立. 故答案为1,8.220.【答案】13(,)44解:如图所示,设14AE AB =,过点E 作//EP AC ,分别交AD ,BC 于点Q ,P , 分别过Q ,P 作//QR AE ,//PF AE 交AC 于点R ,.F则13,44AR AC AF AC ==, 14AM AB m AC =+⋅,M 在ACD 的内部(不含边界), ∴点M 在线段QP 上(不含点Q ,)P ,当点M 位于点Q 时,1144AM AQ AB AC ==+,可得14m =, 当点M 位于点P 时,1344AM AP AB AC ==+,可得34m =, 故m 的取值范围为13(,)44. 故答案为13(,)44 .。

专题26 平面向量的概念及线性运算-2020年领军高考数学一轮复习(文理通用)(解析版)

专题26 平面向量的概念及线性运算-2020年领军高考数学一轮复习(文理通用)(解析版)

2020年领军高考数学一轮复习(文理通用)专题26平面向量的概念及线性运算最新考纲1.了解向量的实际背景.2.理解平面向量的概念,理解两个向量相等的含义.3.理解向量的几何表示.4.掌握向量加法、减法的运算,并理解其几何意义.5.掌握向量数乘的运算及其几何意义,理解两个向量共线的含义.6.了解向量线性运算的性质及其几何意义.基础知识融会贯通1.向量的有关概念2.向量的线性运算3.共线向量定理向量a (a ≠0)与b 共线,当且仅当有唯一一个实数λ,使b =λa . 【知识拓展】1.一般地,首尾顺次相接的多个向量的和等于从第一个向量起点指向最后一个向量终点的向量,即A 1A 2—————→+A 2A 3—————→+A 3A 4—————→+…+A n -1A n —————————→=A 1A n —————→,特别地,一个封闭图形,首尾连接而成的向量和为零向量. 2.若P 为线段AB 的中点,O 为平面内任一点,则OP →=12(OA →+OB →).3.OA →=λOB →+μOC →(λ,μ为实数),若点A ,B ,C 共线,则λ+μ=1.重点难点突破【题型一】平面向量的概念【典型例题】已知点C (1,﹣1)、D (2,x ),若向量(x ,2)与的方向相反,则||=( )A .1B .﹣2C .2D .【解答】解:点C (1,﹣1)、D (2,x ), 则(1,x +1), 又向量(x ,2)与的方向相反,则,解得x=1或﹣2.∵向量(x,2)与的方向相反,∴x=﹣2.则||.故选:C.【再练一题】在四边形ABCD中,,且•0,则四边形ABCD()A.矩形B.菱形C.直角梯形D.等腰梯形【解答】解:∵即一组对边平行且相等,•0即对角线互相垂直;∴该四边形ABCD为菱形.故选:B.思维升华向量有关概念的关键点(1)向量定义的关键是方向和长度.(2)非零共线向量的关键是方向相同或相反,长度没有限制.(3)相等向量的关键是方向相同且长度相等.(4)单位向量的关键是长度都是一个单位长度.(5)零向量的关键是长度是0,规定零向量与任何向量共线.【题型二】平面向量的线性运算命题点1向量的线性运算【典型例题】在△ABC中,,则()A.B.C.D.【解答】解:∵;∴;∴.故选:B.【再练一题】如图所示,△ABC中,,点E是线段AD的中点,则()A.B.C.D.【解答】解:如图所示,,,,,∴.故选:C.命题点2根据向量线性运算求参数【典型例题】已知G是△ABC的重心,若,则()A.B.C.D.【解答】解:如图,G是△ABC的重心,延长AG交BC于D,则:D为BC的中点;∴;又;∴根据平面向量基本定理得,.故选:A.【再练一题】如图,在▱OACB中,E是AC的中点,F是BC上的一点,且BC=3BF,若m,其中m,n∈R,则m+n的值为()A.1 B.C.D.【解答】解:因为,,所以,,又,所以m,n,故m+n,故选:C.思维升华平面向量线性运算问题的常见类型及解题策略(1)向量加法或减法的几何意义.向量加法和减法均适合三角形法则.(2)求已知向量的和.一般共起点的向量求和用平行四边形法则;求差用三角形法则;求首尾相连向量的和用三角形法则.(3)求参数问题可以通过研究向量间的关系,通过向量的运算将向量表示出来,进行比较,求参数的值.【题型三】共线向量定理的应用【典型例题】已知平面向量(l,x),(4,2),若向量2与向量共线,则x=()A.B.C.D.【解答】解:;∵与共线;∴12﹣4(2x+2)=0;∴.故选:B.【再练一题】在△ABC中,点P满足,过点P的直线与AB,AC所在的直线分别交于点M,N,若,(λ,μ>0),则2λ+μ的最小值为()A.B.3 C.D.4【解答】解:如图所示,,,又2,∴2(),∴,又P、M、N三点共线,∴1,∴2λ+μ=(2λ+μ)•(),当且仅当μ=2λ时取“=”,∴2λ+μ的最小值是.故选:A.思维升华(1)证明三点共线问题,可用向量共线解决,但应注意向量共线与三点共线的区别与联系.当两向量共线且有公共点时,才能得出三点共线.(2)向量a,b共线是指存在不全为零的实数λ1,λ2,使λ1a+λ2b=0成立,若λ1a+λ2b=0,当且仅当λ1=λ2=0时成立,则向量a,b不共线.基础知识训练,e e的夹角为 ,则下列1.【河北省衡水市2019届高三下学期第三次质量检测】已知两个非零单位向量12结论不正确的是()A .不存在θ,使122e e •=B .2212ee =C .R θ∀∈,()1212()e e e e −⊥+ D .1e 在2e 方向上的投影为sin θ【答案】D 【解析】对于A ,因为两个非零单位向量12e ,e ?,所以 12e ?e =1×1×cosθ=cosθ≤1,∴A 正确. 对于B ,因为两个非零单位向量221212e ,e ?e e =,所以=1,B 正确; 对于C ,因为两个非零单位向量12e ,e ?,且 ()()1212e e e e −+22120ee =−= ,所以()()1212e e e e −⊥+,∴C 正确; 对于D ,因为两个非零单位向量12e ,e ? ,所以1e 在2e 方向上的投影为|1e |cosθ=cosθ,D 错误; 故选:D .2.【2019年3月2019届高三第一次全国大联考(新课标Ⅱ卷)】已知平面向量m ,n 均为单位向量,若向量m ,n 的夹角为23π,则23(m n += )A .25B .7C .5D【答案】D 【解析】因为1==m n ,且向量m ,n 的夹角为23π, 所以222|23|4129+=+⋅+=m n m m n n 2131273cos π+=,所以237+=m n . 本题选择D 选项.3.【浙江省温州市2019届高三2月高考适应性测】在平面上,1e ,2e 是方向相反的单位向量,|a |=2 ,(b −1e ) •(b −2e ) =0 ,则|a −b |的最大值为( ) A .1 B .2 C .2 D .3【答案】D 【解析】由题意(b −1e ) •(b −2e ) =0,即2b -(1212••e e b e e ++)=0,又1e ,2e 是方向相反的单位向量,120e e +=,所以有21b =,即|b |=1,记a OA b OB ==,,则A,B 两点的轨迹分别是以原点为圆心,以2和1为半径的圆上,当a b ,反向共线时,如图: |a −b |的最大值为1+2=3,故选D.4.【山东省师大附中2019届高三上学期第二次模拟考试】设是非零向量,则成立的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分又不必要条件 【答案】B 【解析】由可知: 方向相同, 表示 方向上的单位向量所以成立;反之不成立.故选B5.【云南省2019届高三第一次高中毕业生复习统一检测】设向量(1,)a x x =−,(1,2)b =−,若//a b ,则x =( ) A .32−B .-1C .23D .32【答案】C 【解析】//a b2(1)0x x ∴−+=∴23x =.故选:C6.【山东省聊城市2019届高三三模】在正方形ABCD 中,E 为DC 的中点,若AE AB AC λμ=+,则λμ+的值为( ) A .12−B .12C .1−D .1【答案】B 【解析】 由题得1111111122222222AE AD AC BC AC AC AB AC AB AC =+=+=−+=−+, 11,1,22λμλμ∴=−=∴+=.故选:B7.【陕西省汉中市2019届高三年级教学质量第二次检测考试】已知向量a 、b 的夹角为60︒,2a =,1b =,则a b −=( )A B C .D【答案】A 【解析】a b −=()2220242cos601a ba ab b a b −=−⋅+=−⋅+=,因此本题选A .8.【安徽省毛坦厂中学2019届高三校区4月联考】已知向量()1,2a −=,(),1b x x =−,若()2//b a a −,则x =( ) A .13B .23C .1D .3【答案】A 【解析】由题意得,()22,5b a x x −=+−,()2//b a a −,()2250x x ∴++−=,解得13x =. 故选:A.9.【宁夏六盘山高级中学2019届高三下学期第二次模拟考试】已知向量()1,1a =,()2,b x =,若()//a a b −则实数x 的值为( ) A .2− B .0C .1D .2【答案】D 【解析】∵()1,1a =,()2,b x =,∴()1,1x a b −=−−,又()//a a b − ∴1x 1−=− ∴2x = 故选:D10.【山东省德州市2019届高三下学期第一次练习】如图所示,ABC 中,2AD AB 3=,1BE BC 2=,则DE (= )A .11AC AB 32− B .11AC AB 36−C .11AC AB 23− D .11AC AB 26− 【答案】D 【解析】()1111DE DB BE AB AC AB AC AB 3226=+=+−=−,故选:D .11.【安徽省合肥市2019届高三第二次教学质量检测】在ABC ∆中,13BD BC =,若AB a =,AC b =,则AD =( ) A .2133a b + B .1233a b +C .1233a b −D .2133a b − 【答案】A 【解析】因为13BD BC =,AB a =,AC b =, 所以13AD AB BD AB BC =+=+()1212133333AB AC AB AB AC a b =+−=+=+,故选A.12.【安徽省合肥市2019届高三第二次教学质量检测】在ABC △中,12BD DC =,则AD =( )A .1344AB AC + B .21+33AB AC C .12+33AB ACD .1233AB AC −【答案】B 【解析】如下图,12BD DC =,在,AB AC 上分别取点E F 、,使得12,2AE EB AF FC ==, 则AEDF 为平行四边形,故2133AD AE AF AB AC =+=+,故答案为B.13.【天津市部分区2019届高三联考一模】在ABC ∆中,D 为AB 的中点,点O 满足2CO OD =,OA OB ⊥,若10AB =,则AC BC ⋅=___________. 【答案】200 【解析】ABC ∆中,D 为AB 的中点,点O 满足2CO OD =,OA OB ⊥, 10AB =,15,2102OD AB OC OD ∴====,且0OA OB ⋅=, ()()AC BC OC OA OC OB ⋅=−⋅−()2OC OC OA OB OA OB =−⋅++⋅ 22OC OC OD =−⋅22100100200OC OC =+=+=,故答案为200.14.【河南省郑州市2019届高三第三次质量检测】已知向量()1,a λ=,(),2b λ=,若()()//a b a b +−,则λ=__________.【答案】. 【解析】因为向量()1,a λ=,(),2b λ=,所以(1,2),(1,2)a b a b λλλλ+=++−=−− 又因为()()//a b a b +−所以(1)(2)(1)(2)λλλλλ+−=−+⇒=故答案为15.【安徽省蚌埠市2019届高三年级第三次教学质量检查考试】已知向量,若,则的值为__________.【答案】2 【解析】 因为,所以因为,所以有.16.【山东省莱西市第一中学2019届高三第一次模拟考试】已知向量(3,4)a =−,(,2)b m =,若向量23a b −与b 共线,则实数m =_________. 【答案】32− 【解析】解:()23632a b m −=−−,; ∵23a b −与b 共线;∴2m +2(6+3m )=0;解得32m =−. 故答案为:32−.17.【安徽省涡阳第一中学2018-2019学年高一下学期第二次质量检测】如图,设,Ox Oy 是平面内相交成60︒角的两条数轴 ,12,e e 分别是x 轴,y 轴正方向同向的单位向量,若向量12OP xe ye =+,则把有序数对(,)x y 叫做向量OP 在坐标系xOy 中的坐标,假设1232OP e e =+.(1)计算OP 的大小;(2)设向量(,1)a m =−,若a 与OP 共线,求实数m 的值;(3)是否存在实数n ,使得OP 与向量(1,)b n =垂直,若存在求出n 的值,若不存在请说明理由.【答案】(1(2)32−;(3)见解析. 【解析】(1) 12111cos602e e ⋅=⨯⋅︒=, 所以21232(32)OP e e e e =+=+22(3)12(2)e e e e =+⋅+229124e e e e =+⋅+=;(2)12(,1)a m me e =−=−若a 与1232OP e e =+共线,则存在实数λ使得a OP λ=即121212(32)32me e e e e e λλλ−=+=+,由平面向量基本定理得: 312m λλ=⎧⎨−=⎩,解得32m =−所以实数m 的值32−(3)假设存在实数n ,使得OP 与向量(1,)b n =垂直,则有:0OP b ⋅= 即1212(32)()OP b e e e ne ⋅=+⋅+2211223()(32)2()e n e e n e =++⋅+2211223(32)2e n e e n e =++⋅+13(32)202n n =+++=,得87n =−所以,存在实数87n =−, 使得OP 与向量(1,)b n =垂直.18.【湖北省荆门市2017-2018学年高一(上)期末】在平面直角坐标系内,已知),.(I )若,求证为直角三角形.(Ⅱ)若,求实数λ、t 的值.【答案】(I )见解析; (II ).【解析】(Ⅰ)在平面直角坐标系内,已知A (0,5),B (-1,3),C (4,t ). 由于t=3,则:,所以:,所以:为直角三角形.(Ⅱ)由于,所以,则 解得. 所以.19.【河南省洛阳市2018-2019学年高一下学期期中考试】如图在△AOB 中,D 是边OB 的中点,C 是边OA 上靠近O 的三等分点,AD 与BC 交于M 点.设.(1)用表示;(2)过点M 的直线与边OA ,OB 分别交于E ,F .设=p=p,求的值.【答案】(1) 5.【解析】 (1)设,则,∵三点共线,∴共线,从而又C ,M ,B 三点共线,∴共线,同理可得联立①②,解得,故.(2)∵..∵共线,∴,整理得.20.【河南省郑州市八校2018-2019学年高一下学期期中联考】设12,e e 是两个相互垂直的单位向量,且12122,a e e b e e λ=−−=−(Ⅰ)若a b ,求λ的值; (Ⅱ)若a b ⊥,求λ的值. 【答案】(Ⅰ)12λ=−(Ⅱ)2λ=【解析】解:(Ⅰ)若a b ,则存在唯一的μ,使b μ=,∴1212(2)e e e e λμ−=−−1212μλμλμ=−⎧∴⇒==−⎨−=−⎩,∴当12λ=−时a b ,;(Ⅱ)若a b ⊥,则0a b ⋅=,1212(2)()0e e e e λ−−⋅−= 2211222(21)0e e e e λλ⇒−+−⋅+=因为12,e e 是两个相互垂直的单位向量,2λ∴=∴当2λ=时,a b ⊥.21.【河南省开封市、商丘市九校2018-2019学年高一下学期期中联考】已知:(2,5)(4,12)(2,13)A m B C m −,,三点,其中0m <.(1)若,,A B C 三点在同一条直线上,求m 的值; (2)当AB BC ⊥时,求AC . 【答案】(1)83m =−(2)10AC = 【解析】(1)依题有:()()42,7,24,1AB m BC m =−=−−,,,A B C 共线()()427240m m ∴−++= 83m ∴=−.(2)由AB BC ⊥得:()()242470m m −++=32m ∴=±又0m < 32m ∴=−()()4,86,8AC m ∴=−=10AC ∴=能力提升训练1.【东北三省三校(哈尔滨师大附中、东北师大附中、辽宁省实验中学)2019届高三第二次模拟】已知菱形ABCD 的边长为2,60DAB ∠=︒,点E ,F 分别为BC ,CD 的中点,则AE BF ⋅=( )A .3B .1 C.2D .32【答案】D 【解析】点E 为BC 的中点 所以1122AE AB BE AB BC AB AD =+=+=+; 点F 为CD 的中点,所以111222BF BC CF AD CD AD BA AD AB =+=+=+=−,∴AE BF ⋅=11()()22AB AD AD AB +⋅−=2222111311224422AB AD AB AD AD AB AB AD AB AD ⋅−+−⋅=⋅−+因为菱形ABCD 的边长为2,所以2AB AD ==,又因为60DAB ∠=︒,运用数量积公式,可求AE BF⋅=22311422AB AD AB AD ⋅−+=34AB AD ⋅=3cos 4AB AD DAB ⨯⋅∠ =31322422⨯⨯⨯=故本题选D 。

2020高考数学专题复习《平面向量》(讲义和练习)

2020高考数学专题复习《平面向量》(讲义和练习)

一、知识纲要1、向量的相关概念:《必修 4》 第二章平面向量(1) 向量: 既有大小又有方向的量叫做向量,记为 AB 或a 。

向量又称矢量。

①向量和标量的区别:向量既有大小又有方向;标量只有大小,没有方向。

普通的数量都是标量,力是一种常见的向量。

②向量常用有向线段来表示,但也不能说向量就是有向线段,因为向量是自由的,可以平移;有向线段有固定的起点和终点,不能随意移动。

(2) 向量的模:向量的大小又叫向量的模,它指的是:表示向量的有向线段的长度。

记作:| AB |或| a |。

向量本身不能比较大小,但向量的模可以比较大小。

(3) 零 向 量: 长度为 0 的向量叫零向量,记为0 ,零向量的方向是任意的。

①| a |=0; ② 0 与 0 的区别:写法的区别,意义的区别。

(4) 单位向量:模长为 1 个单位长度的非零向量叫单位向量。

若向量a 是单位向量,则| a |= 1 。

2、 向量的表示:(1)几何表示法:用带箭头的有向线段表示,如 AB ,注意:方向是“起点指向终点”。

→(2) 符号表示法:用一个小写的英文字母来表示,如 a , b 等;(3)坐标表示法:在平面内建立直角坐标系,以与 x 轴、 y 轴正方向相同的两个单位向量i 、 j 为基底向量,则平面内的任一向量 a 可表示为 a = xi + y j = ( x , y ) ,称( x , y ) 为向量 a 的坐标, a =( x , y ) 叫做向量 a 的坐标表示。

此时| a |。

若已知 A ( x 1 , y 1 )和B ( x 2 , y 2 ) ,则 AB = ( x 2 -x 1,y 2 -y 1 ) , 即终点坐标减去起点坐标。

特别的,如果向量的起点在原点,那么向量的坐标数值与向量的终点坐标数值相同。

注意 注意 注意 注意a 3、 向量之间的关系:(1)平行(共线):对于两个非零向量,若它们的方向相同或相反的,那么就称这种关系 为平行,记作a ∥ b 。

2020届高考数学(理)二轮专题复习: 专题一 集合、常用逻辑用语、平面向量、复数 1-1-2 Word版含答案.doc

2020届高考数学(理)二轮专题复习: 专题一 集合、常用逻辑用语、平面向量、复数 1-1-2 Word版含答案.doc

限时规范训练二 平面向量、复数运算限时45分钟,实际用时分值80分,实际得分一、选择题(本题共12小题,每小题5分,共60分)1.设i 是虚数单位,如果复数a +i2-i的实部与虚部相等,那么实数a 的值为( )A.13 B .-13C .3D .-3解析:选C.a +i 2-i =2a -1+a +5,由题意知2a -1=a +2,解之得a =3.2.若复数z 满足(1+2i)z =(1-i),则|z |=( ) A.25 B.35 C.105D.10解析:选C.z =1-i 1+2i =-1-3i 5⇒|z |=105.3.已知复数z =1+i(i 是虚数单位),则2z-z 2的共轭复数是( )A .-1+3iB .1+3iC .1-3iD .-1-3i 解析:选B.2z -z 2=21+i -(1+i)2=-+--2i =1-i -2i =1-3i ,其共轭复数是1+3i ,故选B.4.若z =(a -2)+a i 为纯虚数,其中a ∈R ,则a +i 71+a i=( )A .iB .1C .-iD .-1解析:选C.∵z 为纯虚数,∴a =2,∴a +i 71+a i =2-i 1+2i=2--2i +2-2=-3i 3=-i.5.已知复数z =11-i ,则z -|z |对应的点所在的象限为( )A .第一象限B .第二象限C .第三象限D .第四象限 解析:选B.∵复数z =11-i=1+i -+=12+12i ,∴z -|z |=12+12i -⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫122=1-22+12i ,对应的点⎝ ⎛⎭⎪⎫1-22,12所在的象限为第二象限.故选B.6.若复数z 满足z (1-i)=|1-i|+i ,则z 的实部为( ) A.2-12B.2-1C .1D.2+12解析:选A.由z (1-i)=|1-i|+i ,得z =2+i1-i=2++-+=2-12+2+12i ,z 的实部为2-12,故选A. 7.已知△ABC 和点M 满足MA →+MB →+MC →=0.若存在实数m ,使得AB →+AC →=mAM →成立,则m =( ) A .2 B .3 C .4D .5解析:选B.由MA →+MB →+MC →=0知,点M 为△ABC 的重心,设点D 为边BC 的中点,则AM →=23AD →=23×12(AB →+AC →)=13(AB →+AC →),所以AB →+AC →=3AM →,故m =3,故选B. 8.已知向量a =(3,-2),b =(x ,y -1)且a ∥b ,若x ,y 均为正数,则3x +2y的最小值是( )A .24B .8 C.83D.53解析:选B.∵a ∥b ,∴-2x -3(y -1)=0,即2x +3y =3, ∴3x +2y =⎝ ⎛⎭⎪⎫3x +2y ×13(2x +3y )=13⎝ ⎛⎭⎪⎫6+9y x +4x y +6≥13⎝ ⎛⎭⎪⎫12+29y x·4x y =8,当且仅当2x =3y=32时,等号成立. ∴3x +2y的最小值是8.故选B.9.在平行四边形ABCD 中,AC =5,BD =4,则AB →·BC →=( ) A.414B .-414C.94D .-94解析:选C.因为BD →2=(AD →-AB →)2=AD →2+AB →2-2AD →·AB →,AC →2=(AD →+AB →)2=AD →2+AB →2+2AD →·AB →,所以AC →2-BD →2=4AD →·AB →,∴AD →·AB →=AB →·BC →=94.10.在△ABC 中,已知向量AB →=(2,2),|AC →|=2,AB →·AC →=-4,则△ABC 的面积为( ) A .4 B .5 C .2D .3解析:选C.∵AB →=(2,2),∴|AB →|=22+22=2 2. ∵AB →·AC →=|AB →|·|AC →|cos A =22×2cos A =-4, ∴cos A =-22,∵0<A <π,∴sin A =22, ∴S △ABC =12|AB →|·|AC →|sin A =2.故选C.11.△ABC 的外接圆的圆心为O ,半径为1,2AO →=AB →+AC →且|OA →|=|AB →|,则向量BA →在BC →方向上的投影为( )A.12B.32 C .-12D .-32解析:选A.由2AO →=AB →+AC →可知O 是BC 的中点,即BC 为△ABC 外接圆的直径,所以|OA →|=|OB →|=|OC →|,由题意知|OA →|=|AB →|=1,故△OAB 为等边三角形,所以∠ABC =60°.所以向量BA →在BC →方向上的投影为|BA →|cos∠ABC =1×cos 60°=12.故选A.12.如图,菱形ABCD 的边长为2,∠BAD =60°,M 为DC 的中点,若N 为菱形内任意一点(含边界),则AM →·AN →的最大值为( )A .3B .2 3C .6D .9解析:选D.由平面向量的数量积的几何意义知,AM →·AN →等于AM →与AN →在AM →方向上的投影之积,所以(AM →·AN →)max =AM →·AC →=⎝ ⎛⎭⎪⎫12AB →+AD →·(AB →+AD →)=12AB 2→+AD 2→+32AB →·AD →=9. 二、填空题(本题共4小题,每小题5分,共20分) 13.已知复数z =3+i -32,z 是z 的共轭复数,则z ·z =________.解析:∵z =3+i -32=3+i-2-23i =3+i -+3=3+-3-+3-3=23-2i -8=-34+14i ,∴z ·z =⎝ ⎛⎭⎪⎫-34+14i ⎝ ⎛⎭⎪⎫-34-14i =316+116=14. 答案:1414.已知向量a ,b 满足|a |=2,|b |=1,且对一切实数x ,|a +x b |≥|a +b |恒成立,则a ,b 夹角的大小为________.解析:|a +x b |≥|a +b |恒成立⇒a 2+2x a ·b +x 2b 2≥a 2+2a·b +b 2恒成立⇒x 2+2a ·b x -1-2a ·b ≥0恒成立,∴Δ=4(a·b )2-4(-1-2a·b )≤0⇒(a·b +1)2≤0,∴a·b =-1,∴cos〈a ,b 〉=a·b |a |·|b |=-12,又〈a ,b 〉∈[0,π],故a 与b 的夹角的大小为2π3.答案:23π15.已知在△ABC 中,AB =4,AC =6,BC =7,其外接圆的圆心为O ,则AO →·BC →=________.解析:如图,取BC 的中点M ,连OM ,AM ,则AO →=AM →+MO →, ∴AO →·BC →=(AM →+MO →)·BC →.∵O 为△ABC 的外心,∴OM ⊥BC ,即OM →·BC →=0,∴AO →·BC →=AM →·BC →=12(AB →+AC →)·(AC →-AB →)=12(AC 2→-AB 2→)=12(62-42)=12×20=10.答案:1016.已知非零向量a ,b ,c 满足|a |=|b |=|a -b |,〈c -a ,c -b 〉=2π3,则|c ||a |的最大值为________.解析:设OA →=a ,OB →=b ,则BA →=a -b . ∵非零向量a ,b ,c 满足|a |=|b |=|a -b |, ∴△OAB 是等边三角形. 设OC →=c ,则AC →=c -a ,BC →=c -b .∵〈c -a ,c -b 〉=2π3,∴点C 在△ABC 的外接圆上,∴当OC 为△ABC 的外接圆的直径时,|c ||a |取得最大值,为1cos 30°=233.答案:233。

2020秋新人教版高中数学必修二第六章平面向量及其应用考试测试卷(含答案解析)

2020秋新人教版高中数学必修二第六章平面向量及其应用考试测试卷(含答案解析)

第六章 平面向量及其应用 测试卷(时间:120分钟 分值:150分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题所给的四个选项中,只有一个选项是符合题目要求的)1.在□ABCD 中,若AD ⃗⃗⃗⃗⃗ =(2,8),AB ⃗⃗⃗⃗⃗ =(-3,4),则AC ⃗⃗⃗⃗⃗ = ( ) A.(-1,-12) B.(-1,12) C.(1,-12) D.(1,12)答案:B2.在△ABC 中,若A =π3,BC =3,AB =√6,则C =( )A.π4或3π4B.3π4C.π4D.π6答案:C3.若四边形ABCD 满足AB ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ =0,(AB ⃗⃗⃗⃗⃗ -AD ⃗⃗⃗⃗⃗ )·AC ⃗⃗⃗⃗⃗ =0,则该四边形一定是( )A.正方形B.矩形C.菱形D.直角梯形 答案:C4.(2020年新高考全国Ⅰ卷)已知P 是边长为2的正六边形ABCDEF 内的一点,则AP ⃗⃗⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ 的取值范围是 ( )A.(-2,6)B.(-6,2)C.(-2,4)D.(-4,6)答案:A5.若点A (-1,1),B (1,2),C (-2,-1),D (3,4),则向量AB ⃗⃗⃗⃗⃗ 在CD ⃗⃗⃗⃗⃗ 方向上的投影为( )A.3√22B.3√152C.-3√22D.-3√152答案:A6.在△ABC 中,若AB =BC =3,∠ABC =60°,AD 是边BC 上的高,则AD ⃗⃗⃗⃗⃗ ·AC⃗⃗⃗⃗⃗ 的值等于 ( )A.-94B.94C.274D.9答案:C7.在△ABC 中,a ,b ,c 分别为A ,B ,C 的对边,如果2b =a +c ,B =30°,△ABC 的面积为32,那么b 等于 ( )A.1+√32B.1+√3C.2+√22D.2√3答案:B8.如图,海平面上的甲船位于中心O 的南偏西30°,与O 相距 15 n mile 的C 处.若甲船以35 n mile/h 的速度沿直线CB 去营救位于中心O 正东方向25 n mile 的B 处的乙船,则甲船到达B 处需要的时间为( )A.12 hB.1 hC.32 hD.2 h 答案:B二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分)9.若O 是平行四边形ABCD 对角线的交点,则 ( ) A.AB ⃗⃗⃗⃗⃗ =DC ⃗⃗⃗⃗⃗B.DA ⃗⃗⃗⃗⃗ +DC ⃗⃗⃗⃗⃗ =DB⃗⃗⃗⃗⃗⃗ C.AB ⃗⃗⃗⃗⃗ -AD ⃗⃗⃗⃗⃗ =BD ⃗⃗⃗⃗⃗⃗ D.OB ⃗⃗⃗⃗⃗ =12(DA ⃗⃗⃗⃗⃗ +BA ⃗⃗⃗⃗⃗ ) 答案:AB10.在△ABC 中,若a =5√2,c =10,A =30°,则B 可能是 ( ) A.135° B.105° C.45° D.15° 答案:BD11.已知向量 e 1=(-1,2),e 2=(2,1),若向量a =λ1e 1+λ2e 2,则使λ1λ2<0成立的a 可能是( )A.(1,0)B.(0,1)C.(-1,0)D.(0,-1)答案:AC12.定义平面向量之间的一种运算“☉”:对任意的a =(m ,n ),b =(p ,q ),令a ☉b =mq -np ,下列说法正确的是 ( )A.若a 与b 共线,则a ☉b =0B.a ☉b =b ☉aC.对任意的λ∈R ,有λa ☉b =λ(a ☉b )D.(a ☉b )2+(a ·b )2=|a |2|b |2 答案:ACD三、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上)13.在△ABC 中,若3a 2-2ab +3b 2-3c 2=0,则cos C 的值为13.14.若向量OA ⃗⃗⃗⃗⃗ =(1,-3),|OA ⃗⃗⃗⃗⃗ |=|OB ⃗⃗⃗⃗⃗ |,OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =0,则|AB ⃗⃗⃗⃗⃗ |=2√5. 15.(本题第一空2分,第二空3分)已知在△ABC中,AB =AC =4,BC =2,D 为AB 延长线上一点,连接CD ,若BD =2,则△BDC 的面积是√152,cos ∠CDB =√104. 16.太湖中有一个小岛,沿太湖有一条正南方向的公路,一辆汽车测得小岛在公路的南偏西15°的方向上,若汽车沿公路行驶1 km 后,测得小岛在南偏西75°的方向上,则小岛到公路的距离是√36km .四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算过程)17.(10分)在△ABC 中,a =3,b =2√6,B =2A. (1)求cos A 的值; (2)求c 的值.解:(1)因为a =3,b =2√6,B =2A , 所以在△ABC 中,由正弦定理得3sinA =2√6sin2A,所以2sinAcosA sinA=2√63.故cos A =√63.(2)由(1),知cos A =√63, 所以sin A =√1-cos 2A =√33.因为B =2A ,所以cos B =2cos 2A -1=13.所以sin B =√1-cos 2B =2√23. 在△ABC 中,sin C =sin(A +B )=sin A cos B +cos A sin B =5√39,所以c =asinC sinA=5.18.(12分)如图,在平面直角坐标系中,|OA ⃗⃗⃗⃗⃗ |=2|AB ⃗⃗⃗⃗⃗ |=2,∠OAB =2π3,BC⃗⃗⃗⃗⃗ =(-1,√3). (1)求点B ,C 的坐标;(2)求证:四边形OABC 为等腰梯形.(1)解:设点B 的坐标为(x B ,y B ),则x B =|OA ⃗⃗⃗⃗⃗ |+|AB ⃗⃗⃗⃗⃗ |·cos(π-∠OAB )=52,y B =|AB ⃗⃗⃗⃗⃗ |·sin(π-∠OAB )=√32,所以OC ⃗⃗⃗⃗⃗ =OB ⃗⃗⃗⃗⃗ +BC⃗⃗⃗⃗⃗ =(52,√32)+(-1,√3)=(32,3√32), 所以点B 的坐标为(52,√32),点C 的坐标为(32,3√32). (2)证明:因为OC ⃗⃗⃗⃗⃗ =(32,3√32),AB ⃗⃗⃗⃗⃗ =(12,√32),所以OC ⃗⃗⃗⃗⃗ =3AB ⃗⃗⃗⃗⃗ ,所以OC ⃗⃗⃗⃗⃗ ∥AB ⃗⃗⃗⃗⃗ . 因为BC ⃗⃗⃗⃗⃗ =(-1,√3),所以|BC ⃗⃗⃗⃗⃗ |=2. 因为|OC ⃗⃗⃗⃗⃗ |≠|AB ⃗⃗⃗⃗⃗ |,|OA ⃗⃗⃗⃗⃗ |=|BC ⃗⃗⃗⃗⃗ |=2, 所以四边形OABC 为等腰梯形.19.(12分)在四边形ABCD 中,已知AB ⃗⃗⃗⃗⃗ =(6,1),BC ⃗⃗⃗⃗⃗ =(x ,y ),CD ⃗⃗⃗⃗⃗ =(-2,-3),BC ⃗⃗⃗⃗⃗ ∥DA ⃗⃗⃗⃗⃗ .(1)求x 与y 的解析式;(2)若AC ⃗⃗⃗⃗⃗ ⊥BD ⃗⃗⃗⃗⃗⃗ ,求x ,y 的值以及四边形ABCD 的面积. 解:如图所示.(1)因为AD ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ =(x +4,y -2), 所以DA ⃗⃗⃗⃗⃗ =-AD ⃗⃗⃗⃗⃗ =(-x -4,2-y ). 因为BC ⃗⃗⃗⃗⃗ ∥DA ⃗⃗⃗⃗⃗ ,BC ⃗⃗⃗⃗⃗ =(x ,y ), 所以x (2-y )-(-x -4)y =0,即x +2y =0. (2)由题意,得AC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ =(x +6,y +1), BD ⃗⃗⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ =(x -2,y -3).因为AC ⃗⃗⃗⃗⃗ ⊥BD ⃗⃗⃗⃗⃗⃗ ,所以AC ⃗⃗⃗⃗⃗ ·BD ⃗⃗⃗⃗⃗⃗ =0, 即(x +6)(x -2)+(y +1)(y -3)=0.由(1)可知x =-2y ,所以y 2-2y -3=0,所以y =3或y =-1. 当y =3时,x =-6,此时,BC ⃗⃗⃗⃗⃗ =(-6,3),AC ⃗⃗⃗⃗⃗ =(0,4),BD ⃗⃗⃗⃗⃗⃗ =(-8,0), 所以|AC⃗⃗⃗⃗⃗ |=4,|BD ⃗⃗⃗⃗⃗⃗ |=8, 所以S 四边形ABCD =12|AC⃗⃗⃗⃗⃗ ||BD ⃗⃗⃗⃗⃗⃗ |=16. 当y =-1时,x =2,此时,BC ⃗⃗⃗⃗⃗ =(2,-1),AC ⃗⃗⃗⃗⃗ =(8,0),BD ⃗⃗⃗⃗⃗⃗ =(0,-4). 所以|AC⃗⃗⃗⃗⃗ |=8,|BD ⃗⃗⃗⃗⃗⃗ |=4,S 四边形ABCD =16. 综上可知{x =-6,y =3或{x =2,y =-1,S 四边形ABCD =16.20.(12分)如图,某海轮以60 n mile/h 的速度航行,在点A 测得海面上油井P 在南偏东60°,向北航行40 min 后到达点B ,测得油井P 在南偏东30°,海轮改为沿北偏东60°的航向再行驶80 min 到达点C ,求P ,C 间的距离.解:由题意知AB =40 n mile,∠BAP =120°,∠ABP =30°, 所以∠APB =30°,所以AP =40 n mile,所以BP 2=AB 2+AP 2-2AP ·AB ·cos 120°=402+402-2×40×40×(-12)=402×3,所以BP =40√3 n mile . 因为∠PBC =90°,BC =80 n mile,所以PC 2=BP 2+BC 2=(40√3)2+802=11 200, 所以PC =40√7 n mile,即P ,C 间的距离为40√7 n mile .21.(12分)在边长为1的菱形ABCD 中,A =60°,E 是线段CD 上一点,满足|CE ⃗⃗⃗⃗⃗ |=2|DE ⃗⃗⃗⃗⃗ |,如图所示,设AB ⃗⃗⃗⃗⃗ =a ,AD ⃗⃗⃗⃗⃗ =b .(1)用a ,b 表示BE⃗⃗⃗⃗⃗ . (2)在线段BC 上是否存在一点F ,满足AF ⊥BE ?若存在,确定点F 的位置,并求|AF⃗⃗⃗⃗⃗ |;若不存在,请说明理由.解:(1)根据题意,得BC ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ =b ,CE ⃗⃗⃗⃗⃗ =23CD ⃗⃗⃗⃗⃗ =23BA ⃗⃗⃗⃗⃗ =-23AB ⃗⃗⃗⃗⃗ =-23a ,所以BE ⃗⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ +CE⃗⃗⃗⃗⃗ =b -23a . (2)结论:在线段BC 上存在使得4|BF ⃗⃗⃗⃗⃗ |=|BC ⃗⃗⃗⃗⃗ |的一点F ,满足AF ⊥BE ,此时|AF⃗⃗⃗⃗⃗ |=√214. 求解如下:设BF ⃗⃗⃗⃗⃗ =t BC ⃗⃗⃗⃗⃗ =t b ,则FC ⃗⃗⃗⃗⃗ =(1-t )b (0≤t ≤1), 所以AF ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BF⃗⃗⃗⃗⃗ =a +t b . 因为在边长为1的菱形ABCD 中,A =60°, 所以|a |=|b |=1,a ·b =|a ||b |cos 60°=12.因为AF ⊥BE ,所以AF ⃗⃗⃗⃗⃗ ·BE ⃗⃗⃗⃗⃗ =(a +t b )·(b -23a )=(1-23t )a ·b -23a 2+tb 2=(1-23t )×12-23+t =0,解得t =14,所以AF⃗⃗⃗⃗⃗ =a +14b , 所以|AF ⃗⃗⃗⃗⃗ |=√AF⃗⃗⃗⃗⃗ 2=√a 2+12a ·b +116b 2=√1+12×12+116=√214. 22.(12分)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,且满足 sin A +√3cos A =2. (1)求角A 的大小.(2)现给出三个条件:①a =2;②B =π4;③c =√3b.试从中选出两个可以确定△ABC 的条件,写出你的方案,并以此为依据求△ABC 的面积.(写出一种方案即可)解:(1)依题意,得2sin (A +π3)=2,即sin (A +π3)=1.因为0<A <π,所以π3<A +π3<4π3,所以A +π3=π2,所以A =π6.(2)参考方案:选择①②. 由正弦定理a sinA =bsinB,得b =asinB sinA=2√2.因为A +B +C =π,所以sin C =sin(A +B )=sin A cos B +cos A sin B =√2+√64, 所以S △ABC =12ab sin C =12×2×2√2×√2+√64=√3+1.。

2023年高考数学真题分训练 平面向量的概念、线性运算、平面向量基本定理(含答案含解析)

2023年高考数学真题分训练  平面向量的概念、线性运算、平面向量基本定理(含答案含解析)

专题 15 平面向量的概念、线性运算、平面向量根本定理年 份 题号考 点考 查 内 容2023卷 1 文6平面向量的概念与线性运算主要考查平面向量的线性运算卷 1 理 7平面向量根本定理及其应用 主要考查平面向量的线性运算及平面向量根本定理卷 2 理 13平面向量的概念与线性运算主要考查平面向量共线的充要条件2023卷1文 2平面向量的坐标运算及向量 共线的充要条件主要考查平面向量的坐标与点坐标的关系、平面向量坐 标运算2023卷 2 文 13 平面向量的坐标运算及向量 共线的充要条件主要考查平面向量坐标的线性运算及向量共线的充要 条件卷1理 6 文 7平面向量根本定理及其应用主要考查平面向量的线性运算及平面向量根本定理2023卷 3理 13 文 13 平面向量的坐标运算及向量 共线的充要条件主要考查平面向量的线性运算及向量共线的充要条件2023 卷 2文 3平面向量的坐标运算及向量 共线的充要条件主要考查平面向量坐标运算及模公式考点 47 平面向量的概念与线性运算1.(2023 新课标 I ,文 6)设 D , E , F 分别为∆ABC 的三边 BC , CA , AB 的中点,则 EB + FC =33A. BCB .(答案)C 1 AD2C . ADD . 1 BC2(解析) EB + FC =1 (CB + AB ) + 1 (BC + AC ) = 1( AB + AC ) = AD ,应选 C . 2 2 22.(2023 福建)在以下向量组中,可以把向量a =(3,2) 表示出来的是A .e 1 =(0,0),e 2 = (1,2) C .e 1 =(3,5),e 2 =(6,10) (答案)BB .e 1 =(-1,2),e 2 =(5,-2) D .e 1 =(2,-3),e 2 =(-2,3) (解析)对于 A ,C ,D ,都有e 1 ∥ e 2 ,所以只有 B 成立.考点 48 平面向量根本定理及其应用1.(2023 江苏 13)在∆ABC 中, AB = 4 , AC = 3 , ∠BAC = 90︒, D 在边 BC 上,延长 AD 到 P ,使得3AP = 9 ,假设 PA = mPB + (2- m )PC ( m 为常数),则CD 的长度是 .18 (答案)53 (解析)由向量系数m + ( - m ) = 为常数,结合等和线性质可知 2 2 PA PD= 2 ,1故 PD =2PA = 6 , AD = PA - PD = 3 = AC ,故∠C = ∠CDA ,故∠CAD =π- 2C .3AC 3 CD AD在∆ABC 中, cos C = = ;在∆ADC 中,由正弦定理得 = ,BC 5 sin ∠CAD sin Csin(π- 2C ) sin 2C 3 18即CD = ⋅ AD = ⋅ AD = 2 cos C ⋅ AD = 2 ⨯ ⨯ 3 = .sin C sin C5 52.(2023•新课标Ⅰ,理 6 文 7)在∆ABC 中, AD 为 BC 边上的中线, E 为 AD 的中点,则 EB = ()A . 3 - 1B . 13C . 31D . 13AB AC4 4(答案)AAB - AC4 4AB + AC4 4AB + AC4 42EB AB AE AB AD =11AB AC (解析)在∆ABC 中, AD 为 BC 边上的中线, E 为 AD 的中点,∴ = - = - 12AB - ⨯ 2 2( AB + AC ) = 3 - 1,应选 A . 4 43.(2023 新课标Ⅰ,理 7)设 D 为ABC 所在平面内一点 BC = 3CD ,则( )(A) AD = - 1 AB + 4AC (B) AD = 1 AB - 4AC3 3 3 3(C) AD =4 1AB + AC (D) AD =4 1AB - AC 3 33 3(答案)A1114 (解析)由题知 AD = AC + CD = AC + BC = AC + 3 3 ( AC - AB ) = = - AB + 3 3AC ,应选 A . 4.(2023 广东)设a 是已知的平面向量且a ≠ 0 ,关于向量a 的分解,有如下四个命题:①给定向量b ,总存在向量 c ,使 a = b + c ; ②给定向量b 和c ,总存在实数λ和μ,使a = λb + μc ;③给定单位向量b 和正数μ,总存在单位向量c 和实数λ,使a = λb + μc ;④给定正数λ和μ,总存在单位向量b 和单位向量c ,使a = λb + μc ;上述命题中的向量b , c 和a 在同一平面内且两两不共线,则真命题的个数是 A .1B .2C .3D .4(答案)B(解析)利用向量加法的三角形法则,易的①是对的;利用平面向量的根本定理,易的②是对的;以a 的终点作长度为μ的圆,这个圆必须和向量λb 有交点,这个不肯定能满足,③是错的;利用向量加法的三 角形法则,结合三角形两边的和大于第三边,即必须 λb + μc =λ+μ≥ a ,所以④是假命题.综上,此题选 B .5.(2023 江苏)如图,在同一个平面内,向量OA , OB , OC 的模分别为 1,1, , OA 与OC 的夹角为α , 且 tan α= 7 , OB 与 OC 的夹角为 45. 假设 OC = m OA + n OB ( m , n ∈ R ) , 则m + n =.(答案)3(解析)由tan α= 7 可得sin α=7 2, cos α=2,由OC = m OA + n OB 得1010⎧ 2 ⎧⎪OC ⋅OA = mOA + nOB ⋅OA ⎪ 2 cos α= m + n c os(α+ 45 ) ⎨ 2 ,即⎨ ,两式相加得,2 cos 45 = m cos(α+ 45 ) + n ⎩OC ⋅OB = mOB ⋅OA + nOB⎩ 2(cos α+ cos 45 ) = (m + n )(1+ cos(α+ 45 )) ,所以2 ⨯2+ 2 ⨯2m + n = 2 cos α+ 2 cos 45 = 10 2 = 3 ,所以 m + n = 3 . 1+ cos(α+ 45)2 2 7 2 2 1+ ⨯ - ⨯ 10 2 10 2λ6.(2023 北京)向量 a ,b ,c 在正方形网格中的位置如下图,假设c = λa + μb (λ,μ∈R ),则 μ=.(答案)41 (解析) 如图建立坐标系,则 a = (-1,1) ,b = (6, 2) ,c = (-1, 3) .由c = λa + μb ,可得λ= -2,μ= -,2λ∴ μ= 47.(2023 北京)在△ABC 中,点 M , N 满足 AM = 2MC , BN = NC ,假设 MN = x AB + y AC ,则 x =2AB c / /(2a a | a b | ; y = .1(答案) 2 1 - 61 1 11 1 1 (解析)由 MN = MC + CN = AC + CB = AC + ( AB - AC ) = AB - AC = x AB + y AC .所3 2 3 2 2 61 1 以 x = , y = - .2 6考点 49 平面向量的坐标运算及平面向量共线的充要条件1.(2023•新课标Ⅱ,文 3)已知向量 a = (2, 3) , b = (3, 2) ,则| a - b |= ( )A . (答案)AB.2 C . 5 D .50(解析) a = (2, 3) ,b = (3, 2) ,∴- b = (2 ,3) - (3 ,2) = (-1 ,1) ,∴ -= ,应选 A .2.(2023 辽宁)已知点 A (1, 3) , B (4, -1) ,则与向量 AB 同方向的单位向量为⎛ 34 ⎫⎛ 43 ⎫⎛ - 3 4 ⎫⎛ 4 3 ⎫A . ,- ⎪B . ,- ⎪C . , ⎪D . - , ⎪⎝ 55 ⎭ (答案)A⎝ 55 ⎭ ⎝ 5 5 ⎭⎝ 5 5 ⎭(解析) AB = (3, -4) ,所以| AB |= 5 ,这样同方向的单位向量是 1 = (3 , - 4) . 5 5 53.(2011 广东)已知向量a =(1,2), b =(1,0), c =(3,4).假设λ为实数, (a + λb )∥c ,则λ=A.14(答案)BB.12C .1D .2(解析)a + λb = (1+ λ, 2) ,由(a + λb ) ∥ c ,得6 - 4(1+ λ) = 0 ,解得λ= 124.( 2023•新课标Ⅲ,理 13)已知向量 a = (1, 2) , b = (2, -2) , c = (1,λ) .假设+ b ) ,则λ= .(答案) 12(解析) 向量 a = (1, 2) , b = (2, -2) ,∴+ b = (4, 2) , c = (1,λ) ,+ b ) , 2a∴ 1 = λ,解得λ= 1.c / /(2a4 2 25.(2023 新课标,文 13) 已知向量 a =(m ,4),b =(3,−2),且 a ∥b ,则 m = .(答案) -6225⎨⎩1(解析) 向量 a , b 不平行,向量λa + b 与 a + 2b 平行, a + b = t (a + 2b ) = ta + 2tb ,(解析)因为 a ∥b ,所以-2m - 4 ⨯ 3 = 0 ,解得 m = -6 .6.(2023•新课标Ⅱ,理 13)设向量 a , b 不平行,向量λ + b 与+ 2b 平行,则实数λ= .(答案) 12 a a∴λ∴ ⎧λ= t ⎩1 = 2t,解得实数λ= 1 .27.(2023 江苏)已知向量a = (2,1) , b = (1, -2) ,假设 m a + n b = (9, -8) ( m , n ∈R),则 m - n的值为 .(答案)-3(解析)由题意得: 2m + n = 9, m - 2n = -8 ⇒ m = 2, n = 5, m - n = -3.8.(2023 北京)已知向量a 、b 满足 a = 1 , b = (2,1) ,且λa + b = 0 (λ∈ R ),则 λ = (答案) ⎧cos θ= - 2(解析)∵| a |= 1,∴可令 a = (cos θ, s in θ) ,∵ λa + b = 0 ,∴⎧λcos θ+ 2 = 0,即⎪λ,解⎨λsin θ+1 = 0⎨⎪sin θ= - 1 ⎩ λ得λ2 = 5 得| λ|=.9.(2023 陕西) 设0 <θ< π,向量a = (sin 2θ,cos θ) , b (cos θ,1),假设a ∥b ,则2tan θ= .1(答案)2(解析)∵ a ∥b ,∴ sin 2θ= cos2θ,∴ 2 sin θcos θ= cos 2θ,∵θ∈π(0, ) 2,∴tan θ= . 25。

2020年高考山东版高考理科数学 5.1 平面向量的概念及线性运算、平面向量基本定理及坐标表示

2020年高考山东版高考理科数学      5.1  平面向量的概念及线性运算、平面向量基本定理及坐标表示

专题五平面向量【真题典例】5.1 平面向量的概念及线性运算、平面向量基本定理及坐标表示挖命题【考情探究】分析解读 1.从“方向”与“大小”两个方面理解平面向量的概念.2.结合图形理解向量的线性运算,熟练掌握平行四边形法则与三角形法则.3.掌握求向量坐标的方法,掌握平面向量的坐标运算,并能够根据平面向量的坐标运算解决向量的共线、解三角形等有关问题.4.用坐标表示的平面向量共线的条件是高考考查的重点,分值约为5分,属中低档题.破考点【考点集训】考点一平面向量的概念及线性运算1.(2018陕西西安中学11月月考,5)给出下列四个命题:①若|a|=|b|,则a=b;②若A,B,C,D是不共线的四点,则=是四边形ABCD为平行四边形的充要条件;③若a=b,b=c,则a=c;④a=b的充要条件是|a|=|b|且a∥b.其中正确命题的序号是( )A.①②B.②③C.③④D.②④答案B2.(2018辽宁六校协作体期中联考,4)设非零向量a,b,下列四个条件中,使=成立的充分条件是( )A.a∥bB.a=2bC.a∥b且|a|=|b|D.a=-b答案B3.(2017河南中原名校4月联考,7)如图所示,矩形ABCD的对角线相交于点O,E为AO的中点,若=λ+μ(λ,μ为实数),则λ2+μ2=( )A. B. C.1 D.答案A考点二平面向量基本定理及坐标运算1.(2017河北衡水中学三调考试,6)在△ABC中,=,若P是直线BN上的一点,且满足=m+,则实数m的值为( )A.-4B.-1C.1D.4答案B2.(2018湖南湘东五校4月联考,15)在正方形ABCD中,M,N分别是BC,CD的中点,若=λ+μ,则实数λ+μ=.答案3.(2018吉林长春期中,15)向量,,在正方形网格中的位置如图所示,若=λ+μ(λ,μ∈R),则= .答案 2炼技法【方法集训】方法1 平面向量的线性运算技巧和数形结合的方法1.(2018河北唐山二模,4)已知O是正方形ABCD的中心.若=λ+μ,其中λ,μ∈R,则=( )A.-2B.-C.-D.答案A2.(2018辽宁葫芦岛期中,3)在△ABC中,G为重心,记=a,=b,则=( )A.a-bB.a+bC.a-bD.a+b答案A方法2 向量共线问题的解决方法1.(2018陕西部分名校摸底考试,7)如图,在△ABC中,=,P是BN上一点,若=m+,则实数m 的值为( )A. B. C. D.答案D2.(2017福建福州3月质检,6)设向量=(1,-2),=(a,-1),=(-b,0),其中O为坐标原点,a>0,b>0,若A,B,C 三点共线,则+的最小值为( )A.4B.6C.8D.9答案C3.(2018四川德阳三校联考,11)在△ABC中,AB=AC=5,BC=6,I是△ABC的内心,若=m+n(m,n∈R),则=( )A. B. C.2 D.答案B4.(2018中原名校联考,15)如图,在△ABC中,点M是BC的中点,N在边AC上,且AN=2NC,AM与BN相交于点P,则= .答案 4方法3 平面向量的坐标运算技巧1.(2018辽宁丹东五校协作体联考,4)向量a=,b=(cos α,1),且a∥b,则cos 2α=()A. B.- C. D.-答案C2.(2018重庆一中月考,10)给定两个单位向量,,且·=-,点C在以O点为圆心的圆弧AB上运动,=x+y,则x-y的最小值为( )A.-B.-1C.-2D.0答案B3.(2017福建四地六校4月联考,13)已知A(1,0),B(4,0),C(3,4),O为坐标原点,且=(+-),则||等于.答案2过专题【五年高考】A组山东省卷、课标卷题组考点一平面向量的概念及线性运算1.(2018课标Ⅰ,6,5分)在△ABC中,AD为BC边上的中线,E为AD的中点,则=( )A.-B.-C.+D.+答案A2.(2015课标Ⅰ,7,5分)设D为△ABC所在平面内一点,=3,则( )A.=-+B.=-C.=+D.=-答案A3.(2014课标Ⅰ,15,5分)已知A,B,C为圆O上的三点,若=(+),则与的夹角为. 答案90°考点二平面向量基本定理及坐标运算1.(2016课标Ⅱ,3,5分)已知向量a=(1,m),b=(3,-2),且(a+b)⊥b,则m=( )A.-8B.-6C.6D.8答案D2.(2018课标Ⅲ,13,5分)已知向量a=(1,2),b=(2,-2),c=(1,λ).若c∥(2a+b),则λ=.答案3.(2015课标Ⅱ,13,5分)设向量a,b不平行,向量λa+b与a+2b平行,则实数λ=.答案B组其他自主命题省(区、市)卷题组考点一平面向量的概念及线性运算(2015北京,13,5分)在△ABC中,点M,N满足=2,=.若=x+y,则x= ,y= .答案;-考点二平面向量基本定理及坐标运算1.(2015湖南,8,5分)已知点A,B,C在圆x2+y2=1上运动,且AB⊥BC.若点P的坐标为(2,0),则|++|的最大值为( )A.6B.7C.8D.9答案B2.(2014福建,8,5分)在下列向量组中,可以把向量a=(3,2)表示出来的是( )A.e1=(0,0),e2=(1,2)B.e1=(-1,2),e2=(5,-2)C.e1=(3,5),e2=(6,10)D.e1=(2,-3),e2=(-2,3)答案B3.(2015江苏,6,5分)已知向量a=(2,1),b=(1,-2),若m a+n b=(9,-8)(m,n∈R),则m-n的值为.答案-34.(2014北京,10,5分)已知向量a,b满足|a|=1,b=(2,1),且λa+b=0(λ∈R),则|λ|=.答案5.(2014陕西,18,12分)在直角坐标系xOy中,已知点A(1,1),B(2,3),C(3,2),点P(x,y)在△ABC三边围成的区域(含边界)上.(1)若++=0,求||;(2)设=m+n(m,n∈R),用x,y表示m-n,并求m-n的最大值. 解析(1)解法一:∵++=0,又++=(1-x,1-y)+(2-x,3-y)+(3-x,2-y)=(6-3x,6-3y),∴--解得x=2,y=2,即=(2,2),故||=2.解法二:∵++=0,则(-)+(-)+(-)=0,∴=(++)=(2,2),∴||=2.(2)∵=m+n,∴(x,y)=(m+2n,2m+n),∴两式相减得,m-n=y-x,令y-x=t,由图知,当直线y=x+t过点B(2,3)时,t取得最大值1,故m-n的最大值为1.评析本题考查了向量线性坐标运算,简单的线性规划等知识;考查运算求解,数形结合、转化与化归的思想.【三年模拟】一、选择题(每小题5分,共30分)1.(2019届山东淄博实验中学第一次诊断,9)已知△ABC和点M满足++=0,若存在实数m,使得+=m成立,则m=( )A.2B.3C.4D.5答案B2.(2019届山东青岛高三初期调研,6)已知向量a=(-1,1),b=(3,m),若a∥(a+b),则m=( )A.-2B.2C.-3D.3答案C3.(2019届山东博兴一中10月质检,9)如图,在△ABC中,点D在BC边上,且CD=2DB,点E在AD边上,且AD=3AE,则用向量,表示为( )A.+B.-C.+D.-答案B4.(2018江西师大附中12月模拟,10)设D,E,F分别为△ABC三边BC,CA,AB的中点,则+2+3=( )A. B. C. D.答案D5.(2018河北衡水中学2月调研,5)直线l与平行四边形ABCD的两边AB,AD分别交于点E,F,且交其对角线AC于点M,若=2,=3,=λ-μ(λ,μ∈R),则μ-λ=()A.-B.1C.D.-3答案A6.(2017河北冀州模拟,7)已知向量a=,b=(4,4cos α-),若a⊥b,则sin=( )A.-B.-C.D.答案B二、填空题(每小题5分,共15分)7.(2018河北衡水中学9月大联考,13)已知向量a=,b=(k,1),若a∥b,则k= .答案 18.(2018河北石家庄重点中学12月联考,14)在平行四边形ABCD中,M为BC的中点,若=λ+μ,则λμ=.答案9.(2017山西大学附中模拟,15)在直角梯形ABCD中,AB⊥AD,DC∥AB,AD=DC=1,AB=2,E,F分别为AB,BC 的中点,点P在以A为圆心,AD长为半径的圆弧DE上运动(如图所示).若=λ+μ,其中λ,μ∈R,则2λ-μ的取值范围是.答案[-1,1]三、解答题(共10分)10.(2018河南许昌、平顶山两市联考,21)在平面直角坐标系中,O为坐标原点,M为平面上任意一点,A,B,C 三点满足=+.(1)求证:A,B,C三点共线,并求的值;(2)已知A(1,sin x),B(1+sin x,sin x),M,x∈(0,π),且函数f(x)=·+-·||的最小值为,求实数m的值.解析(1)证明:∵=+,备战2020高考∴-=(-),∴=,又∵,有公共点B,∴A,B,C三点共线.∵=,∴=3.(2)∵A(1,sin x),B(1+sin x,sin x),M,O(0,0),∴·=1+sin x+sin2x,=(sin x,0).又x∈(0,π),∴||=sin x,∴f(x)=·+-·||=sin2x+2msin x+1.设t=sin x,∵x∈(0,π),∴t∈(0,1],∴y=t2+2mt+1=(t+m)2+1-m2.①当-m≤0,即m≥0时,y=t2+2mt+1无最小值,不符合题意;②当0<-m≤1,即-1≤m<0时,当t=-m时,y min=1-m2=,∴m=-舍去;③当-m>1,即m<-1时,当t=1时,y min=2+2m=,∴m=-,此时m>-1,不符合题意.综上可知,m=-.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年高考数学平面向量专题练习
一、选择题
1、P是双曲线上一点,过P作两条渐近线的垂线,垂足分别为A,B 求的值()
A. B. C. D.
2、向量,,若,且,则x+y的值为()
A.-3 B.1 C.-3或1 D.3或1
3、已知向量满足,若,则向量在方向上的投影为A. B. C.2 D.4
4、.如图,为等腰直角三角形,,为斜边的高,为线段的中点,则
()
A.B. C.D.
5、在平行四边形中,,若是的中点,则()
A. B. C. D.
6、已知向量,且,则()
A. B. C. D.
7、已知是边长为2的等边三角形,D为的中点,且,则( )
A. B.1 C. D. 3
8、在平行四边形ABCD中,,则该四边形的面积为
A. B. C.5 D.10
9、下列命题中正确的个数是()
⑴若为单位向量,且,=1,则=;⑵若=0,则=0
⑶若,则;⑷若,则必有;⑸若,则
A.0 B.1 C.2 D.3
10、如图,在扇形中,,为弧上且与不重合的一个动点,且,若存在最大值,则的取值范围为()
二、填空题
11、已知向量与的夹角为120°,且,则____.
12、若三点满足,且对任意都有,则的最小值为________.
13、已知,,则向量在方向上的投影等于___________.
14、.已知,是夹角为的两个单位向量,,,若,则实数的值为
__________.
15、已知向量与的夹角为120°,,,则________.
16、已知中,为边上靠近点的三等分点,连接为线段的中点,若

则__________.
17、已知向量为单位向量,向量,且,则向量的夹角为.
18、在矩形ABCD中,已知E,F分别是BC,CD上的点,且满足,。


(λ,µ∈R),则λ+µ的值为。

三、简答题
19、已知平面直角坐标系中,向量,,且.
(1)求的值;(2)设,求的值.
20、已知向量=(sin,cos﹣2sin),=(1,2).
(1)若∥,求的值;
(2)若,0<<,求的值.
21、已知向量,.(1)若在集合中取值,求满足的概率;(2)若
在区间[1,6]内取值,求满足的概率.
22、在平面直角坐标系xOy中,已知向量,
(1)求证:且;
(2)设向量,,且,求实数t的值.
23、已知,设.
(1)求的解析式并求出它的周期T.
(2)在△ABC中,角A,B,C所对的边分别为a,b,c,且,求△ABC的面积. 24、已知为圆:上一动点,圆心关于轴的对称点为,点分别是线段,
上的点,且 , 。

(1)求点的轨迹方程;
(2)直线与点的轨迹只有一个公共点,且点在第二象限,过坐标原点且与垂直的直线与圆相交于两点,求面积的取值范围。

参考答案
一、选择题
1、A
2、C
3、A 【解析】依题意,将两边同时平方可得,
化简得,故向量在方向上的投影为,故选A.
4、B
5、C
【解析】
【分析】
根据题意画出草图,以为基底,利用平面向量基本定理可得结果.
【详解】如图所示,
平行四边形中,,,
则,
又是的中点,
则.
故选:C.
【点睛】本题考查平面向量基本定理的应用,求解过程中关键是基底的选择,向量加法与减法法则的应用,注意图形中回路的选取.
6、C
【解析】
【分析】
根据向量平行可求得,利用坐标运算求得,根据模长定义求得结果.
【详解】
本题正确选项:
【点睛】本题考查向量模长的求解,涉及到利用向量共线求解参数、向量的坐标运算问题,属于基础题.
7、.D
8、D
9、A
10、D
二、填空题
11、-5
12、
解析:因为对任意都有,故点C到AB所在直线的距离为2
设AB中点为M,则
当且仅当时等号成立
13、
【解析】
【分析】
利用数量积定义中对投影的定义,即,把坐标代入运算,求出投影为.
【详解】因为,故填:. 【点睛】本题考查向量数量积定义中投影的概念,考查对投影的基本运算.
14、.
【解析】
【分析】
直接利用向量数量积公式化简即得解.
【详解】因为,
所以,
所以,
所以=-7.
故答案为:-7
【点睛】本题主要考查平面向量的数量积的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.
15、
16、
17、
18、7/6
三、简答题
19、解:(1)因为,且,
所以,
即………………………………4分
(2)由,,
可得,……………………6分
……………8分
所以…………10分
20、
21、(1)x,y的所有取值共有6×6=36个基本事件.由,得 ,
满足包含的基本事件(x,y)为(1,3),(1,4),(1,5),(1,6),(2,5),(2,6)共6种
情形,故 .
(2) 若x, y在[1,6]上取值,则全部基本事件的结果为,满足的基本事件的结果为.
画出图形如图,正方形的面积为,阴影部分的面积为,
故满足的概率为.
22、(1)证明:,所以,因为,所以;
(2)因为,所以,
由(1)得:
所以,解得.
23、解析:(1)
...........4分函数的周期,
故,周期为
. ...............................................................6分
(2)因为,所以,

, ................................. ............7分
又,所以,
所以
, ............................................... .....................9分
又,
由余弦定理得:
,所以
所以 (11)

24、解:(1)连接,因为,所以为的中点,因为,所以
,所以点在的垂直平分线上,所以,因为
,所以点在以为焦点的椭圆上,因为,所以,所以点的轨迹方程为:.…………………4分
(2)由得…………………5分
因为直线与椭圆相切于点,所以
,即,解得,
即点的坐标为,…………………7分
因为点在第二象限,所以,所以,
所以点的坐标为,设直线与垂直交于点,
则是点到直线的距离,且直线的方程为,
所以
,…………………10分
当且仅当,即时,有最大值,所以,即面积的取值范围为.。

相关文档
最新文档