学案 19正方形性质、判定
正方形的性质与判定(优秀教案)
正方形的性质与判定(1)主讲:叶良国课题:正方形的性质与判定(1)课型:新授课教学目标:1.了解正方形概念,理解并掌握正方形的性质和判定方法,通过由一般到特殊的研究方法,分析平行四边形、矩形、菱形、正方形的概念及性质之间的区别与联系.并形成文本信息与图形信息相互转化的能力.2.在观察、操作、推理、归纳等探索明正方形的性质和判定定理过程中,发展合情推理能力,进一步培养自己的说理习惯与能力3.培养学生勇于探索、团结协作交流的精神.激发学生学习的积极性与主动性.教学重难点:重点:探索正方形的性质与判定。
难点:掌握正方形的性质和判定的应用方法。
关键:把握正方形既是矩形又是菱形这一特性来学习本节内容教学过程教学过程:一、回忆童年,情境引入想一想:什么是矩形?是菱形?做一做:大家小时候都做过风车吗?在准备材料的时候我们往往会先折一张正方形的纸片,大家来做一做用一张长方形的纸片折出一个正方形.设计意图:学生在动手中对正方形产生感性认识,并感知正方形与矩形的关系.猜一猜:什么样的平行四边形是正方形?正方形定义:有一组邻边相等.....叫做正方形.......并且有一个角是直角.......的平行四边形看一看:几何画板演示动画设计意图:从学生的生活实际出发,从制作、动画中,提出问题,创设情境,激发学生强烈的好奇心和求知欲。
我们这节课就来研究正方形.板书课题【正方形的性质与判定】二、实践探究,交流新知师:其定义包括了两层意:⑴有一组邻边相等的平行四边形(菱形)⑵有一个角是直角的平行四边形(矩形),所以说正方形既是菱形又是矩形.平行四边形、菱形、矩形、正方形之间有什么关系?你能用一个图直观地表示它们之间的关系吗?与同伴交流.生:画图展示设计意图:锻炼学生文本信息图形化的能力.构建他们之间的逻辑关系;重建学生的认知结构.师:正方形都具有什么性质呢?生:由正方形的定义可以得知,正方形既是有一组邻边相等的矩形,又是有一个角是直角的菱形.所以它应该具备菱形和矩形的所有性质.(多媒体补充显示性质)正方形性质①正方形的四个角都是直角,四条边都相等.②正方形的两条对角线相等并且互相垂直平分.师:同学们从正方形定义中能尝试口述这两个命题的证明过程吗?生:学生独立完成,并相互交流师:正方形有几条对称轴?生:思考或者画图验证师:什么样的矩形是正方形?什么样的菱形是正方形?(多媒体演示)设计意图:通过分析让学生感受到正方形与矩形和菱形、平行四边形的紧密联系,明确正方形的判定。
正方形的性质及判定-人教版八年级数学下册教案
正方形的性质及判定-人教版八年级数学下册教案
一、教学目标
1.了解正方形的定义及性质;
2.判定一个四边形是否为正方形;
3.运用正方形的性质解决实际问题。
二、教学重难点
1.判断四边形是否为正方形的方法;
2.运用正方形的性质解决实际问题。
三、教学内容及步骤
(一)导入(5分钟)
1.通过观察物体,引出正方形的含义;
2.介绍本节课的学习目标。
(二)正片(30分钟)
1. 正方形的定义
1.学生回顾并回答正方形的定义;
2.老师引导学生深入理解正方形的定义,并与长方形、菱形等进行比较。
2. 正方形的性质
1.学生回顾并回答正方形的性质;
2.老师引导学生深入理解正方形的性质,包括等边、等角、对角线互相垂直、对角线相等等。
3. 判定正方形的方法
1.老师通过例题引导学生掌握判定正方形的方法;
2.学生进行练习,巩固判定正方形的方法。
4. 运用正方形的性质解决实际问题
1.通过例题引导学生运用正方形的性质解决实际问题;
2.学生进行练习,巩固运用正方形的性质解决实际问题。
(三)小结(5分钟)
1.回顾本节课所学内容;
2.强调正方形的定义及性质在实际生活中的应用。
(四)作业布置(5分钟)
1.完成课堂练习;
2.完成课后作业。
四、教学反思
本节课通过例题引导学生掌握了正方形的定义及性质,并且通过练习巩固了判定正方形的方法和运用正方形的性质解决实际问题的能力。
同时,课堂中老师与学生的互动也让学生参与性更强,思维更加开放。
北师大版-数学-九年级上册- 正方形的性质与判定(2) 导学案
正方形的性质与判定(二)导学稿一、教学目标:1、熟练记住正方形的几个判定定理,并能灵活运用于证明。
2、发现决定中点四边形形状的因素,并能熟练判断中点四边形的形状。
二、教学过程1、回顾旧知正方形性质边角对角线2、情景引入将一张长方形纸对折两次,然后剪下一个角,打开,怎样剪才能剪出一个正方形?(思考:应该剪下什么形状的三角形?)3、小组研讨:1)、矩形满足什么条件就是正方形?2)、菱形满足什么条件就是正方形?请证明你的结论。
4、正方形的判定定理1.)对角线相等的菱形是正方形。
2.)对角线垂直的矩形是正方形。
3.)有一个角是直角的菱形是正方形。
思考:一组邻边相等的矩形是正方形吗?5、练习例2 如图1-21,在矩形ABCD中,BE平分∠ABC,CE平分∠DCB,BF∥CE,CF ∥BE.求证:四边形BECF是正方形.6、四边形的中点四边形:问题:1)如图,在ΔABC中,EF为ΔABC的中位线,①若∠BEF=30°,则∠A= .②若EF=8cm, 则AC= .2)在AC的下方找一点D,做CD和AD的中点G、H,问EF和GH有怎样的关系?EH 和FG呢?3)四边形EFGH的形状有什么特征?7、如果四边形ABCD变为特殊的四边形,中点四边形EFGH会是怎样的呢?8、小组研讨:依次连结四边形各边中点所得到的新四边形的形状与哪些线段有关?有怎样的关系.结论:决定中点四边形的形状的主要因素是原四边形ABCD的对角线的长度和位置关系。
(1)若对角线相等,则中点四边形为;FECABCGHFEDABCGHFEDAB(2)若对角线互相垂直,则中点四边形为;(3)若对角线既相等,又垂直,则中点四边形为;(4)若对角线既不相等,又不垂直,则中点四边形为。
三、小结:本节课我学习会了什么?。
正方形的性质与判定(教案)
正方形的性质与判定教学目标:1. 理解正方形的定义及其性质。
2. 学会使用正方形的性质进行判定。
3. 培养学生的观察能力、推理能力和解决问题的能力。
教学重点:1. 正方形的性质。
2. 正方形的判定方法。
教学难点:1. 正方形性质的灵活运用。
2. 正方形判定方法的掌握。
教学准备:1. 教学课件或黑板。
2. 正方形模型或图片。
3. 练习题。
教学过程:第一章:正方形的定义1.1 引入:展示正方形模型或图片,引导学生观察并猜测正方形的定义。
1.2 讲解:正方形是四条边相等且四个角都是直角的四边形。
1.3 互动:让学生举例说明生活中常见的正方形,如棋盘、正方形纸等。
第二章:正方形的性质2.1 引入:展示正方形模型或图片,引导学生观察正方形的性质。
2.2 讲解:正方形的性质包括:四条边相等,四个角都是直角,对角线互相垂直平分且相等。
2.3 互动:让学生运用正方形的性质解决问题,如计算正方形对角线的长度。
第三章:正方形的判定3.1 引入:展示非正方形的模型或图片,引导学生思考如何判断一个四边形是否为正方形。
3.2 讲解:正方形的判定方法包括:四条边相等,四个角都是直角,对角线互相垂直平分且相等。
3.3 互动:让学生举例说明如何判断一个四边形是否为正方形。
第四章:正方形的应用4.1 引入:展示正方形应用的例子,如正方形图案设计、正方形桌面等。
4.2 讲解:正方形在实际生活中的应用,如建筑设计、电路板设计等。
4.3 互动:让学生举例说明正方形在实际生活中的应用。
第五章:总结与练习5.1 总结:回顾本节课所学的内容,强调正方形的定义、性质和判定。
5.2 练习:布置练习题,让学生巩固所学内容。
教学反思:本节课通过展示正方形模型或图片,引导学生观察和思考正方形的性质和判定。
通过互动和举例,让学生更好地理解和应用正方形的性质。
在教学过程中,要注意引导学生主动参与,培养他们的观察能力、推理能力和解决问题的能力。
第六章:正方形边的性质6.1 引入:通过正方形模型或图片,引导学生关注正方形边的性质。
正方形的性质及判定学案
FED CBA4.正方形的一边长5cm ,则周长为cm ,面积为cm 2 5.E 是正方形ABCD 对角线AC 上一点,且AE =AB ,则∠ABE = 6.E 是正方形ABCD 内一点,且△EAB 是等边三角形,则∠ADE =7.正方形ABCD 中,对角线BD 长为16cm ,P 是AB 上任意一点,则点P 到AC 、BD 的距离之和等于cm8.已知正方形BDEF 的边长是正方形ABCD 的对角线,则:BDEF ABCD S S =正方形正方形 .9.将n 个边长都为1cm 的正方形按如图所示摆放,点12...n A A A ,,,分别是正方形的中心,则n 个正方形重叠形成的重叠部分的面积和为 .10.如图,已知正方形ABCD 的面积为256,点F 在CD 上,点E 在CB 的延长线上,且的长为 .PD C B AN M F ED C B A O FE DC BA 11.如图,在正方形ABCD 的边BC 的延长线上取一点E ,使CE =AC ,连结AE 交CD 于F ,则 ∠AFC =第11题图 第12题图12.如上图,将边长为2cm 的正方形ABCD 沿其对角线AC 剪开,再把△ABC 沿着AD 方向平移,得到△A ′B ′C ′,若两个三角形重叠部分的面积是1cm2,则它移动的距离AA ′等于__ _cm .13.如图,已知P 是正方形ABCD 内的一点,且ABP ∆为等边三角形,那么DCP ∠= .13图 14图 15图14.如图,已知E 、F 分别是正方形ABCD 的边BC 、CD 上的点,AE 、AF 分别与对角线BD 相交于M 、N ,若50EAF ∠=︒,则CME CNF ∠+∠= .(提示:连接AC)15.如图,正方形ABCD 中,O 是对角线AC BD ,的交点,过点O 作OE OF ⊥,分别交AB CD ,于E F ,,若43AE CF ==,,则EF = . 16.已知正方形ABCD 的边长为2cm ,以CD 为边作等边三角形CDE ,则△ABE 的面积为 cm 2.17. 如图,将一块边长为12的正方形纸片ABCD 的顶点A 折叠至DC 边上的点E ,使DE=5,这痕为PQ ,则PQ 的长为_______.图 18.如图,在正方形ABCD 中,E 是AB 上一点,BE=2,AE=3BE ,P 是AC 上一动点,则PB+PE 的最小值是 .1.已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()A.选①② B.选②③ C.选①③ D.选②④2.下列说法中,正确的是()A.相等的角一定是对顶角B.四个角都相等的四边形一定是正方形C.平行四边形的对角线互相平分D.矩形的对角线一定垂直3.下列命题中是假命题的是()A.一组对边平行且相等的四边形是平行四边形B.一组对边相等且有一个角是直角的四边形是矩形C.一组邻边相等的平行四边形是菱形D.一组邻边相等的矩形是正方形4、正方形具有而一般菱形不具有的性质是()A. 四条边都相等B. 对角线互相垂直平分C. 对角线相等D. 每一条对角线平分一组对角5、下列说法中错误的是()A、对角线相等的菱形是正方形B、有一组邻边相等的矩形是正方形C、四条边都相等的四边形是正方法D、有一个角为直角的菱形是正方形6正方形的边和对角线构成的等腰直角三角形共有()A、4个B、6个C、8个D、10个如图,分别以线段AB的两个端点为圆心,大于AB的长为半径作弧,两弧交于M、N两点,连接MN,交AB于点D、C是直线MN上任意一点,连接CA、CB,过点D作DE⊥AC于点E,DF⊥BC于点F.(1)求证:△AED≌△BFD;(2)若AB=2,当CD的值为_________时,四边形DECF是正方形.MENCDBA1.已知:如图,在ABC ∆中,AB AC =,AD BC ⊥,垂足为点D ,AN 是ABC ∆外角CAM ∠的平分线,CE AN ⊥,垂足为点E . ⑴ 求证:四边形ADCE 为矩形;⑵ 当ABC ∆满足什么条件时,四边形ADCE 是一个正方形?并给出证明.2.如图,A 在线段BG 上,ABCD 和DEFG 都是正方形,面积分别为27cm 和211cm ,则CDE ∆ 的面积为?GFEDCB A2.如图,△ABC 中,点O 是边AC 上一个动点,过O 作直线MN ∥BC ,设MN 交∠ACB 的平分线于点E ,交∠ACB 的外角平分线于点F . (1)探究:线段OE 与OF 的数量关系并加以证明;(2)当点O 运动到何处时,且△ABC 满足什么条件时,四边形AECF 是正方形? (3)当点O 在边AC 上运动时,四边形BCFE _________ 是菱形吗?(填“可能”或“不可能”)。
正方形的性质
鸡西市第十九中学学案
班级 姓名
学科 时间 学习 目标 重点 难点
课型 新课 正方形的性质 八年级下 2014 年 月 日 人教版 掌握正方形的概念、性质,并会用它们进行有关的论证和计算. 理解正方形与平行四边形、矩形、菱形的联系和区别 掌握正方形的概念、性质,并会用它们进行有关的论证和计算. 理解正方形与平行四边形、矩形、菱形的联系和区别
, 周长是 .; ; .
6.已知:如图,四边形 ABCD 为正方形,E、F 分别为 CD、CB 延长线上的点, 且 DE=BF.求证:∠AFE=∠AEF.
F A D E
B C
7.如右图,E 为正方形 ABCD 边 AB 上的一点,已知 EC=13, EB=5, 求 ①正方形 ABCD 的面积。②求对角线 AC 的长度。
学习内容
数学
课题
【自主探究】 正方形定义: (1)有一组 (2)有一个角是 相等的矩形是正方形 的菱形是正方形
正方形从定义看,它既是 形又是 形. 正方形性质: 正方形既是有一组邻边相等的矩形,又是有一个角是直角的菱形. 所以,正方形具有 的性质,同时又具有 的性质. 边:对边 ,四边 ; 角:四个角都是 ; 线:对角线相等,互相 ,每条对角线平分一组 . 形:既、矩形、菱形的性质可比较如下: 平行四边形 对边平行且相等 四条边都相等 对角相等 四个角都是直角 对角线互相平分 对角线互相垂直 对角线相等 每条对角线平分一组对角 对称性
A E B
D
C
8. 已知如图, E 点在正方形 ABCD 的 BC 边的延长线上,且 CE=AC,AE 与 CD 相交于点 F,•求∠AFC 的度数.
3
鸡西市第十九中学初三数学组
正方形的性质与判定(教案)
正方形的性质与判定教学目标:1. 理解正方形的定义和性质;2. 学会使用正方形的性质进行判定;3. 培养学生的观察能力、推理能力和解决问题的能力。
教学重点:正方形的性质与判定教学难点:正方形性质的灵活运用和判定方法的掌握教学准备:1. 课件或黑板2. 正方形图形3. 直尺、圆规等绘图工具教学过程:一、导入(5分钟)1. 引导学生回顾矩形和菱形的性质;2. 提问:正方形是矩形还是菱形?它有哪些特殊的性质?二、探究正方形的性质(10分钟)1. 引导学生观察正方形图形,发现正方形的四条边相等;2. 让学生用量尺测量正方形的四条边,验证四条边相等;3. 引导学生发现正方形的对角线互相垂直且平分;4. 让学生用量尺测量正方形的对角线,验证对角线互相垂直且平分;5. 引导学生总结正方形的性质:四条边相等,对角线互相垂直且平分。
三、正方形的判定(10分钟)1. 给出正方形的判定方法:四条边相等,对角线互相垂直且平分的四边形是正方形;2. 让学生举例判断一些四边形是否为正方形;3. 引导学生发现,如果一个四边形的对角线互相垂直且平分,它可能是正方形;4. 让学生通过绘图,尝试构造正方形。
四、巩固练习(5分钟)1. 给出一些四边形,让学生判断它们是否为正方形;2. 让学生运用正方形的性质,解决一些实际问题。
五、总结与反思(5分钟)1. 让学生回顾本节课所学的内容,总结正方形的性质与判定;2. 提问:你认为正方形的性质和判定有什么实际应用价值?教学反思:本节课通过引导学生观察、测量和绘图,让学生掌握了正方形的性质与判定。
在教学过程中,要注意引导学生主动参与,培养学生的观察能力、推理能力和解决问题的能力。
通过巩固练习和实际应用,让学生更好地理解和运用正方形的性质与判定。
六、正方形的对角线性质教学目标:1. 理解正方形对角线的性质;2. 学会运用正方形对角线性质解决几何问题。
教学重点:正方形对角线的性质教学难点:对角线性质的灵活运用教学准备:1. 课件或黑板2. 正方形图形3. 直尺、圆规等绘图工具教学过程:1. 回顾正方形的性质,引导学生思考正方形对角线的性质;2. 引导学生观察正方形图形,发现对角线互相平分且相等;3. 让学生用量尺测量正方形对角线,验证对角线互相平分且相等;4. 引导学生发现正方形对角线垂直平分一组对角;5. 让学生通过绘图,验证正方形对角线垂直平分一组对角。
北师大版数学九年级上册教学设计:1.3正方形的性质与判定
二、学情分析
九年级的学生已经具备了一定的几何图形认知和逻辑思维能力。在学习本章节之前,他们已经掌握了矩形、菱形的性质和应用,能够识别和运用这些图形的判定方法。在此基础上,学生对正方形的性质和判定方法的学习将更为顺利。然而,正方形作为特殊的矩形和菱形,其性质的理解和判定方法的运用对学生来说仍有一定难度。因此,在教学过程中,应注重以下几点:
4.能够运用正方形的性质解决实际问题,如计算正方形的面积、周长等。
(二)过程与方法
1.培养学生观察图形、发现性质的能力,让学生在实际操作中感受正方形的特征。
2.引导学生通过画图、测量、计算等方法,探索正方形的性质,培养学生的动手操作能力。
3.引导学生运用已学的矩形、菱形知识,推导正方形的性质,培养学生知识迁移和逻辑思维能力。
4.教师通过生活实例,如正方形瓷砖、正方形桌面等,让学生感受正方形在实际生活中的应用,激发学生的学习兴趣。
(二)讲授新知
1.教师引导学生通过画图、测量、计算等方法,探索正方形的性质。
a.正方形的四条边相等。
b.正方形的四个角都是直角。
c.正方形的对角线互相垂直平分,且相等。
d.正方形既是矩形,也是菱形。
3.教师对本节课的知识点进行梳理,强调重点和难点,提醒学生课后加强练习。
4.布置课后作业,巩固所学知识,提高学生的应用能力。
五、作业布置
为了巩固本节课所学的正方形性质与判定方法,以及提高学生的应用能力,特布置以下作业:
1.必做题:
(1)完成课本第18页的练习题1、2、3,并认真核对答案,对错题进行订正。
4.通过解决实际问题,培养学生运用正方形性质解决问题的能力,提高学生的应用意识。
19.2.3正方形学案
19.2.3正方形学习目标:了解正方形的有关概念,理解并掌握正方形的性质、判定方法.过程与方法:经历探索正方形有关性质、判定条件的过程,在观察中寻求新知,在探究中发展推理能力,逐步掌握说理的基本方法.重难点、关键重点:探索正方形的性质与判定.难点:掌握正方形的性质、判定的应用方法.关键:把握正方形既是矩形又是菱形这一特性来学习本节课内容.教学准备教师准备:投影仪,制作投影片,补充本节课内容,矩形纸片,活动的菱形框架.学生准备:复习平行四边形、矩形、菱形性质、判定,预习本节课内容.学习过程一、合作探究,导入新课【显示投影片】显示内容:展示生活中有关正方形的图片,幻灯片(多幅).【活动方略】教师活动:操作投影仪,边展示图片,边提出下面的问题:1.同学们观察显示的图片后,有什么联想?正方形四条边有什么关系?•四个角呢? 2.正方形是矩形吗?是菱形吗?为什么?3.正方形具有哪些性质呢?学生活动:观察屏幕上所展示的生活中的正方形图片.进行联想.易知:1.•正方形四条边都相等(小学已学过);正方形四个角都是直角(小学学过).实验活动:教师拿出矩形按课本P110图19.2~14左图折叠.然后展开,让学生发现:只要矩形一组邻边相等,这样的特殊矩形是正方形;同样,教师拿出活动菱形框架,运动中让学生发现:只要菱形有一个内角为90°,这样的特殊矩形是正方形.教师活动:组织学生联想正方形还具有哪些性质,板书画出一个正方形,如下图:学生活动:观察、联想到它是矩形,所以具有矩形的所有性质,它又是菱形,所以它又具有菱形的一切性质,归纳如下:正方形定义:有一组邻边相等,并且有一个角是直角的平行四边形.正方形性质:(1)边的性质:---------------------(2)角的性质:————————————(3)对角线的性质:——————————————————————————。
(4)对称性:——————————————————。
正方形的判定和性质——学案
学习过程一、复习预习1.菱形的定义:有一组邻边相等的平行四边形叫做菱形.2.菱形的性质菱形是特殊的平行四边形,它具有平行四边形的所有性质,•还具有自己独特的性质:① 边的性质:对边平行且四边相等.② 角的性质:邻角互补,对角相等.③ 对角线性质:对角线互相垂直平分且每条对角线平分一组对角.④ 对称性:菱形是中心对称图形,也是轴对称图形.菱形的面积等于底乘以高,等于对角线乘积的一半.点评:其实只要四边形的对角线互相垂直,其面积就等于对角线乘积的一半.3.菱形的判定判定①:一组邻边相等的平行四边形是菱形.判定②:对角线互相垂直的平行四边形是菱形.判定③:四边相等的四边形是菱形.二、知识讲解1、图形旋转的性质:旋转前后的图形,对应点到,每一对对应点与。
2、中心对称图形:把一个平面图形绕某一点旋转,如果旋转后的图形能够和原来的图形互相,那么这个图形叫做中心对称图形。
3、Ⅰ、平行四边形的性质:(1)平行四边形的;O488 16 t(s)S ((A )O48816t(s)S ((B )(2)平行四边形的 ;(3)平行四边形的 。
Ⅱ、平行四边形的判定:(1)两组对边分别 的四边形是平行四边形; (2)两组对边分别 的四边形是平行四边形。
(3)一组对边 的四边形是平行四边形; (4)两条 的四边形是平行四边形;4、Ⅰ、正方形的性质:一般性质________________;特殊性质_______________。
Ⅱ、正方形的判定:从四边形角度________________;从平行四边形角度_____________;从矩形角度____________;从菱形角度___________. 考点/易错点1正方形的特殊性质和判定的理解和记忆。
考点/易错点2正方形和平行四边形性质判定的综合题型,注意区分。
三、例题精析【例题1】【题干】如图,在正方形ABCD 中,点P 是AB 上一动点(不与A ,B 重合),对角线AC ,BD 相交于点O ,过点P 分别作AC ,BD 的垂线,分别交AC ,BD 于点E ,F ,交AD ,BC 于点M ,N .下列结论:①△APE ≌△AME ;②PM+PN=AC ;③PE 2+PF 2=PO 2;④△POF ∽△BNF ;⑤当△PMN ∽△AMP 时,点P 是AB 的中点.其中正确的结论有( )A . 5个B . 4个C . 3个D . 2个【例题2】【题干】如图,正方形ABCD中,AB=8cm,对角线AC,BD 相O 488 16 t(s)S ((C )O 48816t(s)S ((D )交于点O,点E,F 分别从B,C 两点同时出发,以1cm/s 的速度沿BC,CD 运动,到点C,D 时停止运动,设运动时间为t(s),△OE 的面积为s(2cm ),则s(2cm )与t(s)的函数关系可用图像表示为【例题3】【题干】如图,E 、F 分别是正方形ABCD 的边CD 、AD 上的点,且CE =DF ,AE 、BF 相交于点O ,下列结论:(1)AE =BF ;(2)AE ⊥BF ;(3)AO =OE ;(4)AOB DEOF S S ∆=四边形中正确的有( ) A. 4个 B. 3个C. 2个D. 1个【例题4】【题干】如图,菱形ABCD 中,∠B=60°,AB=4,则以AC 为边长的正方形ACEF 的周长为( )A .14B .15C .16D .17【例题5】【题干】如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60 C.76 D.80【例题6】【题干】如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC 交EF于G,下列结论:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△CEF=2S △ABE.其中正确结论有()个.A.2 B.3 C.4 D.5【例题7】【题干】如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为()A.16 B.17 C.18 D.19【例题8】【题干】如图,正方形ABCD是一块绿化带,其中阴影部分EOFB,GHMN都是正方形的花圃.已知自由飞翔的小鸟,将随机落在这块绿化带上,则小鸟在花圃上的概率为()C.D.A.B.12【例题9】【题干】如图,四边形ABCD、AEFG均为正方形,其中E在BC上,且B、E两点不重合,并连接BG.根据图中标示的角判断下列∠1、∠2、∠3、∠4的大小关系何者正确?()A.∠1<∠2 B.∠1>∠2 C.∠3<∠4 D.∠3>∠4【例题10】【题干】附图为正三角形ABC与正方形DEFG的重迭情形,其中D、E两点分别在AB、BC上,且BD=BE.若AC=18,GF=6,则F点到AC的距离为何?()A.2 B.3 C.12﹣4 D.6﹣6四、课堂运用【基础】1.已知如图所示的图形的面积为24,根据图中的条件,可列出方程:。
1.3:节正方形的性质与判定(教案)
-在讲解正方形判定方法时,教师应通过多个实例,让学生对比分析不同四边形的特点,从而明确判定条件。例如,通过比较正方形、矩形和菱形,让学生理解为什么只有正方形具备对角线互相垂直、平分且相等的性质。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是“1.3:正方形的性质与判定”。在开始之前,我想先问大家一个问题:“你们在日常生活中是否见过哪些物体的形状是正方形?”(举例说明,如桌面、瓷砖等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索正方形的性质与判定的奥秘。
1.3:节正方形的性质与判定(教案)
一、教学内容
本节课选自八年级数学下册第五章《四边形》的1.3节:“正方形的性质与判定”。教学内容主要包括以下两部分:
1.正方形的性质:通过观察和推理,引导学生发现正方形的四个角都是直角,四条边都相等,对边平行且相等,对角线互相垂直、平分且相等的特点。
2.正方形的判定:探讨如何根据图形的已知信息判断一个四边形是否为正方形。包括以下几种情况:(1)四条边相等且四个角都是直角的四边形是正方形;(2)对角线互相垂直平分且相等的四边形是正方形;(3)一组邻边相等且一个角是直角的平行四边形是正方形。
4.培养学生的团队协作意识:在小组讨论和分享环节,鼓励学生积极参与,学会倾听他人意见,提高团队协作能力。
5.激发学生的几何探究兴趣:通过设置有趣的几何问题,引导学生主动探究正方形的性质和判定方法,培养学生对几何学科的兴趣。
三、教学难点与重点
北师大初中九年级数学上册《正方形的性质与判定》教案
正方形的性质与判定第一课时学习目标1、知道正方形的判定方法,会运用平行四边形、矩形、菱形、正方形的判定条件进行有关的论证和计算.2、经历探究正方形判定条件的过程,发展学生初步的综合推理能力,主动探究的学习习惯,逐步掌握说理的基本方法.3、理解特殊的平行四边形之间的内在联系,培养学生辩证看问题的观点.教学重点:掌握正方形的判定条件.教学难点:合理恰当地利用特殊平行四边形的判定进行有关的论证和计算.学习过程第一步:课堂引入1.做一做:用一张长方形的纸片(如图所示)折出一个正方形.问题:什么样的四边形是正方形?正方形定义:有一组邻边相等,............并且有一个角是直角.......的平行四边形叫做正方形.2.【问题】正方形有什么性质?由正方形的定义得知,正方形既是有一组邻边相等的矩形,又是有一个角是直角的菱形.所以,正方形具有矩形的性质,同时又具有菱形的性质.正方形性质定理1:正方形的四个角都是,四条边都。
正方形性质定理2:正方形的两条对角线相等并且。
第二步:应用举例例1 求证:正方形的两条对角线把正方形分成四个全等的等腰直角三角形.已知:四边形ABCD是正方形,对角线AC、BD相交于点O(如图).求证:△ABO、△BCO、△CDO、△DAO是全等的等腰直角三角形.例2 .已知:如图,点E是正方形ABCD的边CD上一点,点F是CB的延长线上一点,且DE=BF.求证:(1)EA=AF;(2)EA⊥AF.第三步:随堂练习1.⑴正方形的四条边____ __,四个角___ ____,两条对角线____ _______ ____.⑵正方形的两条对角线把正方形分成四个全等的__________________⑶正方形的边长为6,则面积为__________⑷正方形的对角线长为6,则面积为__________2.如右图,E 为正方形ABCD 边AB 上的一点,已知EC=30, EB=10,则正方形ABCD 的面积为_______________,对角线为______ ____.3.如右图,E 为正方形ABCD 内一点,且△EBC 是等边三角形, 求∠EAD 与∠ECD 的度数.知识再现:⑴对边平行 边⑵ 四边相等⑶ 四个角都是直角 角正方形 ⑷对角线相等互相垂直 对角线互相平分 B E平分一组对角第二课时教学目标:4、知道正方形的判定方法,会运用平行四边形、矩形、菱形、正方形的判定条件进行有关的论证和计算.5、经历探究正方形判定条件的过程,发展学生初步的综合推理能力,主动探究的学习习惯,逐步掌握说理的基本方法.6、理解特殊的平行四边形之间的内在联系,培养学生辩证看问题的观点.教学重点:掌握正方形的判定条件.教学难点:合理恰当地利用特殊平行四边形的判定进行有关的论证和计算.教学过程:一、创设问题情景,引入新课我们学习了平行四边形、矩形、菱形、正方形,那么思考一下,它们之间有怎样的包含关系?请填入下图中.通过填写让学生形象地看到正方形是特殊的矩形,也是特殊的菱形,还是特殊的平行四边形;而正方形、矩形、菱形都是平行四边形;矩形、菱形都是特殊的平行四边形.1、怎样判断一个四边形是矩形?2、怎样判断一个四边形是菱形?3、怎样判断一个四边形是平行四边形?4、怎样判断一个平行四边形是矩形、菱形?议一议:你有什么方法判定一个四边形是正方形?二、讲授新课1.探索正方形的判定条件:学生活动:四人一组进行讨论研究,老师巡回其间,进行引导、质疑、解惑,通过分析与讨论,师生共同总结出判定一个四边形是正方形的基本方法.(1)直接用正方形的定义判定,即先判定一个四边形是平行四边形,若这个平行四边形有一个角是直角,并且有一组邻边相等,那么就可以判定这个平行四边形是正方形;(2)先判定一个四边形是矩形,再判定这个矩形是菱形,那么这个四边形是正方形;(3)先判定四边形是菱形,再判定这个菱形是矩形,那么这个四边形是正方形.后两种判定均要用到矩形和菱形的判定定理.矩形和菱形的判定定理是判定正方形的基础.这三个方法还可写成:有一个角是直角,且有一组邻边相等的四边形是正方形;有一组邻边相等的矩形是正方形;有一个角是直角的菱形是正方形.上述三种判定条件是判定四边形是正方形的一般方法,可当作判定定理用,但由于判定平行四边形、矩形、菱形的方法各异,所给出的条件各不相同,所以判定一个四边形是不是正方形的具体条件也相应可作变化,在应用时要仔细辨别后才可以作出判断2.正方形判定条件的应用【例1】判断下列命题是真命题还是假命题?并说明理由.(1)四条边相等且四个角也相等的四边形是正方形;(2)四个角相等且对角线互相垂直的四边形是正方形;(3)对角线互相垂直平分的四边形是正方形;(4)对角线互相垂直且相等的四边形是正方形;(5)对角线互相垂直平分且相等的四边形是正方形.三、随堂练习教材P24通过练习进一步巩固正方形的判定方法的应用.四、课时小结师生共同总结,归纳得出正方形的判定方法,同时展示下图,通过直观感受进一步加深理解正方形判定方法的应用.五、课后作业习题1.8的1-3题.。
正方形的性质与判定完整学习教案
第二十二页,共86页。
平行四边形,矩形(jǔxíng),菱形,正方形 的关系
平行四边形
正
矩形 方 菱形 正方形是特殊(n的jgǔ)平xí行四边形形,也(x是líínn特ɡɡ殊) 的矩形,也是
特殊的菱形。
第22页/共86页
第二十三页,共86页。
第23页/共86页
第二十四页,共86页。
C.AO=CO BO=DO AB=BC D.AC=BD
B、菱形
C、矩形
D平行四边形
A
第49页/共86页
3.正方C.形对的角对线角相线等和它的D边.对所成角的线角平是分(p度ín.gf4ē5n°)一组对角
4.已知正方形的一条对角线长为4cm,则它的边长
为 2 2,cm面积为 。 8cm2
A
E
P O
F
B
C
5.已知正方形ABCD中,对角线AC=10cm,P为AB上任意一
点,PE⊥AC,PF⊥BD,E、F为垂足,则PE+PF= 5。cm
是矩形).
第38页/共86页
第三十九页,共86页。
3
2
1
练习.如图,四边(sìbiān)形ABC D是正方形,E、F、G、H分别是 四边(sìbiān)的中点。你知道四边 (sìbiān)形EFGH的形状吗?为什么?
AH D
E
G
B
第39页/共86页
C F
第四十页,共86页。
第40页/共86页
第四十一页,共86页。
90
问题:
从这个图形中你想到(xiǎnɡ dào)了什么
第8页/共86页
第九页,共86页。
想一想:正方形是怎样(zěnyàng)的菱形 ?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例2 (补充)已知:如图,正方形ABCD中,对角线的交点为
O,E是OB上的一点,DG⊥AE于G,DG交OA于F.
求证:OE=OF.
分析:要证明OE=OF,只需证明△AEO≌△DFO,由于正方
形的对角线垂直平分且相等,可以得到∠AOE=∠DOF=90°,
AO=DO,再由同角或等角的余角相等可以得到∠EAO=∠FDO,
根据ASA可以得到这两个三角形全等,故结论可得.
例3 (补充)已知:如图,四边形ABCD是正方形,分别过点A、C两点作l1∥l2,作BM⊥l1于M,DN⊥l1于N,直线MB、DN分别交l2于Q、P点.
求证:四边形PQMN是正方形.
分析:由已知可以证出四边形PQMN是矩形,再证△ABM≌
△DAN,证出AM=DN,用同样的方法证AN=DP.即可证出
MN=NP.从而得出结论.
六、随堂练习
1.正方形的四条边____ __,四个角___ ____,两条对角线____ ____.
2.下列说法是否正确,并说明理由.
①对角线相等的菱形是正方形;()
②对角线互相垂直的矩形是正方形;()
③对角线垂直且相等的四边形是正方形;()
④四条边都相等的四边形是正方形;()
⑤四个角相等的四边形是正方形.()
3已知:如图,四边形ABCD为正方形,E、F分别为CD、CB延长线上的点,且DE=BF.
求证:∠AFE=∠AEF.
4.如图,E为正方形ABCD内一点,且△EBC是等边三角形,
求∠EAD与∠ECD的度数.
七、课后练习
1.已知:如图,点E是正方形ABCD的边CD上一点,点F是CB 的延长线上一点,且DE=BF.
求证:EA⊥AF.
2.已知:如图,△ABC中,∠C=90°,CD平分∠ACB,DE⊥BC
于E,DF⊥AC于F.求证:四边形CFDE是正方形.
3.已知:如图,正方形ABCD中,E为BC上一点,AF平分∠DAE 交CD于F,求证:AE=BE+DF.A
B C
教学重点:正方形的定义及正方形与平行四边形、矩形、菱形的联系.教学难点:正方形与矩形、菱形的关系及正方形性质与判定的灵活运用.1.定义:有一组邻边相等且有一个角是直角的平行四边形叫做正方形。
2、请画出平行四边形、矩形、菱形、正方形的关系图
3、知识结构:
4|、性质
正方形是特殊的平行四边形,也是特殊的___,也是特殊的__。
正方形性质:
边:
角:.
对角线:
5、判定①
②
③。