BOOST电感设计
boost电路电感的计算方法
![boost电路电感的计算方法](https://img.taocdn.com/s3/m/b8355ffb4128915f804d2b160b4e767f5acf8018.png)
boost电路电感的计算方法Boost电路是一种常用的DC-DC升压变换器,用于将输入电压提升到较高的输出电压。
在Boost电路中,电感是一个关键元件,它在电路中起到储能和滤波的作用。
本文将介绍Boost电路中电感的计算方法。
在Boost电路中,电感的选择对电路的性能和效率有着重要影响。
为了正确选择电感,我们首先需要确定一些基本参数,如输入电压Vin、输出电压Vout、输出电流Iout和开关频率f。
这些参数将决定电感的工作条件和功率需求。
根据电路的工作原理,电感的工作状态可以分为两种:连续电流模式(Continuous Current Mode,CCM)和不连续电流模式(Discontinuous Current Mode,DCM)。
在CCM下,电感电流在整个开关周期内都不会降到零,而在DCM下,电感电流会在某个时刻降到零。
两种模式在电感的计算方法上有所不同。
我们来看连续电流模式下的电感计算方法。
在CCM下,电感的工作电流连续且稳定,可以通过以下公式计算:L = (Vout - Vin) * (1 - D) / (f * Iout)其中,L为电感的值,Vout为输出电压,Vin为输入电压,D为开关的占空比(即开关关闭时间占一个周期的比例),f为开关频率,Iout为输出电流。
这个公式可以帮助我们选择合适的电感值,以满足电路的需求。
接下来,我们来看不连续电流模式下的电感计算方法。
在DCM下,电感的工作电流会在某个时刻降到零,因此电感的值需要满足以下公式:L = (Vout - Vin) * (1 - D) * (1 - D) / (8 * f * Iout)同样,L为电感的值,Vout为输出电压,Vin为输入电压,D为开关的占空比,f为开关频率,Iout为输出电流。
这个公式可以帮助我们选择合适的电感值,以满足电路的需求。
除了基本参数外,还有一些其他因素需要考虑。
例如,电感的电流冲击能力、电感的饱和电流和温升等。
boost电路电感饱和波形
![boost电路电感饱和波形](https://img.taocdn.com/s3/m/1a388830ba68a98271fe910ef12d2af90242a8ae.png)
Boost电路电感饱和波形1. 引言Boost电路是一种常见的直流-直流转换器,用于将低电压升高到较高电压。
在Boost电路中,电感是一个重要的元件,它能够存储能量并提供电流给负载。
然而,当电感中的电流超过其饱和电流时,电感会发生饱和现象,导致电路性能下降甚至损坏。
因此,了解Boost电路中电感的饱和波形对于设计和优化Boost电路至关重要。
2. Boost电路的工作原理Boost电路是一种非绝缘型直流-直流转换器,常用于电源和电动机驱动等应用中。
它由一个开关管、一个电感、一个输出电容和一个负载组成。
开关管周期性地打开和关闭,使得电感中的电流不断变化,从而实现电压转换。
在Boost电路的工作过程中,当开关管关闭时,电感中的电流开始增加,电感储存能量;当开关管打开时,电感中的电流开始减小,电感释放能量。
通过周期性地打开和关闭开关管,电感中的电流会形成一个周期性的波形。
3. 电感饱和的原因电感饱和是指电感中的电流超过了电感的饱和电流,导致电感无法继续存储能量。
电感饱和的原因主要有两个:3.1 电感的饱和电流限制电感的饱和电流是指电感中的电流达到一定值时,电感无法继续存储能量的临界点。
电感的饱和电流取决于电感的结构和材料,一般在设计电路时需要考虑电感的饱和电流限制,以避免电感饱和。
3.2 Boost电路的工作原理在Boost电路中,当开关管关闭时,电感中的电流开始增加。
如果开关管的关闭时间过长或负载过大,电感中的电流可能超过电感的饱和电流,导致电感发生饱和。
4. 电感饱和的影响电感饱和会对Boost电路的性能产生重要影响,主要体现在以下几个方面:4.1 电感电流波形失真电感饱和会导致电感中的电流波形发生畸变,从而引起输出电压的不稳定性和谐波增加。
这会影响Boost电路的输出质量和效率。
4.2 功率损耗增加当电感发生饱和时,电感内部电流的变化速度变慢,导致电感的内部电阻增加。
这会导致Boost电路的功率损耗增加,降低电路的效率。
BOOST升压电路的电感、电容计算
![BOOST升压电路的电感、电容计算](https://img.taocdn.com/s3/m/3e4c2062ddccda38376baf74.png)
BOOST升压电路的电感、电容计算已知参数:输入电压:12V --- Vi 输出电压:18V ---Vo输出电流:1A --- Io输出纹波:36mV --- Vpp工作频率:100KHz --- f1:占空比稳定工作时,每个开关周期,导通期间电感电流的增加等于关断期间电感电流的减少,即Vi*don/(f*L)=(Vo+Vd-Vi)*(1-don)/(f*L),整理后有don=(Vo+Vd-Vi)/(Vo+Vd),参数带入,don=0.5722:电感量先求每个开关周期内电感初始电流等于输出电流时的对应电感的电感量其值为Vi*(1-don)/(f*2*Io) ,参数带入,Lx=38.5uH,deltaI=Vi*don/(L*f),参数带入,deltaI=1.1A当电感的电感量小于此值Lx时,输出纹波随电感量的增加变化较明显,当电感的电感量大于此值Lx时,输出纹波随电感量的增加几乎不再变小,由于增加电感量可以减小磁滞损耗,另外考虑输入波动等其他方面影响取L=60uH,deltaI=Vi*don/(L*f),参数带入,deltaI=0.72A,I1=Io/(1-don)-(1/2)*deltaI,I2= Io/(1-don)+(1/2)*deltaI,参数带入,I1=1.2A,I2=1.92A3:输出电容:此例中输出电容选择位陶瓷电容,故 ESR可以忽略C=Io*don/(f*Vpp),参数带入,C=99.5uF,3个33uF/25V陶瓷电容并联4:磁环及线径:查找磁环手册选择对应峰值电流I2=1.92A时磁环不饱和的适合磁环Irms^2=(1/3)*(I1^2+I2^2-I1*I2),参数带入,irms=1.6A按此电流有效值及工作频率选择线径其他参数:电感:L 占空比:don初始电流:I1 峰值电流:I2 线圈电流:Irms输出电容:C 电流的变化:deltaI 整流管压降:Vd。
boost升压电路电感和占空比的设计
![boost升压电路电感和占空比的设计](https://img.taocdn.com/s3/m/5652639b7e192279168884868762caaedd33bada.png)
boost升压电路电感和占空比的设计Boost升压电路是一种常见的直流电压变换器,它可以将输入电压升高到高于输出电压的水平。
这种电路通常用于电源设计、电力电子设备和LED驱动等领域。
在设计和应用Boost升压电路时,电感和占空比是非常重要的参数,下面将对它们的设计进行详细介绍。
一、电感的设计在Boost升压电路中,电感的主要作用是储存能量,以便在开关关闭时提供电流。
电感的大小会影响到输出电压的稳定性和效率。
因此,在设计电感时需要考虑以下因素:1.电感值:电感值的选择取决于输入电压、输出电压、最大输出电流和开关频率等参数。
通常情况下,电感值越大,输出电压的稳定性越好,但同时也会增加电感的体积和成本。
因此,需要根据实际需求选择合适的电感值。
2.磁芯:电感的磁芯也是设计时需要考虑的因素。
常用的磁芯材料有铁氧体、坡莫合金、纳米晶等。
不同的磁芯材料具有不同的磁导率和饱和磁通密度等参数,因此需要根据实际需求选择合适的磁芯材料。
3.线圈:线圈是电感的重要组成部分,它的匝数和线径会影响到电感的性能。
匝数越多,电感值越大;线径越粗,电流容量越大。
因此,在设计线圈时需要考虑匝数和线径的匹配,以获得最佳的电感性能。
二、占空比的设计占空比是指在一个开关周期内,开关导通的时间与整个周期之比。
在Boost升压电路中,占空比是控制输出电压和电流的关键参数。
占空比的设计需要考虑以下因素:1.输出电压和电流:输出电压和电流的大小会影响到占空比的设计。
如果输出电压和电流较大,需要选择较大的占空比以获得较高的输出电压和电流;反之则选择较小的占空比。
2.开关频率:开关频率也会影响到占空比的设计。
开关频率越高,开关导通的时间越短,占空比越小;开关频率越低,开关导通的时间越长,占空比越大。
因此,在设计占空比时需要考虑开关频率的影响。
3.最大占空比:最大占空比是指在一个开关周期内,开关能够导通的最大时间与整个周期之比。
最大占空比受到多种因素的影响,如开关的耐压值、导通电阻、寄生电容等。
BOOST电路的电感选择
![BOOST电路的电感选择](https://img.taocdn.com/s3/m/674029d6360cba1aa811da30.png)
BOOST升压电路的电感、电容计算已知参数:输入电压:12V --- Vi输出电压:18V ---Vo输出电流:1A --- Io输出纹波:36mV --- Vpp工作频率:100KHz --- f************************************************************************1:占空比稳定工作时,每个开关周期,导通期间电感电流的增加等于关断期间电感电流的减少,即Vi*don/(f*L)=(Vo+Vd-Vi)*(1-don)/(f*L),整理后有don=(Vo+Vd-Vi)/(Vo+Vd),参数带入,don=0.5722:电感量先求每个开关周期内电感初始电流等于输出电流时的对应电感的电感量其值为Vi*(1-don)/(f*2*Io),参数带入,Lx=38.5uH,deltaI=Vi*don/(L*f),参数带入,deltaI=1.1A当电感的电感量小于此值Lx时,输出纹波随电感量的增加变化较明显,当电感的电感量大于此值Lx时,输出纹波随电感量的增加几乎不再变小,由于增加电感量可以减小磁滞损耗,另外考虑输入波动等其他方面影响取L=60uH,deltaI=Vi*don/(L*f),参数带入,deltaI=0.72A,I1=Io/(1-don)-(1/2)*deltaI,I2= Io/(1-don)+(1/2)*deltaI,参数带入,I1=1.2A,I2=1.92A3:输出电容:此例中输出电容选择位陶瓷电容,故ESR可以忽略C=Io*don/(f*Vpp),参数带入,C=99.5uF,3个33uF/25V陶瓷电容并联4:磁环及线径:查找磁环手册选择对应峰值电流I2=1.92A时磁环不饱和的适合磁环Irms^2=(1/3)*(I1^2+I2^2-I1*I2),参数带入,irms=1.6A按此电流有效值及工作频率选择线径其他参数:电感:L 占空比:don初始电流:I1 峰值电流:I2 线圈电流:Irms输出电容:C 电流的变化:deltaI 整流管压降:Vd。
BOOST 电路 电感值计算
![BOOST 电路 电感值计算](https://img.taocdn.com/s3/m/1db7f52484868762cbaed57e.png)
()L
D T V V V D in o L I )
1(2-⋅--=
∆
由于在稳态时这两个电流的变化量的绝对值相等,所以有伏秒相等:
V in *T on = (V o -V in )T off
)1()(D T V V V TD V D in o in ---=
化简得:电压增益: D
V V M in o -==
11 最大占空比:o
in
o V V V D -=
由以上可知,电压增益总是大于1.故称为升压变换器.
四.举例
电路输入90VDC,输出400VDC,输出功率400W,变换器频率100KHZ,选用TDK PQ3230的磁芯,试算出实际的电感.
选取铁氧体磁芯:TDK PQ32/30 (PC40) 技术参数:νin =90VDC,Vo=400Vdc
P OUT =400W,f k=100kHz ,Krp
取
0.3.(Krp=Ir/Ilp)
4.1 电感计算 (1) 最大占空比D
o
in
o V V V D -=
Io Vo I V L in ⋅=⋅ 能量守恒 其中I L 为电感平均电流。
又因为有:
D
V V in o -=11 所以有D
Io
I L -=
1 (1) 电感平均电流为电流三角形面积的平均值 ,
所以,L T D V T DT
L V T D DT T I T D DT I in in L ⋅⋅=
⋅-+=∆-+=21))1((21
))1((21 (2) 将(2)代入(1)得,
f
I D D V I T D D V L o in o in ⋅-⋅⋅=⋅-⋅⋅=2)
1(2)1(。
BOOST电路设计与仿真
![BOOST电路设计与仿真](https://img.taocdn.com/s3/m/c838373300f69e3143323968011ca300a6c3f6d3.png)
BOOST电路设计与仿真BOOST电路是一种直流-直流升压电路,可以将低电压输入转换为高电压输出,被广泛应用于各种电子设备和电源系统中。
BOOST电路的设计与仿真是保证电路性能稳定和有效工作的重要步骤。
本文将介绍BOOST电路的设计原理和流程,并讨论BOOST电路的仿真方法和应用。
BOOST电路的设计原理基于电感储能和开关管的开关控制。
BOOST电路通常由开关管、电感、电容和负载组成。
当开关管导通时,电感储能;当开关管关断时,电感释放储能。
通过周期性的开关控制,可以实现输入电压的升压转换。
1.确定BOOST电路的输入输出要求。
根据实际应用需求,确定输入电压、输出电压和负载电流等参数。
2.选择开关管和电感。
根据输入输出要求和开关频率,选择合适的开关管和电感。
3.计算电容。
根据输出电压波动和负载要求,计算所需的输出电容。
4.设计反馈控制。
BOOST电路通常采用反馈控制来实现稳定的输出电压。
根据输入输出要求和稳定性要求,设计反馈控制电路。
5.仿真和优化。
使用仿真软件对BOOST电路进行模拟仿真,优化电路参数和控制策略,以达到设计要求。
在时间域仿真中,可以通过建立电路模型和开关控制器模型,对BOOST电路进行系统级仿真。
通过输入电压和负载电流变化,分析输出电压和效率等指标,验证电路性能。
在频域仿真中,可以通过建立开关模型和电感电容模型,对BOOST电路进行精确的频率响应分析。
通过频率响应曲线,可以评估BOOST电路的稳定性、带宽和损耗等指标。
除了仿真,BOOST电路的设计还需要考虑一些其他因素,如电路拓扑、器件选择和布局等。
这些因素都会影响电路的性能和可靠性。
最后,BOOST电路在各种电子设备和电源系统中有广泛应用,例如便携式电子设备、通信设备和工业控制系统等。
通过合理的设计与仿真,可以确保BOOST电路的稳定性和高效性,提高整个系统的性能。
boost 电感设计
![boost 电感设计](https://img.taocdn.com/s3/m/865b67a3d0d233d4b14e69fe.png)
PFC 电感计算通常Boost 功率电路的PFC 有三种工作模式:连续、临界连续和断续模式。
控制方式是输入电流跟踪输入电压。
连续模式有峰值电流控制,平均电流控制和滞环控制等。
连续模式的基本关系: 1. 确定输出电压U o输入电网电压一般都有一定的变化范围(U in ±Δ%),为了输入电流很好地跟踪输入电压,Boost 级的输出电压应当高于输入最高电压的峰值,但因为功率耐压由输出电压决定,输出电压一般是输入最高峰值电压的1.05~1.1倍。
例如,输入电压220V ,50Hz 交流电,变化范围是额定值的20%(Δ=20),最高峰值电压是220×1.2×1.414=373.45V 。
输出电压可以选择390~410V 。
2. 决定最大输入电流电感应当在最大电流时避免饱和。
最大交流输入电流发生在输入电压最低,同时输出功率最大时ηmin max i o i U P I =(1)其中:o o o I U P =;)%100(min ∆-=in i U U -最低输入电压;η-Boost 级效率,通常在95%以上。
3. 决定工作频率由功率器件,效率和功率等级等因素决定。
例如输出功率1.5kW ,功率管为MOSFET ,开关频率70~100kHz 。
4. 决定最低输入电压峰值时最大占空度因为连续模式Boost 变换器输出U o 与输入U in 关系为)1/(D U U i o -=,所以oimimo p U U U D 2max -=(2)从上式可见,如果U o 选取较低,在最高输入电压峰值时对应的占空度非常小,由于功率开关的开关时间限制(否则降低开关频率),可能输入电流不能跟踪输入电压,造成输入电流的THD 加大。
5. 求需要的电感量为保证电流连续,Boost 电感应当大于 IfD U L p i ∆=maxmin 2 (3)其中:max 22i I k I =∆,k =0.15~0.2。
Boost电路参数的设计电感,电容
![Boost电路参数的设计电感,电容](https://img.taocdn.com/s3/m/51f4672b7fd5360cba1adbb5.png)
2 系统设计2、 1 Boost 升压电感的设计要想设计出性能优良的PFC 电路,除了IC外围电路各元件值选择合理外,还需特别认真选择Boost 升压储能电感器。
它的磁性材料不同,对PFC 电路的性能影响很大,甚至该电感器的接法不同,且会明显地影响电流波形;另外,驱动电路的激励脉冲波形上升沿与下降沿的滞后或振荡,都会影响主功率开关管的最佳工作状态。
当增大输出功率到某个阶段时,还会出现输入电流波形发生畸变甚至出现死区等现象。
因此,在PFC 电路的设计中,合理选择Boost PFC 升压电感器的磁心与绕制电感量就是非常重要的。
电感值的计算以低输入电压Uin(peak) 与对应的最大占空比Dmax时保证电感电流连续为依据,计算公式为:式中Uin(peak)———低输入交流电压对应的正弦峰值电压,VDmax———Uin(peak) 对应的最大占空比ΔI———纹波电流值,A; 计算时,假定为纹波电流的30%fs———开关频率,Hz占空比的计算公式为:若输入交流电压为220 V( 最低输入电压为85 V),输出直流电压为390 V,开关频率为fs =50 kHz,输出功率Po =350 W,则可计算得到Dmax =0、78,纹波电流为1、75 A,从而求得电感值L3 =713 μH,实际电感值取为1 mH。
由于升压电感工作于电流连续模式,需要能通过较大的直流电流而不饱与,并要有一定的电感量,即所选磁性材料应具有一定的直流安匝数。
设计中,升压电感器采用4 块EE55 铁氧体磁心复合而成,其中心柱截面气隙为1、5 mm,Boost 储能电感器的绕组导线并不用常规的多股0、47 mm漆包线卷绕,而就是采用厚度为0、2mm、宽度为33 mm 的薄红铜带叠合,压紧在可插4 块EE55 磁心的塑料骨架上,再接焊锡导线引出,用多层耐高压绝缘胶带扎紧包裹。
去消用薄铜带工艺绕制的Boost 储能电感,对减小高频集肤效应、改善Boost 变换器的开关调制波形、降低磁件温升均起重要作用。
BOOST电路设计与仿真
![BOOST电路设计与仿真](https://img.taocdn.com/s3/m/1f89b46eec630b1c59eef8c75fbfc77da26997f7.png)
BOOST电路设计与仿真
BOOST电路的基本工作原理是通过控制开关管的导通和截止状态来实现输入电压的升压。
当开关管导通时,电感储能,累积电能;当开关管截止时,电感释放储能,输出电压呈现提升趋势。
BOOST电路的主要构成要素包括开关管、电感、滤波电容以及输出负载。
开关管可以采用MOSFET 或者BJT等器件,电感和滤波电容则用于储能和平滑输出电压,输出负载通常是负载电阻或者电子设备。
在BOOST电路设计中,首先需要确定输入电压和输出电压的范围,以此来选择合适的电感和开关管。
电感的选取应考虑到电流波形的要求,滤波电容的选取则需考虑输出纹波电压的要求。
接下来,需要确定开关管的导通和截止频率,这将决定BOOST电路的工作频率和效率。
较高的开关频率可以减小电感和滤波电容的尺寸,但也会增加开关管的功耗。
最后,需要进行电路的稳定性分析,并设计反馈控制电路来实现输出电压的稳定调节。
BOOST电路的设计可以通过软件仿真来实现,常用的仿真工具有PSpice、Multisim等。
在仿真中,可以通过建立电路的数学模型,输入合适的参数值来观察电路的工作状态,并进行性能评估。
例如,可以观察输出电压的波形和纹波电压,计算电路的效率以及输出电压的稳定性等。
通过仿真,可以优化电路参数,满足系统要求。
总结起来,BOOST电路是一种常用的升压电路,可以将输入电压提升到更高的输出电压,具有广泛的应用。
在设计BOOST电路时,需要考虑输入输出电压范围、选择合适的电感和开关管、确定开关频率以及设计反馈控制电路。
仿真是一种有效的方法,可以帮助设计人员评估BOOST电路的性能,并进行参数优化。
BOOST电感设计
![BOOST电感设计](https://img.taocdn.com/s3/m/770b6153cd7931b765ce0508763231126edb77e5.png)
BOOST电感设计Boost电感是一种用于直流-直流(DC-DC)转换器中的电感。
它的主要作用是存储能量,并将其传递给负载。
Boost电感是Boost转换器中的一个关键组成部分,它起到了提高电压的作用。
本文将详细介绍Boost电感的设计原理和要点。
首先,我们需要了解Boost转换器的基本工作原理。
Boost转换器是一种将输入电压转换为较高输出电压的转换器。
它由一个开关管、电感、输出电容和输出负载组成。
开关管周期性地开关,使得输入电源通过电感储存能量,并在开关关闭时将其传递到输出电容。
通过这种方式,Boost 转换器能够提供相对较高的输出电压。
Boost电感的设计需要考虑许多因素,包括电感值、电流、温升、材料等。
首先是电感值的选择。
电感的值会影响Boost转换器的转换比。
由于Boost转换器的工作方式是周期性地将能量传递给负载,因此电感值的选择将直接影响到输出电压的稳定性。
电感值的选择一般是通过对转换器的理论计算和实际测试来确定的。
其次是电感的电流特性。
Boost电感在工作过程中需要承受较高的电流,因此它的电流特性非常重要。
选择合适的线径和材料可以确保电感具有良好的耐电流能力,以防止过载和损坏。
此外,电感的电流特性还与其磁芯的材料和尺寸有关。
另外一个重要的考虑因素是电感的温升。
电感在工作过程中会产生一定的损耗,这会导致电感的温度升高。
因此,选择具有良好散热性能的材料和设计合理的结构是至关重要的。
过高的温升会导致电感的性能下降,甚至损坏。
最后,还需要考虑电感的材料选择。
常见的Boost电感材料包括铁粉、磁性材料和铁氧体。
根据具体的应用需求,选择合适的材料可以提高整体性能和效率。
综上所述,Boost电感的设计是一个综合性的工作,涉及到电感值、电流特性、温升和材料选择等多个方面。
通过合理的设计和优化,可以提高Boost转换器的效率、稳定性和可靠性。
因此,在设计Boost电感时,需要根据具体的应用需求进行选择和优化。
Boost电路参数的设计(电感,电容)
![Boost电路参数的设计(电感,电容)](https://img.taocdn.com/s3/m/f79e356058fafab069dc028b.png)
2 系统设计2. 1 Boost 升压电感的设计要想设计出性能优良的PFC 电路,除了IC外围电路各元件值选择合理外,还需特别认真选择Boost 升压储能电感器。
它的磁性材料不同,对PFC 电路的性能影响很大,甚至该电感器的接法不同,且会明显地影响电流波形;另外,驱动电路的激励脉冲波形上升沿与下降沿的滞后或振荡,都会影响主功率开关管的最佳工作状态。
当增大输出功率到某个阶段时,还会出现输入电流波形发生畸变甚至出现死区等现象。
因此,在PFC 电路的设计中,合理选择Boost PFC 升压电感器的磁心与绕制电感量是非常重要的。
电感值的计算以低输入电压Uin(peak) 和对应的最大占空比Dmax时保证电感电流连续为依据,计算公式为:式中Uin(peak)———低输入交流电压对应的正弦峰值电压,VDmax———Uin(peak) 对应的最大占空比ΔI———纹波电流值,A; 计算时,假定为纹波电流的30%fs———开关频率,Hz占空比的计算公式为:若输入交流电压为220 V( 最低输入电压为85 V),输出直流电压为390 V,开关频率为fs =50 kHz,输出功率Po =350 W,则可计算得到Dmax =0. 78,纹波电流为1. 75 A,从而求得电感值L3 =713 μH,实际电感值取为1 mH。
由于升压电感工作于电流连续模式,需要能通过较大的直流电流而不饱和,并要有一定的电感量,即所选磁性材料应具有一定的直流安匝数。
设计中,升压电感器采用4 块EE55 铁氧体磁心复合而成,其中心柱截面气隙为1. 5 mm,Boost 储能电感器的绕组导线并不用常规的多股0. 47 mm漆包线卷绕,而是采用厚度为0. 2mm、宽度为33 mm 的薄红铜带叠合,压紧在可插4 块EE55 磁心的塑料骨架上,再接焊锡导线引出,用多层耐高压绝缘胶带扎紧包裹。
去消用薄铜带工艺绕制的Boost 储能电感,对减小高频集肤效应、改善Boost 变换器的开关调制波形、降低磁件温升均起重要作用。
boost及BUCK电感计算
![boost及BUCK电感计算](https://img.taocdn.com/s3/m/447ab9e69e31433239689319.png)
BUCK和BOOST变换器电感的设计前言对于电源工程师来说,设计中小功率Buck或Boost其基本任务之一是要计算电感。
然而,当你翻开电源教科书的时候,你经常会发现书中给你列出了一大堆公式,却让你无从下手,不得要领。
那么如何运用工程的方法快速地设计出一个适用的电感参数,可以方便地从商家的产品手册里找到你要的标准电感呢?作者在这里整理和归纳了与Buck和Boost电感设计有关的一系列实用计算方程和简单的工程设计方法。
1. 我们首先定义电感的电流纹波比:R = △I/ Ic (1) 这里Ic为电感电流的波形中心,△I为电感电流的变化摆幅。
电感电流的峰值:Ipk =Ic + △I/2 = Ic x (1 + R/2)(2) 2.分清变换器的最坏工作条件对于目标设计,我们要首先关注它的最坏工作情况,决定电感中的最大工作电流。
BUCK电路:BUCK电感电流波形的平均值(几何中心)等于负载电流,和输入电压无关。
改变输入电压,电感电流的波形中心几乎保持不变,但电感电流的峰值会随着输入电压增加而增加。
所以,BUCK变换器的电感电流的最坏工作条件是在最高输入电压下。
设计时,应该以最高输入电压为计算条件。
Ic = Io (3) D =V o / Vin (4)BOOST电路:由于BOOST电路只有在开关管关闭时,电感电流才能传递到输出负载,因此有Ic = Io / (1-D)(5) 对于BOOST电路,D=(V o-Vin) /V o (6) 所以,当Vin为最小时,BOOST电感中的Ic为最大。
设计时,应以最小输入电压为计算条件。
从以上分析我们可以看到,BUCK电路无论在开关管开启或关断时,电感都能持续地向负载输出电流。
而BOOST电路只有在开关管关断时,负载才能得到能量。
这就决定了,BOOST 电路的最大占空比不能为100%,否则,BOOST电路因为开关管的关断时间为0,负载而得不到能量而不能建立输出电压。
这一点在多数教科书中没有提到,以致于有些人糊里糊涂里在Boost变换器中使用了最大占空比为100%的单端PWM控制器。
boost电路电感计算公式
![boost电路电感计算公式](https://img.taocdn.com/s3/m/7d61c754876fb84ae45c3b3567ec102de2bddf06.png)
boost电路电感计算公式摘要:1.Boost 电路简介2.Boost 电路电感计算公式推导3.计算公式应用实例4.结论正文:一、Boost 电路简介Boost 电路,即升压电路,是一种用于将输入电压升高到输出电压的电路。
它可以为电子设备提供所需的电压,以满足其工作需求。
在Boost 电路中,电感是一个重要的元件,它的选取和计算对电路性能有着重要影响。
二、Boost 电路电感计算公式推导在Boost 电路中,电感的计算公式通常如下:L = (Vout * Ri) / (Vin - Vout)其中,L 表示电感,Vout 表示输出电压,Ri 表示输入电阻,Vin 表示输入电压。
这个公式的推导过程如下:首先,根据Boost 电路的工作原理,我们可以知道,在开关管导通时,电感上的电流会增加,而在开关管截止时,电感上的电流会减少。
因此,电感上的平均电流可以用输入电压和输入电阻来表示,即:Iavg = Vin / Ri然后,根据电感的定义,我们可以知道,电感上的平均电流和电感值、输入电压和输出电压之间的关系为:L = (Vout * Iavg) / (Vin - Vout)将Iavg 用Vin 和Ri 表示的式子代入,即可得到电感的计算公式。
三、计算公式应用实例假设一个Boost 电路的输入电压Vin 为12V,输出电压Vout 为18V,输入电阻Ri 为1Ω,现在需要计算电感L 的值。
根据电感计算公式,我们可以得到:L = (Vout * Ri) / (Vin - Vout) = (18V * 1Ω) / (12V - 18V) = 18Ω因此,这个Boost 电路所需的电感值为18Ω。
四、结论Boost 电路电感计算公式是电路设计中常用的一种计算方法,它通过简单的数学运算,可以快速、准确地计算出电路所需的电感值。
BOOST电路的电感选择
![BOOST电路的电感选择](https://img.taocdn.com/s3/m/ba9c7baacd22bcd126fff705cc17552707225eca.png)
BOOST电路的电感选择BOOST升压电路的电感、电容计算已知参数:输入电压:12V --- Vi输出电压:18V ---Vo输出电流:1A --- Io输出纹波:36mV --- Vpp工作频率:100KHz --- f*************************************************************** *********1:占空比稳定工作时,每个开关周期,导通期间电感电流的增加等于关断期间电感电流的减少,即Vi*don/(f*L)=(Vo+Vd-Vi)*(1-don)/(f*L),整理后有don=(Vo+Vd-Vi)/(Vo+Vd),参数带入,don=0.5722:电感量先求每个开关周期内电感初始电流等于输出电流时的对应电感的电感量其值为Vi*(1-don)/(f*2*Io),参数带入,Lx=38.5uH,deltaI=Vi*don/(L*f),参数带入,deltaI=1.1A当电感的电感量小于此值Lx时,输出纹波随电感量的增加变化较明显,当电感的电感量大于此值Lx时,输出纹波随电感量的增加几乎不再变小,由于增加电感量可以减小磁滞损耗,另外考虑输入波动等其他方面影响取L=60uH,deltaI=Vi*don/(L*f),参数带入,deltaI=0.72A,I1=Io/(1-don)-(1/2)*deltaI,I2= Io/(1-don)+(1/2)*deltaI,参数带入,I1=1.2A,I2=1.92A3:输出电容:此例中输出电容选择位陶瓷电容,故ESR可以忽略C=Io*don/(f*Vpp),参数带入,C=99.5uF,3个33uF/25V陶瓷电容并联4:磁环及线径:查找磁环手册选择对应峰值电流I2=1.92A时磁环不饱和的适合磁环Irms^2=(1/3)*(I1^2+I2^2-I1*I2),参数带入,irms=1.6A 按此电流有效值及工作频率选择线径其他参数:电感:L 占空比:don初始电流:I1 峰值电流:I2 线圈电流:Irms输出电容:C 电流的变化:deltaI 整流管压降:Vd。
boost电路并联电感
![boost电路并联电感](https://img.taocdn.com/s3/m/2e5fafc403d276a20029bd64783e0912a2167ce3.png)
boost电路并联电感Boost电路是一种常见的DC-DC转换器,它可以将输入电压提升到较高的输出电压。
与降压电路相比,Boost电路更适用于需要提高电压的应用,如电动汽车、太阳能充电器等。
在Boost电路中,并联电感是一种常见的元件配置,可以提高电路的效率和稳定性。
首先,我们来了解Boost电路的工作原理。
Boost电路由输入电压源、开关管、电感、二极管和输出负载组成。
当开关管关闭时,电感会储存能量,同时二极管断开,此时电感的一端接地,另一端的电压上升。
接着,当开关管打开时,电感释放储存的能量,电流通过二极管流向输出负载,输出电压上升。
通过控制开关管的导通时间和断开时间,可以实现电路输出稳定的高电压。
在Boost电路中,并联电感起到了关键的作用。
通过并联电感,可以减小电感的电流波动,提高电路的效率,并减少电感噪声对输出电压的干扰。
并联电感可以将电流平均分配到两个电感中,减小了电流的波动,从而减小了功率损耗。
此外,由于并联电感的存在,输出电压的变化对电感的影响减小,使得电路的稳定性得到了提高。
在设计Boost电路时,需要考虑并联电感的参数选择。
首先是电感的值,根据输入电压和输出电压的比值,可以计算出所需的电感值。
较大的电感值可以减小电感的电流波动,提高电路的效率,但也会增加电感的体积和成本。
其次是电感的电流和功率承受能力,由于并联电感可以减小电流波动,因此对电感的电流和功率要求相对较低。
最后是电感的品质因数,品质因数越高,电感的损耗越小,效率越高,但也会增加电感的成本。
除了以上的考虑因素,还需要注意并联电感的布局和连接方式。
在布局上,应尽量减小电感之间的相互干扰,避免相互影响导致效率下降。
在连接方式上,可以采用交流连接或直流连接,根据具体的应用需求选择合适的连接方式。
总结起来,Boost电路中的并联电感可以提高电路的效率和稳定性。
通过减小电流波动,提高电路效率;减少输出电压变化对电感的影响,提高电路的稳定性。
boost升压电路电感和占空比的设计
![boost升压电路电感和占空比的设计](https://img.taocdn.com/s3/m/30cb9eb610661ed9ac51f363.png)
文本预览:输出电容的选择和你的开关频率占空比还有纹波的要求有关,和电感量没有直接关系。
也就说没有所谓的搭配关系影响效率和MOS发热。
我感觉你的电感选小了,或者频率选低了。
电感选小了电感充电迅速完成,之后管子没有关断导致电感成了直流电阻负载,消耗电能并导致MOS发热。
如果频率高的话可以缓解这种状况,但是增加电感量是根本。
再有Mos发热还跟你的开关时间有关系,就是说加在mos管G极的信号是不是很好的方波,因为mos从截至到饱和必须划过放大区,而放大区的结功耗要大的多。
所以要求换过放大区的时间越短越好,就要求信号的上升下降沿要足够陡峭。
而mos管本G极和与DS之间是由比较的结电容的。
所以要求mos前面的电路要有一定的驱动能力。
下面是从网上看到的一个计算用例。
你试一下。
已知参数:输入电压:12V --- Vi输出电压:18V ---Vo输出电流:1A --- Io输出纹波:36mV --- Vpp工作频率:100KHz --- f************************************************************************1:占空比稳定工作时,每个开关周期,导通期间电感电流的增加等于关断期间电感电流的减少,即Vi*don/(f*L)=(Vo+Vd-Vi)*(1-don)/(f*L),整理后有don=(Vo+Vd-Vi)/(Vo+Vd),参数带入,don=2:电感量先求每个开关周期内电感初始电流等于输出电流时的对应电感的电感量其值为Vi*(1-don)/(f*2*Io),参数带入,Lx=,deltaI=Vi*don/(L*f),参数带入,deltaI=当电感的电感量小于此值Lx时,输出纹波随电感量的增加变化较明显。
boost升压电路电感和占空比的设计
![boost升压电路电感和占空比的设计](https://img.taocdn.com/s3/m/b7be74384a35eefdc8d376eeaeaad1f3469311dc.png)
文本预览:
输出电容的选择和你的开关频率占空比还有纹波的要求有关;和电感量没有直接关系..也就说没有所谓的搭配关系影响效率和MOS发热..
我感觉你的电感选小了;或者频率选低了..电感选小了电感充电迅速完成;之后管子没有关断导致电感成了直流电阻负载;消耗电能并导致MOS发热..如果频率高的话可以缓解这种状况;但是增加电感量是根本..
再有Mos发热还跟你的开关时间有关系;就是说加在mos管G极的信号是不是很好的方波;因为mos从截至到饱和必须划过放大区;而放大区的结功耗要大的多..所以要求换过放大区的时间越短越好;就要求信号的上升下降沿要足够陡峭..而mos管本G极和与DS之间是由比较的结电容的..所以要求mos前面的电路要有一定的驱动能力..
下面是从网上看到的一个计算用例..你试一下..
已知参数:
输入电压:12V --- Vi
输出电压:18V ---Vo
输出电流:1A --- Io
输出纹波:36mV --- Vpp
工作频率:100KHz --- f
1:占空比
稳定工作时;每个开关周期;导通期间电感电流的增加等于关断期间电感电流的减少;即
Vidon/fL=Vo+Vd-Vi1-don/fL;整理后有
don=Vo+Vd-Vi/Vo+Vd;参数带入;don=0.572
2:电感量
先求每个开关周期内电感初始电流等于输出电流时的对应电感的电感量其值为Vi1-don/f2Io;参数带
入;Lx=38.5uH;
deltaI=Vidon/Lf;参数带入;deltaI=1.1A
当电感的电感量小于此值Lx时;输出纹波随电感量的增加变化较明显。