线性代数关于等价、相似、合同的对比
等价、相似、合同的关系
![等价、相似、合同的关系](https://img.taocdn.com/s3/m/3fcf70cb482fb4daa48d4b7b.png)
矩阵等价、相似与合同的区别与联系等价、相似与合同是矩牡的三大变换•应了解其定义.关系及有关性质.1)定义及相互之间的关系设K是淤心矩阵,若存在M阶可逆矩阵P和以阶可逆矩阵©•使得PAQ=B f则称Z 与3等价,记为A=B.设£是以阶方阵,若存在池阶可艾矩阵P,使得P S P =E,则称A^R 相似,记为A〜R:若存在总阶可逆矩阵P,使得pT AP =孙,则称/与亦合同,记为A + ;若存在以阶正交•矩阵使得Q~l AQ= Q T AQ= 5,则称/与不正交相似.由走义可知其关系,如下冒所示・正交相似2)性质(1)等价、相似与合同都具有反身性、对称性及传递性,即/二4〜/, A-反身性);若A", /〜力,A",则A, R〜A, A (对称性);若A", B = C则A M C;若A〜E,运〜C■则N~C;若B = C则传递性).(2) A = R O A 与*司型,且rank A = rank B .若rank A = r则(E r O\A= r,称后者为矩阵/的等价标准形I。
O)(3) B => rank A = rank B , det A= detB /与* 的粹征值相同.注所给的都是必要条件,即Efe rank A - rank B ,或d et A = det B ,或/ 与力的特征值相同不能推知A^B. fe若/与*都可对角化,且特征值相同,贝U A〜孙.(4) A-B =>ranky4 = rank^ ,对称性不变(如果/或B对称的话). 若A与R是实对称矩阵,则与/?有相同的正、负惯性指数.3)实对•称矩阵的亿简设Z是以阶实对称矩阵,rank A = r ;是/的特征值.(1)用初等变换可将/化简成PAQ=%O6(2)用合同变换可将/化简成P^AP =O O2O6P是正惯性指数.(3)弔正交相似变换可倚力化怪成0^(2= 0^(2 =対实对称矩阵虫的这三种变换,一个比一个特殊,一个比一个限制更多,各有其优诜点•总的来说则为:限制越少则化简后的形式越程旦,伍变换后丢掉'原症阵的性疾就越多.如〔1)的形式最简单,但变唤后只保留了秩不变;(2)的形式虽然比(1)稍复杂,但变换后保留秩不变,对称性不变’正、负慣•性指数不变;(3)的形式文更复杂一点,但变换石保密秩不变.对称性不变,正、负慣性指数不变,特征值不变.。
矩阵合同的定义
![矩阵合同的定义](https://img.taocdn.com/s3/m/fdbac70b4b35eefdc8d3339c.png)
矩阵合同的定义篇一:矩阵的合同,等价与相似的联系与区别矩阵的合同,等价与相似的联系与区别一、基本概念与性质(一)等价:1、概念。
若矩阵A可以经过有限次初等变换化为B,则称矩阵A与B等价,记为AB。
2、矩阵等价的充要条件:AB{同型,且人r(A)=r(B)存在可逆矩阵P和Q,使得PAQ=B成立3、向量组等价,两向量组等价是指两向量组可相互表出,有此可知:两向量组的秩相同,但两向量组各自的线性相关性却不相同。
(二)合同:1、概念,两个n阶方阵A,B,若存在可逆矩阵P,使得A成立,则称A,B合同,记作AB该过程成为合同变换。
2、矩阵合同的充要条件:矩阵A,B均为实对称矩阵,则A BBPAPBT二次型xTAx与xTBx有相等的E负惯性指数,即有相同的标准型。
(三)相似1、概念:n阶方阵A,B,若存在一个可逆矩阵P使得BP1AP 成立,则称矩阵A,B相似,记为A~B。
2、矩阵相似的性质:A~B,A~B,AA~BTTkk1~B(前提,A,B均可逆)1|E-A||EB|即A,B有相同的特征值(反之不成立)r(A)=r(B)tr(A)tr(B)即A,B的逆相等|A|=|B|3、矩阵相似的充分条件及充要条件:①充分条件:矩阵A,B有相同的不变因子或行列式因子。
②充要条件:A~B(EA)(EB) 二、矩阵相等、合同、相似的关系(一)、矩阵相等与向量组等价的关系:设矩阵A(1,2,,n),B(1,2,,m)1、若向量组(1,2,,m)是向量组(1,2,,n)的极大线性无关组,则有mn,即有两向量等价,而两向量组线性相关性却不同,钱者一定线性无关,而后者未必线性无关。
而矩阵B与A亦不同型,虽然r(A)r(B)但不能得出AB。
2、若m=n,两向量组(1,2,,n)(1,2,,m)则有矩阵A,B同型且r(A)r(B)A~B,AB,ABr(A)r(B)AB。
3、若ABr(A)r(B)两向量组秩相同,两向量组等价,即有AB(1,2,,n)(1,2,,n)综上所述:矩阵等价与向量等价不可互推。
矩阵的合同,等价与相似的联系与区别
![矩阵的合同,等价与相似的联系与区别](https://img.taocdn.com/s3/m/ea01d28b0242a8956bece49a.png)
矩阵的合同,等价与相似的联系与区别一、基本概念与性质(一)等价:1、概念。
若矩阵A 可以经过有限次初等变换化为B ,则称矩阵A 与B 等价,记为A B ≅。
2、矩阵等价的充要条件:A B ≅.{P Q A B ⇔同型,且人r(A)=r(B)存在可逆矩阵和,使得PAQ=B 成立3、向量组等价,两向量组等价是指两向量组可相互表出,有此可知:两向量组的秩相同,但两向量组各自的线性相关性却不相同。
(二)合同:1、概念,两个n 阶方阵A,B ,若存在可逆矩阵P ,使得A B ≅P T AP B =成立,则称A,B 合同,记作A B ≅该过程成为合同变换。
2、矩阵合同的充要条件:矩阵A,B 均为实对称矩阵,则A B ≅⇔二次型x T Ax 与x T Bx 有相等的E 负惯性指数,即有相同的标准型。
(三)相似1、概念:n 阶方阵A,B ,若存在一个可逆矩阵P 使得1B P AP -=成立,则称矩阵A,B 相似,记为~A B 。
2、矩阵相似的性质:~A B 11~,~,~(,)|E-A |||,()(),T T k k A B A B A B A B E B A B tr A tr B A B λλ--=-⇒=前提,均可逆即有相同的特征值(反之不成立)r(A)=r(B)即的逆相等|A|=|B|3、矩阵相似的充分条件及充要条件:①充分条件:矩阵A,B 有相同的不变因子或行列式因子。
②充要条件:~()()A B E A E B λλ⇔-≅-二、矩阵相等、合同、相似的关系(一)、矩阵相等与向量组等价的关系:设矩阵 12(,,,)n A λλλ=,12(,,,)m B βββ=1、若向量组(12,,,m βββ)是向量组(12,,,n λλλ)的极大线性无关组,则有m n ≤,即有两向量等价,而两向量组线性相关性却不同,钱者一定线性无关,而后者未必线性无关。
而矩阵B 与A 亦不同型,虽然()()r A r B =但不能得出A B ≅。
关于矩阵等价、合同、相似以及可对角化的性质和判别条件的总结
![关于矩阵等价、合同、相似以及可对角化的性质和判别条件的总结](https://img.taocdn.com/s3/m/1fd96982763231126edb11a4.png)
是
判
求出r iE A,
别
k n r iE A是否成立
程
否
序
A可对角化
A的特征值全为正数 A的顺序主子式全大于0
0
A
a11a22 L
L
ann
aii 0,i 1, 2,L L , n.
5.矩阵A与B相似:即可逆矩阵P,使得B P1AP.
r A r B
A、B具有相同的特征多项式,即
E
A
E
B
矩阵A、B具有许多相同的性质
A、B具有相同的特征值 AB
A
A为实对称矩阵
必可以与对角矩阵相似 必可以用正交变换对角化 3.实对称矩阵A的性质 不同特征值的特征向量必线性无关且正交
特征值全为实数 对应的特征向量全为实向量
k重特征值必有k个线性无关的特征向量
合同于单位矩阵,即可逆矩阵C,使得A CTC
A的正惯性指数等于n
4.n阶实对称矩阵A为正定矩阵
矩阵A与B的相似问题一般只对实对称矩阵而言,
即矩阵A与B均为实对称矩阵。
实对称矩阵A与B相似 A与B具有相同的特征值
此外还可以根据A与B相似的必要条件进行判别
A
Ann
是
否
是
A是否为实对称矩阵
可
否
对 由A的特征多项式 E A 是
角 求出A的所有特征值,A是
化 否有n个不同的特征值
否
的
对于A的k重特征值i
tr A tr B,即: aii bii
A1 : B1、AT : B、A* B、f ( A) f (B)于实对称矩阵A、B,A : B A与B合同,反之不成立
A : B A和B具有相同的特征值 A与B合同
矩阵的合同等价与相似的联系与区别
![矩阵的合同等价与相似的联系与区别](https://img.taocdn.com/s3/m/0929b194fc4ffe473368abc8.png)
矩阵的合同,等价与相似的联系与区别一、基本概念与性质(一)等价:1、概念。
若矩阵A 可以经过有限次初等变换化为B ,则称矩阵A 与B 等价,记为A B ≅。
2、矩阵等价的充要条件:A B ≅.{P Q A B ⇔同型,且人r(A)=r(B)存在可逆矩阵和,使得PAQ=B 成立3、向量组等价,两向量组等价是指两向量组可相互表出,有此可知:两向量组的秩相同,但两向量组各自的线性相关性却不相同。
(二)合同:1、概念,两个n 阶方阵A,B ,若存在可逆矩阵P ,使得A B ≅P T AP B =成立,则称A,B 合同,记作A B ≅该过程成为合同变换。
2、矩阵合同的充要条件:矩阵A,B 均为实对称矩阵,则A B ≅⇔二次型x T Ax 与x T Bx 有相等的E 负惯性指数,即有相同的标准型。
(三)相似1、概念:n 阶方阵A,B ,若存在一个可逆矩阵P 使得1B P AP -=成立,则称矩阵A,B 相似,记为~A B 。
2、矩阵相似的性质:~A B 11~,~,~(,)|E-A |||,()(),T T k k A B A B A B A B E B A B tr A tr B A B λλ--=-⇒=前提,均可逆即有相同的特征值(反之不成立)r(A)=r(B)即的逆相等|A|=|B|3、矩阵相似的充分条件及充要条件:①充分条件:矩阵A,B 有相同的不变因子或行列式因子。
②充要条件:~()()A B E A E B λλ⇔-≅-二、矩阵相等、合同、相似的关系(一)、矩阵相等与向量组等价的关系:设矩阵 12(,,,)n A λλλ=L ,12(,,,)m B βββ=L1、若向量组(12,,,m βββL )是向量组(12,,,n λλλL )的极大线性无关组,则有m n ≤,即有两向量等价,而两向量组线性相关性却不同,钱者一定线性无关,而后者未必线性无关。
而矩阵B 与A 亦不同型,虽然()()r A r B =但不能得出A B ≅。
合同线性代数[工作范文]
![合同线性代数[工作范文]](https://img.taocdn.com/s3/m/5baf74ed2cc58bd63186bdea.png)
合同线性代数篇一:线性代数中的合同关系、正定矩阵什么是线性代数中的合同?惯性定律?“合同”是矩阵之间的一种关系。
两个n阶方阵A与B 叫做合同的,是说存在一个满秩n阶方阵P,使得P′AP=B.“合同”这种关系,是一种“等价关系”。
按照它可以对n 阶方阵的全体进行分类。
对于n阶实对称矩阵而言,线性代数中有两个结果。
①每个n阶实对称矩阵,都一定与实对角矩阵合同,并且此时P也是实的。
②对于一个n阶实对称矩阵A,与它合同的实对角矩阵当然不只一个,(相应的P也变化)。
但是这些实对角矩阵的对角元中,正数的个数是一定的(叫A的正惯性指数),负数的个数也是一定的(叫A的负惯性指数)。
结果②就是“惯性定理”。
一个矩阵是正定矩阵的充要条件是:矩阵的主对角线元素全大于0.这个命题是否正确不对,反例: 1221只有主对角矩阵才能说对角元素全大与0就正定设M是n阶实系数对称矩阵,如果对任何非零向量X=(x_1,...x_n) 都有 XMX′>0,就称M正定(PositiveDefinite)。
正定矩阵在相合变换下可化为标准型,即单位矩阵。
所有特征值大于零的对称矩阵(或厄米矩阵)也是正定矩阵。
另一种定义:一种实对称矩阵.正定二次型f(x1,x2,…,xn)=X′AX的矩阵A(A′)称为正定矩阵.正定矩阵的一些判别方法由正定矩阵的概念可知,判别正定矩阵有如下方法:阶对称矩阵A正定的充分必要条件是A的 n 个特征值全是正数。
证明:若,则有∴λ>0反之,必存在U使即: A正定由上面的判别正定性的方法,不难得到A为半正定矩阵的充要条件是:A的特征值全部非负。
特征值都在主对角线上运算你知道的吧。
行列式小结一、行列式定义行列式归根结底就是一个数值,只不过它是由一大堆数字经过一种特殊运算规则而得出的数而已。
当然这堆数排列成相当规范的n行n列的数表形式了。
所以我们可以把行列式当成一个数值来进行加减乘除等运算。
举个例子:比如说电视机(看做一个行列式),是由很多个小的元件(行列式中的元素)构成的,经过元件的相互作用、联系最终成为一台电视机(行列式)。
考研数学:令人头大的相似、合同、等价
![考研数学:令人头大的相似、合同、等价](https://img.taocdn.com/s3/m/900ae7d06c85ec3a86c2c51c.png)
考研数学:令人头大的相似、合同、等价摘要:考研数学里关于矩阵的相似、合同、等价的关系有时令大家头晕脑胀,就需要大家对它们的性质、定义要更加清楚,得分才不难。
接下来一起看看三者的纠缠吧。
关于矩阵的相似、合同、等价的关系总结起来就是一句话相似必合同,合同必等价(反之,则不一定)...........背好这一句话基本可以应付70%的填空选择,至于剩下那30%,则需要对各自的性质、定义以及判别的条件有充分的了解。
分割线卡通一、等价的定义两个SxN矩阵A,B等价的充要条件为:存在可逆的s阶矩阵p与可逆的n阶矩阵Q,使得B=PAQ矩阵A与B等价必须具备的两个条件(1)矩阵A与B必为同型矩阵(不要求是方阵)(2)存在s阶可逆矩阵p和n阶可逆矩阵Q,使B=PAQ矩阵等价的性质(1)反身性:即A~=A(2)对称性:若A~=B,则B~=A.(3)传递性:若A~=B,B~=C,则A~=C.(4)A等价于B的充要条件是r(A)=r(B)(5)设A为m*n矩阵,r(A)合同,C又与B合同,那么C与A合同.(4)合同的两矩阵有相同的二次型标准型.(5)任一个对称矩阵都合同于一个对角矩阵(6)合同矩阵的秩相等三、相似的定义设A,B均为n阶方阵,若存在n阶可逆矩阵P,使P1AP=B,则称矩阵A与B为相似矩阵(若n阶可逆矩阵P为正交阵,则称A与B为正交相似矩阵).矩阵A与B相似,必须同时具备两个条件(1)矩阵A与B不仅为同型矩阵,而且是方阵(2)存在n阶可逆矩阵P,使得P1AP=B矩阵相似的性质(1)反身性:即A~A(2)对称性:若A~B,则B~A.(3)传递性:若A~B,B~C,则A~C.(4)若矩阵A、B相似,则r(A)=r(B)(5)若矩阵A、B相似,则KA~KB(6)若矩阵A、B相似,则A(7)若矩阵A、B相似,f(x)是一个多项式,则f(A)~f(B)注:(1)与单位矩阵相似的n阶矩阵只有单位阵E本身,与数量矩阵kE相似的n阶方阵只有数量阵kE本身。
浅谈矩阵的等价、合同与相似之间的关系
![浅谈矩阵的等价、合同与相似之间的关系](https://img.taocdn.com/s3/m/9b846cd1a6c30c2258019e6f.png)
1 、引 言矩阵的相似与合同及其等价三者在线性代数中是很重要的概念,在线性代数的学习中,矩阵的相似与合同作为研究工具,得到广泛的应用,起着非常重要的作用,能够把要处理的问题简单化,本文对矩阵的等价,合同,相似进行了简单的介绍 ,对矩阵的应用学习有一定的帮助.2、矩阵的等价,相似,合同2.1矩阵的等价2.1.1矩阵等价的定义:矩阵等价用矩阵乘法表示出来就是,如果有两个m ×n 阶矩阵A 和B ,而且这两个矩阵满足B=QAP ,其中P 是n ×n 阶可逆矩阵,Q 是m ×m 阶可逆矩阵,那么这两个矩阵是等价的。
即,矩阵A 经过有限次的初等变换得到矩阵B2.1.2初等变换(1)换法变换:对调矩阵的两行(列),得初等矩阵E(i,j).用m 阶初等矩阵),mj i E (左乘nm ij a A ⨯=)(,相等于对矩阵A 实行第一种矩阵初等行变换,把A 的第i 行与第j 行对调,记作(r r j i ↔)类似的,用n 阶初等矩阵()j i E n ,右乘矩阵n m ij a ⨯=)(A ,相当于都矩阵A 实行第一种矩阵初等列变换,把A 的第i 列与第j 列对调,记作)c c j i ↔( (2)倍法变换:以数K ≠0乘某一行(列)中的全部元素,得初等矩阵))((K i E 。
用))((K i m E 左乘矩阵A ,相当于以数K 乘A 的第i 行,记作(K r i ⨯)。
用))((K i nE 右乘矩阵A ,相当于以数K 乘A 的第i 列,记作(K ⨯c i )。
(3)消法变换: 以数K 乘某行(列)加到另一行(列)上去,得初等矩阵))((K E ij ,以))((K E ij m 左乘矩阵A ,相当于把A 的第j 行乘以K 加到第i 行上,记作(r r j i K +)。
以))((K E ij n右乘矩阵A ,相当于把A 的第i 列乘以K 加到第j 列上,记作(c c i j K +)。
等价、相似、合同的关系
![等价、相似、合同的关系](https://img.taocdn.com/s3/m/c31924bdf8c75fbfc77db25c.png)
矩阵等价、相似与合同的区别与联系等价、相似与合同是矩阵的三大变换.应了解其定义,关系及有关性険.1)定义及相互之间的关系设川,舟是曲X并矩璋.若花 S阶可逆矩阵卩和用阶可逆矩阵0,使得PAQ=B t则称£与j?等价,记为A=B■设〃是科谕方阵,若存在用阶可龙矩阵尸,使^P-i AP = Bf则称Z 与苏祸似,记为A -肌若存在闯阶可湮矩阵P使猱戸AP= E贝U称』与舟合同-记为4R ;若存总艸阶正交矩阵0 使得Q l AQ= Q^AQ= B则称M与E正交相f以.由定文可知其关系*如下图所示*2)性质(1)等价、相似与合同都具有反身性、对称性及传递性,即A - At At A a A (反身性);若A", A~ R,则丹=』,E- A A{对称性);若』卷R,若A", K〜C则貝〜C;若, B^C则/ = C(传递性)•(2) A = E O A 与耳司型>且rank A = rank S・若rank 4 = F *则(£A= r,称旨者为矩阵』的等价标准形O O⑶rank A= rank B ? det A - det B J A与E的释3E 澄7冃司“注听给閔都是必要条件,即由rank A= rank B?或det A = dctB ,或J4与必的特征值相同不能筆知』〜J!.但若/与J?都可对兔址,旦特花值相同,则4- J?.(3)用正交相似变换可将/化简成Q J AQ=Q-l AQ^对实对称矩阵/的这三种变换,一个比一个特殊,一个比一个限毛:更多,各有其优诀点•总的来说则为:限制越少则化简后的形式越简单,但变换后丢掉原矩阵的性质就越多.如(1)的形式量简单.但变换后只保留了秩不变:(2)的形式虽然比(1)稍复杂.叵变换后保留秩不变,对称性不变,正、负惯性指数不变;(3)的形式又更复杂一点,但变换后保留秩不变,对称性不变,正、负惯性指数不变,特征值不变.。
合同矩阵和相似矩阵[工作范文]
![合同矩阵和相似矩阵[工作范文]](https://img.taocdn.com/s3/m/66ab38adec3a87c24028c4ca.png)
合同矩阵和相似矩阵篇一:矩阵的合同,等价与相似的联系与区别矩阵的合同,等价与相似的联系与区别20XX09113 李娟娟一、基本概念与性质(一)等价:1、概念。
若矩阵A可以经过有限次初等变换化为B,则称矩阵A与B等价,记为AB。
2、矩阵等价的充要条件:AB{同型,且人r(A)=r(B) 存在可逆矩阵P和Q,使得PAQ=B成立3、向量组等价,两向量组等价是指两向量组可相互表出,有此可知:两向量组的秩相同,但两向量组各自的线性相关性却不相同。
(二)合同:1、概念,两个n阶方阵A,B,若存在可逆矩阵P,使得ABPTAPB成立,则称A,B合同,记作AB该过程成为合同变换。
2、矩阵合同的充要条件:矩阵A,B均为实对称矩阵,则AB二次型xTAx与xTBx有相等的E负惯性指数,即有相同的标准型。
(三)相似1、概念:n阶方阵A,B,若存在一个可逆矩阵P使得BP1AP 成立,则称矩阵A,B相似,记为A~B。
2、矩阵相似的性质:AT~BT,Ak~Bk,A1~B1(前提,A,B均可逆)|E-A||EB|即A,B有相同的特征值(反之不成立)A~Br(A)=r(B)tr(A)tr(B)即A,B的逆相等|A|=|B|3、矩阵相似的充分条件及充要条件:①充分条件:矩阵A,B有相同的不变因子或行列式因子。
②充要条件:A~B(EA)(EB)二、矩阵相等、合同、相似的关系(一)、矩阵相等与向量组等价的关系:设矩阵 A(1,2,,n),B(1,2,,m)1、若向量组(1,2,,m)是向量组(1,2,,n)的极大线性无关组,则有mn,即有两向量等价,而两向量组线性相关性却不同,钱者一定线性无关,而后者未必线性无关。
而矩阵B与A亦不同型,虽然r(A)r(B)但不能得出AB。
2、若m=n,两向量组(1,2,,n)(1,2,,m)则有矩阵A,B同型且r(A)r(B)A~B,AB,ABr(A)r(B)AB。
3、若ABr(A)r(B)两向量组秩相同,两向量组等价,即有AB(1,2,,n)(1,2,,n)综上所述:矩阵等价与向量等价不可互推。
矩阵的等价,合同,相似的联系与区别
![矩阵的等价,合同,相似的联系与区别](https://img.taocdn.com/s3/m/acdd8a1d6bd97f192279e9de.png)
目录摘要 (I)引言 (1)1矩阵间的三种关系 (1)1.1 矩阵的等价关系 (1)1.2 矩阵的合同关系 (1)1.3. 矩阵的相似关系 (2)2 矩阵的等价、合同和相似之间的联系 (3)3矩阵的等价、合同和相似之间的区别 (5)结束语 (6)参考文献 (6)摘要:等价、合同和相似是矩阵中的三种等价关系,在矩阵这一知识块中占有举足轻重的地位.矩阵可逆性、矩阵的对角化问题、求矩阵特征根与特征向量、化二次型的标准形等诸多问题的解决都要依赖于这三种等价关系. 根据等价、合同和相似的联系的研究的结论是其一可利用等价矩阵的性质来确定相似矩阵或合同矩阵的性质.其二可利用正交相似与正交合同的一致性,得到二者间彼此的转化.关键词:矩阵的等价;矩阵的相似;矩阵的合同;等价条件引言:在高等代数中,讨论了矩阵的三种不同关系,它们分别为矩阵的等价、矩阵的相似和矩阵的合同等关系.本文首先介绍了这三种关系以及每种关系的定义,性质,相关定理及各自存在的条件,然后给出了这三种矩阵关系间的联系,即相似矩阵、合同矩阵必为等价矩阵,相似为正交相似,合同为正交合同时,相似与合同一致.还有矩阵的相似与合同之等价条件.并对这些结论作了相应的理论证明,最后给出了他们的区别和不变量.1矩阵间的三种关系1.1 矩阵的等价关系定义1 两个s n ⨯矩阵,A B 等价的充要条件为:存在可逆的s 阶矩阵p 与可逆的 n 阶矩阵Q ,使B PAQ =由矩阵的等价关系,可以得到矩阵A 与B 等价必须具备的两个条件:(1)矩阵A 与B 必为同型矩阵(不要求是方阵).(2)存在s 阶可逆矩阵p 和n 阶可逆矩阵Q , 使得B PAQ =.性质1(1)反身性:即A A ≅.(2)对称性:若A B ≅,则B A ≅(3)传递性:即若A B ≅,B C ≅,则A C ≅定理1 若A 为m n ⨯矩阵,且()r A r =,则一定存在可逆矩阵P (m 阶)和Q (n 阶),使得000r m nI PAQ B ⨯⎛⎫== ⎪⎝⎭.其中r I 为r 阶单位矩阵. 推论1 设A B 、是两m n ⨯矩阵,则A B ≅当且仅当()()r A r B =.1.2 矩阵的合同关系定义2 设,A B 均为数域p 上的n 阶方阵,若存在数域p 上的n 阶可逆矩阵p ,使得T P AP B =,则称矩阵为合同矩阵(若数域p 上n 阶可逆矩阵p 为正交矩阵),由矩阵的合同关系,不难得出矩阵A 与B 合同必须同时具备的两个条件:(1) 矩阵A 与B 不仅为同型矩阵,而且是方阵.(2) 存在数域p 上的n 阶矩阵p ,T P AP B =性质2(1)反身性:任意矩阵A 都与自身合同.(2)对称性:如果B 与A 合同,那么A 也与B 合同.(3)传递性:如果B 与A 合同,C 又与B 合同,那么C 与A 合同.因此矩阵的合同关系也是等价关系,而且由定义可以直接推得:合同矩阵的秩等.定理2 数域F 上两个二次型等价的充要条件是它们的矩阵合同.定理3 复数域上秩为r 的二次型,可以用适当的满秩线性变换化为标准形:22212r f y y y =++ 1.3. 矩阵的相似关系定义3 设,A B 均为数域p 上n 阶方阵,若存在数域p 上n 阶可逆矩阵p 使得B AP P =-1,则称矩阵A 与B 为相似矩阵(若n 级可逆矩阵p 为正交阵,则称A 与B 为正交相似矩阵)由矩阵的相似关系,不难得到矩阵A 与B 相似,必须同时具备两个条件(1) 矩阵A 与B 不仅为同型矩阵,而且是方阵(2) 在数域p 上n 阶可逆矩阵P ,使得B AP P =-1性质3(1)反身性 T A E AE = ;(2)对称性 由T B C AC =即得()11T A C BC --=;(3)传递性 111T A C AC =和2212T A C AC =即得 ()()21212T A C C A C C总之,合同是一种矩阵之间的等价关系,而且经过非退化的线性替换,新二次型的矩阵与原二次型矩阵是合同的.(4) 11111221122()P k A k A P k P A P k P A P ---+=+(其中12,k k 是任意常数); (5)1111212()()()P A A P P A P P A P ---=;(6)若A 与B 相似,则m A 与m B 相似(m 为正整数);(7) 相似矩阵有相同的秩,而且,如果1B P AP -=为满秩矩阵,那么11111()B P AP P A P -----==.即满秩矩阵如果相似,那么它们的逆矩阵也相似.(8)相似的矩阵有相同的行列式;因为如果1B P AP -=,则有:11B P AP P A P A --===(9)相似的矩阵或者都可逆,或者都不可逆;并且当它们可逆时,它们的逆矩阵相似;设1B P AP -=,若B 可逆,则11111()B P AP PA P -----==从而A 可逆.且1B -与1A -相似.若B 不可逆,则1()P AP -不可逆,即A 也不可逆.下面这个性质是一个重要的结论,因此我们把它写成以下定理定理4 相似矩阵的特征值相同.推论3 相似矩阵有相同的迹.2 矩阵的等价、合同和相似之间的联系(1) 由以上三种矩阵间的关系的定义,可以知道每一种矩阵关系存在所必须具备的条件,但是这三种关系彼此间存在着密切的联系定理5 相似矩阵必为等价矩阵,等价矩阵未必为相似矩阵.证明: 设n 阶方阵,A B 相似,由定义3知存在n 阶可逆矩阵1P ,使得111P AP B -=,此时若记11P P -=,1Q P = ,则有PAQ B =,因此由定义1得到n 阶方阵,A B 等价反过来,对于矩阵100010A ⎛⎫= ⎪⎝⎭,121010B ⎛⎫= ⎪⎝⎭等价,但是A 与B 并不相似,即等价矩阵未必相似.定理 6 对于n 阶方阵,A B ,若存在n 阶可逆矩阵,P Q 使PAQ B =,(即A 与B等价),且PQ E = (E 为n 阶单位矩阵),则A 与B 相似.证明: 设对于n 阶方阵A 与B ,若存在n 阶可逆矩阵,P Q ,使PAQ B =,即A 与B 等价.又知PQ E =,若记11P P -= ,那么1Q P =,也即111P AP B -=,则矩阵,A B 也相似.定理7 合同矩阵必为等价矩阵,等价矩阵未必为合同矩阵.证明: 设n 阶方阵,A B 合同,由定义2有,存在n 阶可逆矩阵1P ,使得11TP AP B =,若记1TP P =,1Q P =,则有PAQ B =因此由定义1得到n 阶方阵,A B 等价反过来对于矩阵1001A ⎛⎫= ⎪⎝⎭,1201B ⎛⎫= ⎪⎝⎭等价,但是A 与B 并不合同,即等价矩阵未必合同.定理8 正交相似矩阵必为合同矩阵,正交合同矩阵必为相似矩阵.证明:若存在一个正交矩阵P ,即T P P E =使得1P AP B -=即~A B ,则有1T B P AP P AP -==,即A 与B 合同.同理,若存在一个正交矩阵P ,即T P P E =使得T P AP B =即A 与B 合同,则有1~T B P AP P AP A B -==⇒由此可得1.相似阵、合同阵必为等价阵,但过来必成立2.相似阵为正交相似,合同阵为正交合同时,相似与合同一致.(2)但相似矩阵与合同矩阵有着一定的内在联系,如果两者都具有反身性、对称性和传递性,即两者都是等价关系.另外,在一定条件下,两者是等价的.若矩阵A 与B 正交相似,则它们既是相似也是合同的.对于相似与合同矩阵之等价条件有以下定理,定理9 如果A 与B 都是n 阶实对称矩阵,且有相同的特征根.则A 与B 既相似又合同.证明:设A 与B 的特征根均为n λλλ ,,21因为A 与n 阶实对称矩阵,则一定存在一个n 阶正交矩阵 Q 使得⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=-n AQ Q λλλ..211同理,一定能找到一个正交矩阵P 使得⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=-n BP P λλλ..211从而有BP P AQ Q 11--= 将上式两边左乘P 和右乘1-P ,得()()()1111111-------===QP A QP QP AQP PQ B 由于T Q Q E =,T P P E =,1P P E -=有()()()()1111111T T T T QP QP P Q QP P EP PP E -------====,所以,1-P Q 是正交矩阵,由定理8知A 与B 相似.定理10 若n 阶矩阵A 与B 中只要有一个正交矩阵,则AB 与BA 相似且合同. 证明:不妨设A 是正交矩阵,则A 可逆,取U A =,有()()111U ABU A ABA A A BA BA ---===,则AB 与BA 相似,又知A 是正交阵,所以AB 与BA 既相似又合同.定理11 若A 与B 相似且又合同,C 与D 相似也合同,则有⎪⎪⎭⎫ ⎝⎛C A 00与⎪⎪⎭⎫ ⎝⎛D B 00 既相似又合同. 证明: 因为A 与B ,C 与D 相似,故存在可逆矩阵1P ,2P ,使111122,P AP B P CP D --==,令1200P P P ⎛⎫= ⎪⎝⎭,则1111200P P P ---⎛⎫= ⎪⎝⎭且10000A B P P C D -⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,故⎪⎪⎭⎫ ⎝⎛C A 00与⎪⎪⎭⎫ ⎝⎛D B 00相似. 又因为A 与B 合同,C 与D 合同,故存在可逆矩阵12,Q Q , 122,T T Q AQ B Q CQ D ==令1200Q Q Q ⎛⎫= ⎪⎝⎭而1200T T T Q Q Q ⎛⎫= ⎪⎝⎭11112222000000000000T T T T T Q Q A A Q Q A Q Q Q Q C C Q Q C ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 11220000T T B Q AQ D Q CQ ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭故⎪⎪⎭⎫ ⎝⎛C A 00与⎪⎪⎭⎫ ⎝⎛D B 00合同. 3矩阵的等价、合同和相似之间的区别1、矩阵等价:a.同型矩阵而言b.一般与初等变换有关c.秩是矩阵等价的不变量,其次,两同型矩阵相似的本质是秩相等2、矩阵相似:a.针对方阵而言b.秩相等是必要条件c.本质是二者有相等的不变因子3、矩阵合同:a.针对方阵而言,一般是对称矩阵b.秩相等是必需条件c.本质是秩相等且正惯性指数相等,即标准型相同由以上知,秩是矩阵等价的不变量;不变因子是矩阵相似的不变量;特征值是可对角化矩阵相似的不变量,正负惯性指数是对称矩阵合同的不变量,等价关系最弱、合同与相似是特殊的等价关系.由相似和合同一定可以推出等价,而反之不成立.相似与合同不可互推,需要一定的条件.而且等价是经过有限次初等变换变得;相似不一定会都与对角阵相似,相似矩阵可看作是同一线性变换在不同基下的矩阵;合同可以通过二次型的非退化的线性替换来理解.结束语:矩阵中的这三种关系,在高等代数中是至关重要的,他们既包含着联系,又蕴涵着差别.相似矩阵、合同矩阵必为等价矩阵,等价矩阵不一定是相似矩阵也不一定是合同矩阵;相似为正交相似,合同为正交合同时,相似与合同一致;秩是矩阵等价的不变量;不变因子是矩阵相似的不变量,特征值是可对角化矩阵相似的不变量,正负惯性指数是对称矩阵合同的不变量.参考文献:[1]张禾瑞.高等代数[M].北京:高等教育出版社,1983.[2]姚慕生.高等代数学[M].复旦:复旦大学出版社,1999.[3]北大数学系几何与代数教研室代数小组.高等代数[M].北京:高等教育出版社,1988 .[4]李志惠,李永明.高等代数中的典型问题与方法[M].北京:科学出版社,2006.[5]同济大学教研室. 线性代数[M].北京:高等教育出版社.,2001.[6]阎家灏.线性代数[M].重庆:重庆大学出版社.,1994.。
合同与相似的区别[工作范文]
![合同与相似的区别[工作范文]](https://img.taocdn.com/s3/m/a12fe50df01dc281e43af056.png)
编号:_______________本资料为word版本,可以直接编辑和打印,感谢您的下载合同与相似的区别[工作范文]甲方:___________________乙方:___________________日期:___________________篇一:矩阵的合同,等价与相似的联系与区另U矩阵的合同,等价与相似的联系与区别20XX09113李娟娟一、基本概念与性质(一)等价:1、概念。
若矩阵A可以经过有限次初等变换化为B,则称矩阵A与B等价,记为AB。
2、矩阵等价的充要条件:AB{同型,且人r(A)=r(B)存在可逆矩阵P和Q使得PAQ=BO:3、向虽组等价,两向虽组等价是指两向虽组可相互表出,有此可知:两向虽组的秩相同,但两向虽组各自的线性相关性却不相同。
(二)合同:1、概念,两个n阶方阵A,B,若存在可逆矩阵P,使得ABPTAP成立,则称A,B合同,记作AB该过程成为合同变换。
2、矩阵合同的充要条件:矩阵A,B均为实对称矩阵,则AB 二次型xTAx与xTBx有相等的E负惯性指数,即有相同的标准型。
(三)相似1、概念:n阶方阵A,B,若存在一个可逆矩阵P使得BP1AP 成立,则称矩阵A,B相似,记为A~B。
2、矩阵相似的性质:AT~BT,Ak~Bk,A1~B1(前提,A,B 均可逆)|E-A||EB|即A,B有相同的特征值(反之不成立)A~Br(A)=r(B)tr(A)tr(B) 即A,B的逆相等|A|=|B|3、矩阵相似的充分条件及充要条件:①充分条件:矩阵A,B有相同的不变因子或行列式因子。
②充要条件:A~B(EA)(EB)二、矩阵相等、合同、相似的关系(一)、矩阵相等与向H组等价的关系:设矩阵A(1,2,,n) , B(1,2,,m)1、若向虽组(1,2,,m )是向虽组(1,2,,n )的极大线性无关组,则有mn,即有两向H等价,而两向H组线性相关性却不同,钱者一定线性无关,而后者未必线性无关。
矩阵的合同-等价与相似的联系与区别
![矩阵的合同-等价与相似的联系与区别](https://img.taocdn.com/s3/m/960af873a216147917112893.png)
矩阵的合同,等价与相似的联系与区别一、基本概念与性质(一)等价:1、概念。
若矩阵A 可以经过有限次初等变换化为B ,则称矩阵A 与B 等价,记为A B ≅。
2、矩阵等价的充要条件:3、向量组等价,两向量组等价是指两向量组可相互表出,有此可知:两向量组的秩相同,但两向量组各自的线性相关性却不相同。
(二)合同:1、概念,两个n 阶方阵A,B ,若存在可逆矩阵P ,使得A B ≅P T AP B =成立,则称A,B 合同,记作A B ≅该过程成为合同变换。
2、矩阵合同的充要条件:矩阵A,B 均为实对称矩阵,则A B ≅⇔二次型x T Ax 与x T Bx 有相等的E 负惯性指数,即有相同的标准型。
(三)相似1、概念:n 阶方阵A,B ,若存在一个可逆矩阵P 使得1B P AP -=成立,则称矩阵A,B 相似,记为~A B 。
2、矩阵相似的性质:3、矩阵相似的充分条件及充要条件:①充分条件:矩阵A,B 有相同的不变因子或行列式因子。
②充要条件:~()()A B E A E B λλ⇔-≅-二、矩阵相等、合同、相似的关系(一)、矩阵相等与向量组等价的关系:设矩阵 12(,,,)n A λλλ=,12(,,,)m B βββ=1、若向量组(12,,,m βββ)是向量组(12,,,n λλλ)的极大线性无关组,则有m n ≤,即有两向量等价,而两向量组线性相关性却不同,钱者一定线性无关,而后者未必线性无关。
而矩阵B 与A 亦不同型,虽然()()r A r B =但不能得出A B ≅。
2、若m=n ,两向量组(12,,,n λλλ)≅(12,,,m βββ)则有矩阵A,B同型且()()~,,r A r B A B A B A B =⇒≅r()()A r B A B =⇒≅。
3、若r()()A B A r B ≅⇒=⇒两向量组秩相同,⇐两向量组等价,即有1212(,,,)(,,,)n n A B λλλβββ≅≠>≅综上所述:矩阵等价与向量等价不可互推。
矩阵等价、相似、合同的区别与联系
![矩阵等价、相似、合同的区别与联系](https://img.taocdn.com/s3/m/02cfadc0bcd126fff6050b27.png)
矩阵等价、相似、合同的区别与联系作者:李伯忍来源:《现代商贸工业》2021年第05期摘要:矩阵的等价、相似与合同在线性代数课程教学中占据非常关键的地位,但是学生学习过程中对这一部分的内容往往很难准确把握。
为此,本文针对它们之间的区别和联系进行探讨,为学生对这些概念的理解提供一定的帮助。
关键词:等价;相似;合同中图分类号:G4 文献标识码:A doi:10.19311/ki.1672-3198.2021.04.065《线性代数》是大学数学中的一门非常重要的必修基础课程。
学好这一门课程,不仅有利于对学生的理解和逻辑推理能力的培养与训练,而且对其后续专业课程的学习也发挥着极其重要的支撑作用。
本文将就线性代数课程矩阵之间的非常重要的关系:矩阵的等价、相似与合同进行讨论,着重探讨三者之间的区别与联系,为学生对这些概念的理解提供一定的支持。
1 基本概念矩阵等价定义:假定矩阵A和B为同型矩阵,若存在可逆的矩阵P,Q,满足PAQ=B,那么称A和B是等价的。
矩阵相似定义:假定矩阵A和B均为n阶方阵,若存在可逆的矩阵P,满足P-1AP=B,那么称A和B是相似的。
矩阵合同定义:假定矩阵A和B均为n阶方阵,若存在可逆的矩阵P,满足PTAP=B,那么称A和B是合同的。
2 区别和联系(1)矩阵的等价只是要求矩阵A和B是具有相同的行和列的矩阵,不要求必须是方形矩阵,但是相似和合同则要求矩阵A和B必定是同阶的方形矩阵。
(2)等价的矩阵、相似的矩阵以及合同的矩阵均是同可逆或者同为不可逆。
(3)等价的矩阵、相似的矩阵以及合同的矩阵均满足反身性、对称性和传递性。
(4)矩阵的等价、相似以及矩阵合同实际上均是矩阵和矩阵之间进行初等变换,只是初等变换的要求有些区别。
詳细的说明展示如下:依据可逆矩阵的充要条件,n阶方形矩阵阵A是可逆的矩阵A等于一系列初等矩阵的乘积。
故矩阵A和B等价的条件PAQ=B可转化成:存在m阶初等矩阵P1,P2,…Ps和n阶初等矩阵Q1,Q2,…Qt,使得Ps…P2P1AQ1Q2…Qt=B。
如何判断矩阵的等价,相似,合同?
![如何判断矩阵的等价,相似,合同?](https://img.taocdn.com/s3/m/0041cc1b53ea551810a6f524ccbff121dd36c524.png)
如何矩阵的等价,相似,合同?(1)A 与B 等价:A 可以经一系列初等变换得B ÛPAQ B =Û()()r A r B =(,A B 同型同型,,,P Q 可逆可逆.).).)判断等价只需同型且秩相等判断等价只需同型且秩相等判断等价只需同型且秩相等. .(2)A 与B 相似:1P AP B -=,P 可逆可逆. .相似有四个必要条件相似有四个必要条件::秩相同秩相同,,特征值相同特征值相同,,特征多项式相同特征多项式相同,,行列式相同,如何判断两个一般的矩阵是否相似,考研大纲并不要求,但是如果,A B 相似于相同的对角阵,则由相似关系有传递性知,A B 相似相似. .(3)A 与B 合同(仅限于对称矩阵仅限于对称矩阵)):T C AC B =(C 可逆可逆))ÛA 与B 的正负惯性指数相同惯性指数相同. . 判断合同前提都是实对称矩阵,然后判断正负特征值的个数是否完全相同,也即正负惯性指数相同即可惯性指数相同即可. . 注:,A B 合同®¬,A B 等价等价,A B 相似®¬,A B 等价等价,,例1011,0101A B æöæö==ç÷ç÷èøèø等价但不相似等价但不相似在,A B 实对称的前提下实对称的前提下,,,A B 相似®¬,A B 合同合同. .【例1】 判定下列矩阵哪些等价,哪些相似判定下列矩阵哪些等价,哪些相似, , , 哪些合同哪些合同哪些合同? ?111110100000000,001,000,011000000000011A B C D æöæöæöæöç÷ç÷ç÷ç÷====ç÷ç÷ç÷ç÷ç÷ç÷ç÷ç÷èøèøèøèø. 【解】先看等价:()1,()2,()1,()1r A r B r C r D ====,故,,A C D 等价等价. .再看相似:()()()1,()2,r A r C r D r B ====排除B ,考虑,,A C D ,,A C 的特征值为1,0,0,D 的特征值为2,0,0,从而排除D 仅仅考虑,A C ,A 的特征值为1,0,0,且二重特征值0对应两个线性无关的特征向量,A 相似于对角阵100000000C æöç÷=ç÷ç÷èø,从而,A C 相似相似. . 最后看合同:合同仅限对称阵,仅仅考虑,C D ,C 的特征值为1,0,0,D 的特征值为2,0,0,C 的正惯性指数为1,负惯性指数为0,D 的正惯性指数也为1,负惯性指数为0,,C D 合同合同. .【例2】 判断111111111A æöç÷=ç÷ç÷èø,300000000B æöç÷=ç÷ç÷èø是否等价,相似是否等价,相似,,合同合同,? ,? 【解】()()1r A r B ==,二者等价;,二者等价;A为对称阵一定相似于对角阵300000000Bæöç÷=ç÷ç÷èø;从而A一定合同于对角阵B.。
矩阵的合同,等价与相似的联系与区别全套资料
![矩阵的合同,等价与相似的联系与区别全套资料](https://img.taocdn.com/s3/m/65b95f4afd0a79563d1e7269.png)
矩阵的合同,等价与相似的联系与区别全套资料(全套资料,可以直接使用,可编辑优秀版资料,欢迎下载)矩阵的合同,等价与相似的联系与区别一、基本概念与性质 (一)等价:1、概念.若矩阵A 可以经过有限次初等变换化为B ,则称矩阵A 与B 等价,记为A B ≅.2、矩阵等价的充要条件:A B ≅.{P Q A B ⇔同型,且人r(A)=r(B)存在可逆矩阵和,使得PAQ=B 成立3、向量组等价,两向量组等价是指两向量组可相互表出,有此可知:两向量组的秩相同,但两向量组各自的线性相关性却不相同. (二)合同:1、概念,两个n 阶方阵A,B ,若存在可逆矩阵P,使得A B ≅P T AP B =成立,则称A ,B 合同,记作A B ≅该过程成为合同变换.2、矩阵合同的充要条件:矩阵A ,B 均为实对称矩阵,则A B ≅二次型x T Ax 与x T Bx 有相等的E 负惯性指数,即有相同的标准型。
(三)相似1、概念:n 阶方阵A,B ,若存在一个可逆矩阵P 使得1B P AP -=成立,则称矩阵A,B 相似,记为~A B 。
2、矩阵相似的性质:~A B 11~,~,~(,)|E-A |||,()(),T T k k A B A B A B A B E B A B tr A tr B A B λλ--=-⇒=前提,均可逆即有相同的特征值(反之不成立)r(A)=r(B)即的逆相等|A|=|B|3、矩阵相似的充分条件及充要条件:①充分条件:矩阵A,B 有相同的不变因子或行列式因子。
②充要条件:~()()A B E A E B λλ⇔-≅- 二、矩阵相等、合同、相似的关系 (一)、矩阵相等与向量组等价的关系: 设矩阵 12(,,,)n A λλλ=,12(,,,)m B βββ=1、若向量组(12,,,m βββ)是向量组(12,,,n λλλ)的极大线性无关组,则有m n ≤,即有两向量等价,而两向量组线性相关性却不同,钱者一定线性无关,而后者未必线性无关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定义2.5.3如果一个矩阵A经过有限次的初等变换变成矩阵B,则称A与B等价,记为A~B。
等价具有反身性即对任意矩阵A,有A与A等价;
对称性若A与B等价,则B与A等价
传递性若A与B等价,B与C等价,则A与C等价。
2.5.5用矩阵的初等变换求解矩阵方程
最常见的方程有以下两类:
(1)设A是n阶可逆矩阵,B是n×m矩阵,求出矩阵X满足AX=B
原理:AX=B时
(2)设A是n阶可逆矩阵,B是m×n矩阵,求出矩阵X满足XA=B。
解:由方程XA=B XAA-1=B A-1解为x= B A-1
要注意的是,矩阵方程XA=B的解为x= B A-1,而不可以写成x= A-1B。
因为X满足XA=B X T满足A T X T=B T从而有X T=(A T)-1 B T=(BA-1)T
所以,可以先用上述方法求解A T X T=B T,再把所得结果X T转置即得所需的X=BA-1。
定义3.3.2(向量组的等价)如果向量组R能由向量组S线性表出,反之,向量组S也能由向量组R线性表出,则称向量组R与S等价。
向量组之间的等价关系有下列基本性质:设A,B,C为三个同维向量组,则有
定义5.2.1 设A和B是两个n阶方阵,如果存在某个n阶可逆矩阵p使得B=p-1AP。
则称A 和B是相似的,记为A~B。
当两个n阶方阵A和B之间存在等式B=P-1AP时,我们就说A经过相似变换变成了B。
同阶方阵之间的相似关系有以下三条性质:
(1)反身性 A~A,这说明任意一个方阵都与自己相似。
事实上,有矩阵等式
(2)对称性若A~B则B~A,这说明A和B相似与B和A相似是一致的。
事实上,有
(3)传递性若A~B,B~C则A~CP,这说明当A和B相似,B和C相似时,A和C一定相似。
事实上,由B=P-1AP,C=Q-1BQ即可推出C=Q-1P-1APQ=(PQ)-1A(PQ)
定理5.2.1 相似矩阵必有相同的特征多项式,因而必有相同的特征值,相同的迹和相同的行列式。
需注意的是A与B不一定有相同的特征向量。
定理5.2.2n阶方阵A与对角阵P-1AP =相似的充分必要条件是A有n个线性无关的特征向量。
两个重要结论:(1)任意一个无重特征值的方阵一定相似于对角矩阵;(2)对角元两两互异的三解矩阵一定相似于对角矩阵;(3)若A中任一k的特征根对应有k个线性无关特征向量,则A一定与对角阵∧相似.
定义5.3.4 如果一个同维向量组不含零向量,且其中任意两个向量都正交(两两正交),则称该向量组为正交向量组。
定义5.3.5 若是 R n中的一个正交向量组,且其中每个向量都是单位向量,则称这个向量组为标准正交向量组。
(正交单位向量组)
定理5.3.1 正交向量组必线性无关。
必有向量组正交,且是标准正交组。
(正交单位向量组)
定义5.3.5 如果n阶实方阵A满足,则称A为正交矩阵。
定义5.4.1 设A,B都是n阶方阵,若存在正交阵P使得,则称A与B正交相似。
定理5.4.3 (对称矩阵基本定理)对于任意一个n阶实对称矩阵A,一定存在n阶正交矩
阵P,使得对角矩阵中的n个对角元就是A 的n个特征值。
反之,凡是正交相似于对角矩阵的实方阵一定是对称矩阵。
定理5.4.4 两个有相同特征值的同阶对称矩阵一定是正交相似矩阵
定义6.1.3 设A,B都是n阶方阵,若存在可逆阵P使得。
则称A与B合同。
由上面的定义可见矩阵A与矩阵B相似与合同是两个完全不同的的概念,但是若Q正交,则
,所以A与B正交相似与A与B正交合同是一回事。
合同关系也有
反身性:即任给方阵A,有,所以, A与A合同;
对称性:若A与B合同,则存在可逆阵P使得,则
所以B与A也合同。
传递性:因为A与B合同,B与C合同,则存在可逆阵P,Q,使得,
,注意PQ一定可逆,所以A与C合同。
定理6.2.1 实对角矩阵为正定矩阵当且仅当中的所有对角元全大于零。
定理6.2.2 设n阶矩阵是正定矩阵,则A中所有对角元
定理6.2.3 设A与B是两个合同的实对称矩阵,则A为正定矩阵当且仅当B为正定矩阵。
定理6.2.4 同阶正定矩阵之和必为正定矩阵。
定理6.2.5 n阶对称矩阵是正定矩阵的n个特征值全大于零
定理6.2.6 n阶对称矩阵是正定矩阵的n个顺序主子式
推论(1)n阶对称矩阵是正定矩阵的正惯性指数为n.
(2)n阶对称矩阵是正定矩阵合同于单位矩阵。
(3)任意两个同阶的正定矩阵必是合同矩阵.。