第一讲 逐步回归分析_PPT幻灯片
合集下载
回归分析实例PPT课件
通过各种统计检验来评估 模型的拟合效果,如残差 分析、R方检验、F检验等。
线性回归分析的应用
预测
使用线性回归模型来预测因变 量的值,基于给定的自变量值
。
解释变量关系
通过线性回归分析来了解自变 量与因变量之间的数量关系和 影响程度。
控制变量效应
在实验或调查中,控制自变量 的影响,以观察因变量的变化 情况。
模型的建立和检验
模型的建立
首先需要收集数据,并进行数据 清洗和预处理,然后选择合适的 自变量和因变量,建立逻辑回归
模型。
模型的检验
通过多种检验方法对模型进行评 估,包括参数估计、假设检验、 模型诊断等,以确保模型的准确
性和可靠性。
模型的优化
根据检验结果对模型进行调整和 优化,包括参数调整、变量筛选
详细描述
收集产品在过去一段时间的销售数据,包括销售额、销售量等,作为自变量, 将未来某一段时间的产品销量作为因变量,建立回归模型。通过模型预测未来 产品销量,为企业制定生产和销售计划提供依据。
实例三:疾病风险预测
总结词
基于个人健康数据和疾病历史,建立回归模型预测疾病风险。
详细描述
收集个人的健康数据和疾病历史,包括血压、血糖、胆固醇等生理指标以及家族 病史等信息,作为自变量,将未来患某种疾病的风险作为因变量,建立回归模型 。通过模型预测个人患某种疾病的风险,为预防和早期干预提供参考。
线性关系的假设
自变量x与因变量y之间存在线性关系, 即随着x的增加(或减少),y也相应 地增加(或减少)。
模型的建立和检验
01
02
03
数据收集与整理
收集相关数据,并进行必 要的整理和清洗,以确保 数据的质量和可靠性。
线性回归分析的应用
预测
使用线性回归模型来预测因变 量的值,基于给定的自变量值
。
解释变量关系
通过线性回归分析来了解自变 量与因变量之间的数量关系和 影响程度。
控制变量效应
在实验或调查中,控制自变量 的影响,以观察因变量的变化 情况。
模型的建立和检验
模型的建立
首先需要收集数据,并进行数据 清洗和预处理,然后选择合适的 自变量和因变量,建立逻辑回归
模型。
模型的检验
通过多种检验方法对模型进行评 估,包括参数估计、假设检验、 模型诊断等,以确保模型的准确
性和可靠性。
模型的优化
根据检验结果对模型进行调整和 优化,包括参数调整、变量筛选
详细描述
收集产品在过去一段时间的销售数据,包括销售额、销售量等,作为自变量, 将未来某一段时间的产品销量作为因变量,建立回归模型。通过模型预测未来 产品销量,为企业制定生产和销售计划提供依据。
实例三:疾病风险预测
总结词
基于个人健康数据和疾病历史,建立回归模型预测疾病风险。
详细描述
收集个人的健康数据和疾病历史,包括血压、血糖、胆固醇等生理指标以及家族 病史等信息,作为自变量,将未来患某种疾病的风险作为因变量,建立回归模型 。通过模型预测个人患某种疾病的风险,为预防和早期干预提供参考。
线性关系的假设
自变量x与因变量y之间存在线性关系, 即随着x的增加(或减少),y也相应 地增加(或减少)。
模型的建立和检验
01
02
03
数据收集与整理
收集相关数据,并进行必 要的整理和清洗,以确保 数据的质量和可靠性。
第一讲 逐步回归分析讲解
2 1 4 2
A(0)
1
1.5
3
4
4
3
10
5
0.5 0.5 2 1
A(1)
0.5
1
1 3
2
1 2 1
1.5-1×0.5=1 3-1×2=1 4-1×1=3
0.5-0.5×(-0.5)=0.75 2-0.5×1=1.5 1-0.5×3=2.5
SS
1b1
SP12 b2
SP13b3
SP1y
SP21b1 SS 2b2 SP23b3 SP2 y
SP31b1 SP32b2 SS 3b3 SP3y
2b1 1b2 4b3 2 1b1 1.5b2 3b3 4 4b1 3b2 10b3 5
x5
y,%
68.6
70.9
62.2
66.7
57.3
60.5
56.7
60.5
58.0
58.9
x
17.2
13.3
10.3
64.4
62.5
63.4
s
4.1
3.8
4.4
7.0
5.6
3.8
一、计算相关系数阵
1、计算各变量的平均数(为表1—1) 设自变量x1,x2,…,xm与依变量y存在线性关系,m元线性回归 方程为:
由x估测y的估计值 yˆ 的直线回归方程: yˆ =a+bx
第一节 逐步回归分析的基本方法
逐步回归分析的基本方法可以通过一个实例介绍其分析步骤。 例1 为考察舍内干球温度(x1)、湿球温度(x2)、露点温度(x3)、相对湿 度(x4)及舒适度指数(x5)对罗曼蛋鸡产蛋率(y)的影响。随机抽测12个位点 各64只鸡在56—67周令的平均周产蛋率如表1—1。
高中信息技术浙教版:回归分析教学课件(共17张PPT)
判断摄氏温度和华氏温度之间是否符合线性关系。
如符合,请通过回归分析计算出摄氏温度和华氏温度之间的线性回归方程。
本课小结
拓展链接——最小二乘法
最小二乘法是一种机器学习的优化技术,其将残差平方之和最小化作为目标
,找到最优模型来拟合已知的观测数据,使得模型所预测的数据与实际数据之间
误差的平方和最小,一般有线性最小二乘法和非线性最小二乘法两种方法。
用线性最小二乘法来解决线性回归模型存在封闭形式(closed-formsolution)
之间
差的绝对值|-y|,将这个差的绝对值作为对应的真实值(即y)和模型预测值(即
)
之间的误差,这个误差通常称为“残差”。
2而不是|-y|引作为“残差”。这样
为了计算方便,在实际中一般使用(-y)
对于给定的n组(x,y)数据,可用不同的a和b来刻画这n组数据所隐含的y=ax+b关
系。对于这些不同的参数,最佳回归模型是最小化残差平方和的均值,即要求n
1
组(x,y)数据得到的残差平均值 σ( − y)2最小。
从残差的定义可看出,残差平均值最小只与参数a和b有关,最优解即使得残
差最小所对应的a和b的值。
2.5.2回归分析中参数计算
可通过最小二乘法(leastsquare)来求解使得残差最小的a和b。
型称为回归模型。
一旦确定了回归模型,就可以进行预测等
分析工作,如从碳排放量预测气候变化程度、
从广告投人量预测商品销售量等。
2.5.1回归分析的概念
二氧化碳浓度在逐年缓慢增加,→二氧化碳浓度=a*年份+b
设时间年份为x、二氧化碳浓度为y,即y=ax+b。
如符合,请通过回归分析计算出摄氏温度和华氏温度之间的线性回归方程。
本课小结
拓展链接——最小二乘法
最小二乘法是一种机器学习的优化技术,其将残差平方之和最小化作为目标
,找到最优模型来拟合已知的观测数据,使得模型所预测的数据与实际数据之间
误差的平方和最小,一般有线性最小二乘法和非线性最小二乘法两种方法。
用线性最小二乘法来解决线性回归模型存在封闭形式(closed-formsolution)
之间
差的绝对值|-y|,将这个差的绝对值作为对应的真实值(即y)和模型预测值(即
)
之间的误差,这个误差通常称为“残差”。
2而不是|-y|引作为“残差”。这样
为了计算方便,在实际中一般使用(-y)
对于给定的n组(x,y)数据,可用不同的a和b来刻画这n组数据所隐含的y=ax+b关
系。对于这些不同的参数,最佳回归模型是最小化残差平方和的均值,即要求n
1
组(x,y)数据得到的残差平均值 σ( − y)2最小。
从残差的定义可看出,残差平均值最小只与参数a和b有关,最优解即使得残
差最小所对应的a和b的值。
2.5.2回归分析中参数计算
可通过最小二乘法(leastsquare)来求解使得残差最小的a和b。
型称为回归模型。
一旦确定了回归模型,就可以进行预测等
分析工作,如从碳排放量预测气候变化程度、
从广告投人量预测商品销售量等。
2.5.1回归分析的概念
二氧化碳浓度在逐年缓慢增加,→二氧化碳浓度=a*年份+b
设时间年份为x、二氧化碳浓度为y,即y=ax+b。
回归分析 ppt课件
8
回归分析
9
回归分析
1.模型拟合情况: 模型的拟合情况反映了模型对数据的解释能力。修正
的可决系数(调整R方)越大,模型的解释能力越强。
观察结果1,模型的拟合优度也就是对数据的解释能力一般,修正的 决定系数为0.326;
10
回归分析
2.方差分析: 方差分析反映了模型整体的显著性,一般将模型的检验
19
回归分析
曲线回归分析只适用于模型只有一个自变量且可以化为 线性形式的情形,并且只有11种固定曲线函数可供选择,而 实际问题更为复杂,使用曲线回归分析便无法做出准确的分 析,这时候就需用到非线性回归分析。它是一种功能更强大 的处理非线性问题的方法,可以使用用户自定义任意形式的 函数,从而更加准确地描述变量之间的关系。
回归分析
1
回归分析
•寻求有关联(相关)的变量之间的关系,是指 通过提供变量之间的数学表达式来定量描述变 量间相关关系的数学过程。
•主要内容:
1.从一组样本数据出发,确定这些变量间的定量关系式; 2.对这些关系式的可信度进行各种统计检验 3.从影响某一变量的诸多变量中,判断哪些变量的影响显著, 哪些不显著 4.利用求得的关系式进行预测和控制
观察结果3,模型中的常数项是3.601,t值为24.205,显著性为 0.000;通货膨胀的系数是0.157, t值为2.315,显著性为0.049。所 12以,两个结果都是显著的。
回归分析
结论:
一元线性回归方程: y=a+bx
写出最终模型的表达式为: R(失业率)=3.601+0.157*I(通货膨胀率) 这意味着通货膨胀率每增加一点,失业率就增加 0.157点;
P值(Sig)与0.05作比较,如果小于0.05,即为显著。
回归分析
9
回归分析
1.模型拟合情况: 模型的拟合情况反映了模型对数据的解释能力。修正
的可决系数(调整R方)越大,模型的解释能力越强。
观察结果1,模型的拟合优度也就是对数据的解释能力一般,修正的 决定系数为0.326;
10
回归分析
2.方差分析: 方差分析反映了模型整体的显著性,一般将模型的检验
19
回归分析
曲线回归分析只适用于模型只有一个自变量且可以化为 线性形式的情形,并且只有11种固定曲线函数可供选择,而 实际问题更为复杂,使用曲线回归分析便无法做出准确的分 析,这时候就需用到非线性回归分析。它是一种功能更强大 的处理非线性问题的方法,可以使用用户自定义任意形式的 函数,从而更加准确地描述变量之间的关系。
回归分析
1
回归分析
•寻求有关联(相关)的变量之间的关系,是指 通过提供变量之间的数学表达式来定量描述变 量间相关关系的数学过程。
•主要内容:
1.从一组样本数据出发,确定这些变量间的定量关系式; 2.对这些关系式的可信度进行各种统计检验 3.从影响某一变量的诸多变量中,判断哪些变量的影响显著, 哪些不显著 4.利用求得的关系式进行预测和控制
观察结果3,模型中的常数项是3.601,t值为24.205,显著性为 0.000;通货膨胀的系数是0.157, t值为2.315,显著性为0.049。所 12以,两个结果都是显著的。
回归分析
结论:
一元线性回归方程: y=a+bx
写出最终模型的表达式为: R(失业率)=3.601+0.157*I(通货膨胀率) 这意味着通货膨胀率每增加一点,失业率就增加 0.157点;
P值(Sig)与0.05作比较,如果小于0.05,即为显著。
《回归分析 》课件
参数显著性检验
通过t检验或z检验等方法,检验模型中各个参数的显著性,以确定 哪些参数对模型有显著影响。
拟合优度检验
通过残差分析、R方值等方法,检验模型的拟合优度,以评估模型是 否能够很好地描述数据。
非线性回归模型的预测
预测的重要性
非线性回归模型的预测可以帮助我们了解未来趋势和进行 决策。
预测的步骤
线性回归模型是一种预测模型,用于描述因变 量和自变量之间的线性关系。
线性回归模型的公式
Y = β0 + β1X1 + β2X2 + ... + βpXp + ε
线性回归模型的适用范围
适用于因变量和自变量之间存在线性关系的情况。
线性回归模型的参数估计
最小二乘法
最小二乘法是一种常用的参数估计方法,通过最小化预测值与实 际值之间的平方误差来估计参数。
最大似然估计法
最大似然估计法是一种基于概率的参数估计方法,通过最大化似 然函数来估计参数。
梯度下降法
梯度下降法是一种迭代优化算法,通过不断迭代更新参数来最小 化损失函数。
线性回归模型的假设检验
线性假设检验
检验自变量与因变量之间是否存在线性关系 。
参数显著性检验
检验模型中的每个参数是否显著不为零。
残差分析
岭回归和套索回归
使用岭回归和套索回归等方法来处理多重共线性问题。
THANKS
感谢观看
04
回归分析的应用场景
经济学
研究经济指标之间的关系,如GDP与消费、 投资之间的关系。
市场营销
预测产品销量、客户行为等,帮助制定营销 策略。
生物统计学
研究生物学特征与疾病、健康状况之间的关 系。
通过t检验或z检验等方法,检验模型中各个参数的显著性,以确定 哪些参数对模型有显著影响。
拟合优度检验
通过残差分析、R方值等方法,检验模型的拟合优度,以评估模型是 否能够很好地描述数据。
非线性回归模型的预测
预测的重要性
非线性回归模型的预测可以帮助我们了解未来趋势和进行 决策。
预测的步骤
线性回归模型是一种预测模型,用于描述因变 量和自变量之间的线性关系。
线性回归模型的公式
Y = β0 + β1X1 + β2X2 + ... + βpXp + ε
线性回归模型的适用范围
适用于因变量和自变量之间存在线性关系的情况。
线性回归模型的参数估计
最小二乘法
最小二乘法是一种常用的参数估计方法,通过最小化预测值与实 际值之间的平方误差来估计参数。
最大似然估计法
最大似然估计法是一种基于概率的参数估计方法,通过最大化似 然函数来估计参数。
梯度下降法
梯度下降法是一种迭代优化算法,通过不断迭代更新参数来最小 化损失函数。
线性回归模型的假设检验
线性假设检验
检验自变量与因变量之间是否存在线性关系 。
参数显著性检验
检验模型中的每个参数是否显著不为零。
残差分析
岭回归和套索回归
使用岭回归和套索回归等方法来处理多重共线性问题。
THANKS
感谢观看
04
回归分析的应用场景
经济学
研究经济指标之间的关系,如GDP与消费、 投资之间的关系。
市场营销
预测产品销量、客户行为等,帮助制定营销 策略。
生物统计学
研究生物学特征与疾病、健康状况之间的关 系。
SAS 逐步回归 PPT课件
6
model语句选项(1)
选项 selection= best=
include=
maxstep= noint slentry= slstay=
功能和用法
指定模型选择的方法,可以是前进法(forward)、后退法(backward)、逐 步法(stepwise)等九种方法。
在模型选择方法为RSQUARE、ADJRSQ或CP时使用。当模型选择方法为 ADJRSQ或CP时,此选项用来指定最佳模型的最大个数;当模型选择方法为 RSQUARE时,此选项用来为每一种大小的模型指定其最佳模型的最大个数。 这些最佳模型将在结果中显示或输出到“outest=”选项所指定数据集中。 要求在变量筛选时必须将model语句中所列自变量中的前n个包括在模型中, 变量筛选过程仅在剩余的自变量中进行。当模型选择方法为NONE时此选项 无效。 须设置为正整数。在模型选择方法为FORWARD、BACKWARD或 STEPWISE时,用来指定进行变量筛选的最大步数。对于FORWARD或 BACKWARD方法,此选项的默认值为模型中所包含的自变量个数,而对于 STEPWISE方法,此默认值为上述默认值的三倍。
ridge须设置为一个非负数所组成的列表或单个数值以列表中的每一个数值作为岭常数k进行岭回归分析并将每一次岭回归分析所得的参数估计值输出到outest选项所指定的输出数据集中
SAS-逐步回归
南京医科大学流行病与卫生统计学系 柏建岭
1
reg过程
reg过程是专门用于回归分析的SAS过程,可提供绝大多数 常用的线性回归分析功能;
归模型。 forward(前进法)。
前进法以模型中没有变量开始,对每个自变量, forward计算反映自变量对模型的贡献的F 统计量。这些 F 统计量与model语句中给出的slentry=水平上的值相比 较,如果F 统计量的显著水平没有一个比slentry=水平上 (如果缺省slentry=这个参数,则显著水平假设为0.50) 的值大,则forward停止。否则,forward在模型中加入具 有最大F 统计量的变量,然后forward再计算这些变量的F 统计量直到剩下的变量都在模型的外面,再重复估计过 程。变量就这样一个接一个地进入模型直到剩下的变量 没有一个可以产生显著的F统计量。一旦一个变量进入 了模型,它就不再出去了。
model语句选项(1)
选项 selection= best=
include=
maxstep= noint slentry= slstay=
功能和用法
指定模型选择的方法,可以是前进法(forward)、后退法(backward)、逐 步法(stepwise)等九种方法。
在模型选择方法为RSQUARE、ADJRSQ或CP时使用。当模型选择方法为 ADJRSQ或CP时,此选项用来指定最佳模型的最大个数;当模型选择方法为 RSQUARE时,此选项用来为每一种大小的模型指定其最佳模型的最大个数。 这些最佳模型将在结果中显示或输出到“outest=”选项所指定数据集中。 要求在变量筛选时必须将model语句中所列自变量中的前n个包括在模型中, 变量筛选过程仅在剩余的自变量中进行。当模型选择方法为NONE时此选项 无效。 须设置为正整数。在模型选择方法为FORWARD、BACKWARD或 STEPWISE时,用来指定进行变量筛选的最大步数。对于FORWARD或 BACKWARD方法,此选项的默认值为模型中所包含的自变量个数,而对于 STEPWISE方法,此默认值为上述默认值的三倍。
ridge须设置为一个非负数所组成的列表或单个数值以列表中的每一个数值作为岭常数k进行岭回归分析并将每一次岭回归分析所得的参数估计值输出到outest选项所指定的输出数据集中
SAS-逐步回归
南京医科大学流行病与卫生统计学系 柏建岭
1
reg过程
reg过程是专门用于回归分析的SAS过程,可提供绝大多数 常用的线性回归分析功能;
归模型。 forward(前进法)。
前进法以模型中没有变量开始,对每个自变量, forward计算反映自变量对模型的贡献的F 统计量。这些 F 统计量与model语句中给出的slentry=水平上的值相比 较,如果F 统计量的显著水平没有一个比slentry=水平上 (如果缺省slentry=这个参数,则显著水平假设为0.50) 的值大,则forward停止。否则,forward在模型中加入具 有最大F 统计量的变量,然后forward再计算这些变量的F 统计量直到剩下的变量都在模型的外面,再重复估计过 程。变量就这样一个接一个地进入模型直到剩下的变量 没有一个可以产生显著的F统计量。一旦一个变量进入 了模型,它就不再出去了。
回归分析法PPT课件
线性回归模型的参数估计
最小二乘法
通过最小化误差平方和的方法来估计 模型参数。
最大似然估计
通过最大化似然函数的方法来估计模 型参数。
参数估计的步骤
包括数据收集、模型设定、参数初值、 迭代计算等步骤。
参数估计的注意事项
包括异常值处理、多重共线性、自变 量间的交互作用等。
线性回归模型的假设检验
假设检验的基本原理
回归分析法的历史与发展
总结词
回归分析法自19世纪末诞生以来,经历 了多个发展阶段,不断完善和改进。
VS
详细描述
19世纪末,英国统计学家Francis Galton 在研究遗传学时提出了回归分析法的概念 。后来,统计学家R.A. Fisher对其进行了 改进和发展,提出了线性回归分析和方差 分析的方法。随着计算机技术的发展,回 归分析法的应用越来越广泛,并出现了多 种新的回归模型和技术,如多元回归、岭 回归、套索回归等。
回归分析法的应用场景
总结词
回归分析法广泛应用于各个领域,如经济学、金融学、生物学、医学等。
详细描述
在经济学中,回归分析法用于研究影响经济发展的各种因素,如GDP、消费、投资等;在金融学中,回归分析法 用于股票价格、收益率等金融变量的预测;在生物学和医学中,回归分析法用于研究疾病发生、药物疗效等因素 与结果之间的关系。
梯度下降法
基于目标函数对参数的偏导数, 通过不断更新参数值来最小化目 标函数,实现参数的迭代优化。
非线性回归模型的假设检验
1 2
模型检验
对非线性回归模型的适用性和有效性进行检验, 包括残差分析、正态性检验、异方差性检验等。
参数检验
通过t检验、z检验等方法对非线性回归模型的参 数进行假设检验,以验证参数的显著性和可信度。
回归分析法(PPT)
第五章
5.1 回归分析概述
回归分析法
5.2 一元线性回归分析法
5.3 多元线性回归分析法
5.4 非线性回归分析法
9/4/2018
1
信息分析方法与应用
第五章 学习目标
回归分析法
掌握一元回归分析法的数学模型、参数估计、回归 检验及在实际中的应用 掌握多元回归分析法的数学模型、参数估计、回归 检验及在实际中的应用 掌握非线性回归分析法的各种回归模型、参数估计、 回归检验及在实际中的应用 了解回归、回归分析的定义,回归变量之间的关系, 回归分析的类型 理解回归分析发的应用步骤
9/4/2018
33
信息分析方法与应用
5.4 非线性回归分析法
④据此,可以在对2009年~2018年的经济预测基 础上预测出相应的商品流通费用水平如表5–9。
9/4/2018
34
信ቤተ መጻሕፍቲ ባይዱ分析方法与应用
5.5 回归分析软件
(1)SPSS软件 SPSS 的基本功能包括数据管理、统计分析、 图表分析、输出管理等等。SPSS统计分析过程包 括描述性统计、均值比较、一般线性模型、相关 分析回归分析、对数线性模型、聚类分析、数据 简化、生存分析、时间序列分析、多重响应等几 大类,每类中又分好几个统计过程,比如回归分 析中又分线性回归分析、曲线估计、Logistic 回归、 Probit回归、加权估计、两阶段最小二乘法、非线 性回归等多个统计过程,而且每个过程中又允许 用户选择不同的方法及参数。
5.2.3回归检验 3.F检验
F检验的一般步骤如下:①计算F值;②对于给定的显
著水平a,查自由度为1,n-2的F分布的临界值表,得临界 F 值: ;③比较T值与 值的大小,如果 则认为线性回归显著,一元回归模型成立,否则认为线性 回归不显著,一元回归模型不成立。
5.1 回归分析概述
回归分析法
5.2 一元线性回归分析法
5.3 多元线性回归分析法
5.4 非线性回归分析法
9/4/2018
1
信息分析方法与应用
第五章 学习目标
回归分析法
掌握一元回归分析法的数学模型、参数估计、回归 检验及在实际中的应用 掌握多元回归分析法的数学模型、参数估计、回归 检验及在实际中的应用 掌握非线性回归分析法的各种回归模型、参数估计、 回归检验及在实际中的应用 了解回归、回归分析的定义,回归变量之间的关系, 回归分析的类型 理解回归分析发的应用步骤
9/4/2018
33
信息分析方法与应用
5.4 非线性回归分析法
④据此,可以在对2009年~2018年的经济预测基 础上预测出相应的商品流通费用水平如表5–9。
9/4/2018
34
信ቤተ መጻሕፍቲ ባይዱ分析方法与应用
5.5 回归分析软件
(1)SPSS软件 SPSS 的基本功能包括数据管理、统计分析、 图表分析、输出管理等等。SPSS统计分析过程包 括描述性统计、均值比较、一般线性模型、相关 分析回归分析、对数线性模型、聚类分析、数据 简化、生存分析、时间序列分析、多重响应等几 大类,每类中又分好几个统计过程,比如回归分 析中又分线性回归分析、曲线估计、Logistic 回归、 Probit回归、加权估计、两阶段最小二乘法、非线 性回归等多个统计过程,而且每个过程中又允许 用户选择不同的方法及参数。
5.2.3回归检验 3.F检验
F检验的一般步骤如下:①计算F值;②对于给定的显
著水平a,查自由度为1,n-2的F分布的临界值表,得临界 F 值: ;③比较T值与 值的大小,如果 则认为线性回归显著,一元回归模型成立,否则认为线性 回归不显著,一元回归模型不成立。
回归分析学习课件PPT课件
03 网格搜索
为了找到最优的参数组合,可以使用网格搜索方 法对参数空间进行穷举或随机搜索,通过比较不 同参数组合下的预测性能来选择最优的参数。
非线性回归模型的假设检验与评估
假设检验
与线性回归模型类似,非线性回归模型也需要进行假设检验,以检验模型是否满足某些统计假 设,如误差项的独立性、同方差性等。
整估计。
最大似然法
03
基于似然函数的最大值来估计参数,能够同时估计参数和模型
选择。
多元回归模型的假设检验与评估
线性假设检验
检验回归模型的线性关系 是否成立,通常使用F检 验或t检验。
异方差性检验
检验回归模型残差的异方 差性,常用的方法有图检 验、White检验和 Goldfeld-Quandt检验。
多重共线性检验
检验回归模型中自变量之 间的多重共线性问题,常 用的方法有VIF、条件指数 等。
模型评估指标
包括R方、调整R方、AIC、 BIC等指标,用于评估模 型的拟合优度和预测能力。
05
回归分析的实践应用
案例一:股票价格预测
总结词
通过历史数据建立回归模型,预测未来股票 价格走势。
详细描述
利用股票市场的历史数据,如开盘价、收盘价、成 交量等,通过回归分析方法建立模型,预测未来股 票价格的走势。
描述因变量与自变量之间的非线性关系,通过变 换或使用其他方法来适应非线性关系。
03 混合效应回归模型
同时考虑固定效应和随机效应,适用于面板数据 或重复测量数据。
多元回归模型的参数估计
最小二乘法
01
通过最小化残差平方和来估计参数,是最常用的参数估计方法。
加权最小二乘法
02
适用于异方差性数据,通过给不同观测值赋予不同的权重来调
为了找到最优的参数组合,可以使用网格搜索方 法对参数空间进行穷举或随机搜索,通过比较不 同参数组合下的预测性能来选择最优的参数。
非线性回归模型的假设检验与评估
假设检验
与线性回归模型类似,非线性回归模型也需要进行假设检验,以检验模型是否满足某些统计假 设,如误差项的独立性、同方差性等。
整估计。
最大似然法
03
基于似然函数的最大值来估计参数,能够同时估计参数和模型
选择。
多元回归模型的假设检验与评估
线性假设检验
检验回归模型的线性关系 是否成立,通常使用F检 验或t检验。
异方差性检验
检验回归模型残差的异方 差性,常用的方法有图检 验、White检验和 Goldfeld-Quandt检验。
多重共线性检验
检验回归模型中自变量之 间的多重共线性问题,常 用的方法有VIF、条件指数 等。
模型评估指标
包括R方、调整R方、AIC、 BIC等指标,用于评估模 型的拟合优度和预测能力。
05
回归分析的实践应用
案例一:股票价格预测
总结词
通过历史数据建立回归模型,预测未来股票 价格走势。
详细描述
利用股票市场的历史数据,如开盘价、收盘价、成 交量等,通过回归分析方法建立模型,预测未来股 票价格的走势。
描述因变量与自变量之间的非线性关系,通过变 换或使用其他方法来适应非线性关系。
03 混合效应回归模型
同时考虑固定效应和随机效应,适用于面板数据 或重复测量数据。
多元回归模型的参数估计
最小二乘法
01
通过最小化残差平方和来估计参数,是最常用的参数估计方法。
加权最小二乘法
02
适用于异方差性数据,通过给不同观测值赋予不同的权重来调
第一讲 逐步回归分析
周令
56 57 58 ┇ 65 66 67
x1,℃
22.1 17.4 20.1 ┇ 13.8 13.0 13.4 17.2 4.1
x2,℃
16.7 12.6 15.7 ┇ 9.4 9.4 10.7 13.3 3.8
x3,℃
13.3 9.0 12.5 ┇ 5.2 6.4 8.3 10.3 4.4
x4,%
58.4 58.6 60.2 ┇ 58.0 60.4 71.2 64.4 7.0
x5
68.6 62.2 66.4 ┇ 57.3 56.7 58.0 62.5 5.6
y,%
70.9 66.7 64.3 ┇ 60.5 60.5 58.9 63.4 3.8
x
s
一、计算相关系数阵
1、计算各变量的平均数(为表1—1) 设自变量x1,x2,…,xm与依变量y存在线性关系,m元线性回归 方程为:
y yk
1 n 1
n
本例计算结果列于表1—1。
2、计算离差阵 自变量平方和ssi,自变量间及其与依变量间的乘积和SPij及SPiy由下式算出:
2 SSi ( xki xi ) 2 xki ( xki ) 2 n 1 n
( 1 —5 ) i、j=1,2,…,m,i≠j (1–6) (1—7)
第一讲 逐步回归分析 STEPWISE REGRESSION ANALYSIS
在多元线性回归分析时,为建立一个较为简化又能准确预测依 变量的最优回归方程,通常是逐个剔除复回归方程中经检验对 y 影 响不显著的所有自变量。这种先全部引入,后逐个剔除的方法,也 是建立最优回归方程的一种分析法。此类分析法还很多,它们多适 用于自变量个数较少,或大多数自变量对 y有显著影响的资料分析。 否则,计算量将大大增加。目前较为常用的逐步回归分析法是按自 变量与 y影响程度的大小,逐个地由大至小将自变量引入回归方程。 而每引入一个自变量,都要对方程中的各个自变量作显著性检验。 检验时先选偏回归平方和最小的自变量进行检验,若为显著,余者 皆为显著;若检验差异不显著,即从方程中剔除,直至留在方程中 的自变量均检验为显著后,再引入另一个与 y 影响最大的变量,并 进行显著性检验。如此反复,直至没有自变量可再被引入,而方程 中所有自变量均与y存在显著的线性关系为止。
56 57 58 ┇ 65 66 67
x1,℃
22.1 17.4 20.1 ┇ 13.8 13.0 13.4 17.2 4.1
x2,℃
16.7 12.6 15.7 ┇ 9.4 9.4 10.7 13.3 3.8
x3,℃
13.3 9.0 12.5 ┇ 5.2 6.4 8.3 10.3 4.4
x4,%
58.4 58.6 60.2 ┇ 58.0 60.4 71.2 64.4 7.0
x5
68.6 62.2 66.4 ┇ 57.3 56.7 58.0 62.5 5.6
y,%
70.9 66.7 64.3 ┇ 60.5 60.5 58.9 63.4 3.8
x
s
一、计算相关系数阵
1、计算各变量的平均数(为表1—1) 设自变量x1,x2,…,xm与依变量y存在线性关系,m元线性回归 方程为:
y yk
1 n 1
n
本例计算结果列于表1—1。
2、计算离差阵 自变量平方和ssi,自变量间及其与依变量间的乘积和SPij及SPiy由下式算出:
2 SSi ( xki xi ) 2 xki ( xki ) 2 n 1 n
( 1 —5 ) i、j=1,2,…,m,i≠j (1–6) (1—7)
第一讲 逐步回归分析 STEPWISE REGRESSION ANALYSIS
在多元线性回归分析时,为建立一个较为简化又能准确预测依 变量的最优回归方程,通常是逐个剔除复回归方程中经检验对 y 影 响不显著的所有自变量。这种先全部引入,后逐个剔除的方法,也 是建立最优回归方程的一种分析法。此类分析法还很多,它们多适 用于自变量个数较少,或大多数自变量对 y有显著影响的资料分析。 否则,计算量将大大增加。目前较为常用的逐步回归分析法是按自 变量与 y影响程度的大小,逐个地由大至小将自变量引入回归方程。 而每引入一个自变量,都要对方程中的各个自变量作显著性检验。 检验时先选偏回归平方和最小的自变量进行检验,若为显著,余者 皆为显著;若检验差异不显著,即从方程中剔除,直至留在方程中 的自变量均检验为显著后,再引入另一个与 y 影响最大的变量,并 进行显著性检验。如此反复,直至没有自变量可再被引入,而方程 中所有自变量均与y存在显著的线性关系为止。
逐步回归和通径分析 ppt课件
表1 表14-1资料四元线性回归和偏回归系数的假设检验
9
逐步回归 通径分析
(2)建立m-1元线性回归方程:
表2表明,三元线性回归方程 和三个自变量的偏回归系数均 极显著或者显著,因此不需要 再作自变量的剔除。
表2 表14-1资料三元线性回归和偏回归系数的假设检验
最优线性回归方程:
y=-46.9663+2.013139x1+0.674643x2+7.830227x3
x1
y
x2
x3
e
16
逐步回归 通径分析 通径分析的假设检验
回归方程的检验
通径系数的检验
17
逐步回归 通径分析
y a b 1 x 1 b 2 x 2 … b m x m e (1)
对(1)进行标准化变换,令:
y y y SS y
x i
xi xi SS i
标准化变量的m元线性回归方程为:
(2)自变量的个数最少
一方面对因变量起显著作用的自变量都选进回归 方程,另一方面对因变量作用不显著的自变量都剔除 回归方程,选择一个最佳的变量组合。
5
逐步回归 通径分析
逐步剔除法 主要步骤逐:步剔除法
(1)从包含全部p个自变量组合的回归方程中逐个
检验回归系数,剔除对因变量作用不显著的自变量
方;(法2)对剔除后剩下的q个自变量建立对因变量的多
通径部分q1 ; 还有
x1 与
x2; x1与x3的间接通径 r13 q3
和 1r2
q 2
部分。
通式: ① xi 对 y 的直接通径 xi y ② xi 对 y 的间接通径 xi xj y
15
逐步回归 通径分析
数学建模逐步回归PPT课件
第3页/共22页
教学评估问题
为评价教师教学质量,教学管理研究部门设计了一个教学评估表,共 有7项指标:
X1:课程内容的合理性; X2:问题展开的逻辑性; X3:回答问题的有效性; X4:课下交流的有助性; X5:教科书的帮助性; X6:考试评价的公正性; Y:对教师的总体评价
第4页/共22页
现按此指标体系对学生进行问卷调查,要求学生对12为教师的15门课程打分,得如下数据: 第5页/共22页
第10页/共22页
包含全部6个变量的回归: s te p w i se (X ,y, [1 ,2 , 3 , 4 , 5 ,6 ], 0 . 0 5 ) 结果:stepwise命令产生3个窗口:
第11页/共22页
1.Stepwise Table窗口:
给出回归系数及其置信区间,模型 统计量(剩余标准差,决定系数, F值,P值)
逐步回归方法的实现可利用Matlab软件中的统计软件包中的stepwise函数实现.
第9页/共22页
逐步回归函数stepwise用法:
stepwise(X,y) s te p w i se ( X , y,i nm o d e l ) s te p w i se ( X , y,i nm o d e l ,a l p ha )
样本资料阵X
4.4600 4.1100 3.5800 4.4200 4.6200 3.1800 2.4700 4.2900 4.4100 4.5900 4.5500 4.6700 3.7100 4.2800 4.2400
4.4200 3.8200 3.3100 4.3700 4.4700 3.8200 2.7900 3.9200 4.3600 4.3400 4.4500 4.6400 3.4100 4.4500 4.3800
教学评估问题
为评价教师教学质量,教学管理研究部门设计了一个教学评估表,共 有7项指标:
X1:课程内容的合理性; X2:问题展开的逻辑性; X3:回答问题的有效性; X4:课下交流的有助性; X5:教科书的帮助性; X6:考试评价的公正性; Y:对教师的总体评价
第4页/共22页
现按此指标体系对学生进行问卷调查,要求学生对12为教师的15门课程打分,得如下数据: 第5页/共22页
第10页/共22页
包含全部6个变量的回归: s te p w i se (X ,y, [1 ,2 , 3 , 4 , 5 ,6 ], 0 . 0 5 ) 结果:stepwise命令产生3个窗口:
第11页/共22页
1.Stepwise Table窗口:
给出回归系数及其置信区间,模型 统计量(剩余标准差,决定系数, F值,P值)
逐步回归方法的实现可利用Matlab软件中的统计软件包中的stepwise函数实现.
第9页/共22页
逐步回归函数stepwise用法:
stepwise(X,y) s te p w i se ( X , y,i nm o d e l ) s te p w i se ( X , y,i nm o d e l ,a l p ha )
样本资料阵X
4.4600 4.1100 3.5800 4.4200 4.6200 3.1800 2.4700 4.2900 4.4100 4.5900 4.5500 4.6700 3.7100 4.2800 4.2400
4.4200 3.8200 3.3100 4.3700 4.4700 3.8200 2.7900 3.9200 4.3600 4.3400 4.4500 4.6400 3.4100 4.4500 4.3800
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ss1b1 sp12b2 sp1mbm sp1y
sp21b1 ss2b2 sp2mbm sp2y
spm1b1 spm2b2 ssmbm spm y
本例m=5,n=12 算得:
18.94b116.67b218.84b372.20b425.1b5 13.65
1186..8647bb11 1185..618bb22
1.5 1 1 2 -0.5-1.5×(-2)=2.5
3-4×0.5=1 10-4×2=2 5-4×1=1
-2-1×(-0.5)=-1.5 2-1×1=1 1-1×3=-2
-0.5-1×(-1.5)=1 1-1×(-1)=2 3-1×(-2)=5
3 1 1.5 2.5
a(3)
1
2 1 5
1.5 1 1 2
在逐步回归中,为便于计算和表达,通常将离差阵化为相关阵,计算公式为:
rij=spij/(ssissj)1/2 i、j=1,2,,x2,…,xm,y间的相关系数,且rii=1,于是正规方程组(1—8)可改
写为:
r11p1 r12p2 r1mpm r1y
r21p1 r22p2 r2mpm r2y
第一讲 逐步回归分析
STEPWISE REGRESSION ANALYSIS
在多元线性回归分析时,为建立一个较为简化又能准确预测依 变量的最优回归方程,通常是逐个剔除复回归方程中经检验对y影 响不显著的所有自变量。这种先全部引入,后逐个剔除的方法,也 是建立最优回归方程的一种分析法。此类分析法还很多,它们多适 用于自变量个数较少,或大多数自变量对y有显著影响的资料分析。 否则,计算量将大大增加。目前较为常用的逐步回归分析法是按自 变量与y影响程度的大小,逐个地由大至小将自变量引入回归方程。 而每引入一个自变量,都要对方程中的各个自变量作显著性检验。 检验时先选偏回归平方和最小的自变量进行检验,若为显著,余者 皆为显著;若检验差异不显著,即从方程中剔除,直至留在方程中 的自变量均检验为显著后,再引入另一个与y影响最大的变量,并 进行显著性检验。如此反复,直至没有自变量可再被引入,而方程 中所有自变量均与y存在显著的线性关系为止。
18.61b312.35b423.25b5 10.51 21.92b318.83b426.31b5 10.34
72.20b112.35b218.38b353.09b414.12b5 77.5
25.1b123.52b226.31b314.21b434.49b5 17.15
(1—8) (1—9)
3、计算相关系数阵
(1—5)
n
S i jP (x k ix i)x k ( jx j) x kx k i j x k ix kn j i、j=1,2,…,m,i≠j (1–6) 1
n
S i y P ( x k ix i)y k ( y ) x ky k i x k iy kn
1
(1—7)
于是可得正规方程组
rm1p1 rm2p2 rmmpm rmy
(1—11)
本例由公式(1-10)算得:
p10.976p220.931p320.228p470.994p540.7910 00..993716pp1122 0p.2980.79p2587pp335 00..545258pp4473 00..999634pp5562 00..65661155 0.228p170.428p230.555p37p40.327p550.2648 0.994p140.993p260.964p320.327p45p5 0.7325
若有n对观察值: xk1,xk2,…,xkm,yk, k=1,2,…,n
则各变量平均数:
n
x
1 n
1
xki
i=1,2,…,m
(1—3)
n
y
1 n
1
yk
(1—4)
本例计算结果列于表1—1。
2、计算离差阵 自变量平方和ssi,自变量间及其与依变量间的乘积和SPij及SPiy由下式算出:
n
SiS (xk i xi)2 xk 2 i ( xk)i2n 1
简单相关分直析线相关分负 正析相 相关 关: :两 两变 变量 量此 同消 消长 长彼 同
平衡关(系 相关分)析
曲线相关分析
相关关系
多元相关分复 偏析相 相关 关分 分析 析
因果关(系 回归分)析 多 一元 元回 回归 归分 分曲 多 多 直 析 析线 元 元 线回 非 线 回归 线 性 归分 性 回 分析 回 归 析归 分分 析析
b1=2.5 b2=5 b3=-2
预备知识
生物各性状间的关系是相互依赖和相互制约的关系,改变某一性状,即会引起 另一性状也发生变异。而生物现象数量的表现多半是随机的,因此对现象关系的 研究亦就是对随机变量关系的研究。对随机变量关系的研究,在统计学中有相关 分析和回归分析两种不同的方法。相关分析是研究变量间的相互之间关系,研究 变量间相互联系的性质和紧密程度。回归分析是研究一个变量对另一个变量的单 向依存关系,即研究一个变量随另一个变量变化而变化。这里,后一个变量叫自 变量,前一个变量叫依变量或应变量。变量间的相关关系及分析方法归纳如下:
SS1b1 SP12b2 SP13b3 SP1y SP21b1 SS2b2 SP23b3 SP2y SP31b1 SP32b2 SS3b3 SP3y
2b1 1b2 4b3 2 1b1 1.5b2 3b3 4 4b1 3b2 10b3 5
A(0)
2 1
1 1.5
4 3
2 4
4 3 10 5
一、计算相关系数阵
1、计算各变量的平均数(为表1—1) 设自变量x1,x2,…,xm与依变量y存在线性关系,m元线性回归 方程为:
y ˆ b 0 b 1 x 1 b 2 x 2 b m x m (1—1)
b 0 y b 1 x b 2 x 2 b m x m (1—2)
0.5 0.5 2 1
A(1)
0.5
1
1 3
2 1 2 1
1.5-1×0.5=1 3-1×2=1 4-1×1=3
0.5-0.5×(-0.5)=0.75 2-0.5×1=1.5 1-0.5×3=2.5
0.75 0.5 1.5 0.5 0.75-1.5×(-1.5)=3 A(2) 0.5 1 1 3 -0.5-1.5×(-1)=1