不等式的基本性质知识点

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不等式的基本性质知识点

1 .不等式的定义:a-b>0 a>b, a-b=O a=b, a-b a

①其实质是运用实数运算来定义两个实数的大小关系。它是本章的基础,也是证明不等式与解不等式的主要依据。

②可以结合函数单调性的证明这个熟悉的知识背景,来认识作差法比大小的理论基础是不等式的性质。

作差后,为判断差的符号,需要分解因式,以便使用实数运算的符号法则。

如证明y=x3为单增函数,

3 3 2 2 2

设x1, X2《(-m,+ m), X

3

+ X22]

5 3

再由(X什- )2+ X22>0, X1-X2<0,可得 f(X l)

2.不等式的性质:

①不等式的性质可分为不等式基本性质和不等式运算性质两部分。不等式基本性质有:

(1)a>b三b

(2)a>b, b>c 二a>c (传递性)

⑶ a>b = a+c>b+c (c € R)

(4) c>0 时,a>b A,ac>bc

c<0 时,a>b ac

运算性质有:

(1) a>b, c>d —a+c>b+d。

⑵ a>b>0,c>d>0 ac>bd。

⑶ a>b>0 —a n>b n(n € N, n>1)。

⑷ a>b>0= 川>w (n € N, n>1)。

应注意,上述性质中,条件与结论的逻辑关系有两种:“ ”和“ ”即推出关系和等价关系。一般地,证明不等式就是从条件出发施行一系列的推出变换。解不等式就是施行一系列的等价变换。因此,要正确理解和应用不等式性质。

②关于不等式的性质的考察,主要有以下三类问题:

(1)根据给定的不等式条件,禾U用不等式的性质,判断不等式能否成立。

⑵利用不等式的性质及实数的性质,函数性质,判断实数值的大小。

⑶利用不等式的性质,判断不等式变换中条件与结论间的充分或必要关系。

相关文档
最新文档