《数字逻辑设计》PPT课件

合集下载

数字逻辑电路设计-(王毓银)讲义.PPT第一章

数字逻辑电路设计-(王毓银)讲义.PPT第一章
( N )2 an1an2 a1a0 .a1a2 am
an1 2n1 an2 2n2 a1 21 a0 20
a1 21 a2 22 am 2m
n1
ai
1.1.2 数制及其转换
小数部分的转换步骤如下: 将小数部分逐次乘以R,取乘 积的整数部分作为R进制的各有关数位,乘积的小数部分 继续乘以R,直至最后乘积为0或达到一定的精度为止。
例4:求(0.3125)10 =(
)2
解: 0.3125 × 2 = 0.625 ……整数为0 b-1
0.625 × 2 = 1.25 ……整数为1 b-2
3基数r为2k各进制之间的互相转换由于3位二进制数构成1位八进制数4位二进制数构成1位十六进制数以二进制数为桥梁即可方便地完成基数r为2k各进制之间的互相转换
西安邮电学院“校级优秀课程”
数字电路与逻辑设计
第一章 绪 论
第一章 绪 论
目的与要求:
1、正确理解一些有关数字电路的基本概念; 2、常用数制数的表示以及它们之间的转换; 3、掌握数字系统中常用的几种BCD码。
1.1.2 数制及其转换
例6:将十进制小数(0.39)10 转换成八进制数, 要求精度达到0.1% 。
解:要求精度达到0.1% ,因为1/83 < 1/1000 < 1/84, 所以需要精确到八进制小数4位。 0.39 × 8 = 3.12 ……整数为3 b-1=3 0.12 × 8 = 0.96 ……整数为0 b-2=0 0.96 × 8 = 7.68 ……整数为7 b-3=7 0.68 × 8 = 5.44 ……整数为5 b-4=5 所以(0.39)10 =(0.3075)8

《数字逻辑基础》课件

《数字逻辑基础》课件
公式化简法
使用逻辑代数公式对逻辑函数进行化简,通过消去多余的项和简化 表达式来得到最简结果。
卡诺图化简法
使用卡诺图对逻辑函数进行化简,通过填1、圈1、划圈和填0的方 法来得到最简结果。
03
组合逻辑电路
组合逻辑电路的分析
组合逻辑电路的输入和输出
分析组合逻辑电路的输入和输出信号,了解它们之间的关系。
交通信号灯控制系统的设计与实现
交通信号灯简介
交通信号灯是一种用于控制交通流量的电子设备,通常设置在路口或 交叉口处。
设计原理
交通信号灯控制系统的设计基于数字逻辑电路和计算机技术,通过检 测交通流量和车流方向来实现信号灯的自动控制。
实现步骤
首先确定系统架构和功能需求,然后选择合适的元件和芯片,接着进 行电路设计和搭建,最后进行测试和调整。
真值表
通过列出输入和输出信号的所有可能组合,构建组合逻辑电路的真值表,以确定输出信 号与输入信号的逻辑关系。
逻辑表达式
根据真值表,推导出组合逻辑电路的逻辑表达式,表示输入和输出信号之间的逻辑关系 。
组合逻辑电路的设计
确定逻辑功能
根据实际需求,确定所需的逻辑功能,如与、或、非等。
设计逻辑表达式
根据确定的逻辑功能,设计相应的逻辑表达式,用于描述输入和 输出信号之间的逻辑关系。
实现电路
根据逻辑表达式,选择合适的门电路实现组合逻辑电路,并完成 电路的物理设计。
常用组合逻辑电路
01
02
03
04
编码器
将输入信号转换为二进制码的 电路,用于信息处理和控制系
统。
译码器
将二进制码转换为输出信号的 电路,用于数据分配和显示系
统。
多路选择器

数字逻辑电路与系统设计课件

数字逻辑电路与系统设计课件
计数器
用于计数和控制时序,常用于实现定时器和分频器。
移位器
用于二进制数据的移位操作,常用于数据格式化和数据传输。
顺序脉冲发生器
用于产生一定规律的顺序脉冲信号,常用于控制电路的工作流程。
04
数字系统设计
数字系统概述
数字系统的基本概念
数字系统是指使用离散的二进制数字信号进行信息处理的系统。它主要由逻辑 门电路、触发器、寄存器、加法器等基本元件组成,具有精度高、稳定性好、 易于大规模集成等优点。
实现逻辑功能
根据状态转换图,实现相应的 逻辑功能。
确定设计目标
明确设计时序逻辑电路的目的 和要求,如实现特定的功能、 达到一定的性能指标等。
设计状态转换图
根据设计要求,设计状态转换 图,确定状态和输出。
验证设计
通过仿真或实验验证设计的正 确性和可行性。
常用时序逻辑电路
寄存器
用于存储二进制数据,常用于数据传输和数据处理。
集成化和智能化技术的发展,为数字 系统的设计带来了新的机遇和挑战。
数字系统的智能化是当前的一个重要 趋势,它使得数字系统能够具有更强 的自适应性、智能性和灵活性。
THANKS FOR WATCHING
感谢您的观看
分析输入和输出信号的逻辑关系,确定电路的功 能。
真值表和逻辑表达式
通过列出所有输入组合和对应的输出值,得到真 值表,并根据真值表推导出逻辑表达式。
3
逻辑功能描述
根据逻辑表达式或真值表,描述组合逻辑电路的 逻辑功能。
组合逻辑电路的设计
明确设计要求:确定输入和 输出信号,以及电路要实现 的功能。
根据功能要求,逐一确定每 个输入组合对应的输出值。
自底向上的设计方法

数字逻辑基础教学课件PPT

数字逻辑基础教学课件PPT
4. 各种表示方法间的相互转换
(1)逻辑函数式→真值表 举例:例1-6(P9) (2)逻辑函数式→逻辑图 举例:例1-7(P10) (3)逻辑图→逻辑函数式 方法:从输入到输出逐级求取。
举例:例1-8(P10)
(4)真值表→函数式
方法:将真值表中Y为 1 的输入变量相与,取 值为 1 用原变量表示,0 用反变量表示, 将这 些与项相加,就得到逻辑表达式。这样得到的 逻辑函数表达式是标准与-或逻辑式。
断开为0;灯为Y,灯亮为1,灭为0。
真值表
AB Y 00 0 01 1 10 1 11 1
由“或”运算的真值表可知
“或”运算法则为:
有1出
0+0 = 0 1+0 = 1
1
0+1 = 1 1+1 = 1
全0为
0
⒊ 表达式
逻辑代数中“或”逻辑关系用“或”运算 描述。“或”运算又称逻辑加,其运算符为 “+”或“ ”。两变量的“或”运算可表示
0
卡诺图是一 种用图形描 述逻辑函数
的方法。
00 0 01 0 11 0
10 1
例:函数 F=AB + AC
ABC F
000 0
1 001 1 010 0
1 011 1
1 100 1
0
101 1 110 0
1 111 0
1.逻辑函数式
特点:
例:函数 F=AB + AC
(1)便于运算; (2)便于用逻辑图实现; (3)缺乏直观。
真值表
K
Y
0
1
1
0
由“非”运算的真值表可知 “非”运算法则为:
0 =1 1 =0
⒊ 表达式
“非”逻辑用“非”运算描述。“非”运 算又称求反运算,运算符为“-”或“¬”, “非”运算可表示为:

《数字逻辑设计》第8章 锁存器与触发器

《数字逻辑设计》第8章 锁存器与触发器

0

1
1
1
1
0,1,↓ X
1
1
Qn
CK
ClrN
1
PreN
D
设1
Q
清0
保持
Example Flip-Flops with Additional Inputs
例1:写出JK触发器的次态方程
+
CP AB
Qn+1 = J Qn + K Qn
JQ CP KQ
TTL电路: 悬空相当于 接高电平1
= J Qn = A Qn + B Qn Qn
Edge-Triggered D Flip-Flop
(5).驱动表
驱动表
Qn
Qn+1 D
00
0
01
1
10
0
11
1
Latches and Flip-Flops
2. S-R 触发器
(1). 逻辑符号
QQ R CK S QQ
R CK S
(2). 功能表
R S Qn Qn+1 000 0 001 1 010 1 011 1 100 0 101 0 110 × 111 ×
♦ 时序电路当前时刻的状态是什么? ♦ 在输入信号的作用下,下一时刻的状态是什么?
Q
0
1
0 =R 1
Q’
1
对输入信 号高电平 敏感
2
0 S= 0
(2) 功能表
置0端 R
0
0
置1端 S
0
0
现态 Qn 0
1
次态 Qn+1
0
1
保持
0
1
01

数字逻辑电路大全PPT课件(2024版)

数字逻辑电路大全PPT课件(2024版)

第6页/共48页
Rb1 4kΩ
Rc 2 1.6kΩ
Vc 2
1
+VCC( +5V) Rc4 130Ω
3
T2 4
1
3
A
31
2T2
D Vo
B
T1
C
Ve 2
1
3
2T 3
Re2
1kΩ
输入级
中间级
输出级
第7页/共48页
2.TTL与非门的逻辑关系
(1)输入全为高电平3.6V时。
T2、T3导通,VB1=0.7×3=2.1(V ),
列。 6 . 74AS 系 列 —— 为 先 进 肖 特 基 系
列, 它是74S系列的后继产品。 7.74ALS系列——为先进低 功耗肖特基系列, 是74LS系列的后继产品。
第30页/共48页
2.3
一、 NMOS门电路 1.NMOS非门
MOS逻辑门电路
VDD (+12V)
VDD (+12V)
VDD (+12V)
0.4V
高 电 平 噪 声 容 限 第1V5页NH/共=48V页OH ( min ) - VON = 2.4V-2.0V =
四、TTL与非门的带负载能力
1.输入低电平电流IIL与输入高电平电流IIH (1)输入低电平电流IIL——是指当门电路的输入端
接低电平时,从门电路输入端流出的电流。
& Vo G0
呈 现 高 阻 , 称 为 高 阻 态 , 或 禁 止 态+V。CC
Rc2
Rc4
Rb1
Vc2 1
3
T2 4
A
&
B
L
EN

《数字逻辑设计》第7章 数据选择器及译码器

《数字逻辑设计》第7章 数据选择器及译码器

P1
P2
P9
P3
P8
Gnd P4
P7 P6
P5
扩展
W=(P8•P9)’ Y=(P2•P3•P6•P7)’
X=(P4•P5•P6•P7)’ Z=(P1•P3•P5•P7•P9)’

X
Y
Z
&
&
&
&
1. 二进制编码器——例:4线-2线编码器
Example
4:2编码器
计算机配有四个外部设备:声卡(A0),硬盘驱动器 (A1),鼠标(A2),网卡(A3),B0、B1为编码输出。
g
CD
AB 00 01 11 10 00 1 1 0 0 01 0 0 1 0 11 × × × × 10 0 0 × ×
g=A+CD+BC+BC
编码器(Encoders)
编码器——
♦ 特点:多输入、多输出的组合逻辑电路 ♦ 功能:将二进制码按照一定规律编排,使其具有特定含义
(如:8421BCD码用1000 代表数字8),与译码器互逆。
0 1 0 0 0 1 1 001 1 4
0 1 0 1 1 0 1 101 1 5
0 1 1 0 1 0 1 111 1 6
0 1 1 1 1 1 1 000 0 7
1 0 0 0 1 1 1 111 1 8
1 0 0 1 1 1 1 101 1 9
七段数码管
f g COM a b
a
f
b
g
e
c
d
e d COM c
A1
A0
典型应用——实现常规逻辑函数
A
D0
D1
D2

《数字逻辑详解》课件

《数字逻辑详解》课件

了解布尔函数的定义和特性,学习如何将逻辑表达式转化为真值表。
3
简化布尔表达式
掌握使用布尔代数进行逻辑表达式简化的方法和技巧。
逻辑函数与逻辑表达式
逻辑函数
介绍逻辑函数的概念和表示 方法,学习如何将逻辑函数 转化为逻辑表达式。
逻辑表达式
了解逻辑表达式的结构和常 见的逻辑运算符,学习如何 构建和简化逻辑表达式。
逻辑门
介绍常用逻辑门的基本原理和电路符号,展示它们 在数字电路中的应用。
数字电路
了解数字电路的组成和工作原理,包括组合逻辑电 路和时序逻辑电路。
进制编码
介绍常见的进制编码方式,如BCD码和格雷码,并 学习它们的转换方法。
布尔代数
1
布尔运算
学习布尔代数的基本运算,包括与、或、非等逻辑运算。
2
布尔函数
多输出函数
学习如何处理多输出函数, 掌握多输出函数的最小化方 法。
数字逻辑设计方法
1
时序逻辑设计
2
了解时序逻辑电路的设计原理和方法,
学习如何使用触发器构建时序逻辑功能。
3
组合逻辑设计
介绍组合逻辑电路的设计流程和方法, 学习如何使用逻辑门设计逻辑功能。
状态机设计
学习状态机的基本概念和设计流程,掌 握状态转换图和状态表的建立方法。
结语与总结
数字逻辑详解课件对数字逻辑的基础概念、逻辑门电路、布尔代数等进行了全面的介绍和讲解。希望通过本课 件的学习,能够帮助大家更好地理解和应用数字逻辑,为日后的学习和工作打下坚实的基础。
实例与练习
数字电路实例
通过实际电路示例,展示数字逻辑在计算机和电子 设备中的应用。
逻辑表达式练习
提供一些逻辑表达式练习题,帮助学生巩固所学知 识和提升运算能力。

《数字逻辑设计》第5章 多级门电路

《数字逻辑设计》第5章 多级门电路
多级门电路 两级门电路的设计 多输出电路的设计 Some Examples
Design of Multiple-Output Circuits
利用与非门设计二级电路: F1 =C+AB, F2 =BC+ABC
A
B
B C
C
F1
A
F2
B
C
关键:寻找共享项,追求整体最简
F1 = C + AB
B C
f = c'd(a' + b) + cd' (a + b)
5个门,16 个输入端
5个门,12 个输入端
Multi-Level Gate Circuits
二级电路的8种基本形式
二级电路的8种基本形式
Unit 5 Multi-Level Gate Circuits
多级门电路 两级门电路的设计 多输出电路的设计 Some Examples
Unit 5 Multi-Level Gate Circuits
多级门电路(Multi-Level Circuits) 两级门电路的设计 多输出电路的设计 Some Examples
Multi-Level Gate Circuits
1. 二级电路
AND-OR 电路(积之和) f = a'c'd + bc'd + bcd' + acd'
Design of Two-Level Circuits
使用单一逻辑门设计最简二级电路
利用与非门设计 利用或非门设计
——(MOOC自学:5.2节) 利用与或非门设计
——(MOOC自学:5.2节)
Design of Two-Level Circuits
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概述
集成逻辑门电路主要有TTL门电路和COMS门
电路。TTL门由双极型晶体管组成,CMOS门电
路由单极型MOS管组成。
TTL门电路的工作速度高,但功耗也较大,
集成度不高;CMOS门电路功耗小,集成度高, 但工作速度较低。
18.1输出,只有高电平和低电
平两种不同的状态。高电平和低电平都有一定的 范围。
容易导通,可分流三极管的一部分基极电流,使三极管工作 在浅饱和状态,从而大大缩短三极管的开关时间,提高工作
速度。在集成电路中肖特基二极管和三极管制作在一起。
18.11.25 18
第6讲
3.3 分立元件门电路
门电路的概念: 实现基本和常用逻辑运算的电子电路,叫逻辑 门电路。实现与运算的叫与门,实现或运算的叫或 门,实现非运算的叫非门,也叫做反相器,等等。 分立元件门电路和集成门电路: 分立元件门电路:用分立的元件和导线连接起 来构成的门电路。简单、经济、功耗低,负载差。 集成门电路:把构成门电路的元器件和连线都 制作在一块半导体芯片上,再封装起来,便构成了 集成门电路。现在使用最多的是CMOS和TTL集成门 电路。 19 18.11.25
第6讲
第3章 集成逻辑门电路
学习目标:
1.了解半导体二极管、三极管和CMOS管的开关特性及等效电 路。 2.了解TTL与非门的工作原理和主要性能指标。 3.掌握集电极开路门(OC门)、三态输出门的逻辑功能、特 点和用途。 4.熟悉TTL与非门、CMOS逻辑门使用注意事项。
18.11.25
1
第6讲
3.1
开关等效电路
18.11.25
12
第6讲
(2)饱和条件
条件:发射结正偏,集电结正偏 特点:UBES=0.7V,UCES=0.3V/硅
18.11.25
13
第6讲
I CS
VCC U CES VCC RC RC
I BS
I BS
VCC RC
三极管开关等效电路 饱和时
I CS
三极管的饱和条件:
18.11.25 16
第6讲
3.2.3 MOS管的开关特性
一般采用增强型MOS组成开关电路,并由栅源电 压uGS控制MOS管的截止或导通。
NMOS管电路图
18.11.25
截止状态
导通状态
17
第6讲
3.2.4
抗饱和三极管
它是在三极管基极和集电极之间并接一个肖特基二极管(简
称SBD)构成的。肖特基二极管的正向压降小,约为0.4V,
A
0V 0V 5V 5V 二极管与门的真值表 A 0 0 1 1 B 0 1 0 1 Y 0 0 0 1
正向导通时 UD(ON)≈0.7V(硅) 0.3V(锗)
RD≈几Ω ~几十Ω
相当于开关闭合
二极管的伏安特性曲线
18.11.25 8
第6讲
反向截止时
反向饱和电流极小
反向电阻很大(约几百kΩ)
相当于开关断开
二极管的伏安特性曲线
18.11.25
9
第6讲
2. 动态特性: 二极管从截止变为导通和从导通变为截止都需 要一定的时间。通常后者所需的时间长得多。一般 为纳秒数量级。
18.11.25 5
第6讲
半导体二极管、三极管和MOS管,则是构成这 种电子开关的基本开关元件。
理想开关的开关特性: (1) 静态特性: 断开时,开关两端的电压不管多大,等
效电阻ROFF = 无穷,电流IOFF = 0。 闭合时,流过其中的电流不管多大,等效电阻
RON = 0,电压UAK = 0。
3.6V
U SH
2.4V
U SL
0.8V 0V
标准高电平USH常取 3.6V;低电平USL常 取0.3V。
高低电平示意图
18.11.25 3
第6讲
关于正逻辑和负逻辑的概念
1. 正负逻辑的规定 正逻辑体系:用1表示高电平,用0表示低电平。 负逻辑体系:用1表示低电平,用0表示高电平。
2. 正负逻辑的转换
18.11.25
10
第6讲
3.2.2
1.
三极管的开关特性
静态特性及开关等效电路 在数字电路中,三极管作为开关元件,主要 工作在饱和和截止两种开关状态,放大区只是极 短暂的过渡状态。
18.11.25
三极管的三种工作状态 (a)电路 (b)输出特性曲线
11
第6讲
(1) 截止条件
条件:发射结反偏 特点:电流约为0
18.11.25 6
第6讲
客观世界中,没有理想开关。 乒乓开关、继电器、接触器等的静态特性十分 接近理想开关,但动态特性很差,无法满足数字电 路一秒钟开关几百万次乃至数千万次的需要。
半导体二极管、三极管和MOS管做为开关使用
时,其静态特性不如机械开关,但动态特性很好。
18.11.25
7
第6讲
1. 静态特性及开关等效电路
第6讲
3.3.1 二极管与门电路
1. 电路
2. 工作原理
A、B为输入信号 (+5V或0V) Y 为输出信号 VCC=+5V
电路输入与输出电压的关系 A 0V 0V 5V 5V B 0V 5V 0V 5V Y 0V 0V 0V 5V
18.11.25
20
第6讲
3. 逻辑赋值并规定高低电平 用逻辑1表示高电平(此例为≥+3.6V) 用逻辑0表示低电平(此例为≤0.3V) 4. 真值表
对于同一个门电路,可以采用正逻辑,也可以采 用负逻辑。 本书若无特殊说明,一律采用正逻辑体制。 同一个门电路,对正、负逻辑而言,其逻辑功能 是不同的。
18.11.25 4
第6讲
3.2
半导体二极管和三极管的开关特性
3.2.1
二极管的开关特性
数字电路中的晶体二极管、三极管和MOS管工作 在开关状态。 导通状态:相当于开关闭合 截止状态:相当于开关断开。 逻辑变量←→两状态开关: 在逻辑代数中逻辑变量有两种取值:0和1; 电子开关有两种状态:闭合、断开。
18.11.25
iB I BS
VCC RC
14
第6讲
2. 三极管的开关时间(动态特性)
延迟时间td 上升时间tr 开启时间ton
18.11.25
存储时间 ts 下降时间tf 关闭时间 toff 15
三极管的开关时间
第6讲
(1) 开启时间ton 三极管从截止到饱和所需的时间。 ton = td +tr td :延迟时间 tr :上升时间 (2) 关闭时间toff 三极管从饱和到截止所需的时间。 toff = ts +tf ts :存储时间(几个参数中最长的;饱和越深越长) tf :下降时间 toff > ton 。 开关时间一般在纳秒数量级。高频应用时需考虑。
相关文档
最新文档