高中数学--二倍角的正弦、余弦、正切公式ppt
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本节我们学习了二倍角的正弦、 余弦和正切公式,我们要熟记公式, 在解题过程中要善于发现规律,学 会灵活运用.
课后作业
1. 阅读教材P.132到P.134; 2. 《习案》作业三十二.
练习:
讲授新课
思考:
讲授新课
思考:
由此我们能否得到sin2,cos2, tan2的公式呢?
公式推导:
公式推导:
公式推导:
公式推导:
公式推导:
公式wenku.baidu.com导:
思考:
把上述关于cos2的式子能否变成 只含有sin或cos形式的式子呢?
思考:
把上述关于cos2的式子能否变成 只含有sin或cos形式的式子呢?
3.1.3 两倍角的正弦、 余弦、正切公式
复习引入 基本公式:
复习引入 基本公式:
复习引入 基本公式:
复习引入 基本公式:
复习引入 基本公式:
复习引入 基本公式:
复习引入 基本公式:
练习:
1.在△ABC中,sinAsinB<cosAcosB, 则△ABC为 ( ) A.直角三角形 B.钝角三角形 C.锐角三角形 D.等腰三角形
思考:
把上述关于cos2的式子能否变成 只含有sin或cos形式的式子呢?
公式推导:
公式推导:
公式推导:
公式推导:
注意:
讲解范例: 例1.
讲解范例: 例2. 在△ABC中,
讲解范例: 例3.
讲解范例: 例4.
讲解范例: 例4.
练习. 教材P.135练习第1、2、3、4、5题.
课堂小结
课后作业
1. 阅读教材P.132到P.134; 2. 《习案》作业三十二.
练习:
讲授新课
思考:
讲授新课
思考:
由此我们能否得到sin2,cos2, tan2的公式呢?
公式推导:
公式推导:
公式推导:
公式推导:
公式推导:
公式wenku.baidu.com导:
思考:
把上述关于cos2的式子能否变成 只含有sin或cos形式的式子呢?
思考:
把上述关于cos2的式子能否变成 只含有sin或cos形式的式子呢?
3.1.3 两倍角的正弦、 余弦、正切公式
复习引入 基本公式:
复习引入 基本公式:
复习引入 基本公式:
复习引入 基本公式:
复习引入 基本公式:
复习引入 基本公式:
复习引入 基本公式:
练习:
1.在△ABC中,sinAsinB<cosAcosB, 则△ABC为 ( ) A.直角三角形 B.钝角三角形 C.锐角三角形 D.等腰三角形
思考:
把上述关于cos2的式子能否变成 只含有sin或cos形式的式子呢?
公式推导:
公式推导:
公式推导:
公式推导:
注意:
讲解范例: 例1.
讲解范例: 例2. 在△ABC中,
讲解范例: 例3.
讲解范例: 例4.
讲解范例: 例4.
练习. 教材P.135练习第1、2、3、4、5题.
课堂小结