肌电图课件

合集下载

肌电图入门课件

肌电图入门课件
• 肌肉兴奋性异常的神经肌肉疾病(肌强直 病、周期性麻痹等)
2020/5/19
EMG特征: • MUP时限缩短 • MUP电压下降 • 多相电位增加 • 大力收缩呈病理干扰相 • 可出现少量自发电位 • MCV、SCV正常
2020/5/19
再见!
2020/5/19
2020/5/19
EMG特征:
• MUP时限显著增宽 • MUP电压显著增高,常出现巨大电位 • 多相电位增加 • 大力收缩MUP减少,常出现高频单纯相 • 可出现纤颤电位、正锐波,但较周围神经疾病少 • 可出现束颤电位及肌强直电位 • MCV正常或轻度减慢 • SCV正常
2020/5/19
周围神经病
2020/5/19
2020/5/19
神经传导速度
2020/5/19
2020/5/19
单纤维肌电图
主要用于神经肌肉接头病
2020/5/19
重复神经电刺激
2020/5/19
2020/5/19
2020/5/19
F波
2020/5/19
2020/5/19
H反射
2020/5/19
2020/5/19
瞬目反射
Blink reflexion BR
2020/5/19
2020/5/19
• 临床主要用于三叉神经损害、Bell麻痹 、面肌的协同动作和痉挛,以及听神经 瘤、多发性硬化等。
2020/5/19
临床应用
2020/5/19
脊髓病变
2020/5/19
脊髓前角细胞疾病
(运动神经元病、脊髓灰质 炎、脊髓空洞症)
结合临床,根据异常肌电位分布特点及EMG、CV的改变作综 合判断。
2020/5/19

肌电图课件

肌电图课件
患者在接受肌电图检查时应保持 放松状态,配合医生完成操作。 同时应告知医生自身健康状况和 用药情况,以便医生更好地评估
结果。
03
肌电图的解读与解析
肌电图的波形解读
正弦波
正弦波是肌电图中最常 见的波形之一,代表肌
肉的正常活动状态。
周期性复合波
周期性复合波是由多个 肌肉纤维电位组成的波 形,具有特定的周期和

肌电图参数异常
肌电图参数异常可能是由于肌肉功 能异常、神经传导异常等原因引起 的,表现为肌肉纤维密度、长度等 参数的异常变化。
肌电图诊断价值
肌电图对于诊断神经肌肉疾病、评 估肌肉功能和运动能力等方面具有 重要的价值,可以为临床诊断和治 疗提供重要的参考依据。
04
肌电图的临床意义
神经源性疾病的诊断
神经肌肉疾病的诊断
01
针对神经肌肉疾病的肌电图检查,有助于早期发现和诊断疾病

康复医学的评估
02
在康复医学领域,肌电图可用于评估肌肉功能恢复情况,指导
康复训练。
运动医学的监测
03
在运动医学领域,肌电图可用于监测运动员肌肉疲劳程度和损
伤风险。
肌电图在科研领域的发展方向
01
02
03
基础研究
深入研究肌电图信号产生 的机制和影响因素,为技 术改进提供理论支持。
肌电图与诱发电位的关系
诱发电位
通过特定刺激引发的大脑电活动,以评估神经系统功能。
肌电图与诱发电位的关联
肌电图主要关注肌肉电活动,而诱发电位关注大脑电活动,两者在评估神经系 统功能方面具有互补性。
肌电图与超声的关系
超声
利用高频声波显示组织结构的影像,常用于医学诊断。

《肌电图》ppt课件53页PPT

《肌电图》ppt课件53页PPT
不低于正常值 的70%(快传导纤维轴突丧失)。疾病晚期,运动神经元大量死亡, CAMP波幅可降至极低甚至无法测出。 2. EMG: 神经源性损害 大力募集差。 失神经现象:纤颤电位和正锐波。(轴索损伤活动期。失神经支配2W后,肌纤维兴奋 性增高)疾病的进展情况和严重程度??? 慢性神经再生现象:2月后。进展缓慢,功能好:宽时限、高波幅运动单位电位。
干扰相
单纯相 (神经源性损害)
病理干扰相 (肌源性损害)
几种常见疾病的肌电图表现
1.神经根性病变 2.前角细胞病变 3.格林巴利综合征 4.多灶性运动神经病 5.重症肌无力 6.肌炎等
神经根性病(与神经根支配范围有关例C8-T1)
神经传导检测:感觉神经传导正常;(尺神经)
正中神经MNCV
11
“复合肌肉动作电位 波幅减低”(双侧对
复合肌肉动作电位 (全程)波幅减低
波幅反应的是参与动作电位的肌纤维的数量
1.部分轴索损伤 2.所支配肌肉萎缩
“复合肌肉动作电位 近端波幅下降”
局灶性严重脱髓鞘
传导阻滞 波幅降低50%
“复合肌肉动作电位 波形离散、 波幅降低、
传导速度减慢、 远端潜伏期延长”
不均匀节段性脱髓鞘
GBS?
脱髓鞘典型改变:远端潜伏期明显延长, 神经传导阻滞及神经传导速度减慢。
轴索病变:肌肉动作电位波幅明显降低, 末端潜伏期正常或稍微延长(一般不超过 正常上线130%)。损害严重时,才会出现 传导速度减慢(一般不低于正常下限75 %)。为什么?快纤维!
运动神经传导速度测定常见异常
经可以引不出
运动神经传导测定
潜伏期:神经轴索中快传导纤维到达肌肉的时间 传导速度:计算方法? 波幅、波形、曲线下面积(参与混合神经肌肉动作电位的肌纤维数量) 时程(每个单个肌纤维是否在同一时间被兴奋)脱髓鞘病变时,每个神经干

《医学肌电图学》课件

《医学肌电图学》课件

个性化治疗
普及推广
基于肌电图的个体化特征,未来将有望开 展个性化治疗和康复方案,提高治疗效果 。
随着人们对肌肉疾病的认知不断提高,肌 电图技术将得到更广泛的普及和应用。
06
案例分析
神经源性疾病的肌电图表现
神经根病变
肌电图可显示神经传导速度减慢 ,波幅降低,肌肉无收缩反应等
异常表现。
脊髓病变
肌电图可显示神经传导速度减慢或 消失,肌肉无收缩反应等异常表现 。
肌肉源性疾病的诊断
01
肌无力综合征
肌电图检查可以检测肌肉的电生 理活动,有助于诊断肌无力综合 征。
肌萎缩症
02
03
先天性肌肉疾病
通过肌电图检查,可以观察肌肉 的电生理特征,有助于诊断各种 肌萎缩症。
肌电图可以检测先天性肌肉疾病 的肌肉电生理特征,如先天性肌 营养不良症等。
周围神经损伤的诊断与预后评估
初步发展
进入20世纪后,随着电子技术和计算机技术的进步,肌电图学得 到了初步的发展和应用。
现代应用
随着科技的不断进步和应用领域的拓展,肌电图学在医学、运动科 学、康复医学等领域得到了广泛的应用和发展。
02
肌电图的原理与技术
肌电图的原理
肌电图是通过记录肌肉活动的电信号 来反映神经肌肉功能的一种检测方法 。
采集到的肌电图信号需要进行预处理和后处理,以提取有用的信息并进行准确的解 读。
肌电图的解读与报告
解读肌电图时,需要分析肌电图的波 形、幅度、频率等特征,并与正常值 进行比较,以判断肌肉或神经的功能 状态。
报告肌电图结果时,需要详细描述检 测过程、结果解释、临床意义和建议 等信息,以便医生根据报告结果进行 诊断和治疗。
特点

肌电图精品医学课件

肌电图精品医学课件

01
02
03
04
神经肌肉疾病的诊断:如肌肉 萎缩、肌无力、肌强直等。
周围神经损伤的诊断与预后评 估:如臂丛神经损伤、腕管综
合征等。
运动医学与康复:评估肌肉功 能和损伤程度,指导康复训练
和治疗方案。
职业病与工伤鉴定:评估职业 病和工伤对神经肌肉系统的影
响,进行劳动能力鉴定。
02
肌电图检查技术
电极放置
作用
诊断神经肌肉疾病,评估肌肉和 神经功能,辅助诊断和鉴别诊断 ,指导治疗和康复。
肌电图的基本原理
神经电生理学
神经肌肉系统的电活动是由神经元和 肌肉纤维的电生理特性所决定的。
电极放置
将电极放置在肌肉上,记录肌肉的电 活动,通过分析这些电活动的波形、 幅度、频率等参数来评估肌肉和神经 的功能状态。
肌电图的应用范围
脊髓病变
总结词
肌电图有助于诊断脊髓病变的神经传导异常。
详细描述
肌电图可以检测脊髓损伤或炎症引起的神经传导障碍,有助于诊断脊髓病变,如脊髓炎、脊髓压迫症 等。
周围神经病变
总结词
肌电图对周围神经病变的诊断具有重要意义。
详细描述
肌电图可以检测周围神经的传导速度和波幅异常,有助于诊 断各种周围神经病变,如腕管综合征、肘管综合征等。
肌电图精品医学课件
汇报人: 2023-12-28
目录
• 肌电图概述 • 肌电图检查技术 • 肌电图解读与报告 • 肌电图在神经科疾病中的应用 • 肌电图在康复医学中的应用 • 肌电图的未来发展与展望
01
肌电图概述
定义与作用
定义
肌电图是一种通过记录肌肉电活 动的检查方法,用于评估神经肌 肉系统的功能和状态。

《医学肌电图学》课件

《医学肌电图学》课件

《医学肌电图学》课件xx年xx月xx日CATALOGUE 目录•绪论•肌肉与神经的解剖和生理•肌电图基础知识•上肢肌肉肌电图•下肢肌肉肌电图•神经源性损害与肌电图表现•肌电图在临床上的应用01绪论1医学肌电图学定义23医学肌电图学是一种研究神经肌肉系统电活动的医学学科。

它运用电生理学技术和方法,检测和评估神经肌肉系统功能状态。

医学肌电图学对于神经系统疾病、肌肉疾病、周围神经病变等疾病的诊断和治疗具有重要意义。

03目前,医学肌电图学已经成为医学学科中的重要分支,广泛应用于临床诊断和治疗。

医学肌电图学发展历程0119世纪末至20世纪初,科学家开始研究神经肌肉的电活动。

0220世纪中期,随着电子技术和计算机技术的发展,医学肌电图学得到迅速发展。

医学肌电图学应用医学肌电图学在神经系统疾病的诊断中具有广泛应用。

同时,医学肌电图学在肌肉疾病的诊断和治疗中也有重要作用,如肌肉萎缩、肌肉无力、肌肉疼痛等。

它可以用于检测和评估神经根病变、脊髓病变、脑干病变、大脑病变等神经系统疾病。

此外,医学肌电图学还用于周围神经病变的诊断和治疗,如腕管综合征、臂丛神经损伤等。

02肌肉与神经的解剖和生理肌肉由肌肉纤维和肌腱组成,肌肉纤维又分为快肌和慢肌两种,具有不同的生理特性。

肌肉的组成肌肉的形态和结构根据其功能和位置的不同而有所差异,包括多裂肌、竖脊肌、腹肌等。

肌肉的形态和结构肌肉的主要功能是收缩和放松,通过神经支配进行运动。

肌肉的功能肌肉的解剖和生理神经的解剖和生理神经系统的组成神经系统由大脑、脊髓和周围神经组成,分为中枢神经系统和周围神经系统。

神经元的结构与功能神经元分为胞体、轴突和树突三部分,通过电信号传递信息。

神经冲动的传导神经冲动在神经元上传导速度极快,同时会受到突触延搁的影响。

肌肉与神经的交互作用神经通过运动神经元支配肌肉纤维,引起肌肉收缩,实现运动。

神经支配与肌肉收缩肌张力是维持身体姿势的重要因素,通过调节肌肉收缩程度实现。

肌电图基础ppt课件

肌电图基础ppt课件
*
LEMS患者重复电刺激。A显示低频衰减;B-D分别为30个、100个和200个连续30Hz高频刺激,可见随着刺激时间的延长CMAP波幅递增更趋明显。
*
小结
肌电图——鉴别肌源性/神经源性 神经传导速度——远端神经 晚反应——近端神经 重复神经电刺激——神经肌肉接头
*
*
肌电图基础和临床应用
*
概述
肌电图检查就是利用电子仪器对神经肌肉电活动进行记录和分析并以此作为临床定位诊断的依据。
*
肌电图的适应征
肌萎缩(需除外脂肪萎缩和废用性肌萎缩) 无力(需除外上运动神经元损害引起的无力) 感觉障碍(尤其是感觉减退)
*
无力
伴感觉障碍
Dist.235 mm
CV 62 m/s
*
下肢传导检查
Recorder
Stimulation 2
Stimulation 1
运动传导检查
感觉传导检查
Recorder
Stimulation
*
特殊神经传导检查
晚反应(F波和H反射)和瞬目反射——用于检查近端神经传导功能。 重复神经电刺激——神经肌肉接头功能的电生理检查
肌肉
多发性神经病-糖尿病
重症肌无力
肌无力综合征
不伴肌肉压痛
伴有肌肉压痛
肌强直
肌营养不良
代谢性肌病
炎性肌病
动脉炎
*
肌电图检查的作用:有无损害?病变部位?
运动神经元损害 神经根性损害 周围神经病 神经肌肉接头病 肌肉疾病
*
肌电图检查的手段
针极肌电图检查 神经传导检查 诱发电位(运动和体感)
*
不伴感觉 障碍
↑腱反射—上运动神经元

肌电图小讲课 ppt课件

肌电图小讲课 ppt课件

Amp 1: 10-10kHz
New Nerve Other Side MNC F F--W Wa av ve es s SNC ANS Rep Stim H
瞬目反射
◆ 刺激每一侧眶上神经,均可由眼轮匝肌诱发出两 个性质不同的反射成分,刺激侧的早反射和晚反射 及对侧引出的晚反射。
◆ 对三叉神经、面神经和脑干病变的早期诊断具有 重要的临床价值。
MU募集的结果→产生强而有效力的肌肉收缩
运动单位电位(MUP) ◆ 用来区分肌源性与神经源性损害。
神经源性损害:MUP的时限和波幅均增大。 肌源性损害: MUP的时限和波幅均减少。 ◆ 与遗传性肌病不同,肌炎或代谢性肌病的 电生理改变是可以恢复的。 ◆多相波增多在肌源性和神经源性损害均可见。它反 映一个MU的肌纤维放电的不同步性的指标。
对募集到的、 单个MUP的评估
对MUP激活 形式的评估
随机的 呈模式的 亚MUP MUP
random
patterned
sub-MUP
大小 形态 稳定性 募集 干扰型
size shape
stability recruitment
IP
Paul E Barkhaus, 2008, eMedicine
肌电信号的检查
❖ 次强刺激胫后神经 ❖ 诱发小腿三头肌的反射性反应 ❖ 其潜伏期与跟腱反射差不多
5
神经传导检测 • F波 • H反射 • 重复 神经电刺激 • 瞬目反射 • 定量感觉 测定 • 皮肤交感反射 • 体感诱发电 位 • 听觉诱发电位 • 视觉诱发电位
• 磁刺激运动诱发电位 • 诱发电位 术中监测(IOM)
01
广义的肌电图
02
狭义的肌电图
针电极插入肌肉中,收集针附近 一组肌纤维的动作电位;在插入 过程中、 肌肉处于静息状态下以

肌电图演示ppt课件

肌电图演示ppt课件
鉴别神经源性与肌源性损害
肌电图能够检测肌肉的神经冲动传导和肌肉的收缩反应,有助于鉴别神经源性与 肌源性损害,为治疗方案的选择提供依据。
肌电图在肌肉疾病诊断中的应用
诊断肌肉疾病
肌电图可以检测肌肉的神经冲动传导 和肌肉的收缩反应,有助于诊断肌肉 疾病如肌炎、肌无力综合征等。
评估治疗效果
通过肌电图检测肌肉的功能状态,可 以评估治疗效果,指导治疗方案调整 。
高频肌电图技术
总结词
高频肌电图技术能够提供更精细的肌肉活动信息,有助于更准确地评估和诊断肌肉疾病和神经病变。
详细描述
随着科技的进步,高频肌电图技术不断发展,其采样频率更高,能够捕捉到更多的肌肉电活动细节。 这使得医生能够更准确地评估肌肉疾病的严重程度,以及神经病变对肌肉的影响。
神经肌肉电生理技术在康复医学中的应用
肌电图与事件相关电位的区别
事件相关电位主要检测大脑的认知电活动,而肌 电图主要检测肌肉的电活动。
3
适用范围
事件相关电位常用于评估认知障碍和痴呆等神经 系统疾病。
05
肌电图的临床意义与局限 性
肌电图在神经系统疾病诊断中的应用
诊断神经根病变
肌电图可以检测神经根受压或损伤时所引起的神经传导速度减慢或阻滞,有助于 诊断神经根病变。
肌电图的局限性
假阳性与假阴性
肌电图检测结果可能受到多种因素的影响,如患者的配合程度、电 极放置位置等,可能导致假阳性或假阴性的结果。
对患者有一定的创伤
肌电图检测需要将电极插入肌肉中,对于患者有一定的创伤和不适 感。
费用较高
肌电图检测费用较高,可能限制其在临床的广泛应用。
06
未来肌电图技术的发展趋 势与展望
神经传导异常

《肌电图基础》课件

《肌电图基础》课件
探索肌电图的图像处理技术,以提取有价值的 信息和模式。
统计分析
学习如何使用统计方法对肌电图数据进行分析, 揭示潜在的关系和趋势。
肌电图在临床和科研中的应用案例
康复训练
了解肌电图在康复训练中的应用,如肌肉功能评估 和运动控制训练。
人机界面
探索肌电图在人机界面中的应用,如手势识别和智 能控制系统。
运动优化
了解肌电图对运动优化的应用,包括姿势调整和动 作改进。
生物力学分析
学习如何利用肌电图进行生物力学分析,揭示运动 过程中的力学特性。
肌电图技术的发展趋势和前景
1 无线传输
探索无线肌电图传输技术的发展,提高测试的便利性和数据的准确性。
2 智能算法
了解智能算法在肌电图数据处理中的应用,提高数据分析的效率和精度。
3 个性化监测
探索个性化肌电图监测技术的前景,满足不同人群的需求和特定应用场景。
结语和总结
资料分享
分享一些肌电图学习资料和参 考文献,帮助你进一步深入学 习和研究。
未来展望
展望肌电图技术的未来发展方 向学员的问题,并提供进一 步的指导和帮助。
《肌电图基础》PPT课件
本课程将带你深入了解肌电图基础的定义与概述,肌电图的原理和应用,以 及肌电图测量的步骤与准备工作。
肌电图的数据解读与分析方法
波形分析
学习如何解读和分析肌电图波形,包括幅值、 频率和时态等特征。
信号滤波
了解肌电图信号滤波的原理和方法,以消除噪 音干扰,提高数据准确性。
图像处理
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
– 轴突断裂(axonotmesis):
• 轴突在髓鞘内断裂,神经鞘膜完整 • 远端神经纤维发生退行性改变 • 经过一段时间后神经可自行恢复。
– 神经断裂(neurotmesis):
• 神经束或神经干完全断裂,或为疤痕组织分隔 • 需通过手术缝接神经, • 缝合神经后可恢复功能或功能恢复不完全。
三、肌电图的基本原理
观察指标
• 潜伏期/传导速度 • 波幅
判断标准
• 传导速度降低超过正常值的20%,潜伏期 延长超过正常值的高限。
• 波幅下降,低于正常值的低限 • 意义:
– 髓鞘损害:传导速度降低、潜伏期延长 – 轴索损害:CMAP波幅降低
感觉神经的测定
• 顺向性检测:刺激远端神经,在近端神经 干记录动作电位(SNAP)
肌电图
一、周围神经的结构
周围神经
• 周围神经由神经细胞、雪旺细胞 (Schwann’s cell)、结缔组织、血管、 淋巴管以及特殊支持细胞组成。
• 神经细胞(神经元)
– 由胞体部分和突起部分构成,轴突是其中的一个 最重要的胞突,其末端反复分支后或与其他神经 元接触,或远至其他器官参与构成效应器。
具体内容
肢体神经、颅神经、阴部神经
F波、H反射、骶反射、瞬目反射(BR)、皮肤交 感反射(SSR) 远端、近端肌肉 SEP、VEP、BAEP
神经传导
检测技术 运动传导 感觉传导 F波 H反射 SSR 瞬目反射 球-海绵体反射
应用范围 运动神经 感觉神经 运动神经近端、前角 感觉、运动神经 小纤维:自主神经(交感) 三叉神经(感觉)、面神经(运动) 阴茎背神经(感觉)、阴部神经(运动)
进行下面游戏
M F波
运动神经
F波的指标判断
• 潜伏期:20个连续F波平均计算
– 正常值:上肢:26 ms左右;下肢:48 ms左右
• 出现率:80-100% • F波比率
F波的临床应用
补充常规运动的神经传导的不足,评价近端运动 神经的功能(神经根、神经丛及周围神经近端病 变)
如GBS 遗传性运动神经病 糖尿病性神经病、尿毒症性神经病 根性或丛性神经损害
神经功能特点
Stimulus
感觉神经
Response
运动神经
运动神经传导的测定
• 刺激运动神经干,诱发所刺激神经支配的 肌肉收缩
• 在该肌肉记录运动电位,称为复合肌肉动 作电位,compound muscle action potential,CMAP(M波)
+神经
运动动作电位
-+ - ++ -+ -+ -+ -+ -+ - + -+ -+ -
• 雪旺细胞:
– 包绕轴突形成神经纤维变
病理改变
• 华勒变性:轴突断裂后,断端远侧轴突和髓鞘变性, 并向近端发展。
• 轴突变性:中毒或营养障碍使胞体蛋白质 合成障碍 或轴浆运输阻滞,轴突变性和继发性脱髓鞘自远端向 近端发展。
• 神经元变性:神经元胞体坏死继发轴突及髓鞘破坏。 • 节段性脱髓鞘:髓鞘破坏而轴突保持相对完整,周围
–必须排除技术因素、患者因素 –结合针EMG
F波的测定
概念
F波是超强电刺激神经干在M波后的一个晚 成分,是运动神经回返放电引起的。
F波的由来:
1950年Magladery和McDongal 首先描述了这个晚成分, 因在足部(foot)小肌肉上记录,所以称为F波。
F波产生的机制
F波
轴突变性:急性期
轴突变性:急性期
轴突变性:数天/周以后
轴突变性:数天/周以后
节段神经传导
• 分别在神经干上进行多点刺激(微移技术 /inching技术),以确定神经损伤部位和 节段
–局灶性神经病、嵌压性神经病
• 腕管综合征、肘管综合征、跖管综合征
微移检测
手掌
刺激.
记录.
1英寸距离. 刺激与记录
正中神经感觉检测:刺激指I、III、IV,在腕部记录
尺神经感觉传导检查
刺激 记录
A平V均ERAGING
潜伏期 ms 2.6
小指
距离 mm 155 速度 m/s 60
无名指
潜伏期 ms 3.1
距离 mm 175 速度 m/s 56
异常感觉传导的判断标准
传导速度降低(SNCV)超过正常值的20% SNAP波幅降低:SNAP波幅<正常值低限 意义:
轴索损害:波幅↓ 髓鞘损害:传导速度↓
神经损伤病理与神经传导异常
神经传导测定的注意点
• 常规测定的是末端神经
–进行检测和结果分析时要考虑神经损伤的病史 和神经损伤部位及病理特点
• 神经损伤早期,其远端神经纤维尚保持完 整,未发生继发变性,其神经传导可能正 常。
• 除非造成远端继发变性,否则远端传导不 能反映刺激部位近端神经功能。
概念
EMG(electromyography):是研究肌肉静息和随 意收缩及周围神经受刺激时各种电特性的一门科学
狭义 EMG:指同心圆针电极或常规EMG 广义EMG:NCV和F波、RNS、反射、SFEMG、
巨肌电图、运动单位计数等
常用的检测技术
检测技术 神经传导
各种反射
针EMG 各种诱发电位 定量感觉测定(QST)
点之间
腕部 刺激个数.
潜伏期逐渐延长 潜期
脊神经节前、节后损害的神经传导
节前 节后 损害 损害
脊神经节前/后损害的神经传导改变
正常
节前 损害
节后 损害
后根神经节
后根神经节
损害部位
后根神经节
SNAP
CMAP
周围神经传导检测
• 两侧对比:
–一侧异常,必须做对侧
• 整体判断
–下肢异常,必须做上肢
• 单一神经异常
S
M
潜伏期等于电信号从刺激点到记录点的传导时间
潜伏期=运动神经传导时间+神经肌肉接头传递时间+肌肉兴奋到收缩的时间
参考电极
记录电极
正中神经传导
记录.

刺激. 1
潜伏期 3.5 ms
刺激2
腕-肘之间的距离:240mm

8.2 ms
腕-肘之间的潜伏期差值: 4.7 ms
腕-肘之间的速度=240/4.7= 51 m/s
神经近远端不规则、长短不等节段性脱髓鞘
神经损伤程度——Seddon分类法
• Seddon于1943年提出三种周围神经损伤的类型
– 神经失用(neurapraxia):
• 神经传导功能障碍为暂时性的生理性阻断 • 神经纤维不出现解剖和形态上的改变,远端神经不出现退行改变。 • 神经传导功能于数日至数周内自行恢复
相关文档
最新文档