【海文考研数学】:线代知识点归纳 1行列阵
线性代数知识点总结
线性代数知识点总结线性代数知识点总结第一章行列式行列式是线性代数中的重要概念之一。
行列式的定义包括二三阶行列式和N阶行列式。
其中,N阶行列式是由行列式中所有不同行、不同列的n个元素的乘积的和构成的。
行列式的计算需要用到奇偶排列、逆序数和对换等概念。
行列式还具有多种性质,如行列式行列互换其值不变,行列式中某两行(列)互换,行列式变号等。
通过这些性质,我们可以推论出行列式中某两行(列)对应元素相等,则行列式等于零等结论。
行列式还有一些特殊的形式,如转置行列式、对称行列式、反对称行列式、三线性行列式和上(下)三角形行列式等。
行列式在解线性方程组中应用广泛,如克莱姆法则。
非齐次线性方程组的系数行列式不为零时,有唯一解;而齐次线性方程组的系数行列式为1时,只有零解。
第二章矩阵矩阵是线性代数中另一个重要概念。
矩阵是由数个数排成的矩形阵列,其中包括零矩阵、负矩阵、行矩阵、列矩阵、n阶方阵和相等矩阵等。
矩阵的运算包括加法、数乘和乘法。
其中,加法和数乘都满足交换律和结合律。
而矩阵的乘法需要满足行数等于列数的规则。
矩阵的乘法运算需要用到矩阵的元素之间的乘积和求和。
在矩阵的运算中,我们需要注意矩阵的类型和是否有意义。
一般情况下,矩阵乘法不满足消去律。
即使已知AB=0,也不能得到A=0或B=0.对于矩阵A,它的转置等于A乘以A加B。
即transpose(A)=A(A+B)。
对于标量k和矩阵A,有(kA)=kA和(AB)=BA(反序定理)。
对于方幂A^k,有(A^k)=(A^1+k/2)+(A^2+k/2)。
有几种特殊的矩阵,如对角矩阵、数量矩阵、单位矩阵、上下三角形矩阵、对称矩阵、反对称矩阵、阶梯型矩阵和分块矩阵。
对于分块矩阵,加法、数乘和乘法的规则类似,而转置需要对每个子块进行转置。
矩阵的逆矩阵指的是存在一个N阶矩阵B,使得AB=BA=I。
如果矩阵A是可逆的,则称它是非奇异矩阵,否则称为奇异矩阵,其行列式为0.初等变换不会改变矩阵的可逆性,而初等矩阵都是可逆的。
线性代数各章要点整理
第一章行列式主要知识点一、行列式的定义和性质1.余子式和代数余子式的定义2.行列式按一行或一列展开的公式1)2)3.行列式的性质1)2)用数k乘行列式的某一行(列)所得新行列式=原行列式的k倍. 推论3)互换行列式的任意两行(列)所得新行列式等于原行列式的相反数. 推论4)如果行列式中两行(列)对应元素成比例,则行列式值为0.5)行列式可以按任一行(列)拆开.6)行列式的某一行(列)的k倍加到另一行(列)上,所得新行列式与原行列式的值相等.二、行列式的计算1.二阶行列式和三角形行列式的计算.2.对一般数字行列式,利用行列式的性质将其降阶以化成二阶行列式或三角形(或对角形)行列式的计算.3.对行列式中有一行或一列中只有一个或两个非零元的情况,用这一行或一列展开.4.行列式中各行元素之和为一个常数的类型.5.范德蒙行列式的计算公式第二章矩阵主要知识点一、矩阵的概念1.要分清矩阵与行列式的区别2.几种特殊矩阵(0矩阵,单位阵,三角阵,对角阵,数量阵)二、矩阵的运算1.矩阵A , B的加、减、乘有意义的充分必要条件2.矩阵运算的性质比较矩阵运算(包括加、减、数乘、乘法等)的性质与数的运算性质的相同点和不同点(加法、乘法的交换律和结合律;乘法关于加法的分配律)重点是矩阵乘法没有交换律(由此产生了矩阵运算公式与数的运算的公式的不同点).3.转置对称阵和反对称阵1)转置的性质2)若A T=A (A T= - A),则称A为对称(反对称)阵4.逆矩阵1)方阵A可逆(也称非异,非奇异,满秩)的充分必要条件是.当A可逆时,.2)方阵A的伴随阵的定义。
重要公式;与A -1的关系(当方阵A可逆时,)3)重要结论:若n阶方阵A,B满足AB=E,则A,B都可逆,且A-1=B ,B-1=A.4)逆矩阵的性质:; ; .5)消去律:设方阵A可逆,且AB=AC(BA=CA),则必有B=C。
(若不知A可逆,仅知A≠0结论不一定成立。
考研数学线代定理公式汇总
考研数学线代定理公式汇总1.行列式定理:(1) 行列式的值不变性: 对于可逆矩阵A,有det(AB) =det(A)det(B)。
(2)若存在行(列)线性相关,则行列式为0。
(3)拉普拉斯定理:对于n阶行列式,可以通过余子式展开得到。
2.线性方程组定理:(1)线性方程组存在唯一解的充要条件是系数矩阵的秩等于方程组的未知数个数,并且扩展矩阵的秩等于系数矩阵的秩。
(2)齐次线性方程组存在非零解的充要条件是系数矩阵的秩小于方程组的未知数个数。
(3)利用矩阵的逆可以求解非齐次线性方程组。
3.矩阵定理:(1)矩阵的秩等于其非零特征值的个数。
(2)若矩阵A可对角化,则A与其相似矩阵具有相同的特征值。
(3)奇异值分解定理:对于任意矩阵A,都可以分解成奇异值分解形式:A=UΣV^T,其中U和V是正交矩阵,Σ是对角矩阵。
4.向量空间定理:(1)向量组的线性相关性可以通过列向量组的秩判断,如果秩小于向量个数,则线性相关。
(2)向量组的秩等于向量组的极大线性无关组的向量个数。
(3) rank(A^T) = rank(A),其中A是矩阵。
(4)若A和B是可逆矩阵,则(A^T)^-1=(A^-1)^T。
5.特征值与特征向量定理:(1)特征值方程的根为矩阵的特征值。
(2)若特征值λ是矩阵A的特征值,对应的特征向量组成的集合是由矩阵A-λI的零空间生成的。
(3)矩阵A相似于对角矩阵的充要条件是A有n个线性无关的特征向量。
以上是一些常见的数学线性代数定理和公式的汇总,希望对您的学习有所帮助。
当然,线性代数的内容还是比较广泛的,还有很多其他的定理和公式,如矩阵行列式的性质、特征值与特征向量的性质、矩阵的幂等性等。
如果您对这个话题有更深入的了解需求,可以提出具体的问题,我将尽力回答。
2023考研数学(线性代数)知识点归纳
2023考研数学(线性代数)知识点归纳
想理解更多请持续____应届毕业生考试网!
不同专业考察的内容不一样,从历年的实际考研试题来看,3类数学的线性代数试题根本一样,差异仅仅在于:数学(一)比数学(二)和(三)多了n维向量空间的相关内容,但这局部内容在考题中很少出现。
第一章、行列式
1、行列式的定义
2、行列式的性质
3、特殊行列式的值
4、行列式展开定理
5、抽象行列式的计算
第二章、矩阵
1、矩阵的定义及线性运算
2、乘法
3、矩阵方幂
4、转置
5、逆矩阵的概念和性质
6、伴随矩阵
7、分块矩阵及其运算
8、矩阵的初等变换与初等矩阵
9、矩阵的等价
10、矩阵的秩
第三章、向量
1、向量的概念及其运算
2、向量的线性组合与线性表出
3、等价向量组
4、向量组的线性相关与线性无关
5、极大线性无关组与向量组的.秩
6、内积与施密特正交化
7、n维向量空间(数学一)
第四章、线性方程组
1、线性方程组的克莱姆法那么
2、齐次线性方程组有非零解的断定条件
3、非齐次线性方程组有解的断定条件
4、线性方程组解的构造
第五章、矩阵的特征值和特征向量
1、矩阵的特征值和特征向量的概念和性质
2、相似矩阵的概念及性质
3、矩阵的相似对角化
4、实对称矩阵的特征值、特征向量及其相似对角矩阵第六章、二次型
1、二次型及其矩阵表示
2、合同变换与合同矩阵
3、二次型的秩
4、二次型的标准型和标准型
5、惯性定理
6、用正交变换和配方法化二次型为标准型
7、正定二次型及其断定。
考研数学《线性代数》考点知识点总结
记作: ri rj ( ci cj ) D D 0 .
3.行列式乘以 k 等于某行(列)所有元素都乘以 k. 推论:某一行(列)所有元素公因子可提到行列式的外面.
记作: kD ri k ( kD ci k ).
记作: kD ri k ( kD ci k ).
行列式的 性质:
a2i a2n
a21
a22
a2i a2n
an1 an2 (ani ani ) ann
an1 an2 ani ann an1 an2 ani ann
上式为列变换,行变换同样成立.
6.把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式不变.
记作: ci ci kcj ( ri ri krj ), D 不变.
n
aki Akj
k 1
Dij
D, 0,
当i 当i
j, n
j;
或
k 1
aik
Ajk
Dij
D, 0,
当i 当i
j, j; 其中ij
1, 0,
当i j, 当i j.
1 1 11
范德蒙德 行列式:
x1 Dn x12
x2 x22
x3 xn
x32 xn2 = (xi x j ) .证明用数学归纳法.
定理 2:
n 阶行列式可定义为 D (1)ta a p11 p2 2 apnn = (1)ta1p1a2 p2 anpn .
1.D=DT,DT 为 D 转置行列式.(沿副对角线翻转,行列式同样不变)
2.互换行列式的两行(列),行列式变号.
推论:两行(列)完全相同的行列式等于零.
记作: ri rj ( ci c j ) D D .
考研辅导--线性代数--第1章行列式
第一章 行列式◆ 基础知识概要1.n 阶行列式的定义二阶行列式2112221122211211a a a a a a a a -=.三阶行列式.333231232221131211a a a a a a a a a 112233122331132132112332122133132231a a a a a a a a a a a a a a a a a a =++---.对角线法则:n 阶行列式的定义()1212111212122212,,,121...n nn tn j j nj j j j n n nna a a a a a D a a a a a a ⋅⋅⋅==-∑,它是取自不同行不同列的n 个数的乘积1212...n j j nj a a a 的代数和(共!n 项),其中各项的符号为()1t-,t 代表排列12,,,n j j j ⋅⋅⋅的逆序数,简记为()det ij a .n 阶行列式也可定义为()121212,,,1...n nti i i n i i i D a a a ⋅⋅⋅=-∑,其中t 为行标12,,,n i i i ⋅⋅⋅排列的逆序数.例1.1 计算行列式(1)12n λλλ;(2)12nλλλ.练习:计算下列行列式(1)2341342013004000;(2)111212220n nnn a a a a a a ⋅⋅⋅⋅⋅⋅⋅⋅⋅(上三角形行列式);(3)112122120n n nna a a a a a ⋅⋅⋅⋅⋅⋅⋅⋅⋅(下三角形行列式).2. 行列式的性质与计算 2.1行列式的性质(1)行列式与其转置行列式相等;(2)互换行列式的某两行(列)得到新行列式则新行列式应反号;特别地:若行列式中有两行(列)对应元素相等,则行列式等于零; (3)行列式中某一行(列)的所有元素的公因数可以提到行列式的外面; 即以数k 乘以行列式等于用数k 乘以行列式的某一行或某一列; 特别地:若行列式中有一行(列)的元素全为零,则行列式等于零; (4)行列式中如果有某两行(列)对应元素成比例,则行列式的值为零; 特别地:比例系数为1(5)若行列式的某一列(行)的元素是两数之和,例如,第i 列的元素都是两数之和:()()()1112111212222212i i n i i n n n ni ninn a a a a a a a a a a D a a a a a '⋅⋅⋅+⋅⋅⋅'⋅⋅⋅+⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅'⋅⋅⋅+⋅⋅⋅, 则D 等于如下两个行列式之和:1112111112112122222122221212i n i n i n i n n n ni nnn n ninn a a a a a a a a a a a a a a a a D a a a a a a a a '⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅'⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅'⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅.(6)把行列式的某一行(列)的各元素的k 倍加到另一行(列)的对应元素上,行列式的值不变.注:(1)交换行列式的第,i j 两行(或列),记作i i r r ↔(或i j c c ↔); (2)第i 行(列)提出公因子k ,记作i r k ÷(或i c k ÷);(3)以数k 乘第j 行(列)加到第i 行(列)上,记作i j r kr +(或i j c kc +).范德蒙(Vandermonde )行列式()3122222123111111231111nn ijnj i nn n n n nx x x x V x x x x x x x x x x ≤<≤----⋅⋅⋅⋅⋅⋅==-⋅⋅⋅⋅⋅⋅∏注 右边是“大指标减小指标”.例1.2 计算行列式111311212524131122D ---=.(答:332)练习:计算行列式(1)3112513420111533D ---=---;(答:40)(2)3111131111311113D =;(答:48)(3) 1234234134124123D =;(答:160)(4)2324323631063ab c d aa ba b ca b c d D a a b a b c a b c da ab a bc a b c d++++++=++++++++++++;(答:4a )(5)222111a ab acD ab b bc ac bcc +=++;(答:2221a b c +++) (6)123400000a xa a a x x D x x xx+-=--;(答:431i i x x a =⎛⎫+ ⎪⎝⎭∑) (7)222b c c a a bD a b c a b c +++=;(8)()()()()()()()()()()()()2222222222222222123123123123a a a a b b b b D cc c cd d d d ++++++=++++++.2.2行列式依行(列)展开余子式:ij M ,代数余子式:()1i jij ij A M +=-定理1.1 行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和,即()112211,2,,ni i i i in in ik ik k D a A a A a A a A i n ==++⋅⋅⋅+==⋅⋅⋅∑,或()112211,2,,nj j j j nj nj kj kj k D a A a A a A a A j n ==++⋅⋅⋅+==⋅⋅⋅∑.注:此定理的主要作用是——降阶.推论 行列式的任一行(列)的各元素与另一行(列)对应的代数余子式乘积之和等于零,即()112210ni j i j in jn ik jk k D a A a A a A a A i j ==++⋅⋅⋅+==≠∑,或()112210ni j i j ni nj ki kj k D a A a A a A a A i j ==++⋅⋅⋅+==≠∑.例1.3 用降阶的方法解例1.2.练习:用降阶的方法求解上面练习第(1)题.例1.4 设1121234134124206A --=-,求(1)12223242234A A A A -+-; (2)3132342A A A ++.解 (1)1222324212122122313241422340A A A A a A a A a A a A -+-=+++=. (2)因为ij A 的大小与元素ij a 无关,因此,313234112111214132341410322121401201120142642064206A A A -----++===-=---. 练习:(1)设1234511122321462221143156,则(a )313233A A A ++=?(b )3435?A A +=(c )5152535455?A A A A A ++++=(答:0,0,0)(2)设,ij ij M A 分别为行列式301022220201201D =--中元素ij a 的余子式和代数余子式,试求(a )31323334A A A A +++; (b )41424344M M M M +++; (c )14244432M M M -++.2.3拉普拉斯(Laplace )展开定理定义 在一个n 阶行列式D 中,任意选定k 行(比如第12,,k i i i ⋅⋅⋅行)和k 列比如12,,k j j j ⋅⋅⋅列)(k n ≤).位于这些行和列的交点上的2k 个元素按照原来的位置组成一个k 阶行列式,称为行列式D 的一个k 阶子式,记作1212k k i i i A j j j ⋅⋅⋅⎛⎫ ⎪⋅⋅⋅⎝⎭,划去12,,k i i i ⋅⋅⋅行和12,,k j j j ⋅⋅⋅列后余下的元素按照原来的位置组成的n k -阶行列式,称为k 阶子式1212k k i i i A j j j ⋅⋅⋅⎛⎫ ⎪⋅⋅⋅⎝⎭的余子式,记作1212k c k i i i A j j j ⋅⋅⋅⎛⎫⎪⋅⋅⋅⎝⎭.在余子式前面加上符号()()()12121k k i i i j j j ++⋅⋅⋅++++⋅⋅⋅+-后被称之为的代数余子式.记作()121212121s tk k c c k k i i i i i i A A j j j j j j +⋅⋅⋅⋅⋅⋅⎛⎫⎛⎫=- ⎪ ⎪⋅⋅⋅⋅⋅⋅⎝⎭⎝⎭,这里1212,k k s i i i t j j j =++⋅⋅⋅+=++⋅⋅⋅+.定理1.2 在n 阶行列式D 中,任意选定k 列121k j j j n ≤<<⋅⋅⋅<≤,则12121211212k k k c i i i nk k i i i i i i D A A j j j j j j ≤<<⋅⋅⋅<≤⋅⋅⋅⋅⋅⋅⎛⎫⎛⎫=⋅ ⎪ ⎪⋅⋅⋅⋅⋅⋅⎝⎭⎝⎭∑. 类似地,任意选定k 行121k i i i n ≤<<⋅⋅⋅<≤,则12121211212k k k c j j j nk k i i i i i i D A A j j j j j j ≤<<⋅⋅⋅<≤⋅⋅⋅⋅⋅⋅⎛⎫⎛⎫=⋅ ⎪ ⎪⋅⋅⋅⋅⋅⋅⎝⎭⎝⎭∑.证 (略)注 这是定理1.2的推广,它仍然是一种——降阶的思想.例1.4 在行列式1214012110130131D -=中取定1,2行,得到6个子式1,21211,201A ⎛⎫==- ⎪-⎝⎭, 1,21121,302A ⎛⎫== ⎪⎝⎭, 1,21411,401A ⎛⎫== ⎪⎝⎭,1,22152,312A ⎛⎫== ⎪-⎝⎭, 1,22462,411A ⎛⎫== ⎪-⎝⎭, 1,21473,421A ⎛⎫==- ⎪⎝⎭. 对应的代数余子式分别是()()()12121,213181,231c A +++⎛⎫=-=- ⎪⎝⎭,()()()12131,203131,311c A +++⎛⎫=-= ⎪⎝⎭, ()()()12141,201111,413c A +++⎛⎫=-=- ⎪⎝⎭, ()()()12231,213112,301c A +++⎛⎫=-= ⎪⎝⎭, ()()()12241,211132,403c A +++⎛⎫=-=- ⎪⎝⎭,()()()12341,210113,401c A +++⎛⎫=-= ⎪⎝⎭. 由Laplace 展开定理可知()()()()()1823115163717D =-⨯-+⨯+⨯-+⨯+⨯-+-⨯=-.例1.5 证明111111111111111111110000k k r k kk k r k kk r rrr rkr rra a a ab b a ac c b b a a b b c c b b ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅.证 由Laplace 定理展开,选定第1,2,,k ⋅⋅⋅行,得12112121,2,1,2,,k c j j j nk k k k D A A j j j j j j ≤<<⋅⋅⋅<≤⋅⋅⋅⋅⋅⋅⎛⎫⎛⎫=⋅ ⎪ ⎪⋅⋅⋅⋅⋅⋅⎝⎭⎝⎭∑1,2,1,2,,1,2,,1,2,,c k k A A k k ⋅⋅⋅⋅⋅⋅⎛⎫⎛⎫=⋅ ⎪ ⎪⋅⋅⋅⋅⋅⋅⎝⎭⎝⎭()()()1111111212111k rk k k kk r rra ab b a a b b ++⋅⋅⋅++++⋅⋅⋅+⋅⋅⋅⋅⋅⋅=⋅-⋅⋅⋅⋅⋅⋅11111111k rk kk r rra ab b a a b b ⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅.注 例1.5的结论可以简记为0A A B CB=⋅.练习:1.计算(1)1234512345121212000000000a a a a ab b b b bc cd de e ; (2)1111111111110000k k k kr k kk r r rrc c a a c c a a b b b b ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅.2. 设A 为n 阶方阵,A a =,B 为m 阶方阵,B b =,则23O A BO为( )(A )6ab -, (B )23n mab -, (C )()123mnn m ab -, (D )()123m nn m ab +-.◆ 行列式的计算举例例1.6 计算n 阶行列式n x a a a ax a aD aa x a aa ax = 解法1112,3,2,3,(1)(1)(1)000(1)000(1)0i i C C r r ni ni nx n a a a a x n aa a a x n a x a a x a D x n a a x a x a x n aaaxx a+-==+-+-+--==+--+--[]()1(1)n x n a x a -=+--.解法212,3,1111101000010000100001i r r n i n nn n a a a a a a a a x a a a x a a a x a a x a a ax aa x aD aax a a a x a x a aaaxaaaxx a -=+++----===----①如果x a =,则1110000100000100001n n a a a a D +--==--②如果x a ≠,则12,3,11100000000(1)()00000C i x ana x aC n nanx ai n n a a a a x a x a D x a x a x a --+-=+++--==+---.综合①、②有:()()11n n D x n a x a -=+--⎡⎤⎣⎦.例1.7 计算行列式12211000010000000001n nn n x x x x a a a a x a ----∆=-+.解 按第一列展开,12321100001000001n n n n x x xx a a a a x a -----∆=-+1100001000(1)0101n n xa x x+--+--- ()121n n n n n x a x x a a ---=∆+=∆++221n n n x a x a --=∆++==12121n n n n x a x a x a ---∆++++又111x a x a ∆=+=+,11n n n n x a x a -∴∆=+++.例1.8 计算2n a bababD cdc dcd=.解法1 依第一行展开12200(1)00000nn ab abab ab D ab cdcd c d c d d c +=+-2112(1)2(1)2(1)(1)()n n n n adD bc D ad bc D -+---=--=-,222(1)2(2)112()()()()().n n n n n n D ad bc D ad bc D a b ad bc D ad bc ad bc cd----=-=-==-=-=-解法2 利用Laplace 展开定理,选定第1行和第2n 行展开,则1221212121,21,2,,c n j j nn n D A A j j j j ≤<≤⎛⎫⎛⎫=⋅ ⎪ ⎪⎝⎭⎝⎭∑1,21,21,21,2c n n A A n n ⎛⎫⎛⎫=⋅⎪ ⎪⎝⎭⎝⎭()()()()1212211n n n a b D c d+++-=⋅-()()21n ad bc D -=-⋅=⋅⋅⋅ 1()n ab ad bc cd-=- ().n ad bc =-练习:计算n 阶行列式(1)122222222232222n D n=;(答:()22!n --)(2)01211111001001n n a a a D a -=,其中110n a a -⋅⋅⋅≠;(答:111011n n i ia a a a --=⎛⎫⋅⋅⋅- ⎪⎝⎭∑)(3)2222212121212naa aa aDaaa a=;(答:()1nn a+)(4)()()()()111111111n nnn nnna a a na a a nDa a a n----⋅⋅⋅--⋅⋅⋅-=-⋅⋅⋅-⋅⋅⋅;(5)1231110000220000011 nn nDn n⋅⋅⋅--⋅⋅⋅=-⋅⋅⋅⋅⋅⋅--。
线性代数知识点归纳
线性代数知识点归纳线性代数是一门研究向量、向量空间、线性变换以及有限维线性方程组的数学分支。
它广泛应用于各个领域,如物理、计算机科学、工程学等。
线性代数的核心概念和工具包括行列式、矩阵、向量组以及线性方程组等。
下面将详细介绍线性代数的相关知识点。
一、行列式1.1 行列式的概念:行列式是一个函数,它从n×n阶方阵到实数(或复数)的映射。
行列式记作|A|,其中A是一个n×n的方阵。
1.2 逆序数:在n×n阶方阵A中,将行列式中元素a_ij与a_ji互换,所得到的新的行列式称为原行列式的逆序数。
1.3 余子式:在n×n阶方阵A中,将第i行第j列的元素a_ij删去,剩下的(n-1)×(n-1)阶方阵的行列式称为原行列式的余子式,记作M_ij。
1.4 代数余子式:在n×n阶方阵A中,将第i行第j列的元素a_ij替换为它的相反数,然后计算得到的新的行列式,称为原行列式的代数余子式,记作A_ij。
1.5 行列式的性质:行列式具有以下性质:(1)交换行列式中任意两个元素的位置,行列式的值变号。
(2)行列式中某一行(列)的元素乘以常数k,行列式的值也乘以k。
(3)行列式中某一行(列)的元素与另一行(列)的元素相加,行列式的值不变。
(4)行列式某一行(列)的元素与另一行(列)的元素相减,行列式的值变号。
1.6 行列式的计算方法:行列式的计算方法有:降阶法、按行(列)展开法、克拉默法则等。
二、矩阵2.1 矩阵的概念:矩阵是一个由数组元素构成的矩形阵列,矩阵中的元素称为矩阵的项。
矩阵记作A,其中A是一个m×n的矩阵,A_ij表示矩阵A中第i行第j列的元素。
2.2 矩阵的线性运算:矩阵的线性运算包括加法、减法、数乘等。
2.3 矩阵的乘法:两个矩阵A和B的乘法,记作A×B,要求A是一个m×n的矩阵,B是一个n×p的矩阵。
矩阵的乘法满足交换律、结合律和分配律。
考研数学线性代数各章复习要点及命题特点 行列式
考研数学线性代数各章复习要点及命题特点行列式摘要:行列式是线性代数中一个基本的工具,贯穿于线性代数整门学科。
虽然单独考查行列式计算的命题不多,但与行列式有关的命题却很多。
例如,在与特征值有关的问题中有较多型行列式的计算。
在向量组的线性相关性、矩阵的秩、矩阵可逆性、n个未知数n个方程的齐次线性方程组、正定二次型及正定矩阵等问题中,都会涉及行列式的计算。
同学们一定要掌握行列式的性质和基本计算方法,不要因小失大,不要因为行列式没计算正确,导致整道题目全盘皆输。
(一)行列式部分的主要考点有:逆序、逆序数的定义,行列式的定义,余子式与代数余子式的定义,范德蒙行列式的定义,行列式的性质与推论,行列式按行(列)展开定理,行列式的计算公式。
(二)行列式部分考查的主要内容和能力有:1.行列式的定义。
阶行列式是一个数,它是取自来自行列式不同行、不同列的个元素乘积的项的代数和,去每一项的符号由当行(列)标排成自然顺序时,该项列(行)标排列的逆序数所确定。
它是计算行列式的基础。
2.阶行列式的性质。
要求考生熟练掌握行列式的6条性质和2个推论,具有快速计算行列式的能力。
性质1行列式与其转置行列式相等。
性质2互换两行(或列),行列式变号。
推论1如果行列式的两行(列)相同,行列式为零。
性质3行列式的某一行(列)中所有元素都乘以同一个数,等于用k乘以此行列式。
推论2行列式某行(或列)有公因子可以提取到行列式的外面。
性质4行列式某两行(或列)元素对应成比例,行列式为零。
性质5行列式的某行(或列)的每个元素皆为两数之和时,行列式可分解为两个行列式,性质6行列式的某行(或列)的倍数加到另一行(或列),行列式不变,即要求考生熟练运用上述公式计算行列式。
(三)行列式常考的题型有:1.计算数字型行列式;2.计算抽象型行列式;3.克莱姆法则的应用;行列式的计算与矩阵、方程组紧密联系,同学们在后期复习过程中,脑子里时刻要有行列式这个工具。
能够灵活应用行列式进行解题。
线性代数知识点总结第一章
线性代数知识点总结第一章行列式第一节:二阶与三阶行列式把表达式称为所确定的二阶行列式,并记作,即结果为一个数。
同理,把表达式称为由数表所确定的三阶行列式,记作。
即=二三阶行列式的计算:对角线法则注意:对角线法则只适用于二阶及三阶行列式的计算。
利用行列式计算二元方程组和三元方程组:对二元方程组设则,对三元方程组,设,,,,则,,。
(课本上没有)注意:以上规律还能推广到n元线性方程组的求解上。
第二节:全排列及其逆序数全排列:把个不同的元素排成一列,叫做这个元素的全排列(或排列)。
n个不同的元素的所有排列的总数,通常用Pn (或An)表示。
(课本P5)逆序及逆序数:在一个排列中,如果两个数的前后位置与大小顺序相反,即前面的数大于后面的数,那么称它们构成一个逆序,一个排列中,逆序的总数称为这个排列的逆序数。
排列的奇偶性:逆序数为奇数的排列称为奇排列;逆序数为偶数的排列称为偶排列。
(课本P5)计算排列逆序数的方法:方法一:分别计算出排在前面比它大的数码之和即分别算出这n个元素的逆序数,这个元素的逆序数的总和即为所求排列的逆序数。
方法二:分别计算出排列中每个元素前面比它大的数码个数之和,即算出排列中每个元素的逆序数,这每个元素的逆序数之总和即为所求排列的逆序数。
(课本上没有)第三节:n阶行列式的定义定义:n阶行列式等于所有取自不同行、不同列的n个元素的乘积的代数和,其中p1 p2 … pn是1, 2,… ,n的一个排列,每一项的符号由其逆序数决定。
也可简记为,其中为行列式D的(i,j元)。
根据定义,有说明:1、行列式是一种特定的算式,它是根据求解方程个数和未知量个数相同的一次方程组的需要而定义的;2、n阶行列式是项的代数和;3、n阶行列式的每项都是位于不同行、不同列n个元素的乘积;4、的符号为,t的符号等于排列的逆序数5、一阶行列式不要与绝对值记号相混淆。
推论1:上,下三角行列式的值均等于其主对角线上各元素的乘积。
线性代数知识点总结汇总
线性代数知识点总结1行列式(一)行列式概念和性质1、逆序数:所有的逆序的总数2、行列式定义:不同行不同列元素乘积代数和3、行列式性质:(用于化简行列式)(1)行列互换(转置),行列式的值不变(2)两行(列)互换,行列式变号(3)提公因式:行列式的某一行(列)的所有元素都乘以同一数k,等于用数k乘此行列式(4)拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。
(5)—行(列)乘k加到另一行(列),行列式的值不变。
(6)两行成比例,行列式的值为0。
(二)重要行列式4、上(下)三角(主对角线)行列式的值等于主对角线元素的乘积5、副对角线行列式的值等于副对角线元素的乘积乘6、Laplace展开式:(A是m阶矩阵,B是n阶矩阵),则★ 8对角线的元素为a ,其余元素为b 的行列式的值:(三)按行(列)展开 9、按行展开定理:(1)任一行(列)的各元素与其对应的代数余子式乘积之和等 于行列式的值(2)行列式中某一行(列)各个元素与另一行(列)对应元素 的代数余子式乘积之和等于 0 (四)行列式公式 10、行列式七大公式: (1) |kA|=kn|A|1 1…ik £…益■y (v)」IT=n厲-号)klXn7、n 阶(n 》2)范德蒙德行列式数学归纳法证明(2) |AB|=|A| • |B|(3) |AT|=|A|(4) |A-1|=|A|-1(5) |A*|=|A|n-1(6) 若A的特征值入1、入2、……入n,贝y P(7) 若A与B相似,则|A|=|B|(五)克莱姆法则11、克莱姆法则:(1 )非齐次线性方程组的系数行列式不为0,那么方程为唯解(2)如果非齐次线性方程组无解或有两个不同解,则它的系数行列式必为0(3 )若齐次线性方程组的系数行列式不为0,则齐次线性方程组只有0解;如果方程组有非零解,那么必有D=0b2矩阵(一)矩阵的运算1、矩阵乘法注意事项:(1)矩阵乘法要求前列后行一致;(2)矩阵乘法不满足交换律;(因式分解的公式对矩阵不适用,但若B=E,O,A-1,A*,f(A)时,可以用交换律)(3)AB=O不能推出A=O或B=O2、转置的性质( 5 条)( 1)( A+B) T=AT+BT( 2)( kA) T=kAT( 3)( AB) T=BTAT( 4) |A|T=|A|( 5)( AT) T=A(二)矩阵的逆3、逆的定义:B=A-1 AB=E或 BA=E成立,称A可逆,B是A的逆矩阵,记为注:A可逆的充要条件是|A|工04、逆的性质:( 5 条)(1)( kA) - 1=1/k ・A-1 (k 工0)(2)(AB)-仁B- 1 ・A-1(3)|A-1|=|A|-1( 4)( AT) -1= ( A-1 ) T( 5)( A-1 ) -1=A5、逆的求法:( 1 ) A 为抽象矩阵:由定义或性质求解(2) A为数字矩阵:(A|E初等行变换E|A-1 )(三)矩阵的初等变换6、初等行(列)变换定义:(1)两行(列)互换;(2)一行(列)乘非零常数c(3)一行(列)乘k 加到另一行(列)7、初等矩阵:单位矩阵E 经过一次初等变换得到的矩阵。
线性代数知识点全归纳
线性代数知识点1、行列式1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;2. 代数余子式的性质:①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3.代数余子式和余子式的关系:(1)(1)i j i j ij ijij ijM A A M ++=-=-4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D -=-; 将D 顺时针或逆时针旋转90,所得行列式为2D ,则(1)22(1)n n D D -=-;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =;将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:A O A C AB CB O B==、(1)m n CA OA AB B OB C==-⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)nnk n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;7. 证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;2、矩阵1.A 是n 阶可逆矩阵:⇔0A ≠(是非奇异矩阵); ⇔()r A n =(是满秩矩阵) ⇔A 的行(列)向量组线性无关; ⇔齐次方程组0Ax =有非零解;⇔n b R ∀∈,Ax b =总有唯一解; ⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积;⇔A 的特征值全不为0; ⇔T A A 是正定矩阵;⇔A 的行(列)向量组是n R 的一组基; ⇔A 是n R 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3.1**111**()()()()()()T T T T A A A A A A ----===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,则: Ⅰ、12s A A A A =;Ⅱ、111121s A A A A ----⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭; ②、111A O A O O B O B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O AO ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块) ④、11111A C A A CB O B OB -----⎛⎫-⎛⎫=⎪ ⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O C B B CAB -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭;(拉普拉斯) 3、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nEO F OO ⨯⎛⎫= ⎪⎝⎭; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵; 对于同型矩阵A 、B ,若()()r A r B A B = ⇔ ; 2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若(,)(,)rA E E X ,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且1x A b -=; 4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ⎛⎫⎪⎪Λ= ⎪ ⎪⎝⎭λλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k-=,例如:1111(0)11kk k-⎛⎫⎛⎫⎪⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;5. 矩阵秩的基本性质:①、0()min(,)m n r A m n ⨯≤≤;②、()()T r A r A =; ③、若AB ,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ⎛⎫ ⎪⎪ ⎪⎝⎭的矩阵:利用二项展开式;二项展开式:01111110()nnnn m n mmn n n nm m n mnnnnnn m a b C a C a b C ab Ca bC b C a b -----=+=++++++=∑;注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====-m n n n n n n n m n C C C m m n mⅢ、组合的性质:111102---+-===+==∑nmn m mm m r nr r nnn n nnn n r C C CC CCrC nC ;③、利用特征值和相似对角化: 7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1n r A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩; ②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ⇒ =;③、*1A A A -=、1*n A A-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程;②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程; 10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;11. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n na x a x a xb a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩; ②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪=⇔= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数)③、()1212n n x x aa a x β⎛⎫⎪ ⎪= ⎪⎪⎝⎭(全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭); ④、1122n n a x a x a x β+++=(线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性1.m 个n 维列向量所组成的向量组A :12,,,m ααα构成n m ⨯矩阵12(,,,)m A =ααα;m 个n 维行向量所组成的向量组B :12,,,T TTm βββ构成m n ⨯矩阵12T T T m B βββ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭;含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)②、向量的线性表出 Ax b ⇔=是否有解;(线性方程组) ③、向量组的相互线性表示 AX B ⇔=是否有解;(矩阵方程) 3. 矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14) 4.()()T r A A r A =;(101P 例15)5.n 维向量线性相关的几何意义:①、α线性相关⇔0α=; ②、,αβ线性相关 ⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,s ααα线性相关,则121,,,,s s αααα+必线性相关;若12,,,s ααα线性无关,则121,,,s ααα-必线性无关;(向量的个数加加减减,二者为对偶)若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤; 向量组A 能由向量组B 线性表示,则()()r A r B ≤; 向量组A 能由向量组B 线性表示AX B ⇔=有解; ()(,)r A r A B ⇔=向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==8. 方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P ,使12l A P P P =;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解 ②、矩阵列等价:~cA B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆); 9. 对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,A 与B 的任何对应的列向量组有相同的线性相关性; ③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10. 若m s s n m n A B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵; ②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置) 11. 齐次方程组0Bx =的解一定是0ABx =的解,【考试中可以直接作为定理使用,而无需证明】①、0ABx = 只有零解0Bx ⇒ =只有零解;②、0Bx = 有非零解0ABx ⇒ =一定存在非零解;12. 设向量组12:,,,n r r B b b b ⨯可由向量组12:,,,n s s A a a a ⨯线性表示为:1212(,,,)(,,,)r s b b b a a a K =(B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性)(必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=;充分性:反证法) 注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m n A ⨯,存在n m Q ⨯,m AQ E = ()r A m ⇔=、Q 的列向量线性无关;②、对矩阵m n A ⨯,存在n m P ⨯,n PA E = ()r A n ⇔=、P 的行向量线性无关; 14. 12,,,s ααα线性相关⇔存在一组不全为0的数12,,,s k k k ,使得11220s s k k k ααα+++=成立;(定义)⇔1212(,,,)0s s x xx ααα⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα<,系数矩阵的秩小于未知数的个数;15. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-; 16. 若*η为Ax b =的一个解,12,,,n r ξξξ-为0Ax =的一个基础解系,则*12,,,,n r ηξξξ-线性无关;5、相似矩阵和二次型1. 正交矩阵T A A E ⇔=或1T A A -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0T i j i j a a i j n i j=⎧==⎨≠⎩;②、若A 为正交矩阵,则1T A A -=也为正交阵,且1A =±; ③、若A 、B 正交阵,则AB 也是正交阵; 注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2. 施密特正交化:12(,,,)r a a a11b a =;1222111[,][,]b a b a b b b =-121121112211[,][,][,][,][,][,]r r r rr r r r r b a b a b a b a b b b b b b b b b ----=----; 3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交; 4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B ,P 、Q 可逆; ()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=T C AC B ,其中可逆; ⇔T x Ax 与T x Bx 有相同的正、负惯性指数; ③、A 与B 相似 1-⇔=P AP B ; 5. 相似一定合同、合同未必相似;若C 为正交矩阵,则T C AC B =⇒A B ,(合同、相似的约束条件不同,相似的更严格); 6. A 为对称阵,则A 为二次型矩阵; 7. n 元二次型T x Ax 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使T C AC E =; A ⇔的所有特征值均为正数; A ⇔的各阶顺序主子式均大于0;0,0ii a A ⇒>>;(必要条件)第一章 随机事件互斥对立加减功,条件独立乘除清; 全概逆概百分比,二项分布是核心; 必然事件随便用,选择先试不可能。
线性代数自考知识点汇总各章重点
行列式1. 行列式的性质性质1 行列式与它的转置行列式相等T D D =.性质2 互换行列式的两行〔列〕,行列式变号.推论1 如果行列式有两行〔列〕的对应元素完全相同,则此行列式的值为零.如a b ca b c 0a b c'''= 性质3 行列式的某一行〔列〕中全部的元素都乘以同一数k ,等于用数k 乘此行列式.如111213111213212223212223313233313233a a a a a a ka ka ka k a a a a a a a a a = 推论2 如果行列式中有两行〔列〕元素成比例,则此行列式的值为零.如a b ca b c 0ka kb kc'''= 性质4 假设行列式的某一行〔列〕的元素都是两数之和,则这个行列式等于两个行列式之和.如111213111213111213212122222323212223212223313233313233313233a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a ''''''+++=+ 性质5 把行列式的某一行〔列〕的各元素乘以同一数然后加到另一行(列)对应的元素上去,行列式的值不变.如111213111213212223212223313233311132123313a a a a a a a a a a a a a a a a ka a ka a ka =+++2. 余子式与代数余子式在n 阶行列式中,把元素ij a 所在的第i 行和第j 列划去后,留下来的n-1阶行列式叫做元素ij a 的余子式,记作ij M ,i jij ij A (1)M +=-叫做元素ij a 的代数余子式.如111213212223313233a a a a a a a a a ,元素23a 的余子式为1112233132a a M a a =,元素23a 的代数余子式为11122323233132a a A (1)M a a +=-=-.3. 行列式按行〔列〕展开法则定理1 行列式的值等于它的任一行〔列〕的各元素与其对应的代数余子式乘积之和,即1122i i i i in in D a A a A a A =+++或 1122j j j j nj nj D a A a A a A =+++如111213212223313233a a a a a a a a a 111112121313a A a A a A =++ 定理2 行列式任一行〔列〕的元素与另一行〔列〕的对应元素的代数余子式乘积之和等于零,即12120,j j i i jn i n a A a A a A +++=或,11220.j j j j nj nj a A a A a A i j +++=≠4. 行列式的计算〔1〕二阶行列式1112112212212122a a a a a a a a =- 〔2〕三阶行列式〔3〕对角行列式1212n nλλλλλλ=,n(m 1)21212n n(1)λλλλλλ-=-〔4〕三角行列式1111121n 2122222n 1122nn n1n2nnnna a a a a a a a a a a a a a a ==〔5〕消元法:利用行列式的性质,将行列式化成三角行列式,从而求出行列式的值.〔6〕降阶法:利用行列式的性质,化某行〔列〕只有一个非零元素,再按该行〔列〕展开,通过降低行列式的阶数求出行列式的值.〔7〕加边法:行列式每行〔列〕全部元素的和相等,将各行〔列〕元素加到第一列〔行〕,再提出公因式,进而求出行列式的值.矩阵1. 常见矩阵1〕对角矩阵:主对角线以外的元素全为0的方阵,称为对角矩阵.记作Λ. 2〕单位矩阵:主对角线上的元素全为1的对角矩阵,称为单位矩阵.记作 E.3〕上三角矩阵:对角线以下的元素全为0的方阵.如11121n 222n nn a a a a a a ⎛⎫⎪⎪⎪ ⎪⎝⎭4〕下三角矩阵:对角线以上的元素全为0的方阵.如112122n1n2nn a a a a a a ⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭5〕对称矩阵:设A 为n阶方阵,假设T A A =,即ij ji a a =,则称A 为对称矩阵. 6〕反对称矩阵:设A 为n阶方阵,假设T A A =-,即ij ji a a =- ,则称A 为反对称矩阵. 7〕正交矩阵:设A 为n阶方阵,如果T AA E =或T A A E =,则称A 为正交矩阵. 2. 矩阵的加法、数乘、乘法运算 〔1〕矩阵的加法 如a b c a b c a a b b c c d e f d e f d d e e f f ''''''+++⎛⎫⎛⎫⎛⎫+=⎪⎪⎪''''''+++⎝⎭⎝⎭⎝⎭注:① 只有同型矩阵才能进行加减运算;② 矩阵相加减就是对应元素相加减. 〔2〕数乘矩阵如a b c ka kb kc k d e f kd ke kf ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭注:数乘矩阵就是数乘矩阵中的每个元素.〔3〕矩阵的乘法:设ij m ij n s s A (a ),B (b )⨯⨯==,规定ij m n AB C (c ),⨯== 其中sij i11j i22j is sj ik kj k 1c a b a b a b a b ==+++=∑(i 1,2,,m,j 1,2,,n.)==注:①左矩阵A 的列数等于右矩阵B 的行数;②左矩阵A 的第i 行与右矩阵B 的第j 列对应元素乘积的和是矩阵乘积C 的元素ij c . ③左矩阵A 的行数为乘积C 的行数,右矩阵B 的列数为乘积C 的列数. 如行矩阵乘列矩阵是一阶方阵〔即一个数〕,即 列矩阵乘行矩阵是s 阶方阵,即 3. 逆矩阵设n 阶方阵A 、B ,假设AB=E 或BA=E ,则A ,B 都可逆,且11AB,B A --==.〔1〕二阶方阵求逆,设a b A c d ⎛⎫= ⎪⎝⎭,则1*d b 11A A c a A ad bc --⎛⎫== ⎪--⎝⎭〔两调一除法〕.〔2〕对角矩阵的逆11111221n n a a a a a a ----⎛⎫⎛⎫⎪⎪⎪⎪= ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭, 111n 2121n1a a a a a a ----⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪= ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭.〔3〕分块对角阵的逆11111221s s A A A A ;A A ----⎛⎫⎛⎫⎪⎪⎪⎪= ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭111s 2121s1A A A A A A ----⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪= ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭. 〔4〕一般矩阵求逆,初等行变换的方法:()()ERT1A E E A -−−−→.4. 方阵的行列式由n阶方阵A 的元素所构成的行列式〔各元素的位置不变〕叫做方阵A 的行列式.记作A 或det 〔A 〕. 5. 矩阵的初等变换下面三种变换称为矩阵的初等行〔列〕变换: 〔1〕互换两行〔列〕;〔2〕数乘某行〔列〕;〔3〕某行〔列〕的倍数加到另一行〔列〕. 6. 初等矩阵单位矩阵经过一次初等变换得到的矩阵,称为初等矩阵.如001100100010,0k 0,010100001k 01⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭都是初等矩阵. 7. 矩阵的秩矩阵A 的非零子式的最高阶数,称为矩阵A 的秩.记作R 〔A 〕或r 〔A 〕. 求矩阵的秩的方法:〔1〕定义法:找出A 中最高阶的非零子式, 它的阶数即为A 的秩.〔2〕初等行变换法:ERTA −−−→行阶梯形矩阵,R 〔A 〕=R 〔行阶梯形矩阵〕=非零行的行数. 8. 重要公式及结论〔1〕矩阵运算的公式及结论矩阵乘法不满足交换律,即一般地A B ≠AB;矩阵乘法不满足消去律,即一般地假设AB=AC ,无B=C ;只有当A 可逆时,有B=C.一般地假设AB=O ,则无A=O 或B=O.()222A B ?A 2AB B +++.〔2〕逆矩阵的公式及定理A 可逆⇔|A |≠0⇔A ~E 〔即A 与单位矩阵E 等价〕 〔3〕矩阵秩的公式及结论R ( AB ) ≤R ( A ), R ( AB ) ≤R ( B ).特别地,当A 可逆时,R(AB)=R(B);当B 可逆时,R(AB)=R(A).()()ET A B A ~B R A R B −−→⇔⇒= 即等价矩阵的秩相等或初等变换不改变矩阵的秩.9. 矩阵方程〔1〕设 A 为n 阶可逆矩阵,B 为n ×m 矩阵,则矩阵方程AX=B 的解为1X A B -=;解法:① 求出1A -,再计算1A B -; ② ()()ERTAB E X −−−→ .〔2〕设 A 为n 阶可逆矩阵,B 为m ×n 矩阵,则矩阵方程XA=B 的解为1X BA -=;解法:① 求出1A -,再计算1BA -; ② ECT A E B X ⎛⎫⎛⎫−−−→⎪ ⎪⎝⎭⎝⎭. 10. 矩阵间的关系〔1〕等价矩阵:如果矩阵A 经过有限次初等变换变成矩阵B ,那么称矩阵A 与B 等价.即存在可逆矩阵P ,Q ,使得PAQ=B.性质:等价矩阵的秩相等.〔2〕相似矩阵:如果存在可逆矩阵P ,使得1P AP B -=,那么称A 与B 相似. 性质:相似矩阵有相同的特征多项式,相同的特征值,相同的行列式,相同的迹. 〔3〕合约矩阵:如果存在可逆矩阵P ,使得T P AP B =,那么称A 与B 合约. 性质:合约矩阵的秩相等.向量空间1. 线性组合〔1〕假设α=k β,则称向量α与β成比例. 〔2〕零向量O是任一向量组的线性组合.〔3〕向量组中每一向量都可由该向量组线性表示. 2. 线性相关与线性无关〔1〕 单独一个向量线性相关当且仅当它是零向量. 〔2〕 单独一个向量线性无关当且仅当它是非零向量. 〔3〕 两向量线性相关当且仅当两向量对应成比例.〔4〕 两向量线性无关当且仅当两向量不对应成比例. 〔5〕 含有O向量的向量组肯定线性相关. 〔6〕 向量组12m ,,,ααα线性相关的充分必要条件是① 齐次线性方程组22m m 11k k 0k ααα+++=有非零解.② 以向量组为列作的矩阵()12m ,,,ααα的秩<向量的个数m.〔7〕n 个n 维向量12n ,,,ααα线性相关的充分必要条件是以向量组为列作的行列式的值()12n ,,,ααα=0.〔8〕 向量组12m ,,,ααα线性无关的充分必要条件是① 齐次线性方程组22m m 11k k 0k ααα+++=只有零解.② 以向量组为列作的矩阵()12m ,,,ααα的秩=向量的个数m.〔9〕 n 个n 维向量12n ,,,ααα线性无关的充分必要条件是以向量组为列作的行列式的值()12n ,,,ααα≠0.〔10〕当m>n 时,m 个n 维向量肯定线性相关.定理1:向量组 a 1 , a 2 ,……, a m 〔m ≥2〕线性相关的充分必要条件是向量组中至少有一个向量可由其余m-1个向量线性表示.向量组线性无关的充分必要条件是向量组中任何一个向量都不能由其余向量线性表示. 定理2:如果向量组A :a 1 , a 2 ,……, a r 线性无关,而向量组 a 1 , a 2 ,……, a r ,α线性相关,则α可由A 线性表示,且表示式唯一.定理3:设向量组2r 1A :,,,ααα,12r r 1m B :,,,,,,ααααα+假设A 线性相关,则向量组B 也线性相关;反之,假设向量组B 线性无关,则向量组A 也线性无关.〔即局部相关,则整体相关;整体无关,则局部无关〕. 定理4:无关组的截短组无关,相关组的接长组相关. 3. 极大无关组与向量组的秩定义1 如果在向量组 T 中有 r 个向量 a 1 , a 2 ,……, a r ,满足条件: ⑴ 向量组 a 1 , a 2 ,……, a r 线性无关, ⑵ T α∀∈,2r 1,,,,αααα线性相关.那么称向量 a 1 , a 2 ,……, a r 是向量组 T 的一个极大无关组.定义2 向量组的极大无关组中所含向量的个数,称为向量组的秩.定义3 矩阵的行向量组的秩称为矩阵的行秩;矩阵的列向量组的秩称为矩阵的列秩。
线性代数背诵要点(全)
第一章 行列式一、行列式的概念、展开公式及其性质 (一)行列式的概念nnn n n n a a a a a a a a a A .. (2)12222111211=(二)行列式按行(列)展开公式公式为关于副对角线,其计算角线上元素的乘积三角行列式等于其主对下上的代数余子式为的余子式,而阶行列式,称之为列元素后的行及第中去掉第是其中.2......)(.1)1(1)1( (221122)11221122112211nnnn nn ij ij j i ij ij ijj i ij nj nj j j j j in in i i i i a a a a a a a a a a M a n j i A M M A A a A a A a A a A a A a A ⋅⋅⋅=******=******---=+++=+++=++11212)1(11211121)1(......n n n n n n n nn n na a a a a a a a a ⋅⋅⋅-=******=******---- B A OB A BA OB A B OA B O A n B m A mn ⋅-=*=*⋅=*=*)1(.3阶矩阵,则是阶矩阵,是开式,设两种特殊的拉普拉斯展(三)行列式的性质1.经转置的行列式的值不变,即T A A =2.行列式中某一行各元素如有公因数k ,则k 可以提到行列式符号外,若行列式某行元素全是零,则行列式的值为零3.如果行列式中某行的每个原色都是两个的和,则这个行列式可以拆成两个行列式的和mlb b a a 2121++=mlb a 11+mlb a 224对换行列中某两行的位置,行列式的值只改变正负号;若两行元素对应相对(成比例),则行列式的值为零 5.把某行的k 倍加至另一行,行列式的值不变(四)关于代数余子式的求和...0...)()(.2,.122112211=+++=+++nk nj k j k j jn in j i j i ij ij ij ij A a A a A a A a A a A a a A A a 乘积之和必为零对应元素的代数余子式列元素与另一行列行列式一行的取值无关与式值并不影响其代数余子所在行或列中的元素的只改变二、有关行列式的几个重要公式A k kA n A n =阶矩阵,则是若.1B A B A n B A •=阶矩阵,则是,若.211-1.3--*==AA n A AA n A n 阶可逆矩阵,则是若阶矩阵,则是若∏≤≤----==ni j j i n nn n n nx x A x x x x x x x x x A n A 1112112222121)( (1)...11.4,则阶范德蒙矩阵是若 ∏==ni i i A A n A 1.5λλ的特征值,则是阶矩阵,是若B A B A =,则若~.6三、关于克莱姆法则的系数换成常数项中的是把其中则方程组有唯一解方程组,如果系行列式个未知数的非齐次线性个方程对于j j n n x D D DDx D D x D D x A D n n ,,...,,,02211===≠=则方程组只有零解程组,系数行列式个未知数的齐次线性方个方程对于,0≠=A D n n 0==A D n n 数行列式程组,有非零解,则系个未知数的齐次线性方个方程对于逆序数的计算,从左至右,看每个数后面比它小的数的个数 经初等变换矩阵的秩不变第二章 矩阵及其运算一、矩阵的概念与几类特殊方阵 (一)矩阵及相关概念 1.矩阵阶方阵阶矩阵或是,则称若或矩阵,简记称为列的表格行排成的个数n n A n m a A n m a a a a a a a a a n m a n m n m ij mn m m n n ij =⨯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⨯⨯,)( (21)2222111211 2.0矩阵00,则称为零矩阵,记作中所有元素而都是如果矩阵A 3.同型矩阵是同型矩阵与则称中如果,矩阵B A t n s m b B a A t s ij n m ij ,,,)(,)(====⨯⨯4.矩阵相等即对应的元素都相等同型矩阵),,(j i b a B A ij ij ∀=⇔= 1. 方阵的行列式 阶行列式其元素可构造对于方阵n a A ij )(=B A B A a a a a a a a a a A nnn n nn≠≠=得不到由,.............. (2)12222111211(二)几类特殊方阵1.单位矩阵 主对角线上的运算全是1,其余元素均为0的n 阶段方阵,称为n 阶单位矩阵, 记为E E A A AE EA ===0;2.对称矩阵),(,j i a a A A n A ji ij T ∀==即阶矩阵,如是设3.反对称矩阵对称矩阵反不一定是对称矩阵,但反也是对称矩阵,则反是同阶的若,即阶矩阵,如是设)()(,,)(,0),(-,-AB A B A B A B A a j i a a A A n A ii ji ij T λ-+=∀==4.对角矩阵、积仍然是对角矩阵同阶的对角矩阵的和差,对角矩阵记为阶矩阵,如是设Λ≠∀≡)(0j i a n A ij5.逆矩阵1,-==AA AB A E BA AB B n n A 记为的逆矩阵唯一的逆矩阵,是是可逆矩阵,,则称使阶矩阵阶矩阵,如存在是设6.正交矩阵T T T A A A E A A AA n A ===-1,是正交矩阵,则称阶矩阵,如是设 7.伴随矩阵*=A A A A A A A A A A A n A a A n a A nnnnn n ij ij ij 的伴随矩阵,记为,称为阶矩阵所构成的的代数余子式的各元素阶矩阵,则由行列式是设....................)(212221212111二、矩阵的运算(一)矩阵的线性运算 1.矩阵的加法C B A B A b a c C n m n m b B a A ij ij ij ij ij =++==⨯⨯==的和称为矩阵矩阵矩阵,则是两个设,)()()(),(2.矩阵的数乘kAA k b a ka n m k n m a A ij ij ij ij 记为的数乘,与矩阵称为数矩阵是一个常数,则矩阵,是设)()()(+=⨯⨯=3.矩阵的乘法nb r A r B Ax B AB A E A A A A B AB BA AB B A BA AB ABC B A b a b a b a b a c c C s m s n b B a A nk kj ik nj in j i j i ij ij ij ij ≤+≠======≠==≠==+++==⨯⨯==∑=)()(,00,0;0,;00,0)2(,)1(,...)()(),(212211则齐次方程组有非零解的解,若程中的每一列都是其次方应联想到或不能堆出,不能退出时,才能运算可交换即与只有换律矩阵的乘法一般没有交的乘积,记为与称为其中矩阵矩阵,则是两个设,命题成立矩阵,秩序是若不能退出的列数,则,且若可逆,则,且矩阵若立:以下两种情况消去率成,对于矩阵乘以不具有消去律n A r n m A C B A AC AB B A A r AB B A AB A AB =⨯=≠======≠=)(,,0,)3(0)(000),0(0(二)关于逆矩阵的运算规律A A =--11))(1( 111))(2(--=A kkA 111))(3(---=A B AB 11)())(4(--=T T A A 11)5(--=A A n n A A )())(6(11--=(三)关于矩阵转置的运算规律A A T T =))(1( T T kA kA =))(2( T T T AB AB =))(3( T T T B A B A +=+))(4((四)关于伴随矩阵的运算规律E A AA A A ==**)1( )2()2(1≥=-*n AA n )2())(3(2≥=-**n A AA n*-*=A k kA n 1))(4( **=)())(5(T T A A1)(,0)(;1)(,1)(;)(,)()6(-=-====***n A r A r n A r A r n A r n A r111-1-,)()(,1)()7(-**-**===A A A A A A AA A 可逆,则若(五)关于分块矩阵的运算法则⎥⎦⎤⎢⎣⎡++++=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡4433221143214321)1(B A B A B A B A B B B B A A A A ⎥⎦⎤⎢⎣⎡++++=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡DW CY DZ CX BW AY BZ AX W Z Y X D C B A )2( ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡T TT T TD B C A D C B A )3( ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡n n n C OO B C O O B )4( ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--O B C O O C B O C O O B C O O B 111-1-1-1-)4(,三、矩阵可逆的充分必要条件.8,.70.6)(.5,.4)(.30.2.121的特征值全不为总有唯一解非齐次方程组只有零解齐次方程组向量线性无关行的列是初等矩阵其中,有阶方阵存在可逆,等价于阶方阵A b Ax b Ax A P P P P A nA r A E BA AB B n A n i s =∀=⋅⋅⋅==≠==四、矩阵的初等变换与初等矩阵 (一)矩阵的初等变换及相关概念 1.矩阵的初等变换下述三种对矩阵的行列实施的变换称为矩阵的初等行列变换 (1) 对调矩阵的两行列(2) 用非零常数k 乘以某行列中所有元素(3) 把矩阵某行列所有元素的k 倍加至另一行列对应的元素上去 (4) 求秩(行列变换可混用);求逆矩阵(只用行或只用列);求线性方程组的解(只用行变换) (5) 不要混淆矩阵的运算2.行阶梯形矩阵与行最简形矩阵(1)具体如下特征的矩阵称为行阶梯形矩阵①零行(即元素全为零的行)全都位于非零行的下方②各非零行坐起第一个非零元素的列指标由上至下是严格增大(2)如果其非零行的第一个非零元素为1,并且这些非零元素所在列的其他元素均为零,这个行阶梯形矩阵称为行最简形矩阵对于任何矩阵A ,总可以经过有限次初等行变换把它化为行阶梯形矩阵和行最简形矩阵(二)初等矩阵的概念单位矩阵经过一次初等变换所得到的矩阵称为初等矩阵(三)初等矩阵的性质逆是同类型的初等矩阵初等矩阵均可逆,且其同样的行列初等变换做了一次与就是对矩阵,所得乘右左用初等矩阵.2)()(.1P A AP PA A P)()(100013-001100013001)1()(100021000110002000100101010000101010011-11-11-k E k E kE k E EE ij ij i i ij ij -=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---主对角线以外;主对角线;副对角线五、矩阵的等价(一)矩阵等价的概念的秩是矩阵阶单位矩阵是的等价标准形,其中后者是则称若等价,记作与则称矩阵矩阵经有限次初等变换变成矩阵A r r E A EA B A B A B A r r,,000~.~,⎥⎦⎤⎢⎣⎡ (二)矩阵等价的充分必要条件价向量组等价必有矩阵等向量可以互相线性表示;向量组等价是指两个等价是两个不同的概念矩阵的等价与向量组的使得阶可逆矩阵,阶可逆矩阵矩阵,则存在时设,使和存在可逆矩阵秩是同型矩阵且有相同的,等价于⎥⎦⎤⎢⎣⎡=⨯=000,.2.1~rE PAQ Q n P m n m A BPAQ Q P B A B A⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=====----*-O BC O O C B O C O O B C O O B AE E A A EE A A AA E BA E AB B 111-1-1-1-111)()();()(1,分块矩阵法初等变换法伴随矩阵法或使定义法,找出为阶梯形方程组列方程用高斯消元法化不可逆,则可设未知数,若方法可以先求出可逆,则若方法解题思路的列向量表出的每列可由有解等价于A AB A X A AB r A r A B B Ax 2,,1)()(.2.111--===的主对角线元素之和是矩阵T T αββα 若11,--==P PB A PBP A n n 则1-)(,P P A P A n n n Λ=Λ,令与先求特征值与特征向量求 行列变换与单位矩阵、初等矩阵运算的关系第三章 n 维向量一、n 维向量的概念与运算 (一)n 维向量的概念个分量称为向量的第的矩阵,数或维列向量,也就是维行向量或分别称为或维向量,记作构成的有序数组称为个数i a n n n n a a a a a a n a a a n i T n n n 11,),...,,(),...,,(,...,,212121⨯⨯(二)n 维向量的运算0),(......),(,0),(.4...),(.3),...,,(.2),...,,(.1),...,,(,),...,,(222212222122112122112121=⇔==+++=+++=====+++==+++=+==ααααααααααβαβααββαβααβαβαT n nT TT n n Tn T n n T n T n a a a a a a b a b a b a ka ka ka k b a b a b a b b b a a a 正交,,则若内积数乘加法如果二、线性组合与线性表出 1.线性组合若干个同维数的列向量(或同维数的行向量)所组成的集合叫做向量组称为组合系数的一个线性组合,其中称为向量组所构成的向量个常数及维向量个由s s s s s s k k k k k k k k k s n s ,...,,,...,,...,...,,,...,,212122112121ααααααααα+++ 2.线性表出的线性组合是线性表出,或说可由则称的线性组合能表示成向量维向量如αααβαααββααααααβ,...,,,...,,...,...,,2121221121s s s s k k k n =+++3.向量组等价,则称两个向量等价量组可以互相线性表出线性表出;如果两个向可由向量组线性表出,则称向量组量组的每个向量都可以由向如过向量组)2()1(,...,,)2(,...,,)1(2121t s βββααα等价、则线性表出,可由向量组如果向量组不一定等价秩,但秩相同的向量组等价的向量具有相同的相同向量组所含向量的个数两个等价的线性无关的无关组等价向量组的任意两个极大无关组等价任一向量组和它的极大样,线性相关也可以不一但向量个数可以不一样、对称性、及反身性,等价向量组具有传递性)2()1(),2()1()2()1(.6.5.4.3.21r r =三、向量组的线性相关与线性无关 (一)线性相关与线性无关的概念 1.线性相关线性相关则称此向量组使得的数,如存在一组不全为维向量对于s s s s s k k k k k k n ααααααααα,...,,0...,...,,0,...,,2122112121=+++2.线性无关线性无关称此向量组,,必有不全为或者说如存在一组数线性无关则称此向量组,必有,如果维向量对于s s s s s s s s s k k k k k k k k k k k k n ααααααααααααααα,...,,0...0,...,,,...,,,0...0...,...,,212211212121221121≠+++=====+++(二)线性相关与线性无关的充分必要条件 1.线性相关的充分必要条件位向量一定线性相关个维向量线性相关个个向量线性表出可由其他存在某向量的个数有非零解齐次方程组线性相关,向量组n n n n s s r x x x s i s s s s 10,...,,1)(),...,,(0...),...,,(,...,,2121212121+=⇔-⇔⇔=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⇔ααααααααααααα2.线性无关的充分必要条件个向量线性表出都不能用其他存在某向量的个数只有零解齐次方程组线性无关,向量组1)(),...,,(0...),...,,(,...,,21212121-⇔=⇔=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⇔s s r x x x i s s s s αααααααααα3.几个重要结论组必然线性无关两两正交、非零的向量必然线性无关,,,延伸组线性无关,则它的任一若向量组必然线性无关个部分分组线性无关,则它的任一若向量组无关阶梯形向量组一定线性)4(...,...,,)3(,...,,,...,,)2()1(2211212121⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡s s s i i i s t βαβαβαααααααααα四、线性相关性与线性表出的关系ts t s s s t s s t s i i i s s s s s t ≤-线性无关,则线性表出,且可由向量组若向量组线性相关则线性表出,且可由向量组若向量组必然线性无关则它的任一个部分分组一线性表出,且表示法唯可由线性相关,则,线性无关,而向量组若向量组个向量线性表出可以用其余是线性相关,的充要条件向量组αααβββααααααβββαααααααααββαααααααααα,...,,,...,,,...,,)4(,...,,,,...,,,...,,)3(,...,,,...,,,...,,,...,,)2(1,...,,)1(2121212121212121212121五、向量组的秩与矩阵的秩(一)向量组的秩与矩阵的秩的概念 1.极大线性无关组是由原向量唯一确定的即个数都是关组中所含向量的个数个极大线性无关组是等价的,从而每的。
考研线性代数知识点全面总结
《线性代数》复习提纲第一章、行列式1.行列式的定义:用2n 个元素ij a 组成的记号称为n 阶行列式。
(1)它表示所有可能的取自不同行不同列的n 个元素乘积的代数和; (2)展开式共有n!项,其中符号正负各半; 2.行列式的计算一阶|α|=α行列式,二、三阶行列式有对角线法则; N 阶(n ≥3)行列式的计算:降阶法定理:n 阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积的和。
方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。
特殊情况:上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积;◊行列式值为0的几种情况:Ⅰ 行列式某行(列)元素全为0; Ⅱ 行列式某行(列)的对应元素相同; Ⅲ 行列式某行(列)的元素对应成比例; Ⅳ 奇数阶的反对称行列式。
3.概念:全排列、排列的逆序数、奇排列、偶排列、余子式ij M 、代数余子式ij j i ij M A +-=)1( 定理:一个排列中任意两个元素对换,改变排列的奇偶性。
奇排列变为标准排列的对换次数为基数,偶排列为偶数。
n 阶行列式也可定义:n q q q na a a ⋯=∑21t211-D )(,t 为n q q q ⋯21的逆序数4.行列式性质:1、行列式与其转置行列式相等。
2、互换行列式两行或两列,行列式变号。
若有两行(列)相等或成比例,则为行列式0。
3、行列式某行(列)乘数k,等于k 乘此行列式。
行列式某行(列)的公因子可提到外面。
4、行列式某行(列)的元素都是两数之和,则此行列式等于两个行列式之和。
5、行列式某行(列)乘一个数加到另一行(列)上,行列式不变。
6、行列式等于他的任一行(列)的各元素与其对应代数余子式的乘积之和。
(按行、列展开法则)7、行列式某一行(列)与另一行(列)的对应元素的代数余子式乘积之和为0. 5.克拉默法则::若线性方程组的系数行列式0D ≠,则方程有且仅有唯一解DD D Dx D D n =⋯==n 2211x ,x ,,。
线性代数知识点及总结
线性代数知识点总结第一章 行列式1. n 阶行列式()()121212111212122212121==-∑n nnn t p p p n p p np p p p n n nna a a a a a D a a a a a a 2.特殊行列式1212n nλλλλλλ=,()()1122121n n n nλλλλλλ-=-3.行列式的性质定义记111212122212nn n n nna a a a a a D a a a =,112111222212n n T nnnna a a a a a D a a a =,行列式TD 称为行列式D 的转置行列式。
性质1行列式与它的转置行列式相等。
性质2 互换行列式的两行()↔i j r r 或列()↔i j c c ,行列式变号。
推论如果行列式有两行〔列〕完全一样〔成比例〕,则此行列式为零。
性质3 行列式*一行〔列〕中所有的元素都乘以同一数()⨯j k r k ,等于用数k 乘此行列式; 推论1 D 的*一行〔列〕中所有元素的公因子可以提到D 的外面; 推论2 D 中*一行〔列〕所有元素为零,则=0D 。
性质4 假设行列式的*一列〔行〕的元素都是两数之和,则1112111212222212()()()i i n i i n n n ni ninna a a a a a a a a a D a a a a a '+'+='+11121111121121222*********12i n i n i n i n n n ninnn n ninna aa a a a a a a a a a a a a a a a a a a a a a ''=+' 性质6 把行列式的*一列〔行〕的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式的值不变。
而算得行列式的值。
4. 行列式按行〔列〕展开余子式在n 阶行列式中,把元素ij a 所在的第i 行和第j 列划去后,留下来的1n -阶行列式叫做元素ij a 的余子式,记作ij M 。
线代知识点总结 (个人整理,非官方)
●行列式1、逆序数(向前取大法)2、行列式展开(去年高数求几何向量的时候用过的那玩意儿)3、行列式的性质行列式与其转置行列式相等交换行列式的任意两行,行列式改变符号行列式的某行的所有元素乘以k,等于用k 乘以该行列式行列式中有两行的所有对应元素成比例,则该行列式为0如果行列式的某行的各元素是两数之和,则该行列式等于两个行列式的和把行列式的任一行的所有元素乘以k,加到另一行,该行列式不变4、克莱姆法则如果线性方程组的系数行列式不等于零,即线性方程组有解,并且解是唯一的如果线性方程组无解或有两个不同的解,则它的系数行列式必为零如果齐次线性方程组的系数行列式D非0则齐次线性方程组只有零解如果齐次线性方程组有非零解,则它的系数行列式必为零。
5.行列式的计算特殊形式的行列式(对角线行列式,三角形行列式) 或低阶的行列式用定义。
将行列式化为三角形行列式。
用性质将行列式化简,再按一行(或一列)展开。
●矩阵1。
方阵的行列式2.逆矩阵的运算规律原矩阵右增加单位阵,再将原矩阵化为单位阵,此时右边的即为所求逆矩阵3.一些等价命题(1)A 可逆(2)A 是非异阵(3)A 可经过若干次初等变换化为E(4)A为满秩矩阵(5)非齐次线性方程组Ax=b有唯一解(6)齐次线性方程组Ax=0只有零解4.初等阵与初等变换矩阵->行阶梯型->行最简型5。
矩阵的秩行阶梯型矩阵中的非零行行数即为矩阵的秩●向量组的线性相关性则称向量组A是线性相关的,否则称它线性无关.含有零向量的向量组一定线性相关。
向量空间●线性方程组线性方程组基础解系的求法非齐次线性方程的通解PS.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
钻石卡高级辅导系统——全程、全方位、系统化解决考研所有问题,成功率趋近 100% -1-
⑤、范德蒙行列式=大指标减小指标的乘积; ⑥、矩阵的行列式=特征值之积; 5. 6. 对于 n 阶行列式 A ,恒有: E A n (1)k Sk nk ,其中 S k 为所有 k 阶主子式的和;
k 1 n
证明 A 0 的方法: ①、 A A ; ②、反证法; ③、构造齐次方程组 Ax 0 ,证明其有非零解; ④、利用秩,证明 r ( A) n ; ⑤、证明 0 是其特征值;
( 1)
n ( n 1) 2
Aij (1)i j Mij
;
③、上、下三角行列式:( ◥ ◣ )=主对角元素的乘积;
◤
n ( n 1) 和 ◢ =副对角元素的乘积 (1) 2 ;
④、拉普拉斯展开式:
A O A C A B C B O B
、
C A O A (1) m n A B B O B C
【海文考研数学】 :线代知识点归纳 1 行列阵
1. 2. 个元素,展开后有 n! 项; 代数余子式的性质:
2
n 阶行列式共有 n
①、 Aij 和 aij 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为 0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为 A ; 3. 4. 代数余子式和余子式的关系: Mij (1)i j Aij 行列式的重要公式: ①、主对角行列式=主对角元素的乘积; ②、副对角行列式=副对角元素的乘积