【市级联考】广东省茂名市2019届九年级上学期五校期末联考数学试题
2019中考广东茂名数学卷
经典精品试卷2019年广东茂名市初中毕业生学业水平考试与高中阶段学校招生考试含答案数 学 试 卷考生须知1. 全卷分第一卷(选择题,满分30分,共2页)和第二卷(非选择题,满分90分,共8页),全卷满分120分,考试时间120分钟.2. 请你认真填写答题卡和第二卷密封线内的有关内容,并在试卷右上角的座位号处填上自己的座位号.3. 考试结束后,请你将第一卷、第二卷和答题卡一并交回.亲爱的同学:你好!数学就是力量,自信决定成绩。
请你灵动智慧,缜密思考,细致作答,努力吧,祝你成功!第一卷(选择题,共2页,满分30分)一、精心选一选(本大题共10小题,每小题3分,共30分.每小题给出四个答案,其中只有一个是正确的). 1、计算:0)1(1---的结果正确..的是 A .0 B .1 C .2 D .2- 2、如图,在△ABC 中,D 、E分别是AB 、AC 的中点, 若DE=5,则BC=A .6B .8C .10D .12 3、如图,已知A B ∥CD, 则图中与∠1互补的角有 A .2个 B .3 个 C .4 个 D .5个4、不等式组⎩⎨⎧≥+<-0302x x 的解集在数轴上正确..表示的是 5、如图,两条笔直的公路1l 、2l 相交于点O ,村庄C 的第3题图 第2题图请你用2B 铅笔把每题的正确答案的字母代号对应填涂在答题卡上,填涂要规范哟!答在本...试卷上无效...... 2l 1l第5题图村民在公路的旁边建三个加工厂 A 、B 、D ,已知 AB=BC=CD=DA=5公里,村庄C 到公路1l 的距离为4 公里,则村庄C 到公路2l 的距离是A .3公里B .4公里C .5公里D .6公里 6、若函数xm y 2+=的图象在其象限内y 的值随x 值的增大而增大,则m 的取值范围是 A .2->m B.2-<m C.2>m D.2<m 7、如图,⊙1o 、⊙2o 相内切于点A ,其半径分别是8和4,将⊙2o 沿直线1o 2o 平移至两圆相外切时,则点2o 移动的长度是 A .4 B .8 C .16 D .8 或16 8、如图,已知:9045<<A ,则下列各式成立的是 A .sinA=cosA B .sinA>cosA C .sinA>tanA D .sinA<cosA 9、对于实数a 、b ,给出以下三个判断: ①若b a =,则b a =.②若b a <,则 b a <.③若b a -=,则 22)(b a =-.其中正确的判断的个数是A .3B .2C .1D .0 10、如图,正方形ABCD 内接于⊙O ,⊙O 的直径为2分米,若在这个圆面上随意抛一粒豆子,则豆子落在正方形ABCD 内的概率是A .π2B .2π C .π21D .π2茂名市2019年初中毕业生学业水平考试与高中阶段学校招生考试数 学 试 卷第8题图第7题图第10题图题 号 二(11~15)三(16~18)四(19~20)五六合 计 2122 23 24 25 得 分 评卷人第二卷(非选择题,共8页,满分90分)得 分 评卷人 二、细心填一填(本大题共5小题,每小题3分,共15分.请你把答案填在横线的上方).11、若一组数据 1,1,2,3,x 的平均数是3,则这组数据的众数是 . 12、已知:一个正数的两个平方根分别是22-a 和4-a ,则a的值是 .13、如图,在高出海平面100米的悬崖顶A 处,观测海平面上一艘小船B ,并测得它的俯角为45°,则船与观测者之间的水平距离BC= 米.14、如图,已知△ABC 是等边三角形,点B 、C 、D 、E 在同一直线上,且CG=CD ,DF=DE ,则∠E= 度. 15、给出下列命题:命题1.点(1,1)是双曲线xy 1=与抛物线2x y =的一个交点. 命题2.点(1,2)是双曲线xy 2=与抛物线22x y =的一个交 点. 命题3.点(1,3)是双曲线xy 3=与抛物线23x y =的一个交点.……请你观察上面的命题,猜想出命题n (n 是正整数): 得 分 评卷人 三、用心做一做 (本大题共3小题,每小题7分,共21分).16、化简:⑴、)212(8-⨯ (3分) ⑵、22)()(y x y x --+ (4分) 解: 解:温馨提示下面所有解答题都应写出文字说明、证明过程或演算步骤!第13题图第14题图17、解分式方程:x x x 221232=+-. 解:18、画图题:(1)如图,将△ABC绕点O顺时针旋转180°后得到△111C B A .请你画 出旋转后的△111C B A ; (3分)(2)请你画出下面“蒙古包”的左视图.... (4分)得 分 评卷人 四、沉着冷静,缜密思考(本大题共2小题,每小题7分,共14分).19、从甲学校到乙学校有1A 、2A 、3A 三条线路,从乙学校到丙学校有1B 、2B 二条线路. (1)利用树状图或列表的方法表示从甲学校到丙学校的线路中所有可能出现的结果;(4分)(2)小张任意走了一条从甲学校到丙学校的线路,求小张恰好经过了1B 线路的概率是多少? (3分) 解:第18题图(2) 画出它的左视图是20、为了解某品牌电风扇销售量的情况,对某商场5月份该品牌甲、乙、丙三种型号的电风扇销售量进行统计,绘制如下两个统计图(均不完整).请你结合图中的信息,解答下列问题:(1)该商场5月份售出这种品牌的电风扇共多少台? (2分)(2)若该商场计划订购这三种型号的电风扇共2000台,根据5月份销售量的情况,求该商场应订购丙种型号电风扇多少台比较合理?(5分)解:(本大题共3小题,每小题8分,共24分).得分评卷人21、(本题满分8分)某学校要印制一批《学生手册》,甲印刷厂提出:每本收1元印刷费,另收500元制版费;乙印刷厂提出:每本收2元印刷费,不收制版费.(1)分别写出甲、乙两厂的收费甲y(元) 、乙y(元)与印制数量x(本)之间的关系式;(4分) (2)问:该学校选择哪间印刷厂印制《学生手册》比较合算?请说明理由.(4分) 解:第20题图2第20题图1得分评卷人22、(本题满分8分)如图,在等腰△ABC中,点D、E分别是两腰AC、BC上的点,连接AE、BD相交于点O,∠1=∠2.(1)求证:OD=OE;(3分)(2)求证:四边形ABED是等腰梯形;(3分)(3)若AB=3DE, △DCE的面积为2, 求四边形ABED的面积.(2分)证明:第22题图23、(本题满分8分)某养鸡场计划购买甲、乙两种小鸡苗共2 000只进行饲养,已知甲种小鸡苗每只2元,乙种小鸡苗每只3元.(1)若购买这批小鸡苗共用了4 500元,求甲、乙两种小鸡苗各购买了多少只?(2分)(2)若购买这批小鸡苗的钱不超过4 700元,问应选购甲种小鸡苗至少多少只?(3分)(3)相关资料表明:甲、乙两种小鸡苗的成活率分别为94%和99%,若要使这批小鸡苗的成活率不低于96%且买小鸡的总费用最小,问应选购甲、乙两种小鸡苗各多少只?总费用最小是多少元?(3分)解:六、灵动智慧,超越自我(本大题共2小题,每小题8分,共16分). 得 分 评卷人24、(本题满分8分)如图,⊙P 与y 轴相切于坐标原点O (0,0),与x 轴相交于点A (5,0),过点A 的直线AB 与y 轴的正半轴交于点B ,与⊙P 交于点C .(1)已知AC=3,求点B的坐标; (4分) (2)若AC=a , D 是O B的中点.问:点O 、P 、C 、D 四点是否在同一圆上?请说明理由.如果这四点在同一圆上,记这个圆的圆心为1O ,函数xky的图象经过点1O ,求k 的值(用含a 的代数式表示). (4分) 解:第24题图χy第24题备用图χy得 分 评卷人25、(本题满分8分)xoy 中,已知抛物线经过点A(0,4),B(1,0),C (5,0),抛物线对称轴l 与x 轴相交于点M .(1)求抛物线的解析式和对称轴; (3分) (2)设点P 为抛物线(5 x )上的一点,若以A 、O 、M 、P 为顶点的四边形四条边的长度为四个连续的正整数,请你直接写出....点P 的坐标; (2分) (3)连接AC .探索:在直线AC 下方的抛物线上是否存在一点N ,使△NAC 的面积最大?若存在,请你求出点N 的坐标;若不存在,请你说明理由. (3分) 解:茂名市2019年初中毕业生学业水平考试与高中阶段学校招生考试数学试题参考答案及评分标准说明:1.如果考生的解法与本解法不同,可根据试题的主要内容,并参照评分标准制定相应的评分细则后评卷。
茂名市数学九年级上册期末试题和答案
茂名市数学九年级上册期末试题和答案一、选择题1.关于x 的一元一次方程122a x m -+=的解为1x =,则a m -的值为( )A .5B .4C .3D .22.如图,OA 、OB 是⊙O 的半径,C 是⊙O 上一点.若∠OAC =16°,∠OBC =54°,则∠AOB 的大小是( )A .70°B .72°C .74°D .76°3.在△ABC 中,若|sinA ﹣12|+(22﹣cosB )2=0,则∠C 的度数是( ) A .45° B .75° C .105° D .120° 4.已知二次函数y=-x 2+2mx+2,当x<-2时,y 的值随x 的增大而增大,则实数m ( ) A .m=-2B .m>-2C .m≥-2D .m≤-25.如图,△ABC 中,AD 是中线,BC =8,∠B =∠DAC ,则线段 AC 的长为( )A .3B .2C .6D .4 6.已知圆锥的底面半径为5cm ,母线长为13cm ,则这个圆锥的全面积是( )A .265cm πB .290cm πC .2130cm πD .2155cm π7.对于二次函数2610y x x =-+,下列说法不正确的是( ) A .其图象的对称轴为过(3,1)且平行于y 轴的直线. B .其最小值为1. C .其图象与x 轴没有交点.D .当3x <时,y 随x 的增大而增大.8.生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,一年中获得利润y 与月份n 之间的函数关系式是y =-n 2+15n -36,那么该 企业一年中应停产的月份是( ) A .1月,2月 B .1月,2月,3月 C .3月,12月D .1月,2月,3月,12月9.数据3、4、6、7、x 的平均数是5,这组数据的中位数是( ) A .4B .4.5C .5D .610.已知关于x 的一元二次方程 (x - a )(x - b ) -12= 0 (a < b ) 的两个根为 x 1、x 2,(x 1< x 2)则实数 a 、b 、x 1、x 2的大小关系为( ) A .a < x 1< b <x 2 B .a < x 1< x 2 < bC .x 1< a < x 2 < bD .x 1< a < b < x 211.如图,O 的直径AB 垂直于弦CD ,垂足是点E ,22.5CAO ∠=,6OC =,则CD 的长为( )A .62B .32C .6D .1212.某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试因此计算其他39人的平均分为90分,方差s 2=41.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是( ) A .平均分不变,方差变大 B .平均分不变,方差变小 C .平均分和方差都不变 D .平均分和方差都改变13.如图,∠1=∠2,要使△ABC ∽△ADE ,只需要添加一个条件即可,这个条件不可能是( )A .∠B =∠D B .∠C =∠E C .AD ABAE AC= D .AC BCAE DE= 14.如图,AB 为⊙O 的直径,PD 切⊙O 于点C ,交AB 的延长线于D ,且∠D =40°,则∠PCA 等于( )A .50°B .60°C .65°D .75°15.如图1,一个扇形纸片的圆心角为90°,半径为4.如图2,将这张扇形纸片折叠,使点A 与点O 恰好重合,折痕为CD ,图中阴影为重合部分,则阴影部分的面积为( )A .4233π- B .8433π- C .8233π- D .843π- 二、填空题16.150°的圆心角所对的弧长是5πcm ,则此弧所在圆的半径是______cm .17.小亮测得一圆锥模型的底面直径为10cm ,母线长为7cm ,那么它的侧面展开图的面积是_____cm 2.18.如图,在平面直角坐标系中,将△ABO 绕点A 顺指针旋转到△AB 1C 1的位置,点B 、O 分别落在点B 1、C 1处,点B 1在x 轴上,再将△AB 1C 1绕点B 1顺时针旋转到△A 1B 1C 2的位置,点C 2在x 轴上,将△A 1B 1C 2绕点C 2顺时针旋转到△A 2B 2C 2的位置,点A 2在x 轴上,依次进行下去…,若点A (53,0)、B (0,4),则点B 2020的横坐标为_____.19.已知扇形半径为5cm ,圆心角为60°,则该扇形的弧长为________cm .20.如图,四边形ABCD 内接于⊙O ,AB 是⊙O 的直径,过点C 作⊙O 的切线交AB 的延长线于点P ,若∠P =40°,则∠ADC =____°.21.在△ABC 中,∠C =90°,cosA =35,则tanA 等于 . 22.如图是二次函数2y ax bx c =++的部分图象,由图象可知不等式20ax bx c ++>的解集是_______.23.如图,Rt △ABC 中,∠ACB =90°,AC =BC =4,D 为线段AC 上一动点,连接BD ,过点C 作CH ⊥BD 于H ,连接AH ,则AH 的最小值为_____.24.方程22x x =的根是________.25.小刚身高1.7m ,测得他站立在阳光下的影子长为0.85m ,紧接着他把手臂竖直举起,测得影子长为1.1m ,那么小刚举起的手臂超出头顶的高度为________m . 26.如图,抛物线214311515y x x =--与x 轴交于A 、B 两点,与y 轴交于C 点,⊙B 的圆心为B ,半径是1,点P 是直线AC 上的动点,过点P 作⊙B 的切线,切点是Q ,则切线长PQ 的最小值是__.27.如图,ABO 三个顶点的坐标分别为(24),(60),(00)A B ,,,,以原点O 为位似中心,把这个三角形缩小为原来的12,可以得到A B O ''△,已知点B '的坐标是30(,),则点A '的坐标是______.28.抛物线228y x x m =++与x 轴只有一个公共点,则m 的值为________. 29.如图,点G 为△ABC 的重心,GE ∥AC ,若DE =2,则DC =_____.30.已知二次函数y =ax 2+bx +c 的图象如图,对称轴为直线x =1,则不等式ax 2+bx +c >0的解集是_____.三、解答题31.已知二次函数218y x bx c =++(b 、c 为常数)的图像经过点()0,1-和点()4,1A . (1)求b 、c 的值;(2)如图1,点()10,C m 在抛物线上,点M 是y 轴上的一个动点,过点M 平行于x 轴的直线l 平分AMC ∠,求点M 的坐标;(3)如图2,在(2)的条件下,点P 是抛物线上的一动点,以P 为圆心、PM 为半径的圆与x 轴相交于E 、F 两点,若PEF ∆的面积为26,请直接写出点P 的坐标. 32.如图,在Rt △ABC 中,∠C =90°,矩形DEFG 的顶点G 、F 分别在边AC 、BC 上,D 、E 在边AB 上.(1)求证:△ADG ∽△FEB ;(2)若AD =2GD ,则△ADG 面积与△BEF 面积的比为 .33.如图,在矩形ABCD 中,E 是BC 上一点,连接AE ,将矩形沿AE 翻折,使点B 落在CD边F 处,连接AF ,在AF 上取一点O,以点O 为圆心,OF 为半径作⊙O 与AD 相切于点P .AB=6,BC=33(1)求证:F 是DC 的中点. (2)求证:AE=4CE. (3)求图中阴影部分的面积.34.如图,点C 在以AB 为直径的圆上,D 在线段AB 的延长线上,且CA=CD ,BC=BD . (1)求证:CD 与⊙O 相切;(2)若AB=8,求图中阴影部分的面积.35.若关于x 的方程()2260x b x b +++-=有两个相等的实数根(1)求b 的值;(2)当b 取正数时,求此时方程的根,四、压轴题36.问题提出(1)如图①,在ABC 中,2,6,135AB AC BAC ==∠=,求ABC 的面积.问题探究(2)如图②,半圆O 的直径10AB =,C 是半圆AB 的中点,点D 在BC 上,且2CD BD =,点P 是AB 上的动点,试求PC PD +的最小值.问题解决(3)如图③,扇形AOB 的半径为20,45AOB ∠=在AB 选点P ,在边OA 上选点E ,在边OB 上选点F ,求PE EF FP ++的长度的最小值.37.如图,等边ABC 内接于O ,P 是AB 上任一点(点P 不与点A 、B 重合),连接AP 、BP ,过点C 作CMBP 交PA 的延长线于点M .(1)求APC ∠和BPC ∠的度数; (2)求证:ACM BCP △≌△;(3)若1PA =,2PB =,求四边形PBCM 的面积; (4)在(3)的条件下,求AB 的长度.38.如图1,有一块直角三角板,其中AB 16=,ACB 90∠=,CAB 30∠=,A 、B 在x 轴上,点A 的坐标为()20,0,圆M 的半径为33,圆心M 的坐标为()5,33-,圆M 以每秒1个单位长度的速度沿x 轴向右做平移运动,运动时间为t 秒;()1求点C 的坐标;()2当点M 在ABC ∠的内部且M 与直线BC 相切时,求t 的值;()3如图2,点E 、F 分别是BC 、AC 的中点,连接EM 、FM ,在运动过程中,是否存在某一时刻,使EMF 90∠=?若存在,直接写出t 的值,若不存在,请说明理由.39.如图,在Rt △ABC 中,∠A=90°,0是BC 边上一点,以O 为圆心的半圆与AB 边相切于点D ,与BC 边交于点E 、F ,连接OD ,已知BD=3,tan ∠BOD=34,CF=83.(1)求⊙O 的半径OD ; (2)求证:AC 是⊙O 的切线; (3)求图中两阴影部分面积的和.40.如图,扇形OMN的半径为1,圆心角为90°,点B是上一动点,BA⊥OM于点A,BC⊥ON于点C,点D、E、F、G分别是线段OA、AB、BC、CO的中点,GF与CE相交于点P,DE与AG相交于点Q.(1)当点B移动到使AB:OA=:3时,求的长;(2)当点B移动到使四边形EPGQ为矩形时,求AM的长.(3)连接PQ,试说明3PQ2+OA2是定值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】满足题意的有两点,一是此方程为一元一次方程,即未知数x的次数为1;二是方程的解为x=1,即1使等式成立,根据两点列式求解.【详解】解:根据题意得,a-1=1,2+m=2,解得,a=2,m=0,∴a-m=2.故选:D.【点睛】本题考查一元一次方程的定义及方程解的定义,对定义的理解是解答此题的关键.2.D解析:D【解析】【分析】连接OC,根据等腰三角形的性质得到∠OAC=∠OCA=16°;∠OBC=∠OCB=54°求出∠ACB 的度数,然后根据同圆中同弧所对的圆周角等于圆心角的一半求解.【详解】解:连接OC∵OA=OC,OB=OC∴∠OAC=∠OCA=16°;∠OBC=∠OCB=54°∴∠ACB=∠OCB-∠OCA=54°-16°=38°∴∠AOB=2∠ACB=76°故选:D【点睛】本题考查的是等腰三角形的性质及同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半,掌握相关性质定理是本题的解题关键.3.C解析:C【解析】【分析】根据非负数的性质列出关系式,根据特殊角的三角函数值求出∠A、∠B的度数,根据三角形内角和定理计算即可.【详解】由题意得,sinA-12=0,22-cosB=0,即sinA=122,解得,∠A=30°,∠B=45°,∴∠C=180°-∠A-∠B=105°,故选C.【点睛】本题考查的是非负数的性质的应用、特殊角的三角函数值的计算和三角形内角和定理的应用,熟记特殊角的三角函数值是解题的关键.4.C解析:C 【解析】 【分析】根据二次函数的性质,确定抛物线的对称轴及开口方向得出函数的增减性,结合题意确定m 值的范围. 【详解】解:抛物线的对称轴为直线221m x m∵10a =-<,抛物线开口向下,∴当x m < 时,y 的值随x 值的增大而增大, ∵当2x <-时,y 的值随x 值的增大而增大, ∴2m ≥- , 故选:C . 【点睛】本题考查了二次函数的性质,主要利用了二次函数的增减性,由系数的符号特征得出函数性质是解答此题的关键.5.B解析:B 【解析】 【分析】由已知条件可得ABC DAC ~,可得出AC BCDC AC=,可求出AC 的长. 【详解】解:由题意得:∠B =∠DAC ,∠ACB =∠ACD,所以ABC DAC ~,根据“相似三角形对应边成比例”,得AC BCDC AC=,又AD 是中线,BC =8,得DC=4,代入可得AC=, 故选B. 【点睛】本题主要考查相似三角形的判定与性质.灵活运用相似的性质可得出解答.6.B解析:B 【解析】 【分析】先根据圆锥侧面积公式:S rl π=求出圆锥的侧面积,再加上底面积即得答案. 【详解】解:圆锥的侧面积=251365cm ππ⨯⨯=,所以这个圆锥的全面积=2265590cm πππ+⨯=.故选:B.【点睛】本题考查了圆锥的有关计算,属于基础题型,熟练掌握圆锥侧面积的计算公式是解答的关键.7.D解析:D【解析】【分析】先将二次函数变形为顶点式,然后可根据二次函数的性质判断A 、B 、D 三项,再根据抛物线的顶点和开口即可判断C 项,进而可得答案.【详解】解:()2261031y x x x =-+=-+,所以抛物线的对称轴是直线:x =3,顶点坐标是(3,1);A 、其图象的对称轴为过(3,1)且平行于y 轴的直线,说法正确,本选项不符合题意;B 、其最小值为1,说法正确,本选项不符合题意;C 、因为抛物线的顶点是(3,1),开口向上,所以其图象与x 轴没有交点,说法正确,本选项不符合题意;D 、当3x <时,y 随x 的增大而增大,说法错误,所以本选项符合题意.故选:D.【点睛】本题考查了二次函数的图象和性质,属于基本题型,熟练掌握抛物线的性质是解题的关键. 8.D解析:D【解析】【分析】【详解】当-n 2+15n -36≤0时该企业应停产,即n 2-15n+36≥0,n 2-15n+36=0的两个解是3或者12,根据函数图象当n ≥12或n ≤3时n 2-15n+36≥0,所以1月,2月,3月,12月应停产.故选D9.C解析:C【解析】【分析】首先根据3、4、6、7、x 这组数据的平均数求得x 值,再根据中位数的定义找到中位数即可.【详解】由3、4、6、7、x 的平均数是5,即(3467)55++++÷=x得5x =这组数据按照从小到大排列为3、4、5、6、7,则中位数为5.故选C【点睛】此题考查了平均数计算及中位数的定义,熟练运算平均数及掌握中位数的定义是解题关键.10.D解析:D【解析】【分析】根据二次函数的图象与性质即可求出答案.【详解】如图,设函数y =(x−a )(x−b ),当y =0时,x =a 或x =b ,当y =12时, 由题意可知:(x−a )(x−b )−12=0(a <b )的两个根为x 1、x 2, 由于抛物线开口向上, 由抛物线的图象可知:x 1<a <b <x 2故选:D .【点睛】本题考查一元二次方程,解题的关键是正确理解一元二次方程与二次函数之间的关系,本题属于中等题型.11.A解析:A【解析】【分析】先根据垂径定理得到CE DE =,再根据圆周角定理得到245BOC A ∠=∠=,可得OCE ∆为等腰直角三角形,所以2CE ==CD 的长. 【详解】∵CD AB ⊥,AB 为直径,∴CE DE =, ∵∠BOC 和∠A 分别为BC 所对的圆心角和圆周角,∠A=22.5°,∴2222.545BOC A ∠=∠=⨯=,∴OCE ∆为等腰直角三角形,∵OC=6,∴622CE ===∴2CD CE ==故选A .【点睛】本题考查了垂径定理及圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;垂直于弦的直径,平分这条弦且平分这条弦所对的两条弧.12.B解析:B【解析】【分析】根据平均数、方差的定义计算即可.【详解】∵小亮的成绩和其它39人的平均数相同,都是90分,∴40人的平均数是90分,∵39人的方差为41,小亮的成绩是90分,40人的平均分是90分,∴40人的方差为[41×39+(90-90)2]÷40<41,∴方差变小,∴平均分不变,方差变小故选B.【点睛】本题考查了平均数与方差,熟练掌握定义是解题关键.13.D解析:D【解析】【分析】先求出∠DAE =∠BAC ,再根据相似三角形的判定方法分析判断即可.【详解】∵∠1=∠2,∴∠1+∠BAE=∠2+∠BAE,∴∠DAE=∠BAC,A、添加∠B=∠D可利用两角法:有两组角对应相等的两个三角形相似可得△ABC∽△ADE,故此选项不合题意;B、添加∠C=∠E可利用两角法:有两组角对应相等的两个三角形相似可得△ABC∽△ADE,故此选项不合题意;C、添加AD ABAE AC=可利用两边及其夹角法:两组边对应成比例且夹角相等的两个三角形相似,故此选项不合题意;D、添加AC BCAE DE=不能证明△ABC∽△ADE,故此选项符合题意;故选:D.【点睛】本题考查相似三角形的判定,解题的关键是掌握相似三角形判定方法:两角法、两边及其夹角法、三边法、平行线法.14.C解析:C【解析】【分析】根据切线的性质,由PD切⊙O于点C得到∠OCD=90°,再利互余计算出∠DOC=50°,由∠A=∠ACO,∠COD=∠A+∠ACO,所以1252A COD∠=∠=︒,然后根据三角形外角性质计算∠PCA的度数.【详解】解:∵PD切⊙O于点C,∴OC⊥CD,∴∠OCD=90°,∵∠D=40°,∴∠DOC=90°﹣40°=50°,∵OA=OC,∴∠A=∠ACO,∵∠COD=∠A+∠ACO,∴1252A COD∠=∠=︒,∴∠PCA=∠A+∠D=25°+40°=65°.故选C.【点睛】本题考查了切线的性质、等腰三角形的性质、直角三角形的性质、三角形外角性质等知识;熟练掌握切线的性质与三角形外角性质是解题的关键.15.C解析:C【解析】【分析】连接OD,根据勾股定理求出CD,根据直角三角形的性质求出∠AOD,根据扇形面积公式、三角形面积公式计算,得到答案.【详解】解:连接OD,在Rt△OCD中,OC=12OD=2,∴∠ODC=30°,CD=2223OD OC+=∴∠COD=60°,∴阴影部分的面积=260418223=23 36023π⨯-⨯⨯π-,故选:C.【点睛】本题考查的是扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.二、填空题16.6;【解析】解:设圆的半径为x,由题意得:=5π,解得:x=6,故答案为6.点睛:此题主要考查了弧长计算,关键是掌握弧长公式l= (弧长为l,圆心角度数为n,圆的半径为R).解析:6;【解析】解:设圆的半径为x,由题意得:150 180xπ=5π,解得:x=6,故答案为6.点睛:此题主要考查了弧长计算,关键是掌握弧长公式l =180n R (弧长为l ,圆心角度数为n ,圆的半径为R ). 17.35π.【解析】【分析】首先求得圆锥的底面周长,然后利用扇形的面积公式S=lr 即可求解.【详解】底面周长是:10π,则侧面展开图的面积是:×10π×7=35πcm2.故答案是:35π.解析:35π.【解析】【分析】首先求得圆锥的底面周长,然后利用扇形的面积公式S=12lr 即可求解. 【详解】底面周长是:10π, 则侧面展开图的面积是:12×10π×7=35πcm 2. 故答案是:35π.【点睛】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长. 18.10100【解析】【分析】首先根据已知求出三角形三边长度,然后通过旋转发现,B 、B2、B4…每偶数之间的B 相差10个单位长度,根据这个规律可以求解.【详解】由图象可知点B2020在第一象限解析:10100【解析】【分析】首先根据已知求出三角形三边长度,然后通过旋转发现,B 、B 2、B 4…每偶数之间的B 相差10个单位长度,根据这个规律可以求解.【详解】由图象可知点B 2020在第一象限,∵OA =53,OB =4,∠AOB =90°,∴AB 133===, ∴OA+AB 1+B 1C 2=53+133+4=10, ∴B 2的横坐标为:10, 同理:B 4的横坐标为:2×10=20,B 6的横坐标为:3×10=30,∴点B 2020横坐标为:2020102⨯=10100. 故答案为:10100.【点睛】本题考查了点的坐标规律变换,通过图形旋转,找到所有B 点之间的关系是本题的关键.题目难易程度适中,可以考察学生观察、发现问题的能力. 19.【解析】【分析】直接利用弧长公式进行计算.【详解】解:由题意得:=,故答案是:【点睛】本题考查了弧长公式,考查了计算能力,熟练掌握弧长公式是关键. 解析:53π 【解析】【分析】 直接利用弧长公式180n R l π=进行计算. 【详解】 解:由题意得:605180l π==53π, 故答案是:53π 【点睛】本题考查了弧长公式,考查了计算能力,熟练掌握弧长公式是关键. 20.115°【解析】【分析】根据过C点的切线与AB的延长线交于P点,∠P=40°,可以求得∠OCP和∠OBC的度数,又根据圆内接四边形对角互补,可以求得∠D的度数,本题得以解决.【详解】解:连解析:115°【解析】【分析】根据过C点的切线与AB的延长线交于P点,∠P=40°,可以求得∠OCP和∠OBC的度数,又根据圆内接四边形对角互补,可以求得∠D的度数,本题得以解决.【详解】解:连接OC,如右图所示,由题意可得,∠OCP=90°,∠P=40°,∴∠COB=50°,∵OC=OB,∴∠OCB=∠OBC=65°,∵四边形ABCD是圆内接四边形,∴∠D+∠ABC=180°,∴∠D=115°,故答案为:115°.【点睛】本题考查切线的性质、圆内接四边形,解题的关键是明确题意,找出所求问题需要的条件.21..【解析】试题分析:∵在△ABC中,∠C=90°,cosA=,∴.∴可设.∴根据勾股定理可得.∴.考点:1.锐角三角函数定义;2.勾股定理.解析:43. 【解析】 试题分析:∵在△ABC 中,∠C =90°,cosA =35,∴35AC AB =. ∴可设35AC k AB k ==,.∴根据勾股定理可得4BC k =. ∴44tanA 33BC k AC k ===. 考点:1.锐角三角函数定义;2.勾股定理.22.【解析】【分析】求方程的解即是求函数图象与x 轴的交点坐标,因为图像具有对称性,知道一个坐标,就可求出另一个,分析x 轴上方的图象可得结果.【详解】由图像可知,二次函数的对称轴x=2,图像与x解析:15x -<<【解析】【分析】求方程的解即是求函数图象与x 轴的交点坐标,因为图像具有对称性,知道一个坐标,就可求出另一个,分析x 轴上方的图象可得结果.【详解】由图像可知,二次函数的对称轴x=2,图像与x 轴的一个交点为5,所以,另一交点为2-3=-1. ∴x 1=-1,x 2=5. ∴不等式20ax bx c ++>的解集是15x -<<.故答案为15x -<<【点睛】要了解二次函数性质与图像,由于图像的开口向下,所以,有两个交点,知一易求另一个,本题属于基础题.23.2﹣2【解析】【分析】取BC 中点G ,连接HG ,AG ,根据直角三角形的性质可得HG =CG =BG =BC =2,根据勾股定理可求AG =2,由三角形的三边关系可得AH≥AG ﹣HG ,当点H 在线段AG 上时,解析:2【解析】【分析】取BC中点G,连接HG,AG,根据直角三角形的性质可得HG=CG=BG=12BC=2,根据勾股定理可求AG=25,由三角形的三边关系可得AH≥AG﹣HG,当点H在线段AG上时,可求AH的最小值.【详解】解:如图,取BC中点G,连接HG,AG,∵CH⊥DB,点G是BC中点∴HG=CG=BG=12BC=2,在Rt△ACG中,AG22AC CG5在△AHG中,AH≥AG﹣HG,即当点H在线段AG上时,AH最小值为52,故答案为:52【点睛】本题考查了动点问题,解决本题的关键是熟练掌握直角三角形中勾股定理关系式. 24.x1=0,x2=2【解析】【分析】先移项,再用因式分解法求解即可.【详解】解:∵,∴,∴x(x-2)=0,x1=0,x2=2.故答案为:x1=0,x2=2.【点睛】本题考查了一解析:x1=0,x2=2【解析】【分析】先移项,再用因式分解法求解即可.解:∵22x x =,∴22=0x x -,∴x(x-2)=0,x 1=0,x 2=2.故答案为:x 1=0,x 2=2.【点睛】本题考查了一元二次方程的解法,常用的方法有直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.25.5【解析】【分析】根据同一时刻身长和影长成比例,求出举起手臂之后的身高,与身高做差即可解题.【详解】解:设举起手臂之后的身高为x由题可得:1.7:0.85=x :1.1,解得x=2.2,解析:5【解析】【分析】根据同一时刻身长和影长成比例,求出举起手臂之后的身高,与身高做差即可解题.【详解】解:设举起手臂之后的身高为x由题可得:1.7:0.85=x :1.1,解得x=2.2,则小刚举起的手臂超出头顶的高度为2.2-1.7=0.5m【点睛】本题考查了比例尺的实际应用,属于简单题,明确同一时刻的升高和影长是成比例的是解题关键.26.【解析】【分析】先根据解析式求出点A 、B 、C 的坐标,求出直线AC的解析式,设点P 的坐标,根据过点P 作⊙B 的切线,切点是Q 得到PQ 的函数关系式,求出最小值即可.【详解】令中y=0,得x1=【解析】先根据解析式求出点A 、B 、C 的坐标,求出直线AC 的解析式,设点P 的坐标,根据过点P 作⊙B 的切线,切点是Q 得到PQ 的函数关系式,求出最小值即可.【详解】令21115y x =-中y=0,得x 1x 2∴直线AC的解析式为1y =-, 设P (x ,31x ), ∵过点P 作⊙B 的切线,切点是Q ,BQ=1∴PQ 2=PB 2-BQ 2,2+(31x )2-1, =242837533x x , ∵43a =0<, ∴PQ 2有最小值24283475()3326443,∴PQ【点睛】此题考查二次函数最小值的实际应用,求动线段的最小值,需构建关于此线段的函数解析式,利用二次函数顶点坐标公式求最值,此题找到线段PQ 、BQ 、PB 之间的关系式是解题的关键.27.(1,2)【解析】解:∵点A 的坐标为(2,4),以原点O 为位似中心,把这个三角形缩小为原来的,∴点A′的坐标是(2×,4×),即(1,2).故答案为(1,2). 解析:(1,2)【解析】解:∵点A 的坐标为(2,4),以原点O 为位似中心,把这个三角形缩小为原来的12,∴点A ′的坐标是(2×12,4×12),即(1,2).故答案为(1,2).【解析】试题分析:由题意可得,即可得到关于m的方程,解出即可.由题意得,解得考点:本题考查的是二次根式的性质点评:解答本题的关键是熟练掌握当时,抛物线与x轴有两个公共点;当时,抛物线与x解析:8【解析】试题分析:由题意可得,即可得到关于m的方程,解出即可.由题意得,解得考点:本题考查的是二次根式的性质点评:解答本题的关键是熟练掌握当时,抛物线与x轴有两个公共点;当时,抛物线与x轴只有一个公共点;时,抛物线与x轴没有公共点.29.【解析】【分析】根据重心的性质可得AG:DG=2:1,然后根据平行线分线段成比例定理可得==2,从而求出CE,即可求出结论.【详解】∵点G为△ABC的重心,∴AG:DG=2:1,∵GE解析:【解析】【分析】根据重心的性质可得AG:DG=2:1,然后根据平行线分线段成比例定理可得CEDE=AGDG=2,从而求出CE,即可求出结论.【详解】∵点G为△ABC的重心,∴AG:DG=2:1,∵GE∥AC,∴CEDE=AGDG=2,∴CE=2DE=2×2=4,∴CD=DE+CE=2+4=6.故答案为:6.此题考查的是重心的性质和平行线分线段成比例定理,掌握重心的性质和平行线分线段成比例定理是解决此题的关键.30.﹣1<x <3【解析】【分析】先求出函数与x 轴的另一个交点,再根据图像即可求解.【详解】解:∵抛物线的对称轴为直线x =1,而抛物线与x 轴的一个交点坐标为(3,0),∴抛物线与x 轴的另一个解析:﹣1<x <3【解析】【分析】先求出函数与x 轴的另一个交点,再根据图像即可求解.【详解】解:∵抛物线的对称轴为直线x =1,而抛物线与x 轴的一个交点坐标为(3,0),∴抛物线与x 轴的另一个交点坐标为(﹣1,0),∵当﹣1<x <3时,y >0,∴不等式ax 2+bx +c >0的解集为﹣1<x <3.故答案为﹣1<x <3.【点睛】此题主要考查二次函数的图像,解题的关键是求出函数与x 轴的另一个交点.三、解答题31.(1)0b =,1c =-;(2)()0,4M ;(3)()4,1P 或()4,1-或()0,1-【解析】【分析】(1)直接把两点的坐标代入二次函数解析式,得出关于b ,c 的二元一次方程组求解即可(2) 过点C 作CD l ⊥,过点A 作AE l ⊥.证明△CMD 相似于△AME ,再根据对应线段成比例求解即可(3)根据题意设点P 的纵坐标为y ,首先根据三角形面积得出EF 与y 的关系,再利用勾股定理得出EF 与y 的关系,从而得出y 的值,再代入抛物线解析式求出x 的值,得出点坐标.【详解】解:(1)把()4,1A 和()0,1-代入218y x bx c =++得:1241b c c =++⎧⎨-=⎩解方程组得出:1bc=⎧⎨=-⎩所以,b=,1c=-(2)由已知条件得出C点坐标为2310,2C⎛⎫⎪⎝⎭,设()0,M n.过点C作CD l⊥,过点A作AE l⊥.两个直角三角形的三个角对应相等,∴CMD AME∆∆∽∴CD MDAE ME=∴2310214nn-=-∵解得:4n=∴()0,4M(3)设点P的纵坐标为y,由题意得出,1262EF y⨯⨯=46EF=∵MP与PE都为圆的半径,∴MP=PE∴()2228y84()2EFy y++-=+整理得出,∴EF46=∵46EF=∴y=±1,∴当y=1时有,21118x=-,解得,x4=±;∴当y=-1时有,21118x-=-,此时,x=0∴综上所述得出P的坐标为:()4,1P或()4,1-或()0,1-本题是一道关于二次函数的综合题目,考查的知识点有二元一次方程组的求解、相似三角形的性质等,巧妙利用数形结合是解题的关键.32.(1)证明见解析;(2)4.【解析】【分析】(1)易证∠AGD=∠B ,根据∠ADG=∠BEF=90°,即可证明△ADG ∽△FEB ;(2)相似三角形的性质解答即可.【详解】(1)证明:∵∠C=90°,∴∠A+∠B=90°,∵四边形DEFG 是矩形,∴∠GDE=∠FED=90°,∴∠GDA+∠FEB=90°,∴∠A+∠AGD=90°,∴∠B=∠AGD ,且∠GDA=∠FEB=90°,∴△ADG ∽△FEB .(2)解:∵△ADG ∽△FEB , ∴AD EF DG BE=, ∵AD =2GD, ∴2AD DG=, ∴224ADG FEB S S ==. 【点睛】本题考查了相似三角形的判定与性质,求证△ADG ∽△FEB 是解题的关键.33.(1)见解析;(2)见解析;(3【解析】【分析】(1)易求DF 长度即可判断;(2)通过30°角所对的直角边等于斜边一半证得AE=2EF ,EF=2CE 即可得;(3)先证明△OFG 为等边三角形,△OPG 为等边三角形,即可确定扇形圆心角∠POG 和∠GOF 的大小均为60°,所以两扇形面积相等, 通过割补法得出最后阴影面积只与矩形OPDH 和△OGF 有关,根据面积公式求出两图形面积即可.【详解】(1)∵AF=AB=6,AD=BC=∴CF=DF=3,∴F是CD的中点(2)∵AF=6, DF=3,∴∠DAF=30°,∴∠EAF=30◦ ,∴AE=2EF;∴∠EFC=30◦ ,EF=2CE,∴AE=4CE(3)如图,连接OP,OG,作OH⊥FG,∵∠AFD=60°,OF=OG,∴△OFG为等边三角形,同理△OPG为等边三角形,∴∠POG=∠FOG=60°,OH=33 OG ,∴S扇形OPG=S扇形OGF,∴S阴影=(S矩形OPDH-S扇形OPG-S△OGH)+(S扇形OGF-S△OFG)=S矩形OPDH-32S△OFG=313 2323222,即图中阴影部分的面积3 .【点睛】本题考查了正方形的性质,等边三角形的性质及解直角三角形,涉及知识点较多,综合性较强,根据条件,结合图形找准对应知识点是解答此题的关键.34.(1)见解析;(2)8 833π【解析】【分析】(1)连接OC,由圆周角定理得出∠ACB=90°,即∠ACO+∠BCO=90°,由等腰三角形的性质得出∠A=∠D=∠BCD,∠ACO=∠A,得出∠ACO=∠BCD,证出∠DCO=90°,则CD⊥OC,即可得出结论;(2)证明OB=OC=BC,得出∠BOC=60°,∠D=30°,由直角三角形的性质得出CD=3OC=43,图中阴影部分的面积=△OCD的面积-扇形OBC的面积,代入数据计算即可.【详解】证明:连接OC,如图所示:∵AB是⊙O的直径,∴∠ACB=90°,即∠ACO+∠BCO=90°,∵CA=CD,BC=BD,∴∠A=∠D=∠BCD,又∵OA=OC,∴∠ACO=∠A,∴∠ACO=∠BCD,∴∠BCD+∠BCO=∠ACO+∠BCO=90°,即∠DCO=90°,∴CD⊥OC,∵OC是⊙O的半径,∴CD与⊙O相切;(2)解:∵AB=8,∴OC=OB=4,由(1)得:∠A=∠D=∠BCD,∴∠OBC=∠BCD+∠D=2∠D,∵∠BOC=2∠A,∴∠BOC=∠OBC,∴OC=BC,∵OB=OC,∴OB=OC=BC,∴∠BOC=60°,∵∠OCD=90°,∴∠D=90°-60°=30°,∴33,∴图中阴影部分的面积=△OCD的面积-扇形OBC的面积=1232604360π383π.【点睛】本题考查了切线的判定、圆周角定理、等腰三角形的判定与性质、等边三角形的判定与性质、含30°角的直角三角形的性质、扇形面积公式、三角形面积公式等知识;熟练掌握切线的判定和圆周角定理是解题的关键.35.(1)b=2或b=10-;(2)x 1=x 2=2;【解析】【分析】(1)根据根的判别式即可求出答案.(2)由(1)可知b=2,根据一元二次方程的解法即可求出答案.【详解】解:(1)由题意可知:△=(b+2)2-4(6-b )=0,∴28200b b +-=解得:b=2或b=10-.(2)当b=2时,此时x 2-4x+4=0,∴2(2)0x -=,∴x 1=x 2=2;【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型. 四、压轴题36.(1)12;(2);(3)【解析】【分析】(1)如图1中,过点B 作BD CA ⊥,交CA 延长线于点D ,通过构造直角三角形,求出BD 利用三角形面积公式求解即可.(2)如图示,作点D 关于AB 的对称点Q ,交AB 于点H ,连接CQ ,交AB 于点P ,连接PD 、OD 、OC ,过点Q 作QM CO ⊥,交CO 延长线于点M ,确定点P 的位置,利用勾股定理与矩形的性质求出CQ 的长度即为答案.(3)解图3所示,在AB 上这一点作点P 关于OA 的对称点S ,作点P 关于OB 的对称点N ,连接SN ,交OA 于点E ,交OB 于点F ,连接OS ON OP EP FP 、、、、,通过轴对称性质的转化,最终确定最小值转化为SN 的长.【详解】(1)如解图1所示,过点B 作BD CA ⊥,交CA 延长线于点D ,135BAC ∠=,180********BAD BAC ∴∠=-∠=-=,BD CA ⊥,交CA 延长线于点D ,BAD ∴为等腰直角三角形,且90BDA ∠=,。
广东省茂名市九年级上学期期末数学试卷
25. (5分) 如图,平行四边形ABCO在平面直角坐标系中,点A的坐标为(﹣2,0),点B的坐标为(0,4),抛物线y=﹣x2+mx+n经过点A和C.
B . 4 - =1
C . × =6
D . ÷ =9
3. (2分) (2019九上·孝南月考) 如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C,A,B1在同一条直线上,那么旋转角等于( )
A . 35°
B . 50°
C . 125°
D . 90°
A . (2,2)
B . (1,2)
C . ( , 2 )
D . (2,1)
10. (2分) 如图,△ABC中,∠B=90°,BC=2AB,则cosA=( )
A .
B .
C .
D .
11. (2分) 如图,是意大利著名的比萨斜塔,塔身的中心线与垂直中心线的夹角A约为5゜28′,塔身AB的长为54.5m,则塔顶中心偏离垂直中心线的距离BC是( )
13. (2分) (2017·曲靖模拟) 下面空心圆柱形物体的左视图是( )
A .
B .
C .
D .
14. (2分) 已知:如图,在△ABC中,∠AED=∠B,则下列等式成立的是( )
A .
B .
C .
D .
15. (2分) (2016九上·滁州期中) 如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长是( )
广东省茂名市九年级上学期数学期末考试试卷
广东省茂名市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)有两个一元二次方程M:ax2+bx+c=0;N:cx2+bx+a=0,其中a•c≠0,a≠c.下列四个结论中,错误的是()A . 如果方程M有两个相等的实数根,那么方程N也有两个相等的实数根B . 如果方程M的两根符号相同,那么方程N的两根符号也相同C . 如果5是方程M的一个根,那么是方程N的一个根D . 如果方程M和方程N有一个相同的根,那么这个根必是x=12. (2分)(2017·双桥模拟) 下列图形中,是轴对称图形,但不是中心对称图形的是()A .B .C .D .3. (2分)如图,AB,CD分别是⊙O的弦和直径,AB⊥CD于点E,若CD=10,AB=8,则sin∠ACD的值为()A . 30°B .C .D . 24. (2分)方程mx2-3x=x2-mx+2是关于x的一元二次方程,则m的取值范围为()A . m≠0B . m≠1C . m≠-1D . m≠±15. (2分)如图,以点D为位似中心,作△ABC的一个位似三角形A1B1C1 , A,B,C的对应点分别为A1 ,B1 , C1 , DA1与DA的比值为k,若两个三角形的顶点及点D均在如图所示的格点上,则k的值和点C1的坐标分别为()A . 2,(2,8)B . 4,(2,8)C . 2,(2,4)D . 2,(4,4)6. (2分)某工厂一种产品的年产量是20件,如果每一年都比上一年的产品增加x倍,两年后产品年产量y 与x的函数关系是()A . y=20(1﹣x)2B . y=20+2xC . y=20(1+x)2D . y=20+20x2+20x7. (2分)如图,将一个可以自由旋转的转盘等分成甲、乙、丙、丁四个扇形区域,若指针固定不变,转动这个转盘一次(如果指针指在等分线上,那么重新转动,直至指针指在某个扇形区域内为止),则指针指在甲区域内的概率是()A . 1B .C .D .8. (2分)(2014·贵港) 如图,AB是⊙O的直径, = = ,∠COD=34°,则∠AEO的度数是()A . 51°B . 56°C . 68°D . 78°9. (2分)△ABC在平面直角坐标系中的位置如图所示,其中A(1,2),B(1,1),C(3,1),将△ABC绕原点O顺时针旋转90°后得到△A′B′C′,则点A旋转到点A'所经过的路线长为()A . πB . πC . πD . π10. (2分)已知二次函数y=ax2+bx+c的图象如图示,有下列结论:①a+b+c<0;②a-b+c>0;③abc>0;④b=2a;⑤b2-4ac>0.其中正确的结论有()A . 4个B . 3个C . 2个D . 1个二、填空题 (共6题;共6分)11. (1分)若代数式3x2+1的值等于28,则x的值为________.12. (1分)(2017·岳池模拟) 若点(a,1)与(﹣2,b)关于原点对称,则ab=________.13. (1分) (2017九上·江津期末) 方程x2-9x+18=0的两个根分别是一个等腰三角形的底和腰的长,则这个等腰三角形的周长为________.14. (1分) (2017七上·德惠期末) 如图,矩形ABCD中,AB=5,BC=7,则图中五个小矩形的周长之和为________.15. (1分)(2019·洞头模拟) 如图,在矩形ABCD中,AB=4,BC=5,点E是边CD的中点,将△ADE沿AE 折叠后得到△AFE.延长AF交边BC于点G,则CG为________.16. (1分) (2019八上·深圳期末) 如图,△ABC是边长为1的等边三角形,过点C的直线m平行AB,D、E 分别是线段AB、直线m上的点,先按如图方式进行折叠,点A、C分别落在A′、C′处,且A′C′经过点B,DE 为折痕,当C′E⊥m时,的值为________.三、解答题 (共9题;共100分)17. (10分) (2017八下·江东月考) 解方程:(1)(x﹣1)2=9(2)x2﹣5=4x.18. (15分) (2013八下·茂名竞赛) 如图,图中的小方格都是边长为1的正方形,的顶点坐标分别为,,.(1)请在图中画出绕点顺时针旋转后的图形;(2)请直接写出以为顶点的平行四边形的第四个顶点的坐标.19. (5分)(1)解方程:x(x﹣1)﹣(x﹣1)=0.(2)已知抛物线y=﹣2x2+8x﹣6,请用配方法把它化成y=a(x﹣h)2+k的形式,并指出此抛物线的顶点坐标和对称轴.20. (10分) (2019九上·西城期中) 在平面内,给定不在同一直线上的点A,B,C,如图所示.点O到点A,B,C的距离均等于a(a为常数),到点O的距离等于a的所有点组成图形G,∠ABC的平分线交图形G于点D,连接AD,CD.(1)求证:AD=CD.(2)过点D作DE⊥BA,垂足为E,作DF⊥BC,垂足为F,延长DF交图形G于点M,连接CM.若AD=CM,判断直线DE与图形G的位置关系,并说明理由.21. (15分)(2013·贺州) 已知:⊙O的直径为3,线段AC=4,直线AC和PM分别与⊙O相切于点A,M.(1)求证:点P是线段AC的中点;(2)求sin∠PMC的值.22. (10分)(2017·琼山模拟) 在平面直角坐标系中,O是坐标原点,▱ABCD的顶点A的坐标为(﹣2,0),点D的坐标为(0,2 ),点B在x轴的正半轴上,点E为线段AD的中点.(1)如图1,求∠DAO的大小及线段DE的长;(2)过点E的直线l与x轴交于点F,与射线DC交于点G.连接OE,△OEF′是△OEF关于直线OE对称的图形,记直线EF′与射线DC的交点为H,△EHC的面积为3 .①如图2,当点G在点H的左侧时,求GH,DG的长;②当点G在点H的右侧时,求点F的坐标(直接写出结果即可).23. (10分)(2017·娄底) 如图,在Rt△ABC中,∠ACB=90°,以BC为直径的⊙O交AB于点D,E是AC的中点,OE交CD于点F.(1)若∠BCD=36°,BC=10,求BD的长;(2)判断直线DE与⊙O的位置关系,并说明理由;(3)求证:2CE2=AB•EF.24. (10分) (2019九上·番禺期末) 如图,在△ABC中,∠ACB=90°,以点B为圆心,BC长为半径画弧,交边AB与点D ,以A为圆心,AD长为半径画弧,交边AC于点E ,连接CD .(1)若∠A=28°,求∠ACD的度数;(2)设BC=a,AC=b.①线段AD的长是方程的一个根吗?为什么?②若AD=EC,求的值.25. (15分)(2017·许昌模拟) 如图,以x=1为对称轴的抛物线y=ax2+bx+c的图象与x轴交于点A,点B (﹣1,0),与y轴交于点C(0,4),作直线AC.(1)求抛物线解析式;(2)点P在抛物线的对称轴上,且到直线AC和x轴的距离相等,设点P的纵坐标为m,求m的值;(3)点M在y轴上且位于点C上方,点N在直线AC上,点Q为第一象限内抛物线上一点,若以点C、M、N、Q为顶点的四边形是菱形,请直接写出点Q的坐标.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9、答案:略10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14、答案:略15-1、16-1、三、解答题 (共9题;共100分)17-1、17-2、18-1、18-2、19-1、20-1、20-2、21-1、21-2、22-1、23-1、23-2、23-3、24-1、24-2、25-1、25-2、25-3、。
广东省茂名市九年级上学期期末考试数学试题
广东省茂名市九年级上学期期末考试数学试题姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2020·德州模拟) 在Rt△ABC中,∠C=90°,cosA=,则tanA等于()A . 2B .C .D . 242. (2分)已知3x=4y(xy≠0),则下列比例式成立的是()A .B .C .D .3. (2分) (2019九上·海淀期中) 抛物线的顶点坐标为()A . (-1,2)B . (1,2)C . (1,-2)D . (2,1)4. (2分) (2017八下·诸城期中) 如图,在△MBN中,BM=6,点A、C、D分别在MB、NB、MN上,四边形ABCD 为平行四边形,且∠NDC=∠MDA,则▱ABCD的周长是()A . 24B . 18C . 16D . 125. (2分)如图,点O是∠ABC的外心,∠A=50°,则∠BOC的度数是()A . 115°B . 130°C . 100°D . 120°6. (2分)△ABC与△DEF相似,且相似比是,则△DEF与△ABC的相似比是()A .B .C .D .7. (2分) (2017九上·南平期末) 如图,四边形ABCD内接于⊙O,若∠BCD=110°,则∠BOD的度数为()A . 35°B . 70°C . 110°D . 140°8. (2分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①ac>0;②方程ax2+bx+c=0的两根之和大于0;③y随x的增大而增大;④a-b+c<0,其中正确的个数()A . 2个B . 3个C . 4个D . 5个9. (2分)(2017·天津) 已知抛物线y=x2﹣4x+3与x轴相交于点A,B(点A在点B左侧),顶点为M.平移该抛物线,使点M平移后的对应点M'落在x轴上,点B平移后的对应点B'落在y轴上,则平移后的抛物线解析式为()A . y=x2+2x+1B . y=x2+2x﹣1C . y=x2﹣2x+1D . y=x2﹣2x﹣110. (2分)已知二次函数的图象如图,则下列结论中正确的是()A .B . 当时,随的增大而增大C .D . 是方程的一个根二、填空题 (共6题;共6分)11. (1分) (2020九下·哈尔滨月考) 小明的卷子夹里放了大小相同的试卷共12页,其中语文6页、数学4页、英语2页,他随机地从卷子夹中抽出1页,抽出的试卷恰好是数学试卷的概率为________.12. (1分)在比例尺为1:10000000的地图上,相距7.5cm的两地A、B的实际距离为________千米.13. (1分) (2018九上·抚顺期末) 在一个圆中,如果60°的圆心角所对弧长为6πcm,那么这个圆所对的半径为________cm.14. (1分)如图,△ABC为⊙O的内接正三角形,P为弧BC上一点,PA交BC于D,已知PB=3,PC=6,则PD=________.15. (1分)如图,小丽想测量学校旗杆的高度,她在地面A点安置侧倾器,测得旗杆顶端C的仰角为30°,侧倾器到旗杆底部的距离AD为12米,侧倾器的高度AB为1.6米,那么旗杆的高度CD为________ 米(保留根号)16. (1分)(2019·衢州) 如图,在平面直角坐标系中,O为坐标原点, ABCD的边AB在x轴上,顶点D在y轴的正半轴上,点C在第一象限,将△AOD沿y轴翻折,使点A落在x轴上的点E处,点B恰好为OE的中点,DE与BC交于点F。
【初三数学】茂名市九年级数学上期末考试单元测试题(含答案解析)
九年级上册数学期末考试题及答案一、选择题(每小题2分,共20分)1.下列物体的左视图是圆的是()A.足球B.水杯C.圣诞帽D.鱼缸2.用配方法解方程:x2﹣4x+2=0,下列配方正确的是()A.(x﹣2)2=2B.(x+2)2=2C.(x﹣2)2=﹣2D.(x﹣2)2=6 3.关于x的一元二次方程kx2+3x﹣1=0有实数根,则k的取值范围是()A.k≤﹣B.k≥﹣且k≠0C.k≥﹣D.k>﹣且k≠04.下列命题正确的是()A.一组对边相等,另一组对边平行的四边形是平行四边形B.对角线相互垂直的四边形是菱形C.对角线相等的四边形是矩形D.对角线相互垂直平分且相等的四边形是正方形5.如图所示,在正方形ABCD中,E是AC上的一点,且AB=AE,则∠EBC的度数是()A.45度B.30度C.22.5度D.20度6.在同一天的四个不同时刻,某学校旗杆的影子如图所示,按时间先后顺序排列的是()A .①②③④B .②③④①C .③④①②D .④③①② 7.在同一直角坐标系中,函数y =﹣与y =ax +1(a ≠0)的图象可能是( ) A . B .C .D .8.如图,在平行四边形ABCD 中,E 为CD 上一点,连接AE 、BE 、BD ,且AE 、BD 交于点F ,S △DEF :S △ABF =4:25,则DE :EC =( )A .2:3B .2:5C .3:5D .3:29.如图,四边形ABCD 是轴对称图形,且直线AC 是否对称轴,AB ∥CD ,则下列结论:①AC ⊥BD ;②AD ∥BC ;③四边形ABCD 是菱形;④△ABD ≌△CDB .其中结论正确的序号是( )A .①②③B .①②③④C .②③④D .①③④10.如图,菱形ABCD 的边AD 与x 轴平行,A 、B 两点的横坐标分别为1和3,反比例函数y =的图象经过A 、B 两点,则菱形ABCD 的面积是( )A.4B.4C.2D.2二、填空题(每小题2分,共16分)11.一元二次方程x2﹣4x+1=0的两根是x1,x2,则x1•x2的值是.12.已知:==,且3a﹣2b+c=9,则2a+4b﹣3c=.13.如图,以点O为位似中心,将△ABC放大得到△DEF,若AD=OA,则△ABC与△DEF 的面积之比为.14.如图,为测量学校旗杆的高度,小东用长为3.2m的竹竿做测量工具.移动竹竿,使竹竿、旗杆顶端的影子恰好落在地面的同一点,此时,竹竿与这一点相距8m,与旗杆相距22m,则旗杆的高为m.15.相邻两边长的比值是黄金分割数的矩形,叫做黄金矩形,从外形看,它最具美感.现在想要制作一张“黄金矩形”的贺年卡,如果较长的一条边长等于20厘米,那么相邻一条边的边长等于厘米.16.如图,点A(3,n)在双曲线y=上,过点A作AC⊥x轴,垂足为C.线段OA的垂直平分线交OC于点M,则△AMC周长的值是.17.分解因式:xy2﹣4x=.18.如图,n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,…M n分别为边B1B2,B2B3,B3B4,…,B n B n+1的中点,△B1C1M1的面积为S1,△B2C2M2的面积为S2,…△B n∁n M n的面积为S n,则S n=.(用含n的式子表示)三、解答题(每小题5分,共10分)19.(5分)先化简,再求值:(1﹣x+)÷,其中x=tan45°+()﹣1.20.(5分)解方程:(2x﹣1)2=x(3x+2)﹣7.四、解答题(共8分)21.(8分)贵阳市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?五、解答题(共12分)22.(5分)一只箱子里共有3个球,其中2个白球,1个红球,它们除颜色外均相同.(1)从箱子中任意摸出一个球是白球的概率是多少?(2)从箱子中任意摸出一个球,不将它放回箱子,搅匀后再摸出一个球,求两次摸出球的都是白球的概率,并画出树状图.23.(7分)如图,BC是路边坡角为30°,长为10米的一道斜坡,在坡顶灯杆CD的顶端D处有一探射灯,射出的边缘光线DA和DB与水平路面AB所成的夹角∠DAN和∠DBN 分别是37°和60°(图中的点A、B、C、D、M、N均在同一平面内,CM∥AN).(1)求灯杆CD的高度;(2)求AB的长度(结果精确到0.1米).(参考数据:=1.73.sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)六、(共10分)24.(10分)如图,△ABC中,AB=AC,AD是△ABC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形.(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.25.(12分)如图,已知矩形OABC中,OA=2,AB=4,双曲线(k>0)与矩形两边AB、BC分别交于E、F.(1)若E是AB的中点,求F点的坐标;(2)若将△BEF沿直线EF对折,B点落在x轴上的D点,作EG⊥OC,垂足为G,证明△EGD∽△DCF,并求k的值.26.(12分)如图1,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,点P从A出发沿AC向C点以1厘米/秒的速度匀速移动;点Q从C出发沿CB向B点以2厘米/秒的速度匀速移动.点P、Q分别从起点同时出发,移动到某一位置时所需时间为t秒.(1)当t=2时,求线段PQ的长度;(2)当t为何值时,△PCQ的面积等于5cm2?(3)在P、Q运动过程中,在某一时刻,若将△PQC翻折,得到△EPQ,如图2,PE与AB能否垂直?若能,求出相应的t值;若不能,请说明理由.参考答案一、选择题1.下列物体的左视图是圆的是()A.足球B.水杯C.圣诞帽D.鱼缸【分析】左视图是从物体左面看,所得到的图形.解:A、球的左视图是圆形,故此选项符合题意;B、水杯的左视图是等腰梯形,故此选项不合题意;C、圆锥的左视图是等腰三角形,故此选项不合题意;D、长方体的左视图是矩形,故此选项不合题意;故选:A.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.2.用配方法解方程:x2﹣4x+2=0,下列配方正确的是()A.(x﹣2)2=2B.(x+2)2=2C.(x﹣2)2=﹣2D.(x﹣2)2=6【分析】在本题中,把常数项2移项后,应该在左右两边同时加上一次项系数﹣4的一半的平方.解:把方程x2﹣4x+2=0的常数项移到等号的右边,得到x2﹣4x=﹣2,方程两边同时加上一次项系数一半的平方,得到x2﹣4x+4=﹣2+4,配方得(x﹣2)2=2.故选:A.【点评】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.3.关于x的一元二次方程kx2+3x﹣1=0有实数根,则k的取值范围是()A.k≤﹣B.k≥﹣且k≠0C.k≥﹣D.k>﹣且k≠0【分析】由二次项系数非零结合根的判别式△≥0,即可得出关于k的一元一次不等式组,解之即可得出结论.解:∵关于x的一元二次方程kx2+3x﹣1=0有实数根,∴,解得:k≥﹣且k≠0.故选:B.【点评】本题考查了根的判别式以及一元二次方程的定义,根据二次项系数非零结合根的判别式△≥0,列出关于k的一元一次不等式组是解题的关键.4.下列命题正确的是()A.一组对边相等,另一组对边平行的四边形是平行四边形B.对角线相互垂直的四边形是菱形C.对角线相等的四边形是矩形D.对角线相互垂直平分且相等的四边形是正方形【分析】根据矩形、菱形、平行四边形的知识可判断出各选项,从而得出答案.解:A、一组对边相等,另一组对边平行的四边形是平行四边形也可能是等腰梯形,此选项错误;B、对角线相互垂直的四边形是菱形也可能是梯形,此选项错误;C、对角线相等的四边形是矩形也可能是等腰梯形,此选项错误;D、对角线相互垂直平分且相等的四边形是正方形,此选项正确;故选:D.【点评】本题主要考查了命题与定理的知识,解答本题的关键是熟练掌握平行四边形、菱形以及矩形的性质,此题难度不大.5.如图所示,在正方形ABCD中,E是AC上的一点,且AB=AE,则∠EBC的度数是()A.45度B.30度C.22.5度D.20度【分析】由AB=AE,在正方形中可知∠BAC=45°,进而求出∠ABE,又知∠ABE+∠ECB =90°,故能求出∠EBC.解:∵正方形ABCD中,∴∠BAC=45°,∵AB=AE,∴∠ABE=∠AEB=67.5°,∵∠ABE+∠ECB=90°,∴∠EBC=22.5°,故选:C.【点评】本题主要考查正方形的性质,等腰三角形的性质等知识点.6.(2分)在同一天的四个不同时刻,某学校旗杆的影子如图所示,按时间先后顺序排列的是()A.①②③④B.②③④①C.③④①②D.④③①②【分析】根据从早晨到傍晚物体影子的指向是:西﹣西北﹣北﹣东北﹣东,影长由长变短,再变长.解:西为②,西北为③,东北为④,东为①,∴将它们按时间先后顺序排列为②③④①.故选:B.【点评】此题考查了平行投影的特点和规律.在不同时刻,物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚物体影子的指向是:西﹣西北﹣北﹣东北﹣东,影长由长变短,再变长.7.在同一直角坐标系中,函数y =﹣与y =ax +1(a ≠0)的图象可能是( ) A . B .C .D .【分析】由于a ≠0,那么a >0或a <0.当a >0时,直线经过第一、二、三象限,双曲线经过第二、四象限,当a <0时,直线经过第一、二、四象限,双曲线经过第一、三象限,利用这些结论即可求解.解:∵a ≠0,∴a >0或a <0.当a >0时,直线经过第一、二、三象限,双曲线经过第二、四象限,当a <0时,直线经过第一、二、四象限,双曲线经过第一、三象限.A 、图中直线经过直线经过第一、二、四象限,双曲线经过第二、四象限,故A 选项错误;B 、图中直线经过第第一、二、三象限,双曲线经过第二、四象限,故B 选项正确;C 、图中直线经过第二、三、四象限,故C 选项错误;D 、图中直线经过第一、二、三象限,双曲线经过第一、三象限,故D 选项错误. 故选:B .【点评】此题考查一次函数,反比例函数中系数及常数项与图象位置之间关系.直线y =kx +b 、双曲线y =,当k >0时经过第一、三象限,当k <0时经过第二、四象限.8.如图,在平行四边形ABCD 中,E 为CD 上一点,连接AE 、BE 、BD ,且AE 、BD 交于点F ,S △DEF :S △ABF =4:25,则DE :EC =( )A .2:3B .2:5C .3:5D .3:2【分析】先根据平行四边形的性质及相似三角形的判定定理得出△DEF ∽△BAF ,再根据S △DEF :S △ABF =4:10:25即可得出其相似比,由相似三角形的性质即可求出的值,由AB =CD 即可得出结论.解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠EAB =∠DEF ,∠AFB =∠DFE ,∴△DEF ∽△BAF ,∵S △DEF :S △ABF =4:25,∴=,∵AB =CD ,∴DE :EC =2:3.故选:A .【点评】本题考查的是相似三角形的判定与性质及平行四边形的性质,熟知相似三角形边长的比等于相似比,面积的比等于相似比的平方是解答此题的关键.9.如图,四边形ABCD 是轴对称图形,且直线AC 是否对称轴,AB ∥CD ,则下列结论:①AC ⊥BD ;②AD ∥BC ;③四边形ABCD 是菱形;④△ABD ≌△CDB .其中结论正确的序号是( )A .①②③B .①②③④C .②③④D .①③④【分析】根据轴对称图形的性质,结合菱形的判定方法以及全等三角形的判定方法分析得出答案.解:因为l 是四边形ABCD 的对称轴,AB ∥CD ,则AD =AB ,∠1=∠2,∠1=∠4,则∠2=∠4,∴AD =DC ,同理可得:AB =AD =BC =DC ,所以四边形ABCD是菱形.根据菱形的性质,可以得出以下结论:所以①AC⊥BD,正确;②AD∥BC,正确;③四边形ABCD是菱形,正确;④在△ABD和△CDB中∵,∴△ABD≌△CDB(SSS),正确.故正确的结论是:①②③④.故选:B.【点评】此题考查了轴对称以及菱形的判断与菱形的性质,注意:对称轴垂直平分对应点的连线,对应角相等,对应边相等.10.如图,菱形ABCD的边AD与x轴平行,A、B两点的横坐标分别为1和3,反比例函数y=的图象经过A、B两点,则菱形ABCD的面积是()A.4B.4C.2D.2【分析】作AH⊥BC交CB的延长线于H,根据反比例函数解析式求出A的坐标、点B的坐标,求出AH、BH,根据勾股定理求出AB,根据菱形的面积公式计算即可.解:作AH⊥BC交CB的延长线于H,∵反比例函数y=的图象经过A、B两点,A、B两点的横坐标分别为1和3,∴A、B两点的纵坐标分别为3和1,即点A的坐标为(1,3),点B的坐标为(3,1),∴AH=3﹣1=2,BH=3﹣1=2,由勾股定理得,AB==2,∵四边形ABCD是菱形,∴BC=AB=2,∴菱形ABCD的面积=BC×AH=4,故选:A.【点评】本题考查的是反比例函数的系数k的几何意义、菱形的性质,根据反比例函数解析式求出A的坐标、点B的坐标是解题的关键.二、填空题(每小题2分,共16分)11.一元二次方程x2﹣4x+1=0的两根是x1,x2,则x1•x2的值是1.【分析】直接根据根与系数的关系求解即可.解:∵一元二次方程x2﹣4x+1=0的两根是x1,x2,∴x1•x2=1.故答案为:1.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=﹣,x1•x2=.12.已知:==,且3a﹣2b+c=9,则2a+4b﹣3c=14.【分析】根据题意列出三元一次方程组,求得a,b,c的值后,代入代数式求值.解:由于==,3a﹣2b+c=9,∴,解得:b=7,a=5,c=8,把a,b,c代入代数式得:2a+4b﹣3c=2×5+4×7﹣3×8=14,故本题答案为:14,另解:设:===x,则:a=5x,b=7x,c=8x3a﹣2b+c=9可以转化为:15x﹣14x+8x=9,解得x=1那么2a+4b﹣3c=10x+28x﹣24x=14x=14.故答案为:14.【点评】本题利用了三元一次方程组的解法求解.13.如图,以点O为位似中心,将△ABC放大得到△DEF,若AD=OA,则△ABC与△DEF 的面积之比为1:4.【分析】由AD=OA,易得△ABC与△DEF的位似比等于1:2,继而求得△ABC与△DEF 的面积之比.解:∵以点O为位似中心,将△ABC放大得到△DEF,AD=OA,∴AB:DE=OA:OD=1:2,∴△ABC与△DEF的面积之比为:1:4.故答案为:1:4.【点评】此题考查了位似图形的性质.注意相似三角形的面积比等于相似比的平方.14.如图,为测量学校旗杆的高度,小东用长为3.2m的竹竿做测量工具.移动竹竿,使竹竿、旗杆顶端的影子恰好落在地面的同一点,此时,竹竿与这一点相距8m,与旗杆相距22m,则旗杆的高为12m.【分析】易证△AEB∽△ADC,利用相似三角形的对应边成比例,列出方程求解即可.解:因为BE∥CD,所以△AEB∽△ADC,于是=,即=,解得:CD=12m.旗杆的高为12m.【点评】本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程即可求出旗杆的高度.15.相邻两边长的比值是黄金分割数的矩形,叫做黄金矩形,从外形看,它最具美感.现在想要制作一张“黄金矩形”的贺年卡,如果较长的一条边长等于20厘米,那么相邻一条边的边长等于(10﹣10)厘米.【分析】由黄金矩形的定义,可知黄金矩形的宽与长之比为,设所求边长为x,代入已知数据即可得出答案.解:设所求边长为x,由题意,得=,解得x=(10﹣10)cm.故答案为(10﹣10).【点评】本题主要考查了黄金分割点的概念,需要熟记黄金比的值,难度适中.16.如图,点A(3,n)在双曲线y=上,过点A作AC⊥x轴,垂足为C.线段OA的垂直平分线交OC于点M,则△AMC周长的值是4.【分析】先求出点A的坐标,根据点的坐标的定义得到OC=3,AC=1,再根据线段垂直平分线的性质可知AM=OM,由此推出△AMC的周长=OC+AC.解:∵点A(3,n)在双曲线y=上,∴n==1,∴A(3,1),∴OC=3,AC=1.∵OA的垂直平分线交OC于M,∴AM=OM,∴△AMC的周长=AM+MC+AC=OM+MC+AC=OC+AC=3+1=4.故答案为:4.【点评】本题主要考查了反比例函数的图象性质和线段中垂线的性质,将求△AMC的周长转换成求OC+AC是解题的关键.17.分解因式:xy2﹣4x=x(y+2)(y﹣2).【分析】原式提取x,再利用平方差公式分解即可.解:原式=x(y2﹣4)=x(y+2)(y﹣2),故答案为:x(y+2)(y﹣2)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.18.如图,n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,…M n分别为边B1B2,B2B3,B3B4,…,B n B n+1的中点,△B1C1M1的面积为S1,△B2C2M2的面积为S2,…△B n∁n M n的面积为S n,则S n=.(用含n的式子表示)【分析】利用相似三角形的性质求出B n∁n,再利用三角形的面积公式计算即可;解:∵B n∁n∥B1C1,∴△M n B n∁n∽△M m B1C1,∴=,∴=,∴B n∁n=,∴S n=××=,故答案为.【点评】本题考查相似三角形的判定和性质、正方形的性质、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.三、解答题(每小题5分,共10分)19.(5分)先化简,再求值:(1﹣x+)÷,其中x=tan45°+()﹣1.【分析】先根据分式混合运算顺序和运算法则化简原式,再根据三角函数值、负整数指数幂得出x的值,最后代入计算可得.解:原式=(+)÷=•=,当x=tan45°+()﹣1=1+2=3时,原式==﹣.【点评】本题考查分式的化简求值,解答本题的关键是明确分式的化简求值的方法.20.(5分)解方程:(2x﹣1)2=x(3x+2)﹣7.【分析】根据配方法的步骤先把方程转化成标准形式,再进行配方即可求出答案.解:(2x﹣1)2=x(3x+2)﹣7,4x2﹣4x+1=3x2+2x﹣7,x2﹣6x=﹣8,(x﹣3)2=1,x﹣3=±1,x1=2,x2=4.【点评】此题考查了配方法解一元二次方程,掌握配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方是解题的关键,是一道基础题.四、解答题(共8分)21.(8分)贵阳市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?【分析】(1)设求平均每次下调的百分率为x,由降低率问题的数量关系建立方程求出其解即可;(2)分别求出两种优惠方法的费用,比较大小就可以得出结论.(1)解:设平均每次下调的百分率为x,由题意,得6000(1﹣x)2=4860,解得:x1=0.1,x2=1.9(舍去)答:平均每次下调的百分率为10%;(2)由题意,得方案①优惠:4860×100×(1﹣0.98)=9720元,方案②优惠:80×100=8000元.∵9720>8000∴方案①更优惠.【点评】本题考查了列一元二次方程解实际问题的运用,一元二次方程的解法的运用,降低率问题的数量关系的运用,解答时列一元二次方程解实际问题是难点.五、解答题(共12分)22.(5分)一只箱子里共有3个球,其中2个白球,1个红球,它们除颜色外均相同.(1)从箱子中任意摸出一个球是白球的概率是多少?(2)从箱子中任意摸出一个球,不将它放回箱子,搅匀后再摸出一个球,求两次摸出球的都是白球的概率,并画出树状图.【分析】(1)从箱子中任意摸出一个球是白球的概率即是白球所占的比值;(2)此题需要两步完成,所以采用树状图法或者采用列表法都比较简单;解题时要注意是放回实验还是不放回实验,此题属于不放回实验,此题要求画树状图,要按要求解答.解:(1)从箱子中任意摸出一个球是白球的概率是;(2)记两个白球分别为白1与白2,画树状图如右所示:从树状图可看出:事件发生的所有可能的结果总数为6,两次摸出球的都是白球的结果总数为2,因此其概率.【点评】本题考查了列表法与树状图法,树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.23.(7分)如图,BC是路边坡角为30°,长为10米的一道斜坡,在坡顶灯杆CD的顶端D处有一探射灯,射出的边缘光线DA和DB与水平路面AB所成的夹角∠DAN和∠DBN 分别是37°和60°(图中的点A、B、C、D、M、N均在同一平面内,CM∥AN).(1)求灯杆CD的高度;(2)求AB的长度(结果精确到0.1米).(参考数据:=1.73.sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【分析】(1)延长DC交AN于H.只要证明BC=CD即可;(2)在Rt△BCH中,求出BH、CH,在Rt△ADH中求出AH即可解决问题;解:(1)延长DC交AN于H.∵∠DBH=60°,∠DHB=90°,∴∠BDH=30°,∵∠CBH=30°,∴∠CBD=∠BDC=30°,∴BC=CD=10(米).(2)在Rt△BCH中,CH=BC=5,BH=5≈8.65,∴DH=15,在Rt△ADH中,AH===20,∴AB=AH﹣BH=20﹣8.65≈11.4(米).【点评】本题考查解直角三角形的应用﹣坡度坡角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.六、(共10分)24.(10分)如图,△ABC中,AB=AC,AD是△ABC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形.(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.【分析】(1)利用平行四边形的判定首先得出四边形AEBD是平行四边形,进而由等腰三角形的性质得出∠ADB=90°,即可得出答案;(2)利用等腰直角三角形的性质得出AD=BD=CD,进而利用正方形的判定得出即可.(1)证明:∵点O为AB的中点,∴OA=OB∵OE=OD,∴四边形AEBD是平行四边形,∵AB=AC,AD是∠BAC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴平行四边形AEBD是矩形;(2)当∠BAC=90°时,矩形AEBD是正方形.理由:∵∠BAC=90°,AB=AC,AD是∠BAC的角平分线,∴∠ABD=∠BAD=45°,∴AD=BD,∵由(1)得四边形AEBD是矩形,∴矩形AEBD是正方形.【点评】此题主要考查了正方形的判定以及矩形的判定和等腰直角三角形的性质等知识,熟练掌握正方形和矩形的判定是解题关键.25.(12分)如图,已知矩形OABC中,OA=2,AB=4,双曲线(k>0)与矩形两边AB、BC分别交于E、F.(1)若E是AB的中点,求F点的坐标;(2)若将△BEF沿直线EF对折,B点落在x轴上的D点,作EG⊥OC,垂足为G,证明△EGD∽△DCF,并求k的值.【分析】(1)根据点E是AB中点,可求出点E的坐标,将点E的坐标代入反比例函数解析式可求出k的值,再由点F的横坐标为4,可求出点F的纵坐标,继而得出答案;(2)证明∠GED=∠CDF,然后利用两角法可判断△EGD∽△DCF,设点E坐标为(,2),点F坐标为(4,),即可得CF=,BF=DF=2﹣,在Rt△CDF中表示出CD,利用对应边成比例可求出k的值.解:(1)∵点E是AB的中点,OA=2,AB=4,∴点E的坐标为(2,2),将点E的坐标代入y=,可得k=4,即反比例函数解析式为:y=,∵点F的横坐标为4,∴点F的纵坐标==1,故点F的坐标为(4,1);(2)由折叠的性质可得:BE=DE,BF=DF,∠B=∠EDF=90°,∵∠CDF+∠EDG=90°,∠GED+∠EDG=90°,∴∠CDF=∠GED,又∵∠EGD=∠DCF=90°,∴△EGD∽△DCF,结合图形可设点E坐标为(,2),点F坐标为(4,),则CF=,BF=DF=2﹣,ED=BE=AB﹣AE=4﹣,在Rt△CDF中,CD===,∵=,即=,∴=1,解得:k=3.【点评】本题考查了反比例函数的综合,解答本题的关键是利用点E的纵坐标,点F的横坐标,用含k的式子表示出其他各点的坐标,注意掌握相似三角形的对应边成比例的性质,难度较大.26.(12分)如图1,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,点P从A出发沿AC向C点以1厘米/秒的速度匀速移动;点Q从C出发沿CB向B点以2厘米/秒的速度匀速移动.点P、Q分别从起点同时出发,移动到某一位置时所需时间为t秒.(1)当t=2时,求线段PQ的长度;(2)当t为何值时,△PCQ的面积等于5cm2?(3)在P、Q运动过程中,在某一时刻,若将△PQC翻折,得到△EPQ,如图2,PE与AB能否垂直?若能,求出相应的t值;若不能,请说明理由.【分析】(1)当t=2时,可求出CP,CQ的长,根据勾股定理即可求出线段即斜边PQ的长;(2)由三角形面积公式可建立关于t的方程,解方程求出t的值即可;(3)延长QE交AC于点D,若PE⊥AB,则QD∥AB,所以可得△CQD∽△CBA,由相似三角形的性质:对应边的比值相等可求出DE=0.5t,易证△ABC∽△DPE,再由相似三角形的性质可得,把已知数据代入即可求出t的值.解:(1)当t=2时,∵点P从A出发沿AC向C点以1厘米/秒的速度匀速移动;点Q从C出发沿CB向B点以2厘米/秒的速度匀速移动,∴AP=2厘米,QC=4厘米,∴PC=4,在Rt△PQC中PQ==厘米;(2)∵点P从A出发沿AC向C点以1厘米/秒的速度匀速移动;点Q从C出发沿CB向B 点以2厘米/秒的速度匀速移动,∴PC=AC﹣AP=6﹣t,CQ=2t,∴S△CPQ=CP•CQ=,∴t2﹣6t+5=0解得t1=1,t2=5(不合题意,舍去)∴当t=1秒时,△PCQ的面积等于5cm2;(3)能垂直,理由如下:延长QE交AC于点D,∵将△PQC翻折,得到△EPQ,∴△QCP≌△QEP,∴∠C=∠QEP=90°,若PE⊥AB,则QD∥AB,∴△CQD∽△CBA,∴,∴,∴QD=2.5t,∵QC=QE=2t∴DE=0.5t易证△ABC∽△DPE,∴∴,解得:t=(0≤t≤4),综上可知:当t=时,PE⊥AB.【点评】此题考查了勾股定理、三角形的面积公式、相似三角形的判定性质与判定等知识以及折叠的性质,综合性很强,比较难,内容比较多,也是一个动点问题,对于学生的能力要求比较高,是一道不错的中考题.九年级上册数学期末考试题及答案一、选择题(每小题2分,共20分)1.下列物体的左视图是圆的是()A.足球B.水杯C.圣诞帽D.鱼缸2.用配方法解方程:x2﹣4x+2=0,下列配方正确的是()A.(x﹣2)2=2B.(x+2)2=2C.(x﹣2)2=﹣2D.(x﹣2)2=6 3.关于x的一元二次方程kx2+3x﹣1=0有实数根,则k的取值范围是()A.k≤﹣B.k≥﹣且k≠0C .k ≥﹣D .k >﹣ 且k ≠04.下列命题正确的是( ) A .一组对边相等,另一组对边平行的四边形是平行四边形B .对角线相互垂直的四边形是菱形C .对角线相等的四边形是矩形D .对角线相互垂直平分且相等的四边形是正方形5.如图所示,在正方形ABCD 中,E 是AC 上的一点,且AB =AE ,则∠EBC 的度数是( )A .45度B .30度C .22.5度D .20度6.在同一天的四个不同时刻,某学校旗杆的影子如图所示,按时间先后顺序排列的是( )A .①②③④B .②③④①C .③④①②D .④③①② 7.在同一直角坐标系中,函数y =﹣与y =ax +1(a ≠0)的图象可能是( ) A . B .C .D .8.如图,在平行四边形ABCD 中,E 为CD 上一点,连接AE 、BE 、BD ,且AE 、BD 交于点F ,S △DEF :S △ABF =4:25,则DE :EC =( )A.2:3B.2:5C.3:5D.3:29.如图,四边形ABCD是轴对称图形,且直线AC是否对称轴,AB∥CD,则下列结论:①AC⊥BD;②AD∥BC;③四边形ABCD是菱形;④△ABD≌△CDB.其中结论正确的序号是()A.①②③B.①②③④C.②③④D.①③④10.如图,菱形ABCD的边AD与x轴平行,A、B两点的横坐标分别为1和3,反比例函数y=的图象经过A、B两点,则菱形ABCD的面积是()A.4B.4C.2D.2二、填空题(每小题2分,共16分)11.一元二次方程x2﹣4x+1=0的两根是x1,x2,则x1•x2的值是.12.已知:==,且3a﹣2b+c=9,则2a+4b﹣3c=.13.如图,以点O为位似中心,将△ABC放大得到△DEF,若AD=OA,则△ABC与△DEF 的面积之比为.14.如图,为测量学校旗杆的高度,小东用长为3.2m的竹竿做测量工具.移动竹竿,使竹竿、旗杆顶端的影子恰好落在地面的同一点,此时,竹竿与这一点相距8m,与旗杆相距22m,则旗杆的高为m.15.相邻两边长的比值是黄金分割数的矩形,叫做黄金矩形,从外形看,它最具美感.现在想要制作一张“黄金矩形”的贺年卡,如果较长的一条边长等于20厘米,那么相邻一条边的边长等于厘米.16.如图,点A(3,n)在双曲线y=上,过点A作AC⊥x轴,垂足为C.线段OA的垂直平分线交OC于点M,则△AMC周长的值是.17.分解因式:xy2﹣4x=.18.如图,n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,…M n分别为边B1B2,B2B3,B3B4,…,B n B n+1的中点,△B1C1M1的面积为S1,△B2C2M2的面积为S2,…△B n∁n M n的面积为S n,则S n=.(用含n的式子表示)三、解答题(每小题5分,共10分)。
广东省茂名市九年级上学期数学期末综合检测卷
广东省茂名市九年级上学期数学期末综合检测卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共30分)1. (3分) (2019九上·瑞安期末) 已知二次函数y=ax2+bx+c的图象与x轴交于A,B两点,对称轴是直线x=﹣1,若点A的坐标为(1,0),则点B的坐标是()A . (﹣2,0)B . (0,﹣2)C . (0,﹣3)D . (﹣3,0)2. (3分) (2019九上·萧山月考) 已知二次函数y=(x-3)2图像上的两个不同的点A(3,a)和B(x,b),则a和b的大小关系()A . a≤bB . a>bC . a<bD . a≥b3. (3分) (2019九下·建湖期中) 如图,点A,B,C在半径为9的⊙O上,OA∥BC,∠OAB=70°,则弧AC 的长为()A .B .C .D .4. (3分) (2015九上·黄冈期中) 在同一坐标系中,一次函数y=ax+2与二次函数y=x2+a的图象可能是()A .B .C .D .5. (3分)(2017·福田模拟) 如图,正六边形ABCDEF内接于⊙O,若⊙O的半径为6,则阴影部分的面积为()A . 12πB . 6πC . 9πD . 18π6. (3分)下列命题中,正确命题的个数为()(1)三点确定一个圆(2)平分弦的直径垂直于这条弦(3)等弧对等弦(4)直径是圆的对称轴A . 1B . 2C . 3D . 47. (3分) (2017九下·莒县开学考) 如图,在等边△ABC内有一点D,AD=5,BD=6,CD=4,将△ABD绕A点逆时针旋转,使AB与AC重合,点D旋转至点E,则∠CDE的正切值为()A .B . 2C . 3D . 48. (3分) (2019八上·天台月考) 如图,已知△ABC中,∠ACB=90°,∠BAC=30°,BC=2,AB=4,AC= ,点D为直线AB上一动点,将线段CD绕点C顺时针旋转60°得到线段CE,连接ED、BE,点F在直线AF上且DF=BC,则BE最小值为()A . 1B . 2C . 3D .9. (3分) (2018九上·深圳期末) 如图,抛物线y=ax +bx+c经过点(-1,0),对称轴l如图所示.则下列结论:①abc >0;②a-b+c=0;③2a+c<0;④a+b<0,其中所有正确的结论是()A . ①③B . ②③C . ②④D . ②③④10. (3分)如图,菱形OABC的顶点O在坐标系原点,顶点A在x轴上,∠B=120°,OA=2,将菱形OABC绕原点O顺时针旋转105°至OA′B′C′的位置,则点B′的坐标为()A . (, -)B . (-,)C . (-,)D . (, -)二、填空题 (共6题;共24分)11. (4分)(2018·扬州模拟) 口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是0.2,摸出白球的概率是0.5,那么摸出黑球的概率是________.12. (4分)(2015·舟山) 把二次函数y=x2﹣12x化为形如y=a(x﹣h)2+k的形式________.13. (4分) (2018九上·重庆期中) 如图,正方形ABCD中点E为AD的中点,连接CE,将△CDE绕点C逆时针旋转得△CGF,点G在CE上,作DM⊥CE于点M,连接BM交CF于N,已知四边形GFNM面积为27,则正方形ABCD 的边长为________.14. (4分)(2017·南关模拟) 如图,抛物线y=ax2+bx+c(a<0)的对称轴是过点(1,0)且平行于y轴的直线,若点P(3,0)在该抛物线上,则a﹣b+c的值为________.15. (4分)(2017·新泰模拟) 已知反比例函数y= 的图象,当x取1,2,3,…n时,对应在反比例图象上的点分别为M1、M2、M3…Mn ,则 + +… =________.16. (4分)已知二次函数的图象开口向下,则m的值为________.三、解答题 (共8题;共66分)17. (6分) (2017九上·武汉期中) 求证:矩形的四个顶点在同一圆上.18. (6分)(2016·姜堰模拟) 如图所示的网格中,每个小方格都是边长为1的小正方形,B(﹣1,﹣1),C (5,﹣1)(1)把△ABC绕点C按顺时针旋转90°后得到△A1B1C1,请画出这个三角形并写出点B1的坐标;(2)以点A为位似中心放大△ABC,得到△A2B2C2,使放大前后的面积之比为1:4,请在下面网格内出△A2B2C2.19. (6分)如图(1),(2)所示的是生活中的图形,看上去多么美丽和谐,请你参考图(1),(2),在图(3),(4)中设计两个美丽的图案,再说一说它们代表的实物.20. (8分)(2017·市中区模拟) 如图,⊙O是△ABC的外接圆,∠A=45°,BD是直径,且BC=2,连接CD,求BD的长.21. (8分) (2016八下·枝江期中) 已知,如图,△ABC中,AB=AC,点D、E、F分别为AB、AC、BC边的中点.求证:DE与AF互相垂直平分.22. (10分)(2018·威海) 如图,将矩形ABCD(纸片)折叠,使点B与AD边上的点K重合,EG为折痕;点C与AD边上的点K重合,FH为折痕.已知∠1=67.5°,∠2=75°,EF= +1,求BC的长.23. (10分)国家推行“节能减排,低碳经济”政策后,低排量的汽车比较畅销,某汽车经销商购进A,B 两种型号的低排量汽车,其中A型汽车的进货单价比B型汽车的进货单价多2万元花50万元购进A型汽车的数量与花40万元购进B型汽车的数量相同,销售中发现A型汽车的每周销量yA(台)与售价x(万元/台)满足函数关系式yA=﹣x+20,B型汽车的每周销量yB(台)与售价x(万元/台)满足函数关系式yB=﹣x+14.(1)求A、B两种型号的汽车的进货单价;(2)已知A型汽车的售价比B型汽车的售价高2万元/台,设B型汽车售价为t万元/台.每周销售这两种车的总利润为W万元,求W与t的函数关系式,A、B两种型号的汽车售价各为多少时,每周销售这两种车的总利润最大?最大总利润是多少万元?24. (12分)(2019·三明模拟) 如图,AB是⊙O的直径,点D , E在⊙O上,∠B=2∠ADE ,点C在BA 的延长线上.(Ⅰ)若∠C=∠DAB ,求证:CE是⊙O的切线;(Ⅱ)若OF=2,AF=3,求EF的长.参考答案一、单选题 (共10题;共30分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共24分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共66分)17-1、18-1、18-2、19-1、20-1、21-1、22-1、23-1、第11 页共13 页24-1、第12 页共13 页第13 页共13 页。
∥3套精选试卷∥2019年广东省名校九年级上学期数学期末联考试题
九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.下列几何图形中,是中心对称图形但不是轴对称图形的是 ( ) A .圆 B .正方形C .矩形D .平行四边形【答案】D【分析】根据中心对称图形和轴对称图形的定义逐一判断即可.【详解】A . 圆是中心对称图形,也是轴对称图形,故本选项不符合题意; B . 正方形是中心对称图形,也是轴对称图形,故本选项不符合题意; C . 矩形是中心对称图形,也是轴对称图形,故本选项不符合题意; D . 平行四边形是中心对称图形,不是轴对称图形,故本选项符合题意. 故选D . 【点睛】此题考查的是中心对称图形和轴对称图形的识别,掌握中心对称图形和轴对称图形的定义是解决此题的关键. 2.计算()42a a -的结果是( ) A .0 B .22aC .4aD .4a -【答案】C【分析】根据二次根式的性质先化简()4-a ,再根据幂运算的公式计算即可得出结果.【详解】解:()42a a -=22a a =4a ,故选C . 【点睛】本题考查了二次根式的性质和同底数幂的乘方,熟练掌握二次根式的性质和同底数幂的乘方进行化简是解题的关键.3.如图,四边形ABCD 的对角线AC ,BD 相交于点O ,且将这个四边形分成①②③④四个三角形.若OA OC OB OD =∶∶,则下列结论中一定正确的是( )A .①和②相似B .①和③相似C .①和④相似D .③和④相似【答案】B【解析】由题图可知,AOB COD ∠=∠,由OA OC OB OD =∶∶,可得OA OBOC OD= 即可得出 【详解】由题图可知,AOB COD ∠=∠,结合OA OC OB OD =∶∶,可得AOB COD ∽. 故选B . 【点睛】当题中所给条件中有两个三角形的两边成比例时,通常考虑利用“两边成比例且夹角相等”的判定方法判定两个三角形相似一定要记准相等的角是两边的“夹角”,否则,结论不成立(类似判定三角形全等的方法“SAS ").4.27的立方根是( )A .±3B .C .3D .【答案】C【分析】由题意根据如果一个数x 的立方等于a ,那么x 是a 的立方根,据此定义进行分析求解即可. 【详解】解:∵1的立方等于27, ∴27的立方根等于1. 故选:C . 【点睛】本题主要考查求一个数的立方根,解题时先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同. 5.在Rt△ABC 中,∠C=90°,各边都扩大2倍,则锐角A 的锐角三角函数值( ) A .扩大2倍 B .缩小12C .不变D .无法确定【答案】C【解析】∵在Rt △ABC 中,∠C =90°, ∴BC sin A AB =,AC cos A AB =,BCtan A AC=, ∴在Rt △ABC 中,各边都扩大2倍得:2BC BC sin A 2AB AB ==,2AC AC cos A 2AB AB ==,2BC BC tan A 2AC AC==, 故在Rt △ABC 中,各边都扩大2倍,则锐角A 的锐角三角函数值不变. 故选C. 【点睛】本题考查了锐角三角函数,根据锐角三角函数的概念:锐角A 的各个三角函数值等于直角三角形的边的比值可知,三角形的各边都扩大(缩小)多少倍,锐角A 的三角函数值是不会变的. 6.关于x 的一元二次方程x 2﹣2x +k=0有两个相等的实数根,则k 的值为( ) A .1B .﹣1C .2D .﹣2【答案】A【分析】关于x的一元二次方程x²+2x+k=0有两个相等的实数根,可知其判别式为0,据此列出关于k的不等式,解答即可.【详解】根据一元二次方程根与判别式的关系,要使得x2﹣2x+k=0有两个相等实根,只需要△=(-2)²-4k=0,解得k=1.故本题正确答案为A.【点睛】本题考查了一元二次方程ax²+bx+c=0(a≠0)的根的判别式△=b²-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.7.如图,小明同学将一个圆锥和一个三棱柱组成组合图形,观察其三视图,其俯视图是()A.B. C.D.【答案】B【详解】解:由题意得:俯视图与选项B中图形一致.故选B.【点睛】本题考查了简单组合体的三视图,解题的关键是会画简单组合图形的三视图.本题属于基础题,难度不大,解决该题型题目时,掌握简单组合体三视图的画法是关键.8.如图,在Rt△ABC中,∠ACB=90°,AC=23,以点B为圆心,BC的长为半径作弧,交AB于点D,若点D为AB的中点,则阴影部分的面积是()A.2233π-B.2433πC.4233π-D.23π【答案】A【详解】解:∵D为AB的中点,∴BC=BD=12AB,∴∠A=30°,∠B=60°.∵AC=∴BC=AC•tan30°=3=2,∴S 阴影=S △ABC ﹣S 扇形CBD =2160222360π⨯⨯-=23π-.故选A . 【点睛】本题考查解直角三角形和扇形面积的计算,掌握公式正确计算是本题的解题关键. 9.平面直角坐标系内一点P (2,-3)关于原点对称点的坐标是( )A .(3,-2)B .(2,3)C .(-2,3)D .(2,-3) 【答案】C 【解析】略10.在平面直角坐标系中,把点(3,2)P -绕原点O 顺时针旋转180,所得到的对应点P'的坐标为( ) A .(3,2) B .(2,3)-C .(3,2)-D .(3,2)-【答案】C【分析】根据题意得点P 点P′关于原点的对称,然后根据关于原点对称的点的坐标特点即可得解. 【详解】∵P 点坐标为(3,-2), ∴P 点的原点对称点P′的坐标为(-3,2). 故选C . 【点睛】本题主要考查坐标与图形变化-旋转,解此题的关键在于熟练掌握其知识点. 11.10件产品中有2件次品,从中任意抽取1件,恰好抽到次品的概率是( ) A .12B .13C .14D .15【答案】D【分析】由于10件产品中有2件次品,所以从10件产品中任意抽取1件,抽中次品的概率是21105=. 【详解】解:()21P 105==次品 . 故选:D . 【点睛】本题考查的知识点是用概率公式求事件的概率,根据题目找出全部情况的总数以及符合条件的情况数目是解此题的关键.12.如图,在△ABC 中,中线AD 、BE 相交于点F ,EG ∥BC ,交AD 于点G ,则AGAF的值是( )A .23B .32C .34D .43【答案】C【分析】先证明AG=GD ,得到GE 为△ADC 的中位线,由三角形的中位线可得GE 12=DC 12=BD ;由EG ∥BC ,可证△GEF ∽△BDF ,由相似三角形的性质,可得12GF GE FD BD ==;设GF=x ,用含x 的式子分别表示出AG 和AF ,则可求得答案.【详解】∵E 为AC 中点,EG ∥BC , ∴AG=GD ,∴GE 为△ADC 的中位线, ∴GE 12=DC 12=BD . ∵EG ∥BC , ∴△GEF ∽△BDF , ∴12GF GE FD BD ==, ∴FD=2GF .设GF=x ,则FD=2x ,AG=GD=GF+FD=x+2x=3x ,AF=AG+GF=3x+x=4x , ∴3344AG x AF x ==. 故选:C . 【点睛】本题考查了三角形的中位线定理及相似三角形的判定与性质,熟练掌握相关定理及性质,是解答本题的关键.二、填空题(本题包括8个小题)13.如图,AOB ∆三个顶点的坐标分别为()()8,0, 0,0(8, )6A O B -,, 点M 为OB 的中点.以点O 为位似中心,把或AOB ∆缩小为原来的12,得到''A OB ∆,点'M 为'OB 的中点,则'MM 的长为________.【答案】52或152【分析】分两种情形画出图形,即可解决问题.【详解】解:如图,在Rt△AOB中,OB=2268=10,①当△A'OB'在第四象限时,OM=5,OM'=52,∴MM'=52.②当△A''OB''在第二象限时,OM=5,OM"=52,∴MM"=152,故答案为52或152.【点睛】本题考查位似变换,坐标与图形的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.14.如图,PA,PB是⊙O的切线,切点分别是点A和B,AC是⊙O的直径.若∠P=60°,PA=6,则BC 的长为__________.【答案】3【分析】连接AB,根据PA,PB是⊙O的切线可得PA=PB,从而得出AB=6,然后利用∠P=60°得出∠CAB 为30°,最后根据直角三角形中30°角的正切值进一步计算即可.【详解】如图,连接AB , ∵PA ,PB 是⊙O 的切线, ∴PA=PB , ∵∠P =60°,∴△ABP 为等边三角形, ∴AB=6, ∵∠P =60°, ∴∠CAB=30°,易得△ABC 为直角三角形, ∴BCtan 30AB=︒, ∴BC=AB ×tan30︒=23, 故答案为:23. 【点睛】本题主要考查了圆中切线长与三角函数的综合运用,熟练掌握相关概念是解题关键. 15.在ABC ∆中,90C ∠=︒,8AB =,3cos 4A =,则AC 的长是__________. 【答案】1【分析】根据∠A 的余弦值列出比例式即可求出AC 的长. 【详解】解:在Rt △ABC 中,3cos 4AC A AB ==,8AB = ∴AC=338644AB =⨯= 故答案为1.【点睛】此题考查是已知一个角的余弦值,求直角三角形的边长,掌握余弦的定义是解决此题的关键.16.在一个不透明的袋子中装有除颜色外完全相同的3个白球、若干红球,从中随机摸取1个球,摸到红球的概率是58,则这个袋子中有红球_____个. 【答案】1【解析】解:设红球有n 个 由题意得:n 5=n+38, 解得:n=1. 故答案为=1.17.2019年12月6日,某市举行了2020年商品订货交流会,参加会议的每两家公司之间都签订了一份合同,所有参会公司共签订了28份合同,则共有_____家公司参加了这次会议. 【答案】1【分析】每家公司都与其他公司鉴定了一份合同,设有x 家公司参加,则每个公司要签()1x -份合同,签订合同共有()112x x -份. 【详解】设共有x 家公司参加了这次会议, 根据题意,得:12x (x ﹣1)=21, 整理,得: x 2﹣x ﹣56=0,解得:x 1=1,x 2=﹣7(不合题意,舍去) , 答:共有1家公司参加了这次会议. 故答案是:1. 【点睛】考查了一元二次方程的应用,甲乙之间互签合同,只能算一份,本题属于不重复记数问题,类似于若干个人,每两个人之间都握手,握手总次数.解答中注意舍去不符合题意的解.18.一个布袋里放有5个红球,3个黄球和2个黑球,它们除颜色外其余都相同,则任意摸出一个球是黑球的概率是____________. 【答案】0.2【分析】利用列举法求解即可.【详解】将布袋里10个球按颜色分别记为1234512312红,红,红,红,红,黄,黄,黄,黑,黑,所有可能结果的总数为10种,并且它们出现的可能性相等 任意摸出一个球是黑球的结果有2种,即12黑,黑 因此其概率为:20.210P ==. 【点睛】本题考查了用列举法求概率,根据题意列出所有可能的结果是解题关键.三、解答题(本题包括8个小题)19.解下列方程:(1)x2+2x﹣3=0;(2)x(x﹣4)=12﹣3x.【答案】(1)x=﹣1或x=1;(2)x=4或x=﹣1.【分析】(1)利用因式分解法求解可得;(2)利用因式分解法求解可得.【详解】解:(1)∵x2+2x﹣1=0,∴(x+1)(x﹣1)=0,则x+1=0或x﹣1=0,解得x=﹣1或x=1;(2)∵x(x﹣4)+1(x﹣4)=0,∴(x﹣4)(x+1)=0,则x﹣4=0或x+1=0,解得x=4或x=﹣1.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.20.如图,在四边形ABCD中,AB∥DC,BC>AD,∠D=90°,AC⊥BC,AB=10cm,BC=6cm,F点以2cm/秒的速度在线段AB上由A向B匀速运动,E点同时以1cm/秒的速度在线段BC上由B向C匀速运动,设运动时间为t秒(0<t<5).(1)求证:△ACD∽△BAC;(2)求DC的长;(3)试探究:△BEF可以为等腰三角形吗?若能,求t的值;若不能,请说明理由.【答案】(1)见解析;(2)DC=6.4cm;(3)当△EFB为等腰三角形时,t的值为103秒或258秒或6017秒.【分析】(1)根据三角形相似的判定定理即可得到结论;(2)由△ACD∽△BAC,得DC ACAC BA=,结合22AC AB BC-=8cm,即可求解;(3)若△EFB为等腰三角形,可分如下三种情况:①当BF=BE时,②当EF=EB时,③当FB=FE时,分别求出t的值,即可.【详解】(1)∵CD∥AB,∴∠BAC=∠DCA,又AC⊥BC,∠ACB=90°,∴∠D=∠ACB=90°,∴△ACD∽△BAC;(2)在Rt△ABC中,22AC AB BC=-=8cm,由(1)知,△ACD∽△BAC,∴DC ACAC BA=,即:8DC ACBA=,解得:DC=6.4cm;(3)△BEF能为等腰三角形,理由如下:由题意得:AF=2t,BE=t,若△EFB为等腰三角形,可分如下三种情况:①当BF=BE时,10﹣2t=t,解得:t=103;②当EF=EB时,如图1,过点E作AB的垂线,垂足为G,则11(102)22BG BF t==-,此时△BEG∽△BAC,∴BE BGAB BC=,即1(102)2106tt-=,解得:t=258;③当FB=FE时,如图2,过点F作AB的垂线,垂足为H,则1122BH BE t==,此时△BFH∽△BAC,∴BF BHAB BC=,即11022106tt-=,解得:6017t=;综上所述:当△EFB为等腰三角形时,t的值为103秒或258秒或6017秒.【点睛】本题主要考查相似三角形的判定和性质的综合以及等腰三角形的性质与勾股定理,添加辅助线构造相似三角形,是解题的关键.21.某学校从360名九年级学生中抽取了部分学生进行体育测试,并就他们的成绩(成绩分为A、B、C 三个层次)进行分析,绘制了频数分布表与频数分布直方图(如图),请根据图表信息解答下列问题:分组频数频率C 10 0.10B 0.50A 40合计 1.00(1)补全频数分布表与频数分布直方图;(2)如果成绩为A层次的同学属于优秀,请你估计该校九年级约有多少人达到优秀水平?【答案】(2)见解析;(2)244人【分析】(2)首先利用C组的数据可以求出抽取了部分学生的总人数,然后利用频率或频数即可补全频数分布表与频数分布直方图;(2)根据(2)的几个可以得到A等级的同学的频率,然后乘以362即可得到该校九年级约有多少人达到优秀水平.【详解】(2)补全频数分布表如下:分组频数频率C 22 2.22B 52 2.52A 42 2.42合计222 2.22补全直方图如下:(2)∵A 层次的同学人数为42人,频率为2.42, ∴估计该校九年级约有 2.4×362=244人达到优秀水平. 【点睛】本题考查的知识点是频率分布表及用样本估计总体以及频率分布直方图,解题的关键是熟练的掌握频率分布表及用样本估计总体以及频率分布直方图.22.如图,ABCD 是一块边长为4米的正方形苗圃,园林部门拟将其改造为矩形AEFG 的形状,其中点E 在AB 边上,点G 在AD 的延长线上,DG = 2BE .设BE 的长为x 米,改造后苗圃AEFG 的面积为y 平方米.(1)求y 与x 之间的函数关系式(不需写自变量的取值范围);(2)根据改造方案,改造后的矩形苗圃AEFG 的面积与原正方形苗圃ABCD 的面积相等,请问此时BE 的长为多少米?【答案】(1)y=-2x 2+4x+16;(2)2米【分析】(1)若BE 的长为x 米,则改造后矩形的宽为(4)x -米,长为(42)x +米,求矩形面积即可得出y 与x 之间的函数关系式;(2)根据题意可令函数值为16,解一元二次方程即可. 【详解】解:(1)∵BE 边长为x 米, ∴AE=AB-BE=4-x ,AG=AD+DG=4+2x 苗圃的面积=AE×AG=(4-x)(4+2x)则苗圃的面积y (单位:米2)与x (单位:米)的函数关系式为:y=-2x 2+4x+16 (2)依题意,令y=16 即-2x 2+4x+16=16 解得:x 1=0(舍)x 2=2 答:此时BE 的长为2米.【点睛】本题考查的知识点是列函数关系式以及二次函数的实际应用,难度不大,找准题目中的等量关系式是解此题的关键.23.如图,在平面直角坐标系中,直线AC 与x 轴交于点A ,与y 轴交于点50,2B ⎛⎫ ⎪⎝⎭,且与反比例函数10y x=在第一象限的图象交于点C ,CD y ⊥轴于点D ,2CD =.(1)求点A 的坐标;(2)动点P 在x 轴上,PQ x ⊥轴交反比例函数10y x=的图象于点Q .若:2PACPOQS S=,求点P 的坐标.【答案】(1)()2,0A -;(2)()6,0P -或()2,0【分析】(1)根据反比例函数表达式求出点C 坐标,再利用“待定系数法”求出一次函数表达式,从而求出坐标;(2)根据“P 在x 轴上,PQ x ⊥轴交反比例函数10y x=的图象于点Q ”及k 的几何意义可求出△POQ 的面积,从而求得△PAC 的面积,利用面积求出点P 坐标即可. 【详解】解:(1)∵CD y ⊥轴于点D ,2CD =, ∴点C 的横坐标为2, 把2x =代入反比例函数10y x =,得1052y ==, ∴()2,5C ,设直线AC 的解析式为y kx b =+,把50,2B ⎛⎫ ⎪⎝⎭,()2,5C 代入,得5225b k b ⎧=⎪⎨⎪+=⎩,解得5452k b ⎧=⎪⎪⎨⎪=⎪⎩, ∴直线AC 的解析式为5542y x =+, 令55042y x =+=,解得2x =-, ∴()2,0A -;(2)∵PQ x ⊥轴,点Q 在反比例函数10y x=的图象上, ∴11052POQ S =⨯=△, ∵:2PACPOQSS =,∴10PAC S =△,∴1102C PA y ⋅=, ∴21045PA ⨯==, 由(1)知()2,0A -, ∴()6,0P -或()2,0. 【点睛】本题考查一次函数与反比例函数的综合应用,要熟练掌握“待定系数法”求表达式及反比例函数中k 的几何意义,在利用面积求坐标时要注意多种情况.24.如图,ABO 与CDO 关于O 点中心对称,点E 、F 在线段AC 上,且AF=CE . 求证:FD=BE .【答案】详见解析【分析】根据中心对称得出OB=OD ,OA=OC ,求出OF=OE ,根据SAS 推出△DOF ≌△BOE 即可. 【详解】证明:∵△ABO 与△CDO 关于O 点中心对称,∴OB=OD ,OA=OC . ∵AF=CE ,∴OF=OE .∵在△DOF 和△BOE 中,OB OD DOF BOE OF OE =⎧⎪∠=∠⎨⎪=⎩,∴△DOF ≌△BOE (SAS ).∴FD=BE .25.某学校为了解学生“第二课堂“活动的选修情况,对报名参加A .跆拳道,B .声乐,C .足球,D .古典舞这四项选修活动的学生(每人必选且只能选修一项)进行抽样调查.并根据收集的数据绘制了图①和图②两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)本次调查的学生共有人;在扇形统计图中,B所对应的扇形的圆心角的度数是;(2)将条形统计图补充完整;(3)在被调查选修古典舞的学生中有4名团员,其中有1名男生和3名女生,学校想从这4人中任选2人进行古典舞表演.请用列表或画树状图的方法求被选中的2人恰好是1男1女的概率.【答案】(1)200、144;(2)补全图形见解析;(3)被选中的2人恰好是1男1女的概率12.【分析】(1)由A活动的人数及其所占百分比可得总人数,用360°乘以B活动人数所占比例即可得;(2)用总人数减去其它活动人数求出C的人数,从而补全图形;(3)列表得出所有等可能的情况数,找出刚好抽到一男一女的情况数,即可求出所求的概率.【详解】(1)本次调查的学生共有30÷15%=200(人),扇形统计图中,B所对应的扇形的圆心角的度数是360°×80200=144°,故答案为200、144;(2)C活动人数为200﹣(30+80+20)=70(人),补全图形如下:(3)画树状图为:或列表如下:男 女1 女2 女3 男 ﹣﹣﹣ (女,男) (女,男) (女,男) 女1 (男,女) ﹣﹣﹣ (女,女) (女,女) 女2 (男,女) (女,女) ﹣﹣﹣ (女,女) 女3(男,女)(女,女)(女,女)﹣﹣﹣∵共有12种等可能情况,1男1女有6种情况, ∴被选中的2人恰好是1男1女的概率61122=. 【点睛】本题考查了扇形统计图,条形统计图,树状图等知识点,解题时注意:概率=所求情况数与总情况数之比. 26.如图,已知二次函数y =ax 1+4ax+c (a ≠0)的图象交x 轴于A 、B 两点(A 在B 的左侧),交y 轴于点C .一次函数y =﹣12x+b 的图象经过点A ,与y 轴交于点D (0,﹣3),与这个二次函数的图象的另一个交点为E ,且AD :DE =3:1. (1)求这个二次函数的表达式; (1)若点M 为x 轴上一点,求MD+5MA 的最小值.【答案】(1)25552443y x x =--+;(1)1255. 【分析】(1)先把D 点坐标代入y =﹣12x+b 中求得b ,则一次函数解析式为y =﹣12x ﹣3,于是可确定A (﹣6,0),作EF ⊥x 轴于F ,如图,利用平行线分线段成比例求出OF =4,接着利用一次函数解析式确定E 点坐标为(4,﹣5),然后利用待定系数法求抛物线解析式;(1)作MH ⊥AD 于H ,作D 点关于x 轴的对称点D′,如图,则D′(0,3),利用勾股定理得到AD =5,再证明Rt △AMH ∽Rt △ADO ,利用相似比得到MH 5AM ,加上MD =MD′,5MA =MD′+MH ,利用两点之间线段最短得到当点M 、H 、D′共线时,5MA 的值最小,然后证明Rt △DHD′∽Rt △DOA ,利用相似比求出D′H 即可.【详解】解:(1)把D (0,﹣3)代入y =﹣12x+b 得b =﹣3, ∴一次函数解析式为y =﹣12x ﹣3, 当y =0时,﹣12x ﹣3=0,解得x =﹣6,则A (﹣6,0), 作EF ⊥x 轴于F ,如图, ∵OD ∥EF ,∴AO OF =AD DE =32, ∴OF =23OA =4,∴E 点的横坐标为4, 当x =4时,y =﹣12x ﹣3=﹣5, ∴E 点坐标为(4,﹣5),把A (﹣6,0),E (4,﹣5)代入y =ax 1+4ax+c 得3624016165a a c a a c -+=⎧⎨++=-⎩,解得52453a c ⎧=-⎪⎪⎨⎪=⎪⎩,∴抛物线解析式为25552443y x x =--+; (1)作MH ⊥AD 于H ,作D 点关于x 轴的对称点D′,如图,则D′(0,3), 在Rt △OAD 中,AD∵∠MAH =∠DAO , ∴Rt △AMH ∽Rt △ADO ,∴AM AD =MHOD=3MH ,∴MHAM , ∵MD =MD′, ∴MA =MD′+MH , 当点M 、H 、D′共线时,MA =MD′+MH =D′H ,此时的值最小, ∵∠D′DH =∠ADO , ∴Rt △DHD′∽Rt △DOA ,∴D H OA '=DD DA ',即6D H ',解得D′H=5,∴MD+5MA 的最小值为1255.【点睛】此题主要考查二次函数综合,解题的关键是熟知二次函数的图像与性质、相似三角形的判定与性质及数形结合能力.27.如图,在平面直角坐标系中,抛物线2y ax bx c =++(a≠0)与y 轴交与点C (0,3),与x 轴交于A 、B 两点,点B 坐标为(4,0),抛物线的对称轴方程为x=1. (1)求抛物线的解析式;(2)点M 从A 点出发,在线段AB 上以每秒3个单位长度的速度向B 点运动,同时点N 从B 点出发,在线段BC 上以每秒1个单位长度的速度向C 点运动,其中一个点到达终点时,另一个点也停止运动,设△MBN 的面积为S ,点M 运动时间为t ,试求S 与t 的函数关系,并求S 的最大值;(3)在点M 运动过程中,是否存在某一时刻t ,使△MBN 为直角三角形?若存在,求出t 值;若不存在,请说明理由.【答案】(1)233384y x x =-++;(2)S=299105t t -+,运动1秒使△PBQ 的面积最大,最大面积是910;(3)t=2417或t=3019. 【分析】(1)把点A 、B 、C 的坐标分别代入抛物线解析式,列出关于系数a 、b 、c 的解析式,通过解方程组求得它们的值;(2)设运动时间为t 秒.利用三角形的面积公式列出S △MBN 与t 的函数关系式.利用二次函数的图象性质进行解答;(3)根据余弦函数,可得关于t 的方程,解方程,可得答案. 【详解】(1)∵点B 坐标为(4,0),抛物线的对称轴方程为x=1, ∴A (﹣2,0),把点A (﹣2,0)、B (4,0)、点C (0,3),分别代入2y ax bx c =++(a≠0),得:423016430a b a b -+=⎧⎨++=⎩,解得:38343a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩,所以该抛物线的解析式为:233384y x x =-++;(2)设运动时间为t 秒,则AM=3t ,BN=t ,∴MB=6﹣3t .由题意得,点C 的坐标为(0,3).在Rt △BOC 中,. 如图1,过点N 作NH ⊥AB 于点H , ∴NH ∥CO , ∴△BHN ∽△BOC ,∴HN BN OC BC =,即35HN t =, ∴HN=35t ,∴S △MBN =12MB•HN=12(6﹣3t )•35t ,即S=229999(1)1051010t t t -+=--+,当△PBQ 存在时,0<t <2, ∴当t=1时,S △PBQ 最大=910. 答:运动1秒使△PBQ 的面积最大,最大面积是910; (3)如图2,在Rt △OBC 中,cos ∠B=45OB BC =. 设运动时间为t 秒,则AM=3t ,BN=t ,∴MB=6﹣3t .①当∠MNB=90°时,cos ∠B=45BN MB =,即4635t t =-,化简,得17t=24,解得t=2417;②当∠BMN=90°时,cos ∠B=6345t t -=,化简,得19t=30,解得t=3019. 综上所述:t=2417或t=3019时,△MBN 为直角三角形.考点:二次函数综合题;最值问题;二次函数的最值;动点型;存在型;分类讨论;压轴题.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,AB 为⊙O 的直径,点C ,D 在⊙O 上.若∠AOD=30°,则∠BCD 等于( )A .75°B .95°C .100°D .105°【答案】D 【解析】试题解析:连接,AD,30,OA OD AOD =∠=()11803075.2OAD ∴∠=-= 18075105.BCD ∴∠=-=故选D.点睛:圆内接四边形的对角互补.2.二次函数224y x x =-++,当12x -≤≤时,则( )A .1y 4≤≤B .5y ≤C .45y ≤≤D .1y 5≤≤ 【答案】D【分析】因为224y x x =-++=()2-x-1+5,对称轴x=1,函数开口向下,分别求出x=-1和x=1时的函数值即可;【详解】∵224y x x =-++=()2-x-1+5, ∴当x=1时,y 有最大值5;当x=-1时,y=()2--1-1+5=1;当x=2时,y=()2-2-1+5=4; ∴当12x -≤≤时,1y 5≤≤;【点睛】本题主要考查了二次函数的性质,掌握二次函数的性质是解题的关键.3.如图的44⨯的网格图,A、B、C、D、O都在格点上,点O是()A.ΔACD的外心B.ΔABC的外心C.ΔACD的内心D.ΔABC的内心【答案】B【分析】连接OA、OB、OC、OD,设网格的边长为1,利用勾股定理分别求出OA、OB、OC、OD的长,根据O点与三角形的顶点的距离即可得答案.【详解】连接OA、OB、OC、OD,设网格的边长为1,∴OA=2232+=13,OB=2232+=13,OC=2232+=13,OD=2221+=5,∵OA=OB=OC=13,∴O为△ABC的外心,故选B.【点睛】本题考查勾股定理的应用,熟练掌握三角形的外心和内心的定义是解题关键.4.如图,正方形ABCD中,E,F分别在边AD,CD上,AF,BE相交于点G,若AE=3ED,DF=CF,则AG GF的值是()A.43B.54C.65D.76【分析】如图作,FN∥AD,交AB于N,交BE于M.设DE=a,则AE=3a,利用平行线分线段成比例定理解决问题即可.【详解】如图作,FN∥AD,交AB于N,交BE于M.∵四边形ABCD是正方形,∴AB∥CD,∵FN∥AD,∴四边形ANFD是平行四边形,∵∠D=90°,∴四边形ANFD是矩形,∵AE=3DE,设DE=a,则AE=3a,AD=AB=CD=FN=4a,AN=DF=2a,∵AN=BN,MN∥AE,∴BM=ME,∴MN=32 a,∴FM=52 a,∵AE∥FM,∴36552AG AE aGF FM a===,故选C.【点睛】本题考查正方形的性质、平行线分线段成比例定理、三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,学会利用参数解决问题,属于中考常考题型.5.2019年教育部等九部门印发中小学生减负三十条:严控书面作业总量,初中家庭作业不超过90分钟.某初中学校为了尽快落实减负三十条,了解学生做书面家庭作业的时间,随机调查了40名同学每天做书面家庭作业的时间,情况如下表.下列关于40名同学每天做书面家庭作业的时间说法中,错误的是()书面家庭作业时间(分钟)70 80 90 100 110学生人数(人) 4 7 20 7 2A.众数是90分钟B.估计全校每天做书面家庭作业的平均时间是89分钟人【答案】D【分析】利用众数、中位数及平均数的定义分别确定后即可得到本题的正确的选项.【详解】解:A、书面家庭作业时间为90分钟的有20人,最多,故众数为90分钟,正确;B、共40人,中位数是第20和第21人的平均数,即90902=90,正确;C、平均时间为:140×(70×4+80×7+90×20+100×8+110)=89,正确;D、随机调查了40名同学中,每天做书面家庭作业的时间超过90分钟的有8+1=9人,故估计全校每天做书面家庭作业的时间超过90分钟的有9人说法错误,故选:D.【点睛】本题考查了众数、中位数及平均数的定义,属于统计基础题,比较简单.6.如图是用围棋棋子在6×6的正方形网格中摆出的图案,棋子的位置用有序数对表示,如A点为(5,1),若再摆一黑一白两枚棋子,使这9枚棋子组成的图案既是轴对称图形又是中心对称图形,则下列摆放正确的是()A.黑(1,5),白(5,5)B.黑(3,2),白(3,3)C.黑(3,3),白(3,1)D.黑(3,1),白(3,3)【答案】D【分析】利用轴对称图形以及中心对称图形的性质即可解答.【详解】如图所示:黑(3,1),白(3,3).故选D.【点睛】7.下列命题:①长度相等的弧是等弧;②任意三点确定一个圆;③相等的圆心角所对的弦相等;④平分弦的直径垂直于弦,并且平分弦所对的两条弧;其中真命题共有( )A.0个B.1个C.2个D.3个【答案】A【分析】由等弧的概念判断①,根据不在一条直线上的三点确定一个圆,可判断②;根据圆心角、弧、弦的关系判断③,根据垂径定理判断④.【详解】①同圆或等圆中,能够互相重合的弧是等弧,故①是假命题;②不在一条直线上的三点确定一个圆,若三点共线,则不能确定圆,故②是假命题;③同圆或等圆中,相等的圆心角所对的弦相等,故③是假命题;④圆两条直径互相平分,但不垂直,故④是假命题;所以真命题共有0个,故选A.【点睛】本题考查圆中的相关概念,熟记基本概念才能准确判断命题真假.8.下列成语描述的事件为随机事件的是()A.守株待兔B.水中捞月C.瓮中捉鳖D.水涨船高【答案】A【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A.守株待兔是随机事件,故A符合题意;B.水中捞月是不可能事件,故B不符合题意;C.瓮中捉鳖是必然事件,故C不符合题意;D.水涨船高是必然事件,故D不符合题意;故选A.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.9.已知抛物线y=﹣x2+4x+3,则该抛物线的顶点坐标为()A.(﹣2,7)B.(2,7)C.(2,﹣9)D.(﹣2,﹣9)【答案】B【分析】将题目中的函数解析式化为顶点式,即可写出该抛物线的顶点坐标.【详解】∵抛物线y=﹣x2+4x+3=﹣(x﹣2)2+7,∴该抛物线的顶点坐标是(2,7),本题考查二次函数的顶点式,解答本题的关键是明确题意,利用二次函数的性质解答.10.观察下列四个图形,中心对称图形是()A.B.C.D.【答案】C【分析】根据中心对称图形的定义即可判断.【详解】在平面内,若一个图形可以绕某个点旋转180°后能与自身重合,那么这个图形叫做中心对称图形,根据定义可知,C选项中的图形是中心对称图形.故答案选:C.【点睛】本题考查的知识点是中心对称图形,解题的关键是熟练的掌握中心对称图形.11.已知函数y=ax2+bx+c的图象如图所示,则关于x的方程ax2+bx+c﹣4=0的根的情况是()A.有两个相等的实数根B.有两个异号的实数根C.有两个不相等的实数根D.没有实数根【答案】A【分析】根据抛物线的顶点坐标的纵坐标为4,判断方程ax2+bx+c﹣4=0的根的情况即是判断函数y=ax2+bx+c的图象与直线y=4交点的情况.【详解】∵函数的顶点的纵坐标为4,∴直线y=4与抛物线只有一个交点,∴方程ax2+bx+c﹣4=0有两个相等的实数根,故选A.【点睛】本题考查了二次函数与一元二次方程,熟练掌握一元二次方程与二次函数间的关系是解题的关键. 12.下列判断正确的是()A.对角线互相垂直的平行四边形是菱形B.两组邻边相等的四边形是平行四边形。
广东省茂名市九年级(上)期末数学试卷(含解析)
广东省茂名市九年级(上)期末数学试卷一、选择题(共10小题,每小题3分)1.(3分)下列各式中是一元二次方程的是()A.x2+1=B.x(x+1)=x2﹣3C.2x2+3x﹣1D.﹣x2+3x﹣1=0 2.(3分)下列四条线段中,不能成比例的是()A.a=4,b=8,c=5,d=10B.a=2,b=2,c=,d=5C.a=1,b=2,c=3,d=4D.a=1,b=2,c=2,d=43.(3分)某校幵展“文明小卫士”活动,从学生会“督查部”的3名学生(2男1女)中随机选两名进行督导,恰好选中两名男学生的概率是()A.B.C.D.4.(3分)如图所示的某零件左视图是()A.B.C.D.5.(3分)如图,菱形ABCD的两条对角线AC,BD相交于点O,E是AB的中点,若AC =6,BD=8,则OE长为()A.3B.5C.2.5D.46.(3分)已知点M(﹣3,4)在双曲线y=上,则下列各点在该双曲线上的是()A.(3,4)B.(﹣4,﹣3 )C.(4,3 )D.(3,﹣4)7.(3分)如图,在△ABC中,D、E分别是AB、AC上的点,且DE∥BC,若AD:DB=3:2,则AE:AC等于()A.3:2B.3:1C.2:3D.3:58.(3分)如图,反比例函数y1=和正比例函数y2═k2x的图象交于A(﹣2,﹣3),B (2,3)两点.若x,则x的取值范围是()A.﹣2<x<0B.﹣2<x<2C.x<﹣2或0<x<2D.﹣2<x<0 或x>29.(3分)在平面直角坐标系中,已知点E(﹣4,2),F(﹣2,﹣2),以原点O为位似中心,相似比为2,把△EFO放大,则点E的对应点E′的坐标是()A.(﹣2,1)B.(﹣8,4)C.(﹣2,1)或(2,﹣1)D.(﹣8,4)或(8,﹣4)10.(3分)已知关于x的方程(k﹣2)2x2+(2k+1)x+1=0有实数解,且反比例函数y=的图象经过第二、四象限,若k是常数,则k的值为()A.4B.3C.2D.1二.填空题(共6小题,每小题4分)11.(4分)若|a+2|+b2﹣2b+1=0,则a2b+ab2=.12.(4分)甲、乙、丙3人站成一排合影留念,甲站在中间的概率为.13.(4分)已知方程3x2﹣4x﹣2=0的两个根是x1、x2,则+=.14.(4分)若线段a,b,c满足关系=,=,则a:b:c=.15.(4分)如图,菱形ABCD中,∠B=60°,AB=3,四边形ACEF是正方形,则EF的长为.16.(4分)如图,矩形ABCD面积为40,点P在边CD上,PE⊥AC,PF⊥BD,足分别为E,F.若AC=10,则PE+PF=.三、解答题(共3小题,每小题6分)17.(6分)用适当的方法解下列方程:3x2+2x=2.18.(6分)如图是一个正三棱柱的主视图和俯视图:(1)你请作出它的主、左视图;(2)若AC=2,AA'=3,求左视图的面积.19.(6分)随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种你最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次活动共调查了人;在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为;(2)将条形统计图补充完整.观察此图,支付方式的“众数”是“”;(3)在一次购物中,小明和小亮都想从“微信”、“支付宝”、“银行卡”三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.四.解答题(共3小题,每小题7分)20.(7分)已知关于x的一元二次方程kx2﹣6x+1=0有两个不相等的实数根.(1)求实数k的取值范围;(2)写出满足条件的k的最大整数值,并求此时方程的根.21.(7分)如图,一位同学想利用树影测量树(AB)的高度,他在某一时刻测得高为1米的竹竿直立时影长为0.9米,此时,因树靠近一幢建筑物,影子不全落在地面上(有一部分影子落在了墙上CD处),他先测得落在墙上的影子(CD)高为1.2米,又测得地面部分的影长(BD)为2.7米,则他测得的树高应为多少米?22.(7分)已知,如图,平行四边形ABCD的对角线相交于点O,点E在边BC的延长线上,且OE=OB,连接DE.(1)求证:DE⊥BE;(2)如果OE⊥CD,求证:BD•CE=CD•DE.五.解答题(共3小题,每小题9分)23.(9分)某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.(1)如果多种5棵橙子树,计算每棵橙子树的产量;(2)如果果园橙子的总产量要达到60375个,考虑到既要成本低,又要保证树与树间的距离不能过密,那么应该多种多少棵橙子树;(3)增种多少棵橙子树,可以使果园橙子的总产量最多?最多为多少?24.(9分)如图,已知双曲线y=经过点D(6,1),点C是双曲线第三象限上的动点,过C作CA⊥x轴,过D作DB⊥y轴,垂足分别为A,B,连接AB,BC.(1)求k的值;(2)若△BCD的面积为12,求直线CD的解析式;(3)判断AB与CD的位置关系,并说明理由.25.(9分)已知锐角△ABC中,边BC长为12,高AD长为8.(1)如图,矩形EFGH的边GH在BC边上,其余两个顶点E、F分别在AB、AC边上,EF交AD于点K.①求的值;②设EH=x,矩形EFGH的面积为S,求S与x的函数关系式,并求S的最大值;(2)若AB=AC,正方形PQMN的两个顶点在△ABC一边上,另两个顶点分别在△ABC 的另两边上,直接写出正方形PQMN的边长.参考答案与试题解析一、选择题(共10小题,每小题3分)1.(3分)下列各式中是一元二次方程的是()A.x2+1=B.x(x+1)=x2﹣3C.2x2+3x﹣1D.﹣x2+3x﹣1=0【分析】本题根据一元二次方程的定义求解.一元二次方程必须满足两个条件:未知数的最高次数是2;二次项系数不为0.【解答】解:A、是分式方程,故A不符合题意;B、是一元一次方程,故B不符合题意;C、是多项式,故C不符合题意;D、是一元二次方程,故D符合题意;故选:D.【点评】本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.2.(3分)下列四条线段中,不能成比例的是()A.a=4,b=8,c=5,d=10B.a=2,b=2,c=,d=5C.a=1,b=2,c=3,d=4D.a=1,b=2,c=2,d=4【分析】根据比例线段的概念,让最小的和最大的相乘,另外两条相乘,看它们的积是否相等即可得出答案.【解答】解:A、4×10=5×8,能成比例;B、2×5=2×,能成比例;C、1×4≠2×3,不能成比例;D、1×4=2×2,能成比例.故选:C.【点评】此题考查了比例线段,理解成比例线段的概念,注意在线段两两相乘的时候,要让最小的和最大的相乘,另外两条相乘,看它们的积是否相等进行判断.3.(3分)某校幵展“文明小卫士”活动,从学生会“督查部”的3名学生(2男1女)中随机选两名进行督导,恰好选中两名男学生的概率是()A.B.C.D.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好选中两名男学生的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有6种等可能的结果,恰好选中两名男学生的有2种情况,∴恰好选中两名男学生的概率是:=.故选:A.【点评】此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.4.(3分)如图所示的某零件左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看是一个矩形,其中间含一个圆,如图所示:故选:B.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图,注意看到的线画实线.5.(3分)如图,菱形ABCD的两条对角线AC,BD相交于点O,E是AB的中点,若AC =6,BD=8,则OE长为()A.3B.5C.2.5D.4【分析】根据菱形的性质可得OB=OD,AO⊥BO,从而可判断OH是△DAB的中位线,在Rt△AOB中求出AB,继而可得出OH的长度.【解答】解:∵四边形ABCD是菱形,AC=6,BD=8,∴AO=OC=3,OB=OD=4,AO⊥BO,又∵点E是AB中点,∴OE是△DAB的中位线,在Rt△AOD中,AB==5,则OE=AD=.故选:C.【点评】本题考查了菱形的性质及三角形的中位线定理,熟练掌握菱形四边相等、对角线互相垂直且平分的性质是解题关键.6.(3分)已知点M(﹣3,4)在双曲线y=上,则下列各点在该双曲线上的是()A.(3,4)B.(﹣4,﹣3 )C.(4,3 )D.(3,﹣4)【分析】根据反比例函数图象上的点(x,y)的横纵坐标的积是定值k,即xy=k进行分析即可.【解答】解:∵M(﹣3,4)在双曲线y=上,∴k=﹣3×4=﹣12,A、3×4=12≠﹣12,故此点一定不在该双曲线上;B、﹣4×(﹣3)=12≠﹣12,故此点一定不在该双曲线上;C、4×3=12≠﹣12,故此点一定不在该双曲线上;D、3×(﹣4)=﹣12,故此点一定在该双曲线上;故选:D.【点评】此题主要考查了反比例函数图象上点的坐标特征,关键是掌握凡是反比例函数y =经过的点横纵坐标的积是定值k.7.(3分)如图,在△ABC中,D、E分别是AB、AC上的点,且DE∥BC,若AD:DB=3:2,则AE:AC等于()A.3:2B.3:1C.2:3D.3:5【分析】由DE∥CB,根据平行线分线段成比例定理,可求得AE、AC的比例关系.【解答】解:∵DE∥BC,AD:DB=3:2,∴AE:EC=3:2,∴AE:AC=3:5.故选:D.【点评】此题主要考查了平行线分线段成比例定理,根据已知得出AE与EC的关系是解题关键.8.(3分)如图,反比例函数y1=和正比例函数y2═k2x的图象交于A(﹣2,﹣3),B (2,3)两点.若x,则x的取值范围是()A.﹣2<x<0B.﹣2<x<2C.x<﹣2或0<x<2D.﹣2<x<0 或x>2【分析】根据图象的交点坐标及函数的大小关系,直接解答.要充分利用函数图象所给的信息解答.【解答】解:由图可知,在A点左侧,反比例函数的值大于一次函数的值,此时x<﹣2;在B点左侧,y轴的右侧,反比例函数的值大于一次函数的值,此时0<x<2.故选:C.【点评】本题考查了反比例函数与一次函数的交点问题,将关于算式的问题转化为图象问题是解题的关键.9.(3分)在平面直角坐标系中,已知点E(﹣4,2),F(﹣2,﹣2),以原点O为位似中心,相似比为2,把△EFO放大,则点E的对应点E′的坐标是()A.(﹣2,1)B.(﹣8,4)C.(﹣2,1)或(2,﹣1)D.(﹣8,4)或(8,﹣4)【分析】由在平面直角坐标系中,已知点E(﹣4,2),F(﹣2,﹣2),以原点O为位似中心,相似比为2,把△EFO放大,根据位似图形的性质,即可求得点E的对应点E′的坐标.【解答】解:∵点E(﹣4,2),以原点O为位似中心,相似比为2,把△EFO放大,∴点E的对应点E′的坐标是:(﹣8,4)或(8,﹣4).故选:D.【点评】此题考查了位似图形的性质,正确把握位似图形的性质是解题关键.10.(3分)已知关于x的方程(k﹣2)2x2+(2k+1)x+1=0有实数解,且反比例函数y=的图象经过第二、四象限,若k是常数,则k的值为()A.4B.3C.2D.1【分析】①若为一元一次方程时,求得k的值,然后代入反比例函数解析式进行验证;②根据方程(k﹣2)2x2+(2k+1)x+1=0有实数解可知△≥0,再由反比例函数y=的图象在第二、四象限可得出2k﹣3<0,由此可得出k的值.【解答】解:①当k﹣2=0,即k=2时,关于x的方程(k﹣2)2x2+(2k+1)x+1=0有实数解,此时,2k﹣3=1>0,不符合题意,故k=2,舍去;∵关于x的方程(k﹣2)2x2+(2k+1)x+1=0有实数解,∴△≥0,即(2k+1)2﹣4(k﹣2)2≥0,解得k≥;∵反比例函数y=的图象经过第二、四象限,∴2k﹣3<0,即k<,∴≤k<,观察选项,只有D选项符合题意.故选:D.【点评】本题考查的是反比例函数的性质,熟知反比例函数的图象与系数的关系是解答此题的关键.二.填空题(共6小题,每小题4分)11.(4分)若|a+2|+b2﹣2b+1=0,则a2b+ab2=2.【分析】直接利用偶次方的性质以及绝对值的性质得出a,b的值,进而得出答案.【解答】解:∵|a+2|+b2﹣2b+1=0,∴a+2=0,(b﹣1)2=0,∴a=﹣2,b=1,则a2b+ab2=4×1﹣2×1=2.故答案为:2.【点评】此题主要考查了非负数的性质,正确得出a,b的值是解题关键.12.(4分)甲、乙、丙3人站成一排合影留念,甲站在中间的概率为.【分析】画树状图展示所有6种等可能的结果数,再找出甲站在中间的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有6种等可能的结果数,其中甲站在中间的结果数为2,所以甲站在中间的概率==,故答案为:.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B 的概率.13.(4分)已知方程3x2﹣4x﹣2=0的两个根是x1、x2,则+=﹣2.【分析】根据根与系数的关系可得出x1+x2=,x1•x2=﹣,将其代入+=中即可求出结论.【解答】解:∵方程3x2﹣4x﹣2=0的两个根是x1、x2,∴x1+x2=,x1•x2=﹣,∴+===﹣2.故答案为:﹣2.【点评】本题考查了根与系数的关系,一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系为:x1+x2=﹣,x1•x2=.14.(4分)若线段a,b,c满足关系=,=,则a:b:c=9:12:20.【分析】此类题做的时候可以根据分式的基本性质把两个比例式中的相同字母变成所占的份数相同,即可把三个字母的比的关系求解出来.【解答】解:∵=,=,∴=,∴a:b:c=9:12:20.故填9:12:20.【点评】特别注意此类题的解法:把相同字母所占的份数相同,即可求得三个字母的比值.15.(4分)如图,菱形ABCD中,∠B=60°,AB=3,四边形ACEF是正方形,则EF的长为3.【分析】由菱形的性质可得AB=BC,且∠B=60°,可得AC=AB=3,由正方形的性质可得AC=EF=3.【解答】解:∵四边形ABCD是菱形∴AB=BC,且∠B=60°,∴△ABC是等边三角形,∴AB=AC=3,∵四边形ACEF是正方形,∴AC=EF=3故答案为:3【点评】本题考查了正方形的性质,菱形的性质,等边三角形的判定和性质,熟练运用这些性质解决问题是本题的关键.16.(4分)如图,矩形ABCD面积为40,点P在边CD上,PE⊥AC,PF⊥BD,足分别为E,F.若AC=10,则PE+PF=4.【分析】由矩形的性质可得AO=CO=5=BO=DO,由S△DCO =S△DPO+S△PCO,可得PE+PF的值.【解答】解:如图,设AC与BD的交点为O,连接PO,∵四边形ABCD 是矩形 ∴AO =CO =5=BO =DO , ∴S △DCO =S 矩形ABCD =10, ∵S △DCO =S △DPO +S △PCO , ∴10=+×OC ×PE∴20=5PF +5PE ∴PE +PF =4 故答案为:4【点评】本题考查了矩形的性质,利用三角形的面积关系解决问题是本题的关键. 三、解答题(共3小题,每小题6分)17.(6分)用适当的方法解下列方程:3x 2+2x =2.【分析】整理后求出b 2﹣4ac 的值,再代入公式求出即可. 【解答】解:原方程可化为:3x 2+2x ﹣2=0, 这里a =3,b =2,c =﹣2, b 2﹣4ac =22﹣4×3×(﹣2)=28,,,.【点评】本题考查了解一元二次方程,能选择适当的方法解方程是解此题的关键,注意:解一元二次方程的方法有:直接开平方法,公式法,配方法,因式分解法等. 18.(6分)如图是一个正三棱柱的主视图和俯视图: (1)你请作出它的主、左视图;(2)若AC =2,AA '=3,求左视图的面积.【分析】(1)利用左视图和主视图的定义作图即可;(2)先求出AB在右侧面的正投影长度,再根据矩形的面积公式计算可得.【解答】解:(1)作图如下:(2)如图,过点B作BD⊥AC于点D,∵AC=2,∴AD=1,AB=AD=2,∴BD=,则左视图的面积为3.【点评】本题考查简单的几何体的三视图,三视图的面积的计算,本题是一个易错题,易错点在侧视图的宽,错成底边的边长.19.(6分)随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种你最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次活动共调查了200人;在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为81°;(2)将条形统计图补充完整.观察此图,支付方式的“众数”是“微信”;(3)在一次购物中,小明和小亮都想从“微信”、“支付宝”、“银行卡”三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.【分析】(1)用支付宝、现金及其他的人数和除以这三者的百分比之和可得总人数,再用360°乘以“支付宝”人数所占比例即可得;(2)用总人数乘以对应百分比可得微信、银行卡的人数,从而补全图形,再根据众数的定义求解可得;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两人恰好选择同一种支付方式的情况,再利用概率公式即可求得答案.【解答】解:(1)本次活动调查的总人数为(45+50+15)÷(1﹣15%﹣30%)=200人,则表示“支付宝”支付的扇形圆心角的度数为360°×=81°,故答案为:200、81°;(2)微信人数为200×30%=60人,银行卡人数为200×15%=30人,补全图形如下:由条形图知,支付方式的“众数”是“微信”,故答案为:微信;(3)将微信记为A、支付宝记为B、银行卡记为C,画树状图如下:画树状图得:∵共有9种等可能的结果,其中两人恰好选择同一种支付方式的有3种,∴两人恰好选择同一种支付方式的概率为=.【点评】此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.四.解答题(共3小题,每小题7分)20.(7分)已知关于x的一元二次方程kx2﹣6x+1=0有两个不相等的实数根.(1)求实数k的取值范围;(2)写出满足条件的k的最大整数值,并求此时方程的根.【分析】(1)利用一元二次方程的定义和判别式的意义得到k≠0且△=(﹣6)2﹣4k >0,然后求出两不等式的公共部分即可;(2)先确定k的最大整数值得到方程8x2﹣6x+1=0,然后利用因式分解法解方程即可.【解答】解:(1)根据题意得k≠0且△=(﹣6)2﹣4k>0,解得k<9且k≠0;(2)k的最大整数为8,此时方程化为8x2﹣6x+1=0,(2x﹣1)(4x﹣1)=0,所以x1=,x2=.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.也考查了一元二次方程的定义.21.(7分)如图,一位同学想利用树影测量树(AB)的高度,他在某一时刻测得高为1米的竹竿直立时影长为0.9米,此时,因树靠近一幢建筑物,影子不全落在地面上(有一部分影子落在了墙上CD处),他先测得落在墙上的影子(CD)高为1.2米,又测得地面部分的影长(BD)为2.7米,则他测得的树高应为多少米?【分析】过点C作CE⊥AB于E,根据同时同地物高与影长成正比列比例式求出AE的长度,再根据矩形的对边相等可得BE=CD,然后根据AB=AE+BE计算即可得解.【解答】解:如图,过点C作CE⊥AB于E,则四边形BDCE是矩形,所以,CE=BD=2.7米,BE=CD=1.2米,由题意得,=,所以,AE==3米,树高AB=AE+BE=3+1.2=4.2米.【点评】本题考查了相似三角形的应用,熟记同时同地物高与影长成正比并列出比例式是解题的关键,难点在于作辅助线构造出三角形.22.(7分)已知,如图,平行四边形ABCD的对角线相交于点O,点E在边BC的延长线上,且OE=OB,连接DE.(1)求证:DE⊥BE;(2)如果OE⊥CD,求证:BD•CE=CD•DE.【分析】(1)由平行四边形的性质得到BO=BD,由等量代换推出OE=BD,根据平行四边形的判定即可得到结论;(2)根据等角的余角相等,得到∠CEO=∠CDE,推出△BDE∽△CDE,即可得到结论.【解答】证明:(1)∵四边形ABCD是平行四边形,∴BO=OD,∵OE=OB,∴OE=OD,∴∠OBE=∠OEB,∠OED=∠ODE,∵∠OBE+∠OEB+∠OED+∠ODE=180°,∴∠BEO+∠DEO=∠BED=90°,∴DE⊥BE;(2)∵OE⊥CD∴∠CEO+∠DCE=∠CDE+∠DCE=90°,∴∠CEO=∠CDE,∵OB=OE,∴∠DBE=∠CDE,∵∠BED=∠BED,∴△BDE∽△DCE,∴,∴BD•CE=CD•DE.【点评】本题考查了相似三角形的判定和性质,直角三角形的判定和性质,平行四边形的性质,熟记定理是解题的关键.五.解答题(共3小题,每小题9分)23.(9分)某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.(1)如果多种5棵橙子树,计算每棵橙子树的产量;(2)如果果园橙子的总产量要达到60375个,考虑到既要成本低,又要保证树与树间的距离不能过密,那么应该多种多少棵橙子树;(3)增种多少棵橙子树,可以使果园橙子的总产量最多?最多为多少?【分析】(1)先求出多种5棵橙子树,平均每棵树少结橙子的个数,再用600减去平均每棵树少结橙子的个数即为所求;(2)可设应该多种x棵橙子树,根据等量关系:果园橙子的总产量要达到60375个列出方程求解即可;(3)根据题意设增种m棵树,就可求出每棵树的产量,然后求出总产量,再配方即可求解.【解答】解:(1)600﹣5×5=600﹣25=575(棵)答:每棵橙子树的产量是575棵;(2)设应该多种x棵橙子树,依题意有(100+x)(600﹣5x)=60375,解得x1=5,x2=15(不合题意舍去).答:应该多种5棵橙子树;(3)设增种m棵树,果园橙子的总产量为(100+m)(600﹣5m)=﹣5(m﹣10)2+60500,故当增种10棵橙子树,可以使果园橙子的总产量最多,最多为60500个.【点评】此题主要考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.注意配方法的运用.24.(9分)如图,已知双曲线y=经过点D(6,1),点C是双曲线第三象限上的动点,过C作CA⊥x轴,过D作DB⊥y轴,垂足分别为A,B,连接AB,BC.(1)求k的值;(2)若△BCD的面积为12,求直线CD的解析式;(3)判断AB与CD的位置关系,并说明理由.【分析】(1)把点D的坐标代入双曲线解析式,进行计算即可得解;(2)先根据点D的坐标求出BD的长度,再根据三角形的面积公式求出点C到BD的距离,然后求出点C的纵坐标,再代入反比例函数解析式求出点C的坐标,然后利用待定系数法求一次函数解析式解答;(3)根据题意求出点A、B的坐标,然后利用待定系数法求出直线AB的解析式,可知与直线CD的解析式k值相等,所以AB、CD平行.【解答】解:(1)∵双曲线y=经过点D(6,1),∴=1,解得k=6;(2)设点C到BD的距离为h,∵点D的坐标为(6,1),DB⊥y轴,∴BD=6,∴S=×6•h=12,△BCD解得h=4,∵点C是双曲线第三象限上的动点,点D的纵坐标为1,∴点C的纵坐标为1﹣4=﹣3,∴=﹣3,解得x=﹣2,∴点C的坐标为(﹣2,﹣3),设直线CD的解析式为y=kx+b,则,解得,所以,直线CD的解析式为y=x﹣2;(3)AB∥CD.理由如下:∵CA⊥x轴,DB⊥y轴,设点C的坐标为(c,),点D的坐标为(6,1),∴点A、B的坐标分别为A(c,0),B(0,1),设直线AB的解析式为y=mx+n,则,解得,所以,直线AB的解析式为y=﹣x+1,设直线CD的解析式为y=ex+f,则,解得,∴直线CD的解析式为y=﹣x+,∵AB、CD的解析式k都等于﹣,∴AB与CD的位置关系是AB∥CD.【点评】本题是对反比例函数的综合考查,主要利用了待定系数法求函数解析式,三角形的面积的求解,待定系数法是求函数解析式最常用的方法,一定要熟练掌握并灵活运用.25.(9分)已知锐角△ABC中,边BC长为12,高AD长为8.(1)如图,矩形EFGH的边GH在BC边上,其余两个顶点E、F分别在AB、AC边上,EF交AD于点K.①求的值;②设EH=x,矩形EFGH的面积为S,求S与x的函数关系式,并求S的最大值;(2)若AB=AC,正方形PQMN的两个顶点在△ABC一边上,另两个顶点分别在△ABC 的另两边上,直接写出正方形PQMN的边长.【分析】(1)①根据EF∥BC,可得,所以,据此求出的值是多少即可.②首先根据EH=x,求出AK=8﹣x,再根据=,求出EF的值;然后根据矩形的面积公式,求出S与x的函数关系式,利用配方法,求出S的最大值是多少即可.(2)根据题意,设正方形的边长为a,分两种情况:①当正方形PQMN的两个顶点在BC边上时;②当正方形PQMN的两个顶点在AB或AC边上时;分类讨论,求出正方形PQMN的边长各是多少即可.【解答】解:(1)①∵EF∥BC,∴,∴=,即的值是.②∵EH=x,∴KD=EH=x,AK=8﹣x,∵=,∴EF=,∴S=EH•EF=x(8﹣x)=﹣+24,∴当x=4时,S的最大值是24.(2)设正方形的边长为a,①当正方形PQMN的两个顶点在BC边上时,,解得a=.②当正方形PQMN的两个顶点在AB或AC边上时,∵AB=AC,AD⊥BC,∴BD=CD=12÷2=6,∴AB=AC=,∴AB或AC边上的高等于:AD•BC÷AB=8×12÷10=∴,解得a=.综上,可得正方形PQMN的边长是或.【点评】(1)此题主要考查了相似三角形的判定和性质的应用,要熟练掌握,解答此题的关键是要明确:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.(2)此题还考查了二次函数的最值的求法,要熟练掌握,解答此题的关键是要明确:确定一个二次函数的最值,首先看自变量的取值范围,当自变量取全体实数时,其最值为抛物线顶点坐标的纵坐标;当自变量取某个范围时,要分别求出顶点和函数端点处的函数值,比较这些函数值,从而获得最值.(3)此题还考查了矩形、正方形、直角三角形的性质和应用,以及勾股定理的应用,要熟练掌握.。
广东省茂名市九年级上学期数学期末考试试卷
广东省茂名市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分)某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x,那么x满足的方程是()A . 50(1+x)2=182B . 50+50(1+x)+50(1+x)2=182C . 50(1+2x)=182D . 50+50(1+x)+50(1+2x)2=1822. (2分)(2017·滨海模拟) tan60°的值等于()A . 3B .C .D .3. (2分) (2017九上·相城期末) 在一副扑克牌(54张,其中王牌两张)中,任意抽取一张牌是“王牌”的概率是()A .B .C .D .4. (2分)(2019·新乐模拟) 对于长度为4的线段AB(图1),小若用尺规进行如下操作(图2)根据作图痕迹,有下列说法:①△ABC是等腰三角形;②△ABC是直角三角形;③△ABC是等边三角形;④ 的长度为,⑤△ABC是直角三角形的依据是直径所对的圆周角为直角,则其中正确个数是()A . 1B . 2C . 3D . 45. (2分)在一次定点投篮训练中,五位同学投中的个数分别为3,4,4,6,8,则关于这组数据的说法不正确的是()A . 平均数是5B . 中位数是6C . 众数是4D . 方差是3.26. (2分)(2018·南山模拟) 二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论①abc>0;②4a+b=0;③9a+c>3b;④当x>﹣1时,y的值随x值的增大而增大,其中正确的结论有()A . 1个B . 2个C . 3个D . 4个二、填空题 (共10题;共11分)7. (1分)已知△ABC∽△A1B1C1 ,△ABC的周长与△A1B1C1的周长的比值是,BE、B1E1分别是它们对应边上的中线,且BE=6,则B1E1=________.8. (1分) (2018九上·三门期中) 如图,四边形ABCD是⊙O的内接四边形,点D是的中点,点E是上的一点,若∠CED=40°,则∠ADC=________度.9. (1分)(2017·历下模拟) 分解因式:x2﹣3x=________10. (1分)(2017·阿坝) 数据1,2,3,0,﹣3,﹣2,﹣1的中位数是________.11. (2分) (2018九上·顺义期末) 如图,利用成直角的墙角(墙足够长),用10m长的栅栏围成一个矩形的小花园,花园的面积S(m2)与它一边长a(m)的函数关系式是________,面积S的最大值是________.12. (1分)(2020·永州模拟) 如图,将含有45°角的直角三角板ABC(∠C=90°)绕点A顺时针旋转30°得到△AB′C′,连接BB′,已知AC=2,则阴影部分面积为________.13. (1分)(2014·遵义) 有一圆锥,它的高为8cm,底面半径为6cm,则这个圆锥的侧面积是________cm2 .(结果保留π)14. (1分) (2015七下·绍兴期中) 如图,直线AB∥CD∥EF,那么∠α+∠β﹣∠γ=________度.15. (1分) (2020九上·沈阳月考) 等腰三角形一腰上的高与另一腰的夹角为40°,则等腰三角形底角的度数是________°.16. (1分) (2019九上·宜兴期末) 抛物线与x轴交于A、B两点,且A、B两点在与原点之间不包含端点,则a的取值范围是________.三、解答题 (共9题;共100分)17. (5分)(2020·哈尔滨模拟) 先化简,再求代数式的值,其中x=4cos30°-2tan45°.18. (15分) (2019七下·江门期末) 联合国规定每年6月25日是“世界环境日”,某校编写了关于环境保护的个问答题让学生学习,为了解学生对个问答题的掌握情况,随机抽查了部分学生进行答题测试,并根据测试结果得出下面两个不完整的统计图,请根据统计图提供的信息,回答下列问题(其中分别表示答对个题,答对个题,答对个题,答对个题,答对个题的人数):(1)参加测试的学生有多少人?其中“答对个题”的有多少人数?(2)把条形统计图补充完整;(3)若该校共有名学生,估计该校能“答对个题”以上(含个题)的人数19. (10分) (2018九上·港南期中) 已知关于x的方程x2+2x+a-2=0.(1)若该方程有两个不相等的实数根,求实数a的取值范围;(2)当该方程的一个根为1时,求a的值及方程的另一根.20. (10分)(2017·瑶海模拟) 有甲、乙两个不透明的盒子,甲盒子中装有3张卡片,卡片上分别写着3cm、7cm、9cm;乙盒子中装有4张卡片,卡片上分别写着2cm、4cm、6cm、8cm;盒子外有一张写着5cm的卡片.所有卡片的形状、大小都完全相同.现随机从甲、乙两个盒子中各取出一张卡片,与盒子外的卡片放在一起,用卡片上标明的数量分别作为一条线段的长度.(1)请用树状图或列表的方法求这三条线段能组成三角形的概率;(2)求这三条线段能组成直角三角形的概率.21. (10分)(2011·徐州) 如图,PA,PB是⊙O的两条切线,切点分别为A,B,OP交AB于点C,OP=13,sin∠APC= .(1)求⊙O的半径;(2)求弦AB的长.22. (10分)(2020·温州) 如图,C,D为⊙O上两点,且在直径AB两侧,连结CD交AB于点E,G是上一点,∠ADC=∠G。
广东省茂名市九年级上学期数学期末试卷
广东省茂名市九年级上学期数学期末试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019九上·秀洲期末) 对于二次函数y=2(x﹣1)2+2的图象,下列说法正确的是()A . 开口向下B . 对称轴是直线x=﹣1C . 顶点坐标是(1,2)D . 与x轴有两个交点.2. (2分) (2020九上·绍兴月考) 关于x的方程(m﹣2)x2+2mx+m+3=0有实根,则m的取值范围是()A . m≠2B . m≤6且m≠2C . m<6D . m≤63. (2分) (2016八上·中堂期中) 下列图案中,不是轴对称图形的是()A .B .C .D .4. (2分) (2018九上·梁子湖期末) 如图,是的直径,点、在上,且点、在的异侧,连接、、、,若,且,则的度数为()A . 120°D . 110°5. (2分)(2019·宽城模拟) 如图,在平面直角坐标系中,等腰直角三角形ABC的边AB在x轴的正半轴上,∠ABC=90°,点B在点A的右侧,点C在第一象限将△ABC绕点A逆时针旋转75°得到△ADE,点C的对应点E恰好落在y轴的正半轴上,若点A的坐标为(1,0),则边AB的长为()A .B .C . 2D .6. (2分)用配方法解方程:x2-4x+2=0,下列配方正确的是()A . (x-2)2=2B . (x+2)2=2C . (x-2)2=-2D . (x-2)2=67. (2分)如图,已知⊙O中,圆心角∠AOB=100°,则圆周角∠ACB等于().A . 130°B . 120°C . 110°D . 100°8. (2分)一圆锥的底面半径是2,母线长为6,此圆锥侧面展开图扇形的圆心角的度数为()C . 150°D . 180°9. (2分)某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为x,则可列方程为()A . 48(1﹣x)2=36B . 48(1+x)2=36C . 36(1﹣x)2=48D . 36(1+x)2=4810. (2分)(2017·江北模拟) 如图,一场篮球赛中,篮球运动员跳起投篮,已知球出手时离地面高2.2m,与篮圈中心的水平距离为8m,当球出手后水平距离为4m时达到最大高度4m,篮圈运行的轨迹为抛物线的一部分,篮圈中心距离地面3m,运动员发现未投中,若假设出手的角度和力度都不变,要使此球恰好通过篮圈中心,运动员应该跳得()A . 比开始高0.8mB . 比开始高0.4mC . 比开始低0.8mD . 比开始低0.4m二、填空题 (共7题;共9分)11. (1分)(2020·晋中模拟) 方程x2=2020x的解是________.12. (1分) (2018九上·海安月考) 如图,在圆中有折线,,,,则弦的长为________.13. (1分)(2019·张掖模拟) 从满足不等式﹣3<x<3的所有整数中任意取一个数记作a,则关于x的一元二次方程x2﹣(a﹣1)x+ 有两个不相等的实数根的概率是________.14. (1分) (2016九上·柳江期中) 与点A(m,n)关于原点对称的点的坐标为________.15. (2分)(2020·雅安) 从中任取一数作为,使抛物线的开口向上的概率为________.16. (1分)(2019·温州模拟) 现在很多家庭都使用折叠型西餐桌来节省空间,两边翻开后成圆形桌面(如图1).餐桌两边AB和CD平行且相等(如图2),小华用皮带尺量出AC=1.2米,AB=0.6米,那么桌面翻成圆桌后,桌子面积会增加________平方米.(结果保留π)17. (2分) (2020九上·呼兰期末) 如图,将绕顶点A顺时针旋转后得到,且为的中点,与相交于,若,则线段的长度为________.三、解答题 (共8题;共54分)18. (5分) (2019八下·柯桥期末) 解方程:(1)(2)19. (5分)小明和小亮是一对双胞胎,他们的爸爸买了两套不同品牌的运动服送给他们,小明和小亮都想先挑选.于是小明设计了如下游戏来决定谁先挑选.游戏规则是:在一个不透明的袋子里装有除数字以外其它均相同的4个小球,上面分别标有数字1、2、3、4.一人先从袋中随机摸出一个小球,另一人再从袋中剩下的3个小球中随机摸出一个小球.若摸出的两个小球上的数字和为奇数,则小明先挑选;否则小亮先挑选.(1)用树状图或列表法求出小明先挑选的概率;(2)你认为这个游戏公平吗?请说明理由.20. (2分) (2019九上·西城期中) 如图,AB是⊙O的直径,CD是⊙O的一条弦,且CD⊥AB于点E.(1)求证:∠BCO=∠D;(2)若CD=6,AE=2,求⊙O的半径.21. (10分)已知关于x的一元二次方程x2﹣(2m+3)x+m2+2=0.(1)若方程有实数根,求实数m的取值范围;(2)若方程的两个根分别为x1、x2 ,且满足x12+x22=31+x1x2 ,求实数m的值.22. (10分) (2018九上·康巴什期中) 如图,将△ABC绕点B逆时针旋转α得到△DBE,DE的延长线与AC 相交于点F,连接DA、BF,∠ABC=α=60°,BF=AF.(1)求证:DA∥BC;(2)猜想线段DF、AF的数量关系,并证明你的猜想.23. (10分)如图1所示,某乘客乘高速列车从甲地经过乙地到丙地,列车匀速行驶,图2为列车离乙地路程y(千米)与行驶时间x(小时)时间的函数关系图象.(1)填空:甲、丙两地距离________千米.(2)求高速列车离乙地的路程y与行驶时间x之间的函数关系式,并写出x的取值范围.24. (10分)(2019·营口模拟) 如图,以AB为直径的⊙O外接于△ABC,点D在BC的延长线上,∠ABC的角平分线与AD交于E点,与AC交于F点,且AE=AF.(1)证明直线AD是⊙O的切线;(2)若AD=16,sinD=,求BC的长.25. (2分) (2019九上·大冶月考) 如图,在直角坐标系中,已知直线y=- x+4与y轴交于A点,与x 轴交于B点,C点坐标为(﹣2,0).(1)求经过A,B,C三点的抛物线的解析式;(2)如果M为抛物线的顶点,联结AM、BM,求四边形AOBM的面积.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共7题;共9分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、三、解答题 (共8题;共54分)18-1、18-2、19-1、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、25-1、25-2、。
2018-2019学年广东省茂名市五校联考九年级(上)期末数学试卷
2018-2019学年广东省茂名市五校联考九年级(上)期末数学试卷一、选择题(每题3分,满分30分)1.(3分)下列图形中,既是轴对称图形又是中心对称图形的有( )A .1个B .2个C .3个D .4个2.(3分)若关于x 的一元二次方程2(1)220k x x -+-=有两个不相等的实数根,则k 的取值范围是( )A .12k >B .12k …C .12k >且1k ≠D .12k …且1k ≠ 3.(3分)如图,O 的直径AB 垂直于弦CD ,36CAB ∠=︒,则BCD ∠的大小是( )A .18︒B .36︒C .54︒D .72︒4.(3分)下列事件中必然发生的事件是( )A .一个图形平移后所得的图形与原来的图形不全等B .不等式的两边同时乘以一个数,结果仍是不等式C .200件产品中有5件次品,从中任意抽取6件,至少有一件是正品D .随意翻到一本书的某页,这页的页码一定是偶数5.(3分)在平面直角坐标系中,平移二次函数243y x x =++的图象能够与二次函数2y x =的图象重合,则平移方式为( )A .向左平移2个单位,向下平移1个单位B .向左平移2个单位,向上平移1个单位C .向右平移2个单位,向下平移1个单位D .向右平移2个单位,向上平移1个单位6.(3分)如图,O 是ABC ∆的外接圆,2BC =,30BAC ∠=︒,则劣弧BC 的长等于()A .23πB .πC D7.(3分)如图,将ABC ∆绕点B 顺时针旋转60︒得DBE ∆,点C 的对应点E 恰好落在AB 延长线上,连接AD .下列结论一定正确的是( )A .ABD E ∠=∠B .CBEC ∠=∠ C .//AD BC D .AD BC =8.(3分)如图,AB 是O 的直径,CD AB ⊥,60ABD ∠=︒,CD =面积为( )A .23πB .πC .2πD .4π9.(3分)若a 、b 是一元二次方程2360x x +-=的两个不相等的根,则23a b -的值是()A .3B .15-C .3-D .1510.(3分)如图,抛物线2y ax bx c =++的对称轴是1x =-,且过点1(2,0),有下列结论:①0abc >;②240a b c -+=;③25410a c b +=;④320b c +>;⑤()a b m am b --…;其中所有错误的结论有( )个.A .1B .2C .3D .4二、填空题(每题3分,满分30分)11.(3分)若抛物线29y x bx =-+的顶点在x 轴上,则b 的值为 .12.(3分)在半径为6cm 的圆中,120︒的圆心角所对的弧长为 cm .13.(3分)关于x 的一元二次方程22(3)(9)0m x x m -++-=的一个根是0,则m 的值是 .14.(3分)在一个不透明的口袋里有红、黄、蓝三种颜色的小球,这些球除颜色外完全相同,其中有5个黄球,4个蓝球.若随机摸出一个蓝球的概率为13,则随机摸出一个红球的概率为 .15.(3分)已知一元二次方程2430x x --=的两根分别为m ,n ,则11m n+的值为 . 16.(3分)用配方法把二次函数2231y x x =-+写成2()y a x h k =-+的形式为17.(3分)如图,在O 中,半径OC 与弦AN 垂直于点D ,且16AB =,10OC =,则CD的长是 .18.(3分)如图,在ABC ∆中,65CAB ∠=︒,在同一平面内,将ABC ∆绕点A 逆时针旋转到△AB C ''的位置,使得//CC AB ',则B AB ∠'等于 .19.(3分)四边形ABCD 为圆O 的内接四边形,已知100BOD ∠=︒,则BCD ∠= .20.(3分)如图,Rt ABC ∆中,AB BC ⊥,12AB =,8BC =,P 是ABC ∆内部的一个动点,且满足PAB PBC ∠=∠,则线段CP 长的最小值为 .三、解答题(满分60分)21.(8分)解方程:(1)2410x x -+=.(2)2230x x --=.22.(8分)如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,ABC ∆的三个顶点的坐标分别为(3,4)A -,(5,2)B -,(2,1)C -.(1)画出ABC ∆关于y 轴的对称图形△111A B C ;(2)画出将ABC ∆绕原点O 逆时针方向旋转90︒得到的△222A B C ;(3)求(2)中线段OA 扫过的图形面积.23.(8分)如图所示,在四张背面完全相同的纸牌的正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀后摸出一张,不放回,再摸出一张(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A 、B 、C 、D 表示);(2)求摸出的两张纸牌牌面上所画几何图形既是轴对称图形又是中心对称图形的概率.24.(8分)已知关于x 的一元二次方程230x x m +-=有实数根.(1)求m 的取值范围(2)若两实数根分别为1x 和2x ,且221211x x +=,求m 的值. 25.(8分)如图,在Rt ABC ∆中,90C ∠=︒,以BC 为直径的O 交AB 于点D ,DE 交AC于点E ,且A AD E ∠=∠.(1)求证:DE 是O 的切线;(2)若16AD =,10DE =,求BC 的长.26.(8分)受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,某市汽车零部件生产企业的利润逐年提高,据统计,2015年利润为2亿元,2017年利润为2.88亿元.(1)求该企业从2015年到2017年利润的年平均增长率;(2)若2018年保持前两年利润的年平均增长率不变,该企业2018年的利润能否超过3.5亿元?27.(12分)如图,已知抛物线2y ax bx c =++过点(3,0)A -,(2,3)B -,(0,3)C ,顶点为D .(1)求抛物线的解析式;(2)设点(1,)M m ,当MB MD +的值最小时,求m 的值;(3)若P 是抛物线上位于直线AC 上方的一个动点,求APC ∆的面积的最大值.2018-2019学年广东省茂名市五校联考九年级(上)期末数学试卷参考答案与试题解析一、选择题(每题3分,满分30分)1.(3分)下列图形中,既是轴对称图形又是中心对称图形的有( )A .1个B .2个C .3个D .4个【解答】解:第一个图是轴对称图形,是中心对称图形;第二个图是轴对称图形,不是中心对称图形;第三个图是轴对称图形,又是中心对称图形;第四个图是轴对称图形,不是中心对称图形;既是轴对称图形,又是中心对称图形的有2个,故选:B .2.(3分)若关于x 的一元二次方程2(1)220k x x -+-=有两个不相等的实数根,则k 的取值范围是( )A .12k >B .12k …C .12k >且1k ≠D .12k …且1k ≠ 【解答】解:关于x 的一元二次方程2(1)220k x x -+-=有两个不相等的实数根, ∴21024(1)(2)0k k -≠⎧⎨=-⨯-⨯->⎩, 解得:12k >且1k ≠. 故选:C .3.(3分)如图,O 的直径AB 垂直于弦CD ,36CAB ∠=︒,则BCD ∠的大小是( )。
广东省茂名市2019-2020学年中考五诊数学试题含解析
广东省茂名市2019-2020学年中考五诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图是由几个相同的小正方体搭成的一个几何体,它的俯视图是( )A .B .C .D .2.如图,在△ABC 中,BC=8,AB 的中垂线交BC 于D ,AC 的中垂线交BC 于E ,则△ADE 的周长等于( )A .8B .4C .12D .163.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .4.如图,在Rt △ABC 中,∠ACB=90°,AC=BC=1,将绕点A 逆时针旋转30°后得到Rt △ADE ,点B 经过的路径为弧BD ,则图中阴影部分的面积是( )A .6πB .3πC .2π-12D .125.在平面直角坐标系中,点(2,3)所在的象限是( )A .第一象限B .第二象限C .第三象限 D .第四象限 6.已知数a 、b 、c 在数轴上的位置如图所示,化简|a+b|﹣|c ﹣b|的结果是( )A .a+bB .﹣a ﹣cC .a+cD .a+2b ﹣c7.如图,将△ABC 绕点B 顺时针旋转60°得△DBE ,点C 的对应点E 给好落在AB 的延长线上,连接AD ,下列结论不一定正确的是( )A .AD ∥BCB .∠DAC=∠EC .BC ⊥DED .AD+BC=AE8.函数y=4x -中自变量x 的取值范围是A .x≥0B .x≥4C .x≤4D .x>4 9.|﹣3|=( )A .13B .﹣13C .3D .﹣310.计算1+2+22+23+…+22010的结果是( )A .22011–1B .22011+1C .()20111212-D .()201112+12 11.若关于x 的方程22(2)0x k x k +-+=的两根互为倒数,则k 的值为( )A .±1B .1C .-1D .012.一个几何体的三视图如图所示,则该几何体的形状可能是( )A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.)1353)(53________.14.使得关于x 的分式方程111x k k x x +-=+-的解为负整数,且使得关于x 的不等式组322144x x x k+≥-⎧⎨-≤⎩有且仅有5个整数解的所有k的和为_____.15.8的算术平方根是_____.16.如图,一束光线从点A(3,3)出发,经过y轴上点C反射后经过点B(1,0),则光线从点A到点B经过的路径长为_____.17.已知反比例函数kyx=的图像经过点(-2017,2018),当0x>时,函数值y随自变量x的值增大而_________.(填“增大”或“减小”)18.如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(﹣3,2),(b,m),(c,m),则点E的坐标是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)经过江汉平原的沪蓉(上海﹣成都)高速铁路即将动工.工程需要测量汉江某一段的宽度.如图①,一测量员在江岸边的A处测得对岸岸边的一根标杆B在它的正北方向,测量员从A点开始沿岸边向正东方向前进100米到达点C处,测得∠ACB=68°.(1)求所测之处江的宽度(sin68°≈0.93,cos68°≈0.37,tan68°≈2.1.);(2)除(1)的测量方案外,请你再设计一种测量江宽的方案,并在图②中画出图形.(不用考虑计算问题,叙述清楚即可)20.(6分)“大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生,请估计“最想去景点B“的学生人数.21.(6分)已知关于x的一元二次方程22410x x k++-=有实数根.(1)求k的取值范围;(2)若k为正整数,且方程有两个非零的整数根,求k的取值.22.(8分)反比例函数kyx=的图象经过点A(2,3).(1)求这个函数的解析式;(2)请判断点B(1,6)是否在这个反比例函数的图象上,并说明理由.23.(8分)(1)计算:(12-)﹣112﹣(π﹣2018)0﹣4cos30°(2)解不等式组:34(1)223x xxx≥-⎧⎪-⎨-≤⎪⎩,并把它的解集在数轴上表示出来.24.(10分)已知:二次函数C1:y1=ax2+2ax+a﹣1(a≠0)把二次函数C1的表达式化成y=a(x﹣h)2+b(a≠0)的形式,并写出顶点坐标;已知二次函数C1的图象经过点A(﹣3,1).①求a的值;②点B在二次函数C1的图象上,点A,B关于对称轴对称,连接AB.二次函数C2:y2=kx2+kx(k≠0)的图象,与线段AB只有一个交点,求k的取值范围.25.(10分)如图,已知⊙O,请用尺规做⊙O 的内接正四边形ABCD ,(保留作图痕迹,不写做法)26.(12分)在平面直角坐标系xOy 中,抛物线y=mx 2﹣2mx ﹣3(m≠0)与x 轴交于A (3,0),B 两点. (1)求抛物线的表达式及点B 的坐标;(2)当﹣2<x <3时的函数图象记为G ,求此时函数y 的取值范围;(3)在(2)的条件下,将图象G 在x 轴上方的部分沿x 轴翻折,图象G 的其余部分保持不变,得到一个新图象M .若经过点C (4.2)的直线y=kx+b (k≠0)与图象M 在第三象限内有两个公共点,结合图象求b 的取值范围.27.(12分)如图,已知抛物线2(0)y ax bx c a =++≠的对称轴为直线1x =-,且抛物线与x 轴交于A 、B 两点,与y 轴交于C 点,其中(1,0)A ,(0,3)C .(1)若直线y mx n =+经过B 、C 两点,求直线BC 和抛物线的解析式;(2)在抛物线的对称轴1x =-上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标;(3)设点P 为抛物线的对称轴1x =-上的一个动点,求使BPC ∆为直角三角形的点P 的坐标.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】试题分析:俯视图是从上面看到的图形.从上面看,左边和中间都是2个正方形,右上角是1个正方形,故选D.考点:简单组合体的三视图2.A【解析】【详解】∵AB的中垂线交BC于D,AC的中垂线交BC于E,∴DA=DB,EA=EC,则△ADE的周长=AD+DE+AE=BD+DE+EC=BC=8,故选A.3.B【解析】分析:根据轴对称图形与中心对称图形的概念求解即可.详解:A.是轴对称图形,不是中心对称图形;B.是轴对称图形,也是中心对称图形;C.是轴对称图形,不是中心对称图形;D.是轴对称图形,不是中心对称图形.故选B.点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.4.A【解析】【分析】先根据勾股定理得到,再根据扇形的面积公式计算出S扇形ABD,由旋转的性质得到Rt△ADE≌Rt△ACB,于是S阴影部分=S△ADE+S扇形ABD-S△ABC=S扇形ABD.【详解】∵∠ACB=90°,AC=BC=1,∴,∴S 扇形ABD =230=3606ππ⨯,又∵Rt △ABC 绕A 点逆时针旋转30°后得到Rt △ADE ,∴Rt △ADE ≌Rt △ACB ,∴S 阴影部分=S △ADE +S 扇形ABD −S △ABC =S 扇形ABD =6π, 故选A.【点睛】本题考查扇形面积计算,熟记扇形面积公式,采用作差法计算面积是解题的关键.5.A【解析】【分析】根据点所在象限的点的横纵坐标的符号特点,就可得出已知点所在的象限.【详解】解:点(2,3)所在的象限是第一象限.故答案为:A【点睛】考核知识点:点的坐标与象限的关系.6.C【解析】【分析】首先根据数轴可以得到a 、b 、c 的取值范围,然后利用绝对值的定义去掉绝对值符号后化简即可.【详解】解:通过数轴得到a <0,c <0,b >0,|a|<|b|<|c|,∴a+b >0,c ﹣b <0∴|a+b|﹣|c ﹣b|=a+b ﹣b+c=a+c ,故答案为a+c .故选A .7.C【解析】【分析】利用旋转的性质得BA=BD,BC=BE,∠ABD=∠CBE=60°,∠C=∠E,再通过判断△ABD为等边三角形得到AD=AB,∠BAD=60°,则根据平行线的性质可判断AD∥BC,从而得到∠DAC=∠C,于是可判断∠DAC=∠E,接着利用AD=AB,BE=BC可判断AD+BC=AE,利用∠CBE=60°,由于∠E的度数不确定,所以不能判定BC⊥DE.【详解】∵△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB的延长线上,∴BA=BD,BC=BE,∠ABD=∠CBE=60°,∠C=∠E,∴△ABD为等边三角形,∴AD=AB,∠BAD=60°,∵∠BAD=∠EBC,∴AD∥BC,∴∠DAC=∠C,∴∠DAC=∠E,∵AE=AB+BE,而AD=AB,BE=BC,∴AD+BC=AE,∵∠CBE=60°,∴只有当∠E=30°时,BC⊥DE.故选C.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的性质.8.B【解析】【分析】根据二次根式的性质,被开方数大于等于0,列不等式求解.【详解】根据题意得:x﹣1≥0,解得x≥1,则自变量x的取值范围是x≥1.故选B.【点睛】本题主要考查函数自变量的取值范围的知识点,注意:二次根式的被开方数是非负数.9.C【解析】【分析】根据绝对值的定义解答即可.【详解】|-3|=3故选:C【点睛】本题考查的是绝对值,理解绝对值的定义是关键.10.A【解析】【分析】可设其和为S ,则2S=2+22+23+24+…+22010+22011,两式相减可得答案.【详解】设S=1+2+22+23+ (22010)则2S=2+22+23+…+22010+22011②②-①得S=22011-1.故选A.【点睛】本题考查了因式分解的应用;设出和为S ,并求出2S 进行做差求解是解题关键.11.C【解析】【分析】 根据已知和根与系数的关系12c x x a =得出k 2=1,求出k 的值,再根据原方程有两个实数根,即可求出符合题意的k 的值.【详解】解:设1x 、2x 是22(2)0x k x k +-+=的两根,由题意得:121=x x ,由根与系数的关系得:212x x k =, ∴k 2=1,解得k=1或−1,∵方程有两个实数根,则222=(2)43440∆--=--+>k k k k ,当k=1时,34430∆=--+=-<,∴k=1不合题意,故舍去,当k=−1时,34450∆=-++=>,符合题意,∴k=−1,故答案为:−1.【点睛】本题考查的是一元二次方程根与系数的关系及相反数的定义,熟知根与系数的关系是解答此题的关键. 12.D【解析】试题分析:由主视图和左视图可得此几何体上面为台,下面为柱体,由俯视图为圆环可得几何体为.故选D .考点:由三视图判断几何体. 视频二、填空题:(本大题共6个小题,每小题4分,共24分.)13.2【解析】【分析】利用平方差公式进行计算即可得.【详解】原式=(2253- =5-3=2,故答案为:2.【点睛】本题考查了二次根式的混合运算,掌握平方差公式结构特征是解本题的关键.14.12.1【解析】【分析】 依据分式方程11x k k x x +-+-=1的解为负整数,即可得到k >12,k≠1,再根据不等式组322144x x x k +≥-⎧⎨-≤⎩有1个整数解,即可得到0≤k <4,进而得出k 的值,从而可得符合题意的所有k 的和.【详解】 解分式方程11x k k x x +-+-=1,可得x=1-2k ,∵分式方程11x k k x x +-+-=1的解为负整数, ∴1-2k <0,∴k >12, 又∵x≠-1,∴1-2k≠-1,∴k≠1,解不等式组322144x x x k +≥-⎧⎨-≤⎩,可得344x k x ≥-⎧⎪⎨+≤⎪⎩, ∵不等式组322144x x x k +≥-⎧⎨-≤⎩有1个整数解, ∴1≤44k +<2, 解得0≤k <4, ∴12<k <4且k≠1, ∴k 的值为1.1或2或2.1或3或3.1,∴符合题意的所有k 的和为12.1,故答案为12.1.【点睛】本题考查了解一元一次不等式组、分式方程的解,解题时注意分式方程中的解要满足分母不为0的情况.15..【解析】试题分析:本题主要考查的是算术平方根的定义,掌握算术平方根的定义是解题的关键.依据算术平方根的定义回答即可.由算术平方根的定义可知:8,,∴8的算术平方根是.故答案为.考点:算术平方根.16.2【解析】【分析】延长AC交x轴于B′.根据光的反射原理,点B、B′关于y轴对称,CB=CB′.路径长就是AB′的长度.结合A点坐标,运用勾股定理求解.【详解】解:如图所示,延长AC交x轴于B′.则点B、B′关于y轴对称,CB=CB′.作AD⊥x轴于D点.则AD=3,DB′=3+1=1.由勾股定理AB′=2∴AC+CB = AC+CB′= AB′=2.即光线从点A到点B经过的路径长为2.考点:解直角三角形的应用点评:本题考查了直角三角形的有关知识,同时渗透光学中反射原理,构造直角三角形是解决本题关键17.增大【解析】【分析】根据题意,利用待定系数法解出系数的符号,再根据k值的正负确定函数值的增减性.【详解】∵反比例函数kyx的图像经过点(-2017,2018),∴k=-2017×2018<0,∴当x>0时,y随x的增大而增大.故答案为增大.18.(3,2).【解析】【分析】根据题意得出y轴位置,进而利用正多边形的性质得出E点坐标.【详解】解:如图所示:∵A(0,a),∴点A在y轴上,∵C,D的坐标分别是(b,m),(c,m),∴B,E点关于y轴对称,∵B的坐标是:(﹣3,2),∴点E的坐标是:(3,2).故答案为:(3,2).【点睛】此题主要考查了正多边形和圆,正确得出y轴的位置是解题关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)21米(2)见解析【解析】试题分析:(1)根据题意易发现,直角三角形ABC中,已知AC的长度,又知道了∠ACB的度数,那么AB的长就不难求出了.(2)从所画出的图形中可以看出是利用三角形全等、三角形相似、解直角三角形的知识来解决问题的.解:(1)在Rt△BAC中,∠ACB=68°,∴AB=AC•tan68°≈100×2.1=21(米)答:所测之处江的宽度约为21米.(2)①延长BA至C,测得AC做记录;②从C沿平行于河岸的方向走到D,测得CD,做记录;③测AE,做记录.根据△BAE∽△BCD,得到比例线段,从而解答20.(1)40;(2)72;(3)1.【解析】【分析】(1)用最想去A景点的人数除以它所占的百分比即可得到被调查的学生总人数;(2)先计算出最想去D景点的人数,再补全条形统计图,然后用360°乘以最想去D景点的人数所占的百分比即可得到扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)用800乘以样本中最想去A 景点的人数所占的百分比即可.【详解】(1)被调查的学生总人数为8÷20%=40(人);(2)最想去D 景点的人数为40﹣8﹣14﹣4﹣6=8(人),补全条形统计图为:扇形统计图中表示“最想去景点D”的扇形圆心角的度数为840×360°=72°; (3)800×1440=1,所以估计“最想去景点B“的学生人数为1人. 21.(1)3k ≤;(2)k =1【解析】【分析】(1)根据一元二次方程2x 2+4x+k ﹣1=0有实数根,可得出△≥0,解不等式即可得出结论;(2)分别把k 的正整数值代入方程2x 2+4x+k ﹣1=0,根据解方程的结果进行分析解答.【详解】(1)由题意得:△=16﹣8(k ﹣1)≥0,∴k≤1.(2)∵k 为正整数,∴k=1,2,1.当k=1时,方程2x 2+4x+k ﹣1=0变为:2x 2+4x =0,解得:x=0或x=-2,有一个根为零;当k=2时,方程2x 2+4x+k ﹣1=0变为:2x 2+4x +1=0,解得:x=222-±,无整数根; 当k=1时,方程2x 2+4x+k ﹣1=0变为:2x 2+4x +2=0,解得:x 1=x 2=-1,有两个非零的整数根. 综上所述:k=1.【点睛】本题考查了一元二次方程根的判别式:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(1)△<0⇔方程没有实数根.22.(1)y=6x(2)点B(1,6)在这个反比例函数的图象上 【解析】【分析】(1)设反比例函数的解析式是y=k x,只需把已知点的坐标代入,即可求得函数解析式; (2)根据反比例函数图象上点的坐标特征进行判断.【详解】()1设反比例函数的解析式是k y x=, 则32k -=, 得6k =-. 则这个函数的表达式是6y x =-; ()2因为1666⨯=≠-,所以B 点不在函数图象上.【点睛】本题考查了待定系数法求反比例函数解析式:设出含有待定系数的反比例函数解析式y=k x(k 为常数,k≠0);把已知条件(自变量与函数的对应值)代入解析式,得到待定系数的方程;解方程,求出待定系数;写出解析式.也考查了反比例函数图象上点的坐标特征.23. (1)-3;(2) 2x 4≤≤.【解析】分析:(1)代入30°角的余弦函数值,结合零指数幂、负整数指数幂的意义及二次根式的相关运算法则计算即可;(2)按照解一元一次不等式组的一般步骤解答,并把解集规范的表示到数轴上即可.(1)原式=()10120184cos302π-⎛⎫---︒ ⎪⎝⎭=214-+- = -3. (2) ()34x 1x 223x x ⎧≥-⎪⎨--≤⎪⎩①②解不等式①得: x 4≤,解不等式②得:x 2≥,∴不等式组的解集为:2x 4≤≤不等式组的解集在数轴上表示:点睛:熟记零指数幂的意义:01(0)a a =≠,1 p p aa-=(0a ≠,p 为正整数)即30°角的余弦函数值是本题解题的关键. 24. (1)y 1=a(x+1)2﹣1,顶点为(﹣1,﹣1);(2)①12;②k 的取值范围是16≤k≤12或k =﹣1. 【解析】【分析】(1)化成顶点式即可求得; (2)①把点A(﹣3,1)代入二次函数C 1:y 1=ax 2+2ax+a ﹣1即可求得a 的值;②根据对称的性质得出B 的坐标,然后分两种情况讨论即可求得;【详解】(1)y 1=ax 2+2ax+a ﹣1=a(x+1)2﹣1,∴顶点为(﹣1,﹣1);(2)①∵二次函数C 1的图象经过点A(﹣3,1),∴a(﹣3+1)2﹣1=1,∴a =12; ②∵A(﹣3,1),对称轴为直线x =﹣1,∴B(1,1),当k >0时,二次函数C 2:y 2=kx 2+kx(k≠0)的图象经过A(﹣3,1)时,1=9k ﹣3k ,解得k =16, 二次函数C 2:y 2=kx 2+kx (k≠0)的图象经过B(1,1)时,1=k+k ,解得k =12, ∴16≤k≤12, 当k <0时,∵二次函数C 2:y 2=kx 2+kx =k(x+12)2﹣14k , ∴﹣14k =1, ∴k =﹣1, 综上,二次函数C 2:y 2=kx 2+kx(k≠0)的图象,与线段AB 只有一个交点,k 的取值范围是16≤k≤12或k =﹣1.【点睛】本题考查了二次函数和系数的关系,二次函数的最值问题,轴对称的性质等,分类讨论是解题的关键. 25.见解析【解析】【分析】根据内接正四边形的作图方法画出图,保留作图痕迹即可.【详解】任作一条直径,再作该直径的中垂线,顺次连接圆上的四点即可.【点睛】此题重点考察学生对圆内接正四边形作图的应用,掌握圆内接正四边形的作图方法是解题的关键. 26.(1)抛物线的表达式为y=x2﹣2x﹣2,B点的坐标(﹣1,0);(2)y的取值范围是﹣3≤y<1.(2)b的取值范围是﹣83<b<25.【解析】【分析】(1)、将点A坐标代入求出m的值,然后根据二次函数的性质求出点B的坐标;(2)、将二次函数配成顶点式,然后根据二次函数的增减性得出y的取值范围;(2)、根据函数经过(-1,0)、(3,2)和(0,-2)、(3,2)分别求出两个一次函数的解析式,从而得出b的取值范围.【详解】(1)∵将A(2,0)代入,得m=1,∴抛物线的表达式为y=2x-2x-2.令2x-2x-2=0,解得:x=2或x=-1,∴B点的坐标(-1,0).(2)y=2x-2x-2=()21x--3.∵当-2<x<1时,y随x增大而减小,当1≤x<2时,y随x增大而增大,∴当x=1,y最小=-3.又∵当x=-2,y=1,∴y的取值范围是-3≤y<1.(2)当直线y=kx+b经过B(-1,0)和点(3,2)时,解析式为y=25x+25.当直线y=kx+b经过(0,-2)和点(3,2)时,解析式为y=54x-2.由函数图象可知;b的取值范围是:-2<b<25.【点睛】本题主要考查的就是二次函数的性质、一次函数的性质以及函数的交点问题.在解决第二个问题的时候,我们首先必须要明确给出x 的取值范围是否是在对称轴的一边还是两边,然后根据函数图形进行求解;对于第三问我们必须能够根据题意画出函数图象,然后根据函数图象求出取值范围.在解决二次函数的题目时,画图是非常关键的基本功.27.(1)抛物线的解析式为223y x x =--+,直线的解析式为3y x =+.(2)(1,2)M -;(3)P 的坐标为(1,2)--或(1,4)-或317(1,)+-或317(1,)--. 【解析】 分析:(1)先把点A ,C 的坐标分别代入抛物线解析式得到a 和b ,c 的关系式,再根据抛物线的对称轴方程可得a 和b 的关系,再联立得到方程组,解方程组,求出a ,b ,c 的值即可得到抛物线解析式;把B 、C 两点的坐标代入直线y=mx+n ,解方程组求出m 和n 的值即可得到直线解析式;(2)设直线BC 与对称轴x=-1的交点为M ,此时MA+MC 的值最小.把x=-1代入直线y=x+3得y 的值,即可求出点M 坐标;(3)设P (-1,t ),又因为B (-3,0),C (0,3),所以可得BC 2=18,PB 2=(-1+3)2+t 2=4+t 2,PC 2=(-1)2+(t-3)2=t 2-6t+10,再分三种情况分别讨论求出符合题意t 值即可求出点P 的坐标.详解:(1)依题意得:1203b a a b c c ⎧-=-⎪⎪++=⎨⎪=⎪⎩,解得:123a b c =-⎧⎪=-⎨⎪=⎩,∴抛物线的解析式为223y x x =--+.∵对称轴为1x =-,且抛物线经过()1,0A ,∴把()3,0B -、()0,3C 分别代入直线y mx n =+,得303m n n -+=⎧⎨=⎩,解之得:13m n =⎧⎨=⎩, ∴直线y mx n =+的解析式为3y x =+.(2)直线BC 与对称轴1x =-的交点为M ,则此时MA MC +的值最小,把1x =-代入直线3y x =+得2y =,∴()1,2M -.即当点M 到点A 的距离与到点C 的距离之和最小时M 的坐标为()1,2-.(注:本题只求M 坐标没说要求证明为何此时MA MC +的值最小,所以答案未证明MA MC +的值最小的原因).(3)设()1,P t -,又()3,0B -,()0,3C ,∴218BC =,()2222134PB t t =-++=+,()()222213610PC t t t =-+-=-+,①若点B 为直角顶点,则222BC PB PC +=,即:22184610t t t ++=-+解得:2t =-, ②若点C 为直角顶点,则222BC PC PB +=,即:22186104t t t +-+=+解得:4t =,③若点P 为直角顶点,则222PB PC BC +=,即:22461018t t t ++-+=解得:132t =232t -=.综上所述P 的坐标为()1,2--或()1,4-或⎛- ⎝⎭或⎛- ⎝⎭. 点睛:本题综合考查了二次函数的图象与性质、待定系数法求函数(二次函数和一次函数)的解析式、利用轴对称性质确定线段的最小长度、难度不是很大,是一道不错的中考压轴题.。
广东省茂名市九校联考2019-2020学年度第一学期 九年级数学试卷 含解析
广东省茂名市九校联考2019-2020学年度第一学期九年级数学试卷 含解析(试卷满分120分,考试时间90分钟)注意事项:1.全部答案必须在答题卷上完成,在非答题卷上作答无效。
2.答题卷必须保持整洁,考试结束后,将答题卷交回。
一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个正确的,把选出的答案写在答题卷上。
1、如图是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图),则这个几何体是( )A .三棱柱B .三棱锥C .圆柱D .圆锥2、已知关于的方程的一个根为2,x 20x x a +-=则另一个根是( )A .-3B .-2C .3D .63、下列命题错误的是( )A .对角线互相平分的四边形是平行四边形B .对角线相等的平行四边形是矩形C .一条对角线平分一组对角的四边形是菱形D .对角线互相垂直的矩形是正方形4、若△ABC 的每条边长增加各自的10%得△A′B′C′,则∠B′的度数与其对应角∠B 的度数相比( )A .增加了10%B .减少了10%C .增加了(1+10%)D .没有改变5、某厂从生产的一批零件中抽取2000个进行质量检查,结果发现有10个是次品,那么从中任取1个是次品的概率约为( )A .B .C .D .120001200121106、定义运算:a ⋆b=a (1-b ).若a ,b 是方程(m <0)的两根,2104x x m -+=则b ⋆b-a ⋆a 的值为( )A .0B .1C .2D .与m 有关7、在一次初三学生数学交流会上,每两名学生握手一次,统计共握手253次.若设参加此会的学生为名,据题意可列方程为( )x A . (1)253x x +=B .(1)253x x -=C . 1(1)2532x x +=D .1(1)2532x x -=8、如图,正方形ABCD 的面积为1,则以相邻两边中点连线EF 为边正方形EFGH 的周长为( )AB .C D.119、如图,在矩形纸片ABCD 中,AB=3,点E 在边BC 上,将△ABE 沿直线AE 折叠,点B 恰好落在对角线AC 上的点F 处,若∠EAC=∠ECA ,则AC 的长是( )A.B .6B .C .4D .510、如图,线段,点是线段的黄金分割点(且,即1AB =1P AB 11AP BP <),点是线段的黄金分割点(),点是线段211PB AP AB = 2P 1AP 212AP PP <3P 的黄金分割点(),…,依此类推,则线段的长度是( 2AP 323AP P P <2020AP )A .B . 20202020C . D .202012⎛⎫ ⎪⎝⎭)10102-二、填空题(本大题共7小题,每小题4分,共28分)请将下列各题的正确答案填写在答题卷相应的位置上。
2019-2020学年广东茂名地区九年级上期末数学试题
2019—2020学年度第一学期期末考试九年级数学参考答案一、选择题:1. B2.D3.C4.B5.D6.A7.A8.B9.C 10.A 二、填空题:11. 3 12. 94 13. 12514. 4 15. m>2 16. 7517. 12 三、解答题:18、解:x 2-2x=x-2,x (x-2)-(x-2)=0,(x-2)(x-1)=0,x-2=0,x-1=0,x 1=2,x 2=1. 19、解:设a=2k ,b=3k ,c=4k ,∵2a+3b-2c=10,∴4k+9k-8k=10,5k=10,解得k=2.∴a=4,b=6,c=8.20、(1)解:如图,点O 为灯泡所在的位置, 线段FH 为小亮在灯光下形成的影子.(2)解:由已知可得,CD CA OD AB =, ∴1.24.14.16.1+=OD , ∴OD=4m .∴灯泡的高为4m .四、解答题:21、解:解:(1)∵反比例函数y=x k 的图象经过A (3,1), ∴k=3×1=3,∴反比例函数的解析式为y=x3; (2)把B (-21,n )代入反比例函数解析式,可得-21n=3, 解得n=-6,∴B (-21,-6), 把A (3,1),B (-21,-6)代入一次函数y=mx+b ,可得,b m b m ⎪⎩⎪⎨⎧+-=-+=21631 解得⎩⎨⎧-==52b m , ∴一次函数的解析式为y=2x-5.22、解:(1)狮子能将公鸡送到吊环上. 当狮子将跷跷板P 端按到底时可得到Rt △PHQ ,∵支点A 为跷跷板PQ 的中点,AB ∥QH ,∴AB 为△PHQ 的中位线,∵AB=1.2(米),∴QH=2AB=2.4m >2m .(2)支点A 移到跷跷板PQ 的三分之一处(PA=31PQ ), 狮子刚好能将公鸡送到吊环上, 如图,∵AB ∥QH ,∴△PAB ∽△PQH ,∴316.32.1===PQ PA QH AB ∴支点A 移到跷跷板PQ 的三分之一处时(A 点靠近P 处),狮子刚好能将公鸡送到吊环上.23、解:(1)过点B 作BH ⊥CA 交CA 的延长线于点H , ∵∠MBC=60°,∴∠CBA=30°,∵∠NAD=30°,∴∠BAC=120°,∴∠BCA=180°-∠BAC-∠CBA=30°,∴BH=BC×sin ∠BCA=150×21=75(海里).答:B 点到直线CA 的距离是75海里;(2)∵BD=752海里,BH=75海里, ∴DH=22BH BD -=75(海里),∵∠BAH=180°-∠BAC=60°,在Rt △ABH 中,tan ∠BAH=3=AHBH , ∴AH=253,∴AD=DH-AH=(75-253)(海里).答:执法船从A 到D 航行了(75-253)海里.五、解答题:24、(1)证明:∵DE⊥BC,∴∠DFB=90°.∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE.∵MN∥AB,即CE∥AD,∴四边形ADEC是平行四边形,∴CE=AD;(2)①证明:∵D为AB中点,∴AD=BD.∵CE=AD,∴BD=CE.∵BD∥CE,∴四边形BECD是平行四边形.∵∠ACB=90°,D为AB中点,∴CD=BD,∴四边形BECD 是菱形;②当∠A=45°时,四边形BECD 是正方形. 理由如下:∵∠ACB=90°,∠A=45°,∴∠ABC=∠A=45°,∴AC=BC .∵D 为BA 中点,∴CD ⊥AB ,∴∠CDB=90°.∵四边形BECD 是菱形,∠CDB=90°, ∴四边形BECD 是正方形.25、解:(1)过P 作PQ ⊥BC 于Q ,∵矩形ABCD ,∴∠B=90°,即AB ⊥BC ,又AD ∥BC . ∴PQ=AB=3.∵△PEF 是等边三角形,∴∠PFQ=60°.在Rt △PQF 中sin60°=PF3, ∴PF=2.∴△PEF 的边长为2.(2)方法一:△ABC ∽△CDA .理由:∵矩形ABCD ,∴AD ∥BC ,∴∠1=∠2,∵∠B=∠D=90°,∴△ABC ∽△CDA .方法二:△APH ∽△CFH .理由:∵矩形ABCD ,∴AD ∥BC ,∴∠2=∠1,又∵∠3=∠4,∴△APH ∽△CFH .(3)猜想:PH 与BE 的数量关系是:PH-BE=1, 证法一:在Rt △ABC 中,AB=3,BC=3, ∴tan ∠1=33 BC AB . ∴∠1=30°.∵△PEF 是等边三角形,∴∠PFE=60°,PF=EF=2.∵∠PFE=∠1+∠4,∴∠4=30°.∴∠1=∠4.∴FC=FH .∵PH+FH=2,BE+EF+FC=3,FC=FH ,EF=2, ∴BE+FC=3-2=1,∴PH-BE=1.证法二:在Rt △ABC 中,AB=3,BC=3, ∴tan ∠1=33 BC AB . ∴∠1=30°.∵△PEF 是等边三角形,PE=2,∴∠PFE=∠PEF=∠EPF=60°.∴∠EGC=90°.在Rt △CEG 中,∠1=30°,∴EG=21EC ,即EG=21(3-BE ). 在Rt △PGH 中,∠3=30°,∴PG=21PH . ∴PE=EG+PG=21(3-BE )+21PH=2. ∴PH-BE=1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【市级联考】广东省茂名市2019届九年级上学期五
校期末联考数学试题
学校_________ 班级__________ 姓名__________ 学号__________
一、单选题
1. 下列图形中,既是轴对称图形又是中心对称图形的有()
A.1个B.2个C.3个D.4个
2. 若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k 的取值范围是()
A.k>B.k≥C.k>且k≠1D.k≥且k≠1 3. 如图,⊙O的直径AB垂直于弦CD,∠CAB=36°,则∠BCD的大小是( )
A.18°B.36°C.54°D.72°
4. 下列事件中必然发生的事件是()
A.一个图形平移后所得的图形与原来的图形不全等
B.不等式的两边同时乘以一个数,结果仍是不等式
C.200件产品中有5件次品,从中任意抽取6件,至少有一件是正品
D.随意翻到一本书的某页,这页的页码一定是偶数
5. 在平面直角坐标系中,平移二次函数的图象能够与二次函数
的图象重合,则平移方式为()
A.向左平移个单位,向下平移个单位
B.向左平移个单位,向上平移个单位
C.向右平移个单位,向下平移个单位
D.向右平移个单位,向上平移个单位
6. 如图,⊙O是△ABC的外接圆,BC=3,∠BAC=30°,则劣弧的长等于()
A.B.π
C.
D.π
7. 如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB延长线上,连接AD.下列结论一定正确的是()
A.∠ABD=∠E B.∠CBE=∠C C.AD∥BC D.AD=BC
8. 如图,AB是⊙O的直径,CD⊥AB,∠ABD=60°,CD=2,则阴影部分的面积为()
A.
B.πC.2πD.4π
9. 若a、b 是一元二次方程x2+3x -6=0 的两个不相等的根,则a2﹣3b 的值是()
A.-3 B.3 C.﹣15 D.15
二、填空题
10. 如图,抛物线的对称轴是.且过点(,0),有下列结论:①abc>0;②a﹣2b+4c=0;③25a﹣10b+4c=0;④3b+2c>0;⑤a﹣
b≥m(am﹣b);其中所有正确的结论是_________.(填写正确结论的序号)
11. 若抛物线的顶点在坐标轴上,则b的值为________.
12. 在半径为6cm的圆中,120°的圆心角所对的弧长为_____cm.
13. 关于x的一元二次方程有一根为0,则m的值为
______
14. 在一个不透明的口袋里有红、黄、蓝三种颜色的小球,这些球除颜色外完
全相同,其中有5个黄球,4个蓝球.若随机摸出一个蓝球的概率为,则随
机摸出一个红球的概率为_____.
15. 已知一元二次方程x2﹣4x﹣3=0的两根分别为m,n,则的值为
_____.
16. 用配方法把二次函数写成的形式为________
17. 如图,在⊙O中,半径OC与弦AN垂直于点D,且AB=16,OC=10,则CD
的长是_____.
18. 如图,在△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠B′AB等于_____.
19. 四边形ABCD为圆O的内接四边形,已知∠BOD=100°,则∠BCD=_____.
三、解答题
20. 如图,Rt△ABC中,AB⊥BC,AB=12,BC=8,P是△ABC内部的一个动点,
且满足∠PAB=∠PBC,则线段CP长的最小值为___.
21. 解方程:
(1)﹣4x+1=0.
(2)﹣2x﹣3=0.
22. 如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC 的三个顶点的坐标分别为A(﹣3,4),B(﹣5,2),C(﹣2,1).
(1)画出△ABC关于y轴的对称图形△A1B1C1;
(2)画出将△ABC绕原点O逆时针方向旋转90°得到的△A2B2C2;
(3)求(2)中线段OA扫过的图形面积.
23. 在四张背面完全相同的纸牌A、B、C、D,其中正面分别画有四个不同的几何图形(如图),小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸一张.
(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A、B、C、D表示);
(2)求摸出两张纸牌牌面上所画几何图形,既是轴对称图形又是中心对称图形的概率.
24. 已知关于 x 的一元二次方程 x2+3x﹣m=0 有实数根.
(1)求m的取值范围
(2)若两实数根分别为x
1和 x
2
,且x
1
2+x
2
2=11,求 m 的值.
25. 如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,DE交AC于点E,且∠A=∠ADE.
(1)求证:DE是⊙O的切线;
(2)若AD=16,DE=10,求BC的长.
26. 受益于国家支持新能源汽车发展和“一带一路”倡议,某市汽车零部件生产企业的利润逐年提高,据统计,2017年的利润为2亿元,2019 年的利润为
2.88亿元.
(1)求该企业从2017年到2019年年利润的平均增长率?
(2)若年利润的平均增长率不变,则该企业2020年的利润能后超过3.5亿元?
27. 如图,已知抛物线y=ax2+bx+c过点A(﹣3,0),B(﹣2,3),C(0,3),顶点为D.
(1)求抛物线的解析式;
(2)设点M(1,m),当MB+MD的值最小时,求m的值;
(3)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.。