周期现象中的规律
六年级周期规律知识点梳理
六年级周期规律知识点梳理周期规律是数学中的一个重要概念,通过观察一定规律的事物或数列,我们可以总结出周期性的规律。
在六年级学习中,我们将会接触到一些与周期规律相关的知识点。
本文将对这些知识点进行梳理,并通过实例进行解释。
一、时间的周期性规律1. 季节的交替变化季节的交替变化是地球自转和公转的结果。
每年由春季、夏季、秋季和冬季组成,它们的出现是循环往复的。
春季代表着万物复苏,夏季代表着生机勃发,秋季代表着丰收,冬季代表着寒冷。
2. 昼夜的交替变化昼夜的交替变化是地球自转的结果。
每天由白天和黑夜组成,它们的出现也是循环往复的。
太阳在地平线上升起代表着白天开始,太阳在地平线下落代表着黑夜开始。
二、数字的周期性规律1. 数列的周期性规律数列是一组按照一定规律排列的数字。
当数列中的数字按照一定规律重复出现时,我们称之为周期性规律。
例如,1、3、5、7、1、3、5、7……就是一个周期为4的数列,它们按照1234的顺序不断循环出现。
2. 时间的周期性规律在数字中,时间也有周期性规律。
例如,一天有24小时,一小时有60分钟,一分钟有60秒。
这种以60为基数的时间计算规律就是时间的周期性规律。
三、物质变化的周期性规律1. 元素周期表元素周期表是化学中的一个重要工具,它将元素按照一定规律排列在一张表中。
元素周期表显示了元素的周期性规律,包括了元素的原子序数、原子量等信息。
通过元素周期表,我们可以发现元素的性质存在周期性规律。
2. 化学反应的周期性规律某些化学反应也具有周期性规律。
例如,电解质溶液中的铜板,在电流的作用下,会出现明显的周期性规律,即铜板的表面会发生连续的沉积和溶解。
四、声音的周期性规律声音是一种机械波,也具有周期性规律。
声音的周期是指单位时间内波形的完整重复次数。
音符中的高音和低音就是通过调控声音的周期来实现的。
在音乐中,我们可以通过不同的周期变化创造出不同的音调和音乐效果。
五、光的周期性规律光也是一种波动现象,具有周期性规律。
化学元素的周期
化学元素的周期化学元素是组成物质的基本单位,它们按照一定的规律排列在元素周期表中。
这个周期表准确地展示了元素的特性及其在化学反应中的行为。
本文将探讨化学元素的周期以及在元素周期表中的组织。
1. 元素周期表的基本结构元素周期表是由化学元素按照一定规律排列而成的表格。
表格的横向行称为周期,纵向列称为族。
每一个元素都有自己的原子序数,原子序数按照从小到大的顺序排列在周期表中。
同时,元素周期表还根据元素的化学性质划分为不同的区域,如金属、非金属和过渡金属区域等。
2. 周期表中的周期性规律化学元素按照原子序数的增大顺序排列在元素周期表中,这种排列方式使得元素的特性出现周期性变化。
以下是一些周期性规律的例子:2.1 原子半径的周期性变化元素周期表中,从左到右,原子半径逐渐减小,而在同一周期中,从上到下,原子半径逐渐增大。
这是因为原子核的正电荷随着原子核的层数增加而增加,吸引外层电子的能力增加,导致原子半径减小。
而在同一周期中,由于电子壳层的增加,层数增多,从而导致原子半径增大。
2.2 电离能的周期性变化电离能是指从一个原子或离子中去掉一个电子所需要的能量。
元素周期表中,从左到右,电离能逐渐增大,而在同一周期中,从上到下,电离能逐渐减小。
这是由于原子核的正电荷增加,使得外层电子与原子核之间的吸引力增强,导致电离能增大。
而在同一周期中,由于电子层的增加,使得电子与原子核之间的距离增加,从而降低了电离能。
2.3 电负性的周期性变化电负性是一个衡量原子吸引和保留电子的能力的指标。
在元素周期表中,从左到右,电负性逐渐增加,而在同一周期中,从上到下,电负性逐渐减小。
这是因为原子核的正电荷增加,吸引和保留电子的能力增强,导致电负性增加。
而在同一周期中,由于电子层的增加,使得电子与原子核之间的距离增加,降低了电负性。
3. 元素周期表的应用元素周期表对于化学的研究和应用有着重要的意义。
它使得科学家能够更好地理解元素之间的相互作用,探索化学反应的规律。
周期问题
周期问题一、概念和原理周期现象:事物在运动变化过程中,某些特征有规律循环出现;周期:我们把连续两次出现所经过的时间叫周期;解决有关周期性问题的关键是确定循环周期.分类: 1.图形中的周期问题;2.数列中的周期问题;3.年月日中的周期问题.周期性问题的基本解题思路是:首先要正确理解题意,从中找准变化的规律,利用这些规律作为解题的依据;其次要确定解题的突破口。
主要方法有观察法、逆推法、经验法等。
主要问题有年月日、星期几问题等。
⑴观察、逆推等方法找规律,找出周期.确定周期后,用总量除以周期,如果正好有整数个周期,结果就为周期里的最后一个;例如:1,2,1,2,1,2,…那么第18个数是多少?这个数列的周期是2,1829÷=,所以第18个数是2.⑵如果比整数个周期多n个,那么为下个周期里的第n个;例如:1,2,3,1,2,3,1,2,3,…那么第16个数是多少?这个数列的周期是3,16351÷=⋅⋅⋅,所以第16个数是1.⑶如果不是从第一个开始循环,可以从总量里减掉不是循环的个数后,再继续算.例如:1,2,3,2,3,2,3,…那么第16个数是多少?-÷=⋅⋅⋅,所以第16这个数列从第二个数开始循环,周期是2,(161)271个数是2.二、图形中的周期问题例1:小兔和小松鼠做游戏,他们把黑、白两色小球按下面的规律排列:●●○●●○●●○…你知道它们所排列的这些小球中,第90个是什么球?第100个又是什么球呢?例2:美美有黑珠、白珠共102个,她想把它们做成一个链子挂在自己的床头上,她是按下面的顺序排列的:○●○○○●○○○●○○○……那么你知道这串珠子中,最后一个珠子应是什么颜色吗?美美怕白颜色的珠子数量不够,你能帮她算出这种颜色在这串珠子中有多少个吗?练一练:1.小倩有一串彩色珠子,按红、黄、蓝、绿、白五种颜色排列.⑴第73颗是什么颜色的?⑵第10颗黄珠子是从头起第几颗?⑶第8颗红珠子与第11颗红珠子之间(不包括这两颗红珠子)共有几颗珠子?2. 奥运会就要到了,京京特意做了一些“北京欢迎你”的条幅,这些条幅连起来就成了:“北京欢迎你北京欢迎你北京欢迎你……”依次排列,第28个字是什么字?3. 节日的校园内挂起了一盏盏小电灯,小明看出每两个白灯之间有红、黄、绿各一盏彩灯.也就是说,从第一盏白灯起,每一盏白灯后面都紧接着有3盏彩灯.那么第73盏灯是什么颜色的灯?4. 节日的夜景真漂亮,街上的彩灯按照5盏红灯、再接4盏蓝灯、再接1盏黄灯,然后又是5盏红灯、4盏蓝灯、1盏黄灯、……这样排下去.问:⑴第150盏灯是什么颜色?⑵前200盏彩灯中有多少盏蓝灯?5.在一根绳子上依次穿2个红珠、2个白珠、5个黑珠,并按此方式反复,如果从头开始数,直到第50颗,那么其中白珠有多少颗?6.如图所示,每列上、下两个字(字母)组成一组,例如,第一组是“我,A”,第二组是“们,B”……⑴写出第62组是什么?⑵如果“爱,C”代表1991年,那么“科,D”代表1992年……问2008年对应怎样的组?7.在图所示的表中,将每列上、下两个字组成一组,例如第一组为(新奥),第二组为(北林),那么第50组是什么?新北京新奥运新北京新奥运新北京新奥运……奥林匹克运动会奥林匹克运动会奥林匹克运动会……8.如右图,是一片刚刚收割过的稻田,每个小正方形的边长是1米,A、B、C 三点周围的阴影部分是圆形的水洼。
理解天体的运动与周期性现象
理解天体的运动与周期性现象天体的运动与周期性现象是天文学中的一个基本概念。
通过观察,我们可以发现地球周围的天体在不同的时间和空间位置上发生着变化。
这些变化包括日出日落、月相变化、四季交替等现象。
理解天体的运动和周期性现象有助于我们更好地认识宇宙的奥秘,下面我们将从地球、太阳和月球的角度来解析这些现象。
一、地球的自传和公转地球自转是指地球绕自身的轴线旋转。
这一运动使得太阳的位置在我们的视野中发生变化,造成了日出日落的现象。
地球自转一周需要约24小时,因此我们所经历的一天夜晚的时间就是地球自转一周的结果。
地球自转也带来了昼夜的变化,当某一地区处于太阳照射下时,其他地区则处于太阳未照射的状态。
地球公转是指地球绕太阳作椭圆形轨道的运动。
地球绕太阳公转一周需要约365.25天,这就是一年的时间。
地球绕太阳的轨道呈椭圆形,离太阳最近的位置称为近日点,离太阳最远的位置称为远日点。
由于地球绕太阳的轨道是椭圆形的,所以在地球离太阳最近和最远的两个位置上,我们可以观察到不同的季节。
二、太阳的运动和周期性现象太阳是地球上的光源,它在我们的生活中起着至关重要的作用。
根据观察,我们可以发现太阳每天在地平线上的位置在不同的时间点上发生改变。
在清晨时分,太阳从东方升起,这是我们所说的日出;而傍晚时分,太阳则从西方渐渐落下,这是我们所说的日落。
太阳的升起和落下,形成了我们所熟知的白天和黑夜。
太阳还有一个重要的现象是一年四季的交替变化。
由于地球绕太阳的轨道是椭圆形的,所以地球离太阳最近的时候太阳光照更强烈,而离太阳最远的时候太阳光照较弱。
这就导致了地球北半球的夏季和冬季的不同。
在北半球夏季,太阳直射地球的北半球,所以北半球的阳光更强烈,气温较高;而在冬季,太阳直射地球的南半球,北半球则远离太阳,阳光较弱,气温较低。
三、月球的运动和周期性现象月球是地球的天然卫星,它也有着自己的运动和周期性现象。
我们可以观察到月相的变化,即月球的表面在太阳照射下呈现不同的形状。
周期问题(最新整理)
周期问题一、概念和原理周期现象:事物在运动变化过程中,某些特征有规律循环出现;周期:我们把连续两次出现所经过的时间叫周期;解决有关周期性问题的关键是确定循环周期.分类: 1.图形中的周期问题;2.数列中的周期问题;3.年月日中的周期问题.周期性问题的基本解题思路是:首先要正确理解题意,从中找准变化的规律,利用这些规律作为解题的依据;其次要确定解题的突破口。
主要方法有观察法、逆推法、经验法等。
主要问题有年月日、星期几问题等。
⑴观察、逆推等方法找规律,找出周期.确定周期后,用总量除以周期,如果正好有整数个周期,结果就为周期里的最后一个;例如:1,2,1,2,1,2,…那么第18个数是多少?这个数列的周期是2,,所以第18个数是2.1829÷=⑵如果比整数个周期多个,那么为下个周期里的第个;n n 例如:1,2,3,1,2,3,1,2,3,…那么第16个数是多少?这个数列的周期是3,,所以第16个数是1.16351÷=⋅⋅⋅⑶如果不是从第一个开始循环,可以从总量里减掉不是循环的个数后,再继续算.例如:1,2,3,2,3,2,3,…那么第16个数是多少?这个数列从第二个数开始循环,周期是2,,所以第16(161)271-÷=⋅⋅⋅个数是2.二、图形中的周期问题例1:小兔和小松鼠做游戏,他们把黑、白两色小球按下面的规律排列:●●○●●○●●○…你知道它们所排列的这些小球中,第90个是什么球?第100个又是什么球呢?例2:美美有黑珠、白珠共102个,她想把它们做成一个链子挂在自己的床头上,她是按下面的顺序排列的:○●○○○●○○○●○○○……那么你知道这串珠子中,最后一个珠子应是什么颜色吗?美美怕白颜色的珠子数量不够,你能帮她算出这种颜色在这串珠子中有多少个吗?练一练:1.小倩有一串彩色珠子,按红、黄、蓝、绿、白五种颜色排列.⑴第73颗是什么颜色的?⑵第10颗黄珠子是从头起第几颗?⑶第8颗红珠子与第11颗红珠子之间(不包括这两颗红珠子)共有几颗珠子?2. 奥运会就要到了,京京特意做了一些“北京欢迎你”的条幅,这些条幅连起来就成了:“北京欢迎你北京欢迎你北京欢迎你……”依次排列,第28个字是什么字?3. 节日的校园内挂起了一盏盏小电灯,小明看出每两个白灯之间有红、黄、绿各一盏彩灯.也就是说,从第一盏白灯起,每一盏白灯后面都紧接着有3盏彩灯.那么第73盏灯是什么颜色的灯?4. 节日的夜景真漂亮,街上的彩灯按照5盏红灯、再接4盏蓝灯、再接1盏黄灯,然后 又是5盏红灯、4盏蓝灯、1盏黄灯、……这样排下去.问:⑴第150盏灯是什么颜色?⑵前200盏彩灯中有多少盏蓝灯?5.在一根绳子上依次穿2个红珠、2个白珠、5个黑珠,并按此方式反复,如果从头开始数,直到第50颗,那么其中白珠有多少颗?6.如图所示,每列上、下两个字(字母)组成一组,例如,第一组是“我,”,A第二组是“们,”……B我们爱科学我们爱科学我……A B C D E F G A B C D……⑴写出第62组是什么?⑵如果“爱,”代表1991年,那么“科,”代表1992年……问2008C D年对应怎样的组?7.在图所示的表中,将每列上、下两个字组成一组,例如第一组为(新奥),第二组为(北林),那么第50组是什么?新北京新奥运新北京新奥运新北京新奥运……奥林匹克运动会奥林匹克运动会奥林匹克运动会……8.如右图,是一片刚刚收割过的稻田,每个小正方形的边长是1米,A、B、C 三点周围的阴影部分是圆形的水洼。
小学数学_周期现象中的排列规律教学设计学情分析教材分析课后反思
《周期现象中的排列规律》教学设计教学目标:1.结合具体情境,探索并发现简单周期现象中的排列规律,能根据规律解决简单的问题。
2.经历自主探索、合作交流的过程,体会圈一圈、数一数、计算等解决问题的不同策略。
3.在探索规律过程中体会数学与生活的联系,获得成功的感受。
教学重点:发现简单周期问题的规律,并能解决问题。
教学难点:确定几个物体为一组,怎样根据余数来解决问题。
教学准备:多媒体课件、小球、学习纸等。
教学过程:一、游戏导入同学们喜欢玩游戏吗?(喜欢),下面我们就先来玩个《猜一猜》的小游戏。
今天老师带来了一个神奇的盒子,里而放了很多小球,看谁能猜中小球的颜色。
第一个……继续,第二个……咦,我发现大家猜对的越来越多,难道你看到里而的小球了?还是你发现了什么规律?生:它们是有规律的。
说一说规律。
师:小球的排列是有规律的。
是按每3个一组的规律不断重复出现的, 我们把这种周而复始,不断循环出现的现象叫周期现象。
这节课我们就一起来研究《周期现象中的排列规律》。
二、新授1•探究周期现象师:生活中你还见过哪些周期现象?生……课件:春夏秋冬四季交替、日出日落,月圆月缺、四季变换,12生肖、地砖、服饰……下而几组图形,哪些是周期现象?说出排列规律。
按()个一组的规律排列的。
2.观察这些小球的颜色(课件出示)“红黄绿” 3个一组,第1个是什么颜色?第2个呢?第3个呢?生轻松回答。
师:现在闭上眼睛,请你回答:第2组第1个是什么颜色?第2组第3个呢?第4组第2个呢?指名回答。
师:为什么你不看屏幕就能知道气球的颜色?里而有什么窍门吗?(同桌交流一下,汇报)师:你们同意他的说法吗?也就是说按“红黄绿”成周期规律排放的气球,每一组的排列都是有规律的,每一组第1个是红色,第2个是黄色,第3个呢?小结:只要知道它是每组中的第几个,就可以根据规律判断出它是什么颜色。
3.根据规律作出判断。
你能根据它们的排列规律,按要求作出判断吗?第4组第2个数是(),第6组第4个图案是()。
周期现象排列的规律
回顾反思
今天这节课你收获了什么?
苏教版四年级上册
1. 四(1)班同学参加学校跳绳比赛, 他们比赛的队伍按“三男二女”依 次排成一队,第28位同学是男生还 是女生?
28 ÷ 5=5(组) · · · · · ·3(人) 答:第28位同学是男生。
仔细观察,你发现图中的篱笆和木桩是 怎么排列的?
仔细观察,你发现图中的篱笆和木桩是怎么排列的?
盆花是按什么顺序摆放的?
· · · · · ·
蓝 黄 红 蓝 黄 红 蓝 黄 红
请在学习单上 用你喜欢的方式 表示盆花的排列 规律?
蓝 蓝 蓝,黄,红,蓝,黄,红, 蓝,黄,红,蓝,黄,红 蓝 蓝 ②蓝 蓝 蓝 蓝
2.你能利用若干个△、□、○等图形排列形成一个周 期现象吗?(请你在学习单上完成。)
小试牛刀
1、“数学好玩数学好玩数学好玩……”, 根据排列规律,第43个字是( ),第84个 字是( )。 2、上体育课,排队做游戏,按照“男生、 女生、男生、女生”这种方式排队,照这样排下 去,第25位同学是男生还是女生? 3、上体育课,男生排成一排,按照一至二报 数。这排男生共有25人,第10位同学报( ), 报一的同学有( )人。
是什么颜色?
余数1· · · · · · 蓝花 余数2· · · · · · 黄花 没有余数· · · · · · 红花
每4个彩灯为一组,第1个是红灯,第 2个是紫灯,第3个是绿灯,第4个是紫灯。
像红灯、紫灯、绿灯、紫灯这样,同一 事物依次重复出现的现象叫作周期现象。
每4面旗帜为一组,第1面是红旗,第 2面是红旗,第3面是黄旗,第4面是黄旗。
要求:在学习单第2题的横线上写出你发 每3盆花为一组, 每组:第1盆都是蓝花, 现的规律。(圈一圈、划一划)
小学数学教学中关于“找规律”问题的基本特点及有效实施对策
小学数学教学中关于“找规律”问题的基本特点及有效实施对策作者:李凤芹来源:《学子·教育新理念》2016年第12期在数学学科教学中,有关逻辑推理方面存在这样两种形式,一种是合情推理,另一种是演绎推理。
而在小学数学学科教学中对于比较新颖的题型“找规律”,其主要采用的是合情推理,设计这样题型的目的在于让小学生通过观察、比较、分析等思维活动,通过采用合情推理的形式,大胆预测和多角度的猜想获得其中蕴含的基本规律,运用基本规律解决问题。
教师要善于引导探求和发现隐含的基本规律与变化的趋势,突出探究的规律过程,让学生自己获得并感悟蕴含的基本规律,从而找出问题解决的基本方法,培养学生探究意识与创新精神。
一、“找规律”问题的基本特点这种常见的对于数字类的找规律题型基本特点是周期现象中的规律,根据周期变化这些规律来确定未知的部分,对于这些常见的、有固定周期规律的现象作为研究对象,引导学生认真观察比较易于发现蕴含的基本规律,问题便迎刃而解。
但教师必须通过一定题量的训练,引导他们发现具体现象里的周期规律,让他们对现象的后续发展情况做出判断,这一教学活动的过程可以激发学生的探索兴趣、培养探索精神。
比如,对于间隔排列的数字,其中这些数字间蕴含的基本规律,教师可以从学生原有的知识背景和生活体验,让学生在生动、具体、现实的情境中感悟新知,灵活掌握。
学生在主动经历自主探索、合作交流的过程,会逐步主动的通过列举、计算等解决问题的不同策略,使问题得到解决。
当然,稍有变化的探究对象还包括几何图形方面,其基本特点是让学生感受几何图形的变化规律,引导他们探究蕴含的基本规律,凸显图形变化的基本过程,总结归纳出变化的基本方法,从而确定未知部分,这样的思维活动过程,可以提升学生的推理能力,提升学生的数学综合素质。
二、对于一般“找规律”题型的探索方法从数学学科课程的内容划分看,主要涉及四大领域的研究对象:数与代数;图形与几何;统计与概率;综合与实践。
元素周期表中的周期性规律与趋势
元素周期表中的周期性规律与趋势元素周期表是化学中最重要的工具之一,它对于研究元素的性质和化学反应具有深远的意义。
在元素周期表中,元素的排列遵循一定的规律和趋势,这些规律和趋势对于我们理解元素的性质和预测其化学行为至关重要。
周期性规律是指元素周期表中元素性质的重复变化规律。
这些规律可以总结为周期表的水平行和垂直列。
首先,我们来看一下周期表的水平行,也就是元素周期数的变化。
在元素周期表中,水平行代表着元素的周期数,周期数从左到右递增。
这意味着同一周期内的元素具有相似的化学性质,因为它们的电子结构是相似的。
例如,第一周期的元素都只有一个能级,它们都是单质,具有相似的反应性和物理性质。
另一个周期性规律是元素周期表中的垂直列,也被称为族。
元素周期表中的族数从上到下递增,而同一族的元素具有相似的化学性质。
这是因为同一族的元素具有相似的外层电子配置。
有些族的元素非常活泼,在与其他元素发生化学反应时往往能释放出大量的能量。
比如,第一族的碱金属元素(钠、钾等)都是非常活泼的金属,与水反应时能产生剧烈的氢气和碱溶液。
而第十八族的气体元素(氦、氖等)则是非常稳定的,几乎不与其他元素反应。
除了周期性规律外,元素周期表还展现了一些趋势。
这些趋势可以帮助我们理解元素的性质和预测其反应性。
下面我们来看几个常见的周期表趋势。
首先是电离能的趋势。
电离能指的是将一个电子从原子轨道中移除所需的能量。
一般来说,原子半径越小,电离能越大。
这是因为较小的原子有更强的核吸引力,更难将电子移除。
相反,较大的原子有较小的核吸引力,因此更容易丧失电子。
其次是电负性的趋势。
电负性是指原子对电子的亲和力,即吸引和保持电子的能力。
一般来说,原子的电负性随着周期数的增加而增加,因为更多的电子会导致更强的电子排斥效应。
而电负性随着族数的增加而减小,因为电子外层的屏蔽效应会减弱核对电子的吸引力。
最后是原子半径的趋势。
原子半径指的是原子的大小。
一般来说,原子半径随着周期数的增加而减小,因为随着原子核电荷数的增加,核对电子的吸引力增强,使得电子更加靠近原子核。
简单周期现象中的规律郑庄学校
像盆花、彩灯、彩旗这样 同一事物依次重复出现叫作周 期现象。
按盆花的排列规律,第19盆花是什么颜色的? 第26盆呢?
蓝黄红 蓝黄红 蓝黄红 蓝黄红 蓝黄红 蓝黄红 蓝
19 ÷ 3=6(组) ······1(盆)
注意前后两个单位
18盆花正好是6组,第19盆就是第7 组的第1盆,是蓝花
每组有几个,除数就是几
2.计算后,我们看结果。有的有余数,有 的没有余数,怎么确定结果?
有余数,余数是几。这个物体就和每组中的 第几个物体相同。
没有余数,这个物体就和每组中的最后一个 物体相同。
开动小脑筋
你能举例说说生活中的是周期 现象吗?
鼠牛虎兔龙蛇马羊猴鸡狗猪
星期一 星期二 星期三 星期四 星期五 星期六 星期日
日出
日落
月缺
月圆
春 秋
夏 冬
设计
你能用△、□、○这3种图形设计一个 按周期规律排列的图形序列吗?
大家都设计的很好,那么你能你能计算出下列排列中第32个 图形是什么吗?
32÷3=10(组)……2(个)
……(
) ……
32÷4=8(组)
……(
) ……
32÷5=6(组)……2(个)
……(
) ……
数手指
按这样的规律排列下去,第24盏是什么颜色?第 32盏呢?
24 ÷ 4=6(组)
第24盏是第6组的最 后一盏,是紫灯。
按这样的规律排下去,第27面是什么颜色的?
27 ÷ 4=6(组) ······3(面)
24面彩旗正好是6组,第27 面是第7组的第3面,是黄色
1.像这种周期问题,用除法计算时,根据什么来 确定除数?
第一单元智慧广场 《周期现象中的排列规律》(教案)二年级下册数学青岛版
教案:《周期现象中的排列规律》年级:二年级下册科目:数学版本:青岛版教学目标:1. 让学生理解周期现象的概念,并能找出周期现象中的排列规律。
2. 培养学生观察、分析、归纳的能力,提高学生的逻辑思维能力。
3. 培养学生合作学习的能力,增强学生的团队意识。
教学内容:1. 周期现象的概念2. 周期现象中的排列规律3. 应用周期现象解决实际问题教学重点:1. 理解周期现象的概念2. 找出周期现象中的排列规律教学难点:1. 理解周期现象的概念2. 找出周期现象中的排列规律教学准备:1. 课件或黑板2. 学生用书3. 教学卡片教学过程:一、导入1. 引入周期现象的概念,让学生举例生活中的周期现象。
2. 引导学生观察周期现象中的排列规律。
二、探究1. 让学生观察周期现象的例子,引导学生找出排列规律。
2. 学生分小组讨论,共同找出周期现象中的排列规律。
3. 每个小组汇报自己的发现,教师总结并给出正确答案。
三、应用1. 教师出示一些周期现象的图片或实例,让学生找出其中的排列规律。
2. 学生独立完成练习题,巩固所学知识。
四、总结1. 教师引导学生总结周期现象的概念和排列规律。
2. 学生分享自己的学习心得和收获。
五、作业1. 让学生观察生活中的周期现象,找出其中的排列规律。
2. 完成练习题。
教学反思:本节课通过引入周期现象的概念,让学生观察和探究周期现象中的排列规律,培养了学生的观察、分析、归纳能力。
在教学过程中,教师应注重引导学生主动参与,培养学生的合作学习能力。
同时,教师还应关注学生的学习情况,及时给予指导和反馈,确保学生掌握所学知识。
在今后的教学中,教师可以进一步拓展周期现象的应用,让学生将所学知识运用到实际生活中,提高学生的应用能力和创新意识。
此外,教师还可以通过丰富多样的教学手段,激发学生的学习兴趣,提高学生的学习积极性。
重点关注的细节:教学过程中的探究环节在《周期现象中的排列规律》的教学过程中,探究环节是至关重要的一环。
小学数学教案周期现象
小学数学教案周期现象学科:数学年级:小学三年级主题:周期现象教学目标:1. 了解周期现象的定义和特点。
2. 能够描述和观察身边的周期现象。
3. 能够用简单的图表或图像表示周期现象。
教学重点:1. 周期现象的定义和特点。
2. 周期现象的常见例子。
3. 如何用图表或图像表示周期现象。
教学难点:1. 理解周期现象的抽象概念。
2. 正确观察和描述周期现象。
教学准备:1. 多媒体课件或图片资料。
2. 相关示例案例。
3. 学生练习册。
教学过程:一、导入(5分钟)1. 师生互动:教师与学生互动,询问学生是否了解周期现象,并请学生简单描述一个周期现象。
二、概念讲解(15分钟)1. 周期现象的定义:周期现象是指按照一定规律反复出现的现象。
2. 周期现象的特点:有固定的周期,如日出日落、昼夜交替等。
3. 带领学生观察周围的周期现象,并进行讨论。
三、实例分析(15分钟)1. 分享不同的周期现象案例,如四季变化、月相变化、动植物生长等。
2. 学生发言:学生可分享自己观察到的周期现象,并与同学讨论。
四、练习与讨论(15分钟)1. 出示几组周期现象的图表或图像,要求学生观察并描述。
2. 学生讨论:学生分组讨论观察到的周期现象,并汇报给全班。
五、总结(5分钟)1. 总结周期现象的定义和特点。
2. 引导学生思考:为什么了解周期现象对我们生活有帮助?教学反思:本课程通过实际案例和观察引导学生了解周期现象的概念,并培养学生观察和描述周期现象的能力。
在教学过程中要注意引导学生多角度思考周期现象的意义,激发学生对数学的兴趣。
数学周期现象知识点总结
数学周期现象知识点总结数学周期现象是数学中一个非常重要的概念,它在许多不同的数学领域中都有着广泛的应用。
周期现象可以在代数、几何、微积分、概率统计等领域中找到,并且在实际生活中也有着许多的应用。
了解周期现象的基本概念和性质,对于理解数学问题和解决实际问题都是非常有帮助的。
1. 周期现象的基本概念周期现象指的是一种在某个区间内重复出现的规律性现象。
这种现象在数学中广泛存在,其中最为典型的就是正弦函数和余弦函数。
这两个函数都是以2π为周期来重复的函数,因此它们在周期现象的研究中具有着非常重要的地位。
对于一个周期现象,可以用函数的图像来进行描述。
在图像中,可以看到函数在某一段区间内重复进行,形成周期性的波动。
而在数学上,可以用函数的性质和周期函数的定义来进一步描述周期现象。
2. 周期函数的性质周期函数是指在某一段区间内具有重复规律的函数。
其中,最为典型的周期函数就是正弦函数和余弦函数。
这两个函数在周期性上有着非常明显的特点,即它们在2π的整数倍上具有相同的函数值。
这也是周期函数的最基本性质之一。
另外,周期函数的另一个重要性质是其在周期区间内具有对称性。
这是因为周期函数在周期区间内的函数值是重复的,因此可以通过对称轴来完成函数值的对称。
这个对称性在周期函数的图像中可以很清楚地看到,因此对于周期函数的性质研究中具有着重要的作用。
另外,周期函数还具有相位差和振幅的性质。
其中,相位差指的是函数图像在周期内的偏移量,而振幅则是函数图像在周期内的最大偏移量。
这两个性质在周期函数的图像中可以很直观地看到,因此对于周期函数的性质研究也是非常重要的。
3. 周期函数的应用周期函数在数学中有着广泛的应用。
其中,最为典型的就是在物理学和工程学中的应用。
在这两个领域中,周期函数可以用来描述许多自然现象和工程问题,因此在解决实际问题时有着重要的作用。
在物理学中,周期函数被广泛用来描述振动现象。
其中,最典型的就是弹簧振子和单摆的运动。
周期规律问题
周期规律问题一、知识点解读1.发现简单周期现象中的排列规律(理解识记)知识点:事物按每几个一组的规律不断循环出现这种现象叫周期现象教学要求:在教学过程中可以让学生动手圈一圈、摆一摆、算一算,让学生通过观察图形的排列,发现其中的排列规律:几个一组,重复出现即周期性的现象,理解周期性问题的本质是每一组图形都是循环重复出现。
2.利用周期性规律来解决排列问题(掌握运用)知识点:先找到周期排列规律,再用除法算式求出余数,根据余数得出所求结果。
教学要求:在解决这类问题时要求学生圈一圈、摆一摆、算一算,通过观察发现其中的排列规律,明确有几个周期、每个周期有几个数,列式计算,理解每个数字的意义。
同时,要注意沟通计算法与画图法的联系,要适当增加或减少周期排列的物体的量,掌握解决周期问题的两种策略,体会计算策略的优越性。
二、知识拓展运用周期规律结合计算方法解决星期问题例:如果3月1日是星期二,那么3月18日是星期几?解析:这类问题,要明确两点:一是周期是几;二是两个日期之间相差多少天。
这个问题没有告诉我们周期是几,但根据生活经验,我们要知道7天为一个星期,即周期为7。
从3月1日到3月18日有18天(18-1+1=18),18÷7=2(个)……4(天),也就是说3月18日是第3个周期第4天,所以是星期六。
三、知识点训练基础训练1. 照这样摆下去,第24个是什么形状?2. 照这样摆下去,第30个是什么形状?3. 照这样穿下去,第33粒珠子是什么颜色?4. 按照规律说出第29个图形是什么形状?5.12个小朋友站一圈,从12号开始按顺时针方向1、2、3、4、……报数,报40的小朋友是几号?如果从12号开始顺时针传球,传了18次,球传到了谁手里?能力提升1. 小明、小兰、小红在玩扑克牌游戏,按照小兰、小明、小红的顺序发牌,第26张牌被谁拿到?2. 轮流报数游戏,请说出第25个数是谁报的?1.刚刚把12枚硬币按2枚壹角、1枚伍角的顺序排列起来,正好排完。
天文周期性规律
天文周期性规律天文周期性规律天文周期性规律是指天体运动和现象在一定时间内重复出现的规律。
这些规律帮助人们预测和理解天体运动,为天文学研究提供了重要的依据。
下面将从地球的自转、公转、月球运动以及恒星运动等方面,介绍几个重要的天文周期性规律。
首先,地球的自转周期是地球自转一周所需的时间。
根据国际原子时标准,地球自转周期约为86,400秒,也即24小时。
这一规律让我们每天都能体验到昼夜交替的变化。
白天阳光普照大地,夜晚星光璀璨,而这种周期性的交替也影响着生物的生长和活动。
其次,地球的公转周期是地球绕太阳运动一周所需的时间。
地球的公转周期约为365.25日,也即一年。
这一规律决定了季节的变化。
春夏秋冬的更替,正是由于地球公转形成了不同的太阳照射角度和光线强度,从而影响到地球上的气候。
另外,月球的运动也具有周期性规律。
月球绕地球一周所需的时间称为月球的周期,约为27.3日。
这个周期决定了月相的变化。
月亮从新月到满月再到新月的过程中,形成了月相的周期性变化。
月相的变化也影响到海洋潮汐的产生。
此外,恒星的运动也有周期性规律。
例如,我们所熟知的北极星,其运动周期是约25,800年。
由于地球自转轴的预cession(章动)作用,北极星会逐渐改变,最终有一颗新的北极星出现。
这一规律使得天文学家能够通过观测北极星的位置,推测出地球自转轴的变化和地球的运动。
总之,天文周期性规律对于我们了解和预测天体运动具有重要意义。
通过研究和观测这些规律,人们能够更好地理解宇宙的运行机制,探索宇宙的奥秘。
同时,这些规律也使我们更加珍惜地球的美丽和生命的存在。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
周期现象中的规律
教学内容:苏教版小学数学五年级上册第59—60页例1、试一试、练一练以及练习十第1题。
教学目标:
1.结合具体情境,让学生探索并发现简单周期现象中的排列规律,并能根据规律确定某个序号所代表的是什么物体或什么图形。
2.让学生经历自主探索、合作交流的过程,体会画图、列举、计算等解决问题的不同方法以及方法逐步优化的过程。
3.让学生在探索规律的过程中体会数学与日常生活的联系,获得成功的体验,增强学习数学的兴趣和自信心。
教学重点:让学生经历探索的发现规律的过程,体会画图、列举、计算等多样化的解决问题的策略。
教学难点:能根据规律确定某个序号所代表的是什么物体或什么图形。
教学准备:
通过一段相关的视屏资料等引发学生的学习兴趣并复习已有的找规律的知识与经验。
教学过程:
一、具体情境中感知规律。
课件出示例1的场景图,让学生说说自己在图中看到了什么,知道了什么。
提问:这幅图上有哪些物体是有规律的排列着的?这些盆花、彩灯与彩旗它们的排列规律是什么?
引导小组内讨论:盆花、彩灯与彩旗它们是几个为一组,每组中排列的顺序是什么?
小结:像上面这样按一定顺序重复出现的现象叫做周期现象。
二、交流展示中体会规律。
1.探索盆花的摆放规律。
课件出示例1中盆花的场景图。
提问:如果照这样摆下去,左起第17盆花是什么颜色?把自己的想法写下来。
学生可能出现的做法:
(1)数一数:通过画一画的方法找到答案,数到第17盆;或直接写文字、符号,如蓝红、蓝红……、AB、AB……、△○△○……等等,一直数到第17盆等方法。
(2)分一分:通过列举发现干规律,从左边起,第1、3、5、7……盆都是蓝花,第2、4、6、8……盆都是红花,所以第17盆是蓝花。
(3)算一算:通过计算推出结论,把2盆花看做一组列式计算。
学生汇报交流,教师选择板书:17÷2=8(组)……1(盆)
引发讨论:算式中的“17”、“2”、“8”、“1”分别表示什么?
及时点拨:为什么除以2?余下的1盆是第几组的第几盆?你是根据什么判断出第17盆花的颜色的?
2.引导小结。
我们用不同的方法知道了第17盆花是蓝花。
要研究第17盆花是什么颜色,我们把左起的17盆作为研究对象,算式中的“17”表示共有17盆;“2”表示一组中共有2盆花;“8”表示17盆花中有这样的8组;“1”表示第17盆花是第9组的第1盆。
因为每组盆花的摆放顺序都是一样的,为了方便我们一般看第1组进行判断。
3.探寻彩灯与彩旗的规律。
分别通过课件出示例1中彩灯、彩旗的场景图。
提问:第17盏彩灯、第17面彩旗又分别是什么颜色?
学生自主独立练习,教师巡视指导。
学生汇报交流教师选择板书:17÷3=5(组)……2(盏)
17÷4=4(组)……1(面)
提问:算式中每个数表示的意思?
追问:都是求第17个物体的颜色,为什么有的除以2?有的除以3?有的又除以4呢?判断最后一个是什么颜色,关键是看算式中的什么数?
小结:解决这类存在周期规律的实际问题时,首先要找准几个为一组与要研究的总数量,要判断研究目标是什么物体或什么图形,就看得到的余数是几。
余数是几就与第一组中的第几个是相同的。
如果没有余数呢?
4.讨论“试一试”。
结合情境图提问:照这样排下去,请用自己喜欢的方法算出左起第91盏彩灯、第20面旗的颜色吗?学生练习并汇报。
让学生在解决实际问题的过程中体会、感悟,并将解决问题的方法优化到计算上来。
引导发现:请观察这几道算式的结果,你发现了什么?
提问:算式中有余数时是如何判断研究目标是什么物体或什么图形?在没有余数时又是如何判断的?
三、自主实践中理解规律。
1.“练一练”第1题。
课件出示:照这样摆下去
○○●○○●……第21枚是什么颜色?
第一次变式:如果换一种摆法
●○○●○○……,第21枚是什么颜色?
追问:为什么总量相同,每组数量也相同,最后的颜色却不一样了呢?
第二次变式:如果再换一种摆法
●○●●○●……,第21枚是什么颜色?
再次追问:对比第一排和和第三排,为什么规律变了,最后的棋子颜色却是一样的?(通过变式练习兼顾解决第3小题)
2.“练一练”第2题。
学生集体齐练,指名板演。
并让学生说一说应该怎样列式,为什么这么做。
教师巡视,注意反馈信息,及时进行针对性的矫正教学。
拓展:有绿、黄、蓝、红四种珠子,让你任意挑选几种珠子,有规律地去穿,要
确保第22颗是红色,你准备几颗为一组,每组排列的顺序是什么?谁还有不一样的方法:
四、迁移拓展中应用规律。
课件出示“十二生肖”题。
简单介绍生肖是指用来表示不同出生年份的十二种动物。
让学生自由读读十二生肖的顺序,使学生明确今年出生的人属相是“兔”,去年出生的人属相是“虎”……
提问:你今年几岁?属什么?在十二生肖的周期中一个周期是多少年?与你年龄相差多少岁的人和你同一属相?今年多少岁的人与你是同样的属相?
五、总结提升中升华规律
今年我们一起学习了什么?学会了用什么方法来解决这样的实际问题?是怎样解决周期现象中确定的某个序号所代表的是什么物体或什么图形的?通过今天的学习你收获了哪些解决问题的经验?。