地下水动力学(全)

合集下载

地下水动力学

地下水动力学

1,地下水动力学:研究地下水在孔隙岩石,裂隙岩石和岩溶(喀斯特)岩石中运动规律的科学第一章渗流理论基础2,多孔介质:在地下水动力学中,把具有孔隙的岩石称为多孔介质3有效空隙:互相连通的,不为结合水所占据的那一部分空隙4,有效孔隙度:有效孔隙体积与多孔介质总体积之比5,贮水率:又称释水率面积为一个单位,厚度为一个单位,当水头降低一个单位时所能释放出的水量贮水系数(释水系数)=贮水率乘以含水层厚度表示面积为一个单位,厚度为含水层全厚度的含水层主体中,当水头改变一个单位时弹性释放或贮存的水量贮水率与贮水系数相互关系:1,都是表示含水层弹性释水能力的参数2,对于承压含水层,只要水头不降低到隔水底板以下,水头降低只会引起弹性释水,可用贮水系数表示这种释水能力3,对于潜水含水层,当水头下降时可引起两部分水的排出(1,在上部潜水面下降引起重力排水,用给水度表示重力排水的能力2,在下部饱水部则引起弹性释水,用贮水率表示这一部分的释水能力)弹性释水和重力排水的不同点:1,影响范围不同(弹性释水影响整个承压含水层,重力释水影响潜水含水层和包气带)2,和时间有关(1 弹性释水瞬时完成不随时时间变化 2 重力释水存在滞后效应是时间的函数)3 两只大小不同(弹性释水系数多在0.001-0.00005之间重力排水参数在0.1-0.01之间)7 渗流:假设这种假想水流运动时,在任意岩石体积内所受的阻力等于真是水流所受的阻力,通过任意断面的流量及任一点的压力或水头均和实际水流相同,这种假想水流称为渗流渗流与实际水流相比相同点:阻力相同水头相同流量相同8 渗流速度:代表渗流在过水断面上的平均流速,时一种假想流速实际平均流速:在空隙中的不同地点,地下水运动的方向和速度可能不同平均速度称为实际平均速度测压管水头:H_z=z+p/r水位:一般用在野外,基准面相同(黄海水位标高)水头:基准面可任意选定水位是一种特殊的水头9 地下水头:书十页10,水力坡度:把大小等于坡度值,方向沿着等水头面的法线指向水头降低方向的矢量称为水力坡度p1111,地下水运动特征的分类p11运动要素:表征渗流运动的物理量,主要有渗流量Q,渗流速度V ,压强P,水头H等按运动要素和时间的关系分为:(1)稳定流:运动要素不随时间变化;(2)非稳定流:运动要素随时间变化按地下水运动方向和空间坐标的关系:一维运动,二维运动,三维运动12,层流:流速较小时,液体质点做有条不紊的线性运动,彼此不相掺混紊流:流速较大时,液体质点的运动轨迹曲折混乱,互相掺混13,Dacry在此处键入公式。

地下水动力学

地下水动力学

1,地下水动力学:研究地下水在孔隙岩石,裂隙岩石和岩溶(喀斯特)岩石中运动规律的科学第一章渗流理论基础2,多孔介质:在地下水动力学中,把具有孔隙的岩石称为多孔介质3有效空隙:互相连通的,不为结合水所占据的那一部分空隙4,有效孔隙度:有效孔隙体积与多孔介质总体积之比5,贮水率:又称释水率面积为一个单位,厚度为一个单位,当水头降低一个单位时所能释放出的水量贮水系数(释水系数)=贮水率乘以含水层厚度表示面积为一个单位,厚度为含水层全厚度的含水层主体中,当水头改变一个单位时弹性释放或贮存的水量贮水率与贮水系数相互关系:1,都是表示含水层弹性释水能力的参数2,对于承压含水层,只要水头不降低到隔水底板以下,水头降低只会引起弹性释水,可用贮水系数表示这种释水能力3,对于潜水含水层,当水头下降时可引起两部分水的排出(1,在上部潜水面下降引起重力排水,用给水度表示重力排水的能力2,在下部饱水部则引起弹性释水,用贮水率表示这一部分的释水能力)弹性释水和重力排水的不同点:1,影响范围不同(弹性释水影响整个承压含水层,重力释水影响潜水含水层和包气带)2,和时间有关(1弹性释水瞬时完成不随时时间变化2重力释水存在滞后效应是时间的函数)3两只大小不同(弹性释水系数多在0.001-0.00005之间重力排水参数在0.1-0.01之间)7渗流:假设这种假想水流运动时,在任意岩石体积内所受的阻力等于真是水流所受的阻力,通过任意断面的流量及任一点的压力或水头均和实际水流相同,这种假想水流称为渗流渗流与实际水流相比相同点:阻力相同水头相同流量相同8渗流速度:代表渗流在过水断面上的平均流速,时一种假想流速实际平均流速:在空隙中的不同地点,地下水运动的方向和速度可能不同平均速度称为实际平均速度测压管水头:H_z=z+p/r水位:一般用在野外,基准面相同(黄海水位标高)水头:基准面可任意选定水位是一种特殊的水头9地下水头:书十页10,水力坡度:把大小等于坡度值,方向沿着等水头面的法线指向水头降低方向的矢量称为水力坡度p1111,地下水运动特征的分类p11运动要素:表征渗流运动的物理量,主要有渗流量Q,渗流速度V,压强P,水头H等按运动要素和时间的关系分为:(1)稳定流:运动要素不随时间变化;(2)非稳定流:运动要素随时间变化按地下水运动方向和空间坐标的关系:一维运动,二维运动,三维运动12,层流:流速较小时,液体质点做有条不紊的线性运动,彼此不相掺混紊流:流速较大时,液体质点的运动轨迹曲折混乱,互相掺混13,Dacry在此处键入公式。

地下水动力学

地下水动力学

1、地下水动力学就是研究地下水在孔隙岩石、裂隙岩石、与喀斯特岩石中运动规律的科学。

它就是模拟地下水流基本状态与地下水中溶质运移过程,对地下水从数量与质量上进行定量评价与合理开发利用,以及兴利除害的理论基础。

2、流量:单位时间通过过水断面的水量称为通过该断面的渗流量。

3、渗流速度(比流量):假设水流通过整个岩层断面(骨架+空隙)时所具有的虚拟平均流速,定义为通过单位过水断面面积的流量。

4、实际速度:孔介质中地下水通过空隙面积的平均速度;地下水流通过含水层过水断面的平均流速,其值等于流量除以过水断面上的空隙面积,量纲为L/T。

4、渗流场:发生渗流的区域称为渗流场。

由固体骨架与岩石空隙中的水两者组成5、层流:水质点作有秩序、互不混杂的流动。

6、紊流:水质点作无秩序、互相混杂的流动。

7、稳定流与非稳定流:若流场中所有空间点上一切运动要素都不随时间改变时,称为稳定流,否则称为非稳定流。

8、雷诺数:表征运动流体质点所受惯性力与粘性力的比值。

9、雷诺数的物理意义:水流的惯性力与黏滞力之比。

10、渗透系数:在各项同性介质(均质)中,用单位水力梯度下单位面积上的流量表示流体通过孔隙骨架的难易程度,称之为渗透系数。

11、流网:在渗流场中,由流线与等水头线组成的网络称为流网。

12、折射现象:地下水在非均质岩层中运动,当水流通过渗透系数突变的分界面时,出现流线改变方向的现象。

13、裘布依假设:绝大多数地下水具有缓变流的特点。

14、缓变流:各流线接近于平行直线的运动14、完整井:贯穿整个含水层,在全部含水层厚度上都安装有过滤器并能全断面进水的井。

15、非完整井:未揭穿整个含水层、只有井底与含水层的部分厚度上能进水或进水部分仅揭穿部分含水层的井。

16、水位降深:抽水井及其周围某时刻的水头比初始水头的降低值。

17、水位降落漏斗:抽水井周围由抽水(排水)而形成的漏斗状水头(水位)下降区,称为降落漏斗。

18、影响半径:就是从抽水井到实际观测不到水位降深处的径向距离。

地下水动力学全

地下水动力学全

1、地下水动力学就是研究地下水在孔隙岩石、裂隙岩石、与喀斯特岩石中运动规律的科学。

它就是模拟地下水流基本状态与地下水中溶质运移过程,对地下水从数量与质量上进行定量评价与合理开发利用,以及兴利除害的理论基础。

2、流量:单位时间通过过水断面的水量称为通过该断面的渗流量。

3、渗流速度(比流量):假设水流通过整个岩层断面(骨架+空隙)时所具有的虚拟平均流速,定义为通过单位过水断面面积的流量。

4、实际速度:孔介质中地下水通过空隙面积的平均速度;地下水流通过含水层过水断面的平均流速,其值等于流量除以过水断面上的空隙面积,量纲为L/T。

4、渗流场:发生渗流的区域称为渗流场。

由固体骨架与岩石空隙中的水两者组成5、层流:水质点作有秩序、互不混杂的流动。

6、紊流:水质点作无秩序、互相混杂的流动。

7、稳定流与非稳定流:若流场中所有空间点上一切运动要素都不随时间改变时,称为稳定流,否则称为非稳定流。

8、雷诺数:表征运动流体质点所受惯性力与粘性力的比值。

9、雷诺数的物理意义:水流的惯性力与黏滞力之比。

10、渗透系数:在各项同性介质(均质)中,用单位水力梯度下单位面积上的流量表示流体通过孔隙骨架的难易程度,称之为渗透系数。

11、流网:在渗流场中,由流线与等水头线组成的网络称为流网。

12、折射现象:地下水在非均质岩层中运动,当水流通过渗透系数突变的分界面时,出现流线改变方向的现象。

13、裘布依假设:绝大多数地下水具有缓变流的特点。

14、缓变流:各流线接近于平行直线的运动14、完整井:贯穿整个含水层,在全部含水层厚度上都安装有过滤器并能全断面进水的井。

15、非完整井:未揭穿整个含水层、只有井底与含水层的部分厚度上能进水或进水部分仅揭穿部分含水层的井。

16、水位降深:抽水井及其周围某时刻的水头比初始水头的降低值。

17、水位降落漏斗:抽水井周围由抽水(排水)而形成的漏斗状水头(水位)下降区,称为降落漏斗。

18、影响半径:就是从抽水井到实际观测不到水位降深处的径向距离。

演示文稿地下水动力学

演示文稿地下水动力学
第二页,共53页。
多孔介质概念与特性
我们把孔隙岩层称为多孔介质(porous media). •多孔介质特性:
彼此连通的网络,几何形态及连通情况异常复 杂,难以用精确的方法来描述。 由固体骨架和孔隙组成,孔隙通道是不连续的 。
因此,无论是固体骨架,还是空隙空间,微观上讲都不是连续函数
第三页,共53页。
第二十三页,共53页。
达西定律适用条件
1. 临界雷诺数Re(J. Bear):
Re 10
10 Re 100
层流区
过渡区
Re 100 紊流区
2. 临界渗透流速vc(巴甫洛夫斯基):
vc Re( 0.75n 0.23 ) d10
3. 临界水力梯度Jc(罗米捷):
Jc
0.00252 (1 0.96 0.4 )1.5 (1 6 1.5 )
4. 达西定律下限问题(J0)
第二十四页,共53页。
达西定律的应用条件
达西定律的上下限?
第二十五页,共53页。
非线性渗透定律
1. 1901年福希海默提出Re>10时:
J Av Bv 2
2. 1912年克拉斯诺波里斯基提出紊流公式:
1
v KJ 2
第二十六页,共53页。
四、达西定律的微分形式
什么是典型体元呢?现以孔隙度为例来讨论。
第六页,共53页。
典型体元(REV)的提出
n Vv V
n( p) lim Vv V 0 V
第七页,共53页。
P1
P2
典型体元(REV)概念的引入
v
n( p) lim Vv
颗粒
V V0 V
1
V=1个 孔 隙 的 体 积
孔隙

地下水动力学资料

地下水动力学资料

一:名词解释:1.多孔介质:在地下水动力学中,把具有空隙的岩石称为多孔介质。

2.贮水率:单位体积岩石柱体或含水层,水头上升一个单位所贮存的水量。

3.贮水系数:表示面积为一个单位时,厚度为含水层厚度M的含水层柱体中,当水头改变一个单位时,弹性释放所贮存的水量。

4.水力坡度:在地下水动力学中,把大小等于梯度值,方向沿着等水头面的法线,指向水头降低方向的矢量为水力梯度。

5.单宽流量:单位宽度的渗流量。

6.导水系数:当水力坡度为1时的单位流量称为导水系数。

7.流网:渗流场内,取一组流线和一组等势线组成的网格称为流网。

8.渗透系数:水力坡度为1时的渗流速度。

9.渗流率:把表征岩层渗透性能的参数。

10.边界条件:即渗透区边界所处的条件,用来表达水头在渗流区边界上所满足的条件,也就是渗流区内水流与其周围环境相互制约的关系。

11.初始条件:就是在某一点选定的初始时刻(t=0)渗流区内水头H的分布情况。

12.典型单元体用渗流场中某物理量的平均值近似代替整个渗流场的特征值的代表性单元体。

13.入渗强度:单位时间单位面积上的入渗补给量。

14.降落漏斗:总体上形成的漏斗状水头下降区。

15.井损:水头经过滤器的水头损失和在井管内部水的向上运动至水泵吸水口时的水头损失。

16.有效半径:由井轴到井管外壁某一点的水平距离。

17.水跃:潜水流入井中时也存在渗出面也也称水跃,即井壁水位高于井中水位。

18.叠加原理:可表达为和H1,H2...Hn是关于水头H的线性偏微分方程的特解,为任意常数,则由这些解的线性组合H=∑CiHi仍为原方程的解。

19.导压系数:渗透系数与贮水率之比。

20.越流:当含水层与相邻含水层存在水头关系时,地下水从高水头通过弱透水层向低水头含水层补给。

21.有效孔隙度:指有效空隙体积占多孔介质总体积之比。

22.给水度:地下水位下降一个单位深度,从地下水延伸到地表面的单位水平面积岩石柱体在重力作用下释出的水量。

23.渗流:为研究地下水的整体运动特征而引入的一种假象水流,具有实际水流的运动特点,并连续充满整个含水层。

地下水动力学第一章

地下水动力学第一章
渗透系数不仅取决于岩石的性质 (如粒度、成分、颗粒排列、充填状况、裂隙性质及其发育程度等), 而且与渗透液体的物理性质(容重、粘滞性等)有关。 理论分析表明,空隙大小对K值起主要作用
地下水动力学
第一章 渗流理论基础
通常采用的单位是cm2 或D
D是这样定义的:在液体的动力粘度为0.001Pa·s,压强差为 101325Pa的情况下,通过面积为1 cm2 、长度为1理论基础
四、渗流
“典型单元体” (REV)
(Representative elementary volume)
“典型单元体积” (V0 ) Vmin<V0<Vmax
地下水动力学
第一章 渗流理论基础
五、渗流速度(渗透速度,比流量)
在垂直于渗流方向取的一个岩石截面,称为过水断面
当渗流平行流动时,过水断面为平面,弯曲流动时则为曲面
第二阶段:非稳定流理论,1935年至今,Theis、Jacob Bear、Neuman 为代表。我国20世纪70年代开始推广。60年代国际上开始数值解(我国80年代 开始),80年代随机理论(我国上世纪末开始)。
五、前沿课题:裂隙、包气带、非均质、溶质运移(污染、海水入侵、多相、 反应)、地面沉降、随机理论、数据融合
Darcy定律的微分形式:
5
地下水动力学
第一章 渗流理论基础
Reynolds数不超过1~10时,地下水的运动才符合Darcy定律
地下水动力学
第一章 渗流理论基础
实例
当地下水通过平均粒径d=0.5mm的粗砂层,水温为 15℃时,运动粘滞度ν=0.1m2/d,当Reynolds数Re=1
为什么?
这是惯性力的影响。地下水流通道弯弯曲曲,形状、大小不断变化,水 流方向、速度、加速度连续不断变化,有时很剧烈,产生惯性力的影响。 当速度较小时,惯性力的影响不大,粘滞力占优势,水流服从Darcy定律。 速度增大,惯性力增大至占优势时, Darcy定律不再适用。

(完整版)地下水动力学知识点总结

(完整版)地下水动力学知识点总结

基本问题潜水含水层的贮水能力可表示为Q=HF;承压含水层的贮水能力可表示为Q=HF;式中Q——含水层水位变化时H的贮水能力,H——水位变化幅度;F——地下水位受人工回灌影响的范围。

从中可以看出,因为承压含水层的弹性释水系数远远小于潜水含水层的给水度,因此在相同条件下进行人工回灌时,潜水含水层的贮水能力远远大于承压含水层的贮水能力。

水跃:抽水井中的水位与井壁外的水位之间存在差值的现象(seepage face)。

井损(well loss)是由于抽水井管所造成的水头损失。

①井损的存在:渗透水流由井壁外通过过滤器或缝隙进入抽水井时要克服阻力,产生一部分水头损失h1。

②水进入抽水井后,井内水流井水向水泵及水笼头流动过程中要克服一定阻力,产生一部分水头差h2。

③井壁附近的三维流也产生水头差h3。

通常将(h1+h2+h3)统称为水跃值.趋于等速下降。

113承压水井的Dupuit公式的水文地质概念模型(1)含水层为均质、各向同性,产状水平、厚度不变(等厚)、,分布面积很大,可视为无限延伸;或呈圆岛状分布,岛外有定水头补给;(2)抽水前地下水面是水平的,并视为稳定的;含水层中的水流服从Darcy’s Law,并在水头下降的瞬间将水释放出来,可忽略弱透水层的弹性释水;(3)完整井,定流量抽水,在距井一定距离上有圆形补给边界,水位降落漏斗为圆域,半径为影响半径;经过较长时间抽水,地下水运动出现稳定状态;(4)水流为平面径向流,流线为指向井轴的径向直线,等水头面为以井为共轴的圆柱面,并和过水断面一致;通过各过水断面的流量处处相等,并等于抽水井的流量。

123承压水井的Dupuit公式的表达式及符号含义或式中,s w—井中水位降深,m;Q—抽水井流量,m3/d;M—含水层厚度,m;K—渗透系数,m/d;r w—井半径,m;R—影响半径(圆岛半径),m。

133Theim公式的表达式若存在两个观测孔,距离井中心的距离分别为r1,r2,水位分别为H1,H2,在r1到r2区间积分得:式中s1、s2分别为r1和r2处的水位降深。

地下水动力学

地下水动力学

第一章 渗流理论基础§1-1 渗流的基本概念一、渗流及连续介质假说1 多孔介质(porous medium)与连续介质(continuous medium)多孔介质很难给出其精确定义,在地下水动力学中,把具有孔隙的岩石称为多孔介质。

它包括孔隙介质和裂隙介质。

一般来说,具有以下特点的物质就称为多孔介质。

(1)该物体为多相体:固体相-骨架,流体相-空隙; (2)固体相的分布遍及整个多相体所占据的区域; (3)空隙空间具有连通性。

多孔介质由连续分布的多孔介质质点(图1-2)组成—多孔连续介质.此时孔隙度的表示公式为:0v ∆--为数学点P 处多孔介质的表征体积元(简称为表征体元-REV ),将其所包含的所有流体质点与固体颗粒的总体称为多孔介质质点.将其所包含的所有流体质点称为多孔介质流体质点。

图1-2 REV 的定义及孔隙度随体积的变化多孔介质的性质:1)孔隙性 2) 压缩性2 渗透(seepage )渗透:地下水受重力作用在岩石空隙中的实际运动称为渗透。

由于岩石空隙结构极为复杂,空隙的大小、延伸方向、形状无一定规律。

渗透具有如下特征:(1)运动途径复杂多变;(2)状态函数非连续;(3)只有平均性质的渗透规律(图1-1),研究地下水质点的运动特征比较困难。

因此,在当前经济技术条件下研究单个孔隙中的水或单个水质点的运动是十分困难的,也没有必要。

vv p n vv v ∆∆=∆→∆0lim)(图1-2岩石中地下水的渗透针对这种极为复杂的地下水运功,在地下水动力学中一般可采用两种研究方法。

1) 研究微观情况下的运动,即研究地下水在以孔隙介质中的骨架为边界孔隙或裂隙中的运动。

由于空隙介质的结构具有随机性,所以用统计平均方法来确定地下水运动的宏观规律性; 2) 从宏观角度出发,采用试验及数学分析方法,对大量微观运动进行宏观研究得出各种运动条件下地下水运动的基本规律。

3 渗流(seepage flow)前面已经提到,要研究实际的渗透十分困难,因此,我们用一种假想水流来代替真实水流,这种假想水流是在连续介质的基础上通过概化得出的:(1)假定水流充满整个含水层空间(既包括空隙所占据的空间,也包括颗粒/骨架所占据的空间);(2)只考虑水流运动的总体方向,不考虑水流实际运动途径的复杂变化.将通过上述概化后所得到的假想水流—渗流。

地下水动力学讲义第2章(全)2009-11

地下水动力学讲义第2章(全)2009-11

吉林大学 肖长来
53
地下水动力学
图 2-6 承压—无压流
此时,采用分段法计算,将其划分成两个部分:
承压水流段:
q1
=
KM
H1 − l0
M
无压水流段:
q2
=
K
M2 2(l

H
2 2
−l0 )
根据水流连续性原理,q1=q2=q,得到:
l0
=
2lM (H1 − M )
M
(2H1

M
)

H
2 2
把 l0 代入任何一个流量公式,可得承压—无压流的单宽流量公式:
当含水层上部没有入渗或蒸发,即 W=0 时,(2-5)式和(2-8)式可简化为:
h2
=
h12

h12
− h22 l
x
(2-9)
q = K h12 − h22 2l
(2-10)
这就是 Dupuit 公式。降落曲线的形状已经不是椭圆曲线,而是二次抛物线了。通过含
水层中所有断面的单宽流量也变成相等的了。
上述所导出的公式都是在应用 Dupuit 假设,忽略了渗流垂向分速度的情况下导出的。
式中 h1,h2——为断面 1 和 2 上的潜水流厚度,m;
K1,K2——相邻两种岩层的渗透系数,m;
l1,l2——断面 1 和 2 到岩层分界面的距离,m。
(2-14) (2-15) (2-16) (2-17)
2.1.4 承压水-无压流的稳定运动
在地下水坡度较大的地区,若上游为承压水,下游由于水头降至隔水底板以下转为无 压水的情况,形成承压—无压流,见图 2-6。
qx
=
−Kh

地下水动力学

地下水动力学

地下水动力学一、名词解释1.渗透重力地下水在岩石空隙中的运动2.渗流不考虑骨架的存在,整个渗流区都被水充满,不考虑单个孔隙的地下水的运动状况,考虑地下水的整体运动方向,这是一个假想的水流。

3. 渗流量单位时间通过的过水断面(空隙、骨架)的地下水的体积。

4. 渗流速度单位通过过水断面(空隙、骨架)的渗流量。

5. 稳定流非稳定流渗流要素不随时间的变化而变化。

渗流要素随时间而变化。

6. 均匀流非均匀流渗流速度不随空间而变化。

非均匀流分为缓变流和急变流缓变流:过水断面近似平面满足静水压强方程。

急变流:流线弯曲程度大,流线不能近似看成直线过水断面不能近似平面。

7.渗透系数表征含水量的能力的参数。

数值上等于水力梯度为1的流速的大小8.导水系数水力梯度为1时,通过整个含水层厚度的单宽流量。

9.弹性释水理论含水层骨架压密和水的膨胀释放出来的地下水的现象为弹性释水现象,反之为含水层的贮水现象。

10.贮水系数《率》当承压含水层水头下降(上升)一个单位时,从单位水平面积《体积》的含水层贮体积中,由于水体积的膨胀(压缩)和含水层骨架压密(回弹)所释放(贮存)的地下水的体积。

11.重力给水度在潜水含水层中,当水位下降一个单位时,从单位水平面积的含水层贮体中,由于重力疏干而释放地下水的体积。

二、填空题1.地下水动力学是研究地下水在孔隙岩石、裂隙岩石、和岩溶岩石中运动规律的科学。

通常把具有连通性的含水岩石称为多孔介质,而其中的岩石颗粒称为骨架。

多孔介质的特点是多相性、孔隙性、连通性和压缩性。

2.地下水在多孔介质中存在的主要形式有吸着水、薄膜水、毛管水和重力水,而地下水动力学主要研究重力水的运动规律。

3.假想水流的密度、粘滞性、运动时在含水层的中所受阻力以及流量和水头都与真实的水流相同,假想水流充满整个含水层的空间。

4.在渗流中,水头一般是指测压水头,不同的数值的等水头面(线)永远不会相交。

5.在渗流场中,把大小等于水头梯度值,方向沿着等水头面的法线指向水头降低的方向的矢量,称为水力梯度。

地下水动力学第01讲

地下水动力学第01讲

水入侵等)。
绪 言(preface)
0.1 0.2 0.3 0.4 0.5 地下水动力学的概念、研究内容 地下水动力学在国民经济建设中的作用 地下水动力学发展概况 地下水动力学常用软件介绍 小结
0.5 小结
0.5.1 学习要求
(1)理解地下水动力学的研究内容; (2)理解地下水动力学在国民经济中的作用;
水流在任意岩石空隙体积内中所受的阻力相同;它的任 意一点压强P和任一断面的流量Q与实际水流在该点周围
一个小范围内的平均值相等。
>>这就是在渗透阻力、渗透压强以及渗透流量保持等 效的原则下,把实际渗流速度平均到包括固体颗粒骨架
在内的整个渗流场中。
>>实际就是用一种假 想的渗流来代替复杂的
实际渗流。这个假想的
水流便是宏观水平的地 下水流,我们称之为“
渗流”,它所占据的空
间称为“渗流场”(图1附-4)。
图1-附-4 地下水的流线
>>将假想渗流作为连续的水流来看待,这样做的优点是 可以把实际上并不处处连续的水流当作连续的水流来进行 研究,渗流场中的运动要素则是时间和空间的连续函数,
从而可以利用一般水力学、流体力学中研究液体运动的方
用这些规律去兴利除害,为人类服务。
绪 言(preface)
0.1 0.2 0.3 0.4 0.5 地下水动力学的概念、研究内容 地下水动力学在国民经济建设中的作用 地下水动力学发展概况 地下水动力学常用软件介绍 小结
0.2 地下水动力学在国民经济建设中的作用
>>定量计算、预测、评价地下水的量和质,为合理、经济地开发 地下水、保护地下水资源提供理论依据。 >>定量计算、预测、评价地下水的迁移和转化规律,为正确评价 与地下水有关的地质环境对人类活动的适宜性提供论证,诸如: *矿坑、基坑的排水与突水问题; *库坝渗漏问题;

地下水动力学(全)

地下水动力学(全)

1. 地下水动力学是研究地下水在孔隙岩石、裂隙岩石、和喀斯特岩石中运动规律的科学。

它是模拟地下水流基本状态和地下水中溶质运移过程,对地下水从数量和质量上进行定量评价和合理开发利用,以及兴利除害的理论基础。

2. 流量:单位时间通过过水断面的水量称为通过该断面的渗流量。

3. 渗流速度(比流量):假设水流通过整个岩层断面(骨架+空隙)时所具有的虚拟平均流速,定义为通过单位过水断面面积的流量。

4. 实际速度:孔介质中地下水通过空隙面积的平均速度;地下水流通过含水层过水断面的平均流速,其值等于流量除以过水断面上的空隙面积,量纲为L/T。

4. 渗流场:发生渗流的区域称为渗流场。

由固体骨架和岩石空隙中的水两者组成5. 层流:水质点作有秩序、互不混杂的流动。

6. 紊流:水质点作无秩序、互相混杂的流动。

7. 稳定流与非稳定流:若流场中所有空间点上一切运动要素都不随时间改变时,称为稳定流,否则称为非稳定流。

8. 雷诺数:表征运动流体质点所受惯性力和粘性力的比值。

9. 雷诺数的物理意义:水流的惯性力与黏滞力之比。

10. 渗透系数:在各项同性介质(均质)中,用单位水力梯度下单位面积上的流量表示流体通过孔隙骨架的难易程度,称之为渗透系数。

11. 流网:在渗流场中,由流线和等水头线组成的网络称为流网。

12. 折射现象:地下水在非均质岩层中运动,当水流通过渗透系数突变的分界面时,出现流线改变方向的现象。

13. 裘布依假设:绝大多数地下水具有缓变流的特点。

14. 缓变流:各流线接近于平行直线的运动14. 完整井:贯穿整个含水层,在全部含水层厚度上都安装有过滤器并能全断面进水的井。

15. 非完整井:未揭穿整个含水层、只有井底和含水层的部分厚度上能进水或进水部分仅揭穿部分含水层的井。

16. 水位降深:抽水井及其周围某时刻的水头比初始水头的降低值。

17. 水位降落漏斗:抽水井周围由抽水(排水)而形成的漏斗状水头(水位)下降区,称为降落漏斗。

(完整版)地下水动力学知识点总结

(完整版)地下水动力学知识点总结

基本问题潜水含水层的贮水能力可表示为Q=HF;承压含水层的贮水能力可表示为Q=HF;式中Q——含水层水位变化时H的贮水能力,H——水位变化幅度;F——地下水位受人工回灌影响的范围。

从中可以看出,因为承压含水层的弹性释水系数远远小于潜水含水层的给水度,因此在相同条件下进行人工回灌时,潜水含水层的贮水能力远远大于承压含水层的贮水能力。

水跃:抽水井中的水位与井壁外的水位之间存在差值的现象(seepage face)。

井损(well loss)是由于抽水井管所造成的水头损失。

①井损的存在:渗透水流由井壁外通过过滤器或缝隙进入抽水井时要克服阻力,产生一部分水头损失h1。

②水进入抽水井后,井内水流井水向水泵及水笼头流动过程中要克服一定阻力,产生一部分水头差h2。

③井壁附近的三维流也产生水头差h3。

通常将(h1+h2+h3)统称为水跃值.趋于等速下降。

113承压水井的Dupuit公式的水文地质概念模型(1)含水层为均质、各向同性,产状水平、厚度不变(等厚)、,分布面积很大,可视为无限延伸;或呈圆岛状分布,岛外有定水头补给;(2)抽水前地下水面是水平的,并视为稳定的;含水层中的水流服从Darcy’s Law,并在水头下降的瞬间将水释放出来,可忽略弱透水层的弹性释水;(3)完整井,定流量抽水,在距井一定距离上有圆形补给边界,水位降落漏斗为圆域,半径为影响半径;经过较长时间抽水,地下水运动出现稳定状态;(4)水流为平面径向流,流线为指向井轴的径向直线,等水头面为以井为共轴的圆柱面,并和过水断面一致;通过各过水断面的流量处处相等,并等于抽水井的流量。

123承压水井的Dupuit公式的表达式及符号含义或式中,s w—井中水位降深,m;Q—抽水井流量,m3/d;M—含水层厚度,m;K—渗透系数,m/d;r w—井半径,m;R—影响半径(圆岛半径),m。

133Theim公式的表达式若存在两个观测孔,距离井中心的距离分别为r1,r2,水位分别为H1,H2,在r1到r2区间积分得:式中s1、s2分别为r1和r2处的水位降深。

地下水动力学(第一章 渗流理论基础-1-专)

地下水动力学(第一章 渗流理论基础-1-专)

2. 贮水率和贮水系数 贮水率:面积为1单位面积,厚度为1单位 的含水层,当水头降低1单位时所能释出的 水量。用µs表示。 弹性释水:由于水头降低引起的含水层释 水现象称为弹性释水。 贮水系数:面积为1单位面积,厚度为含 水层全厚度M的含水层柱体中,当水头改变 一个单位时弹性释放或贮存的水量。用µ*表 示。 二者关系: µ* = µs M
V =V0e
−β ( p− p0 )
用Taylor级数展开,舍去高次项,得到如 下的状态方程: V = V0[1-β(p-p0)] ρ=ρ0[1+β(p-p0)]
2 多孔介质的某些性质 (1)多孔介质的孔隙性
孔隙度:指孔隙体积和多孔介质总体积之比。 孔隙度 有效孔隙:互相连通的、不为结合水所占据的那一 有效孔隙 部分孔隙。 有效孔隙度:指有效孔隙体积和多孔介质总体积之 有效孔隙度 比。 死端孔隙: 死端孔隙 一端与其它孔隙 连通,另一端是 封闭的,其中的 地下水是相对停 滞的。
是研究地下水在孔隙岩石裂隙岩石和岩溶岩石中运动规律的科它是模拟地下水流基本状态和地下水中溶质运移过程对地下水从数量上和质量上进行定量评价和合理开发利用以及兴利防害的理论基础
地下水动力学
高志娟 工程学院
绪 论 地下水动力学:是研究地下水在孔隙岩 石、裂隙岩石和岩溶岩石中运动规律的科 学。 它是模拟地下水流基本状态和地下水中 溶质运移过程,对地下水从数量上和质量 上进行定量评价和合理开发利用,以及兴 利防害的理论基础。
第一章 渗流理论基础 §1—1 渗流的基本概念
一、地下水在含水岩石中的运动 1 多孔介质:具有孔隙的岩石。 含水介质一般分为三类: 孔隙介质:含有孔隙水的岩层。 裂隙介质:含裂隙水的岩层。 岩溶(Karst)介质:含岩溶水的岩层。 2 地下水的流动类型可归纳为两类: (1)地下水沿多孔介质的孔隙或遍步于介质中的 裂隙运动; (2)地下水沿大裂隙和管道的流动。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 地下水动力学是研究地下水在孔隙岩石、裂隙岩石、和喀斯特岩石中运动规律的科学。

它是模拟地下水流基本状态和地下水中溶质运移过程,对地下水从数量和质量上进行定量评价和合理开发利用,以及兴利除害的理论基础。

2.流量:单位时间通过过水断面的水量称为通过该断面的渗流量。

3.渗流速度(比流量):假设水流通过整个岩层断面(骨架+空隙)时所具有的虚拟平均流速,定义为通过单位过水断面面积的流量。

4. 实际速度:孔介质中地下水通过空隙面积的平均速度;地下水流通过含水层过水断面的平均流速,其值等于流量除以过水断面上的空隙面积,量纲为L/T。

4.渗流场:发生渗流的区域称为渗流场。

由固体骨架和岩石空隙中的水两者组成5. 层流:水质点作有秩序、互不混杂的流动。

6.紊流:水质点作无秩序、互相混杂的流动。

7.稳定流与非稳定流:若流场中所有空间点上一切运动要素都不随时间改变时,称为稳定流,否则称为非稳定流。

8.雷诺数:表征运动流体质点所受惯性力和粘性力的比值。

9.雷诺数的物理意义:水流的惯性力与黏滞力之比。

10.渗透系数:在各项同性介质(均质)中,用单位水力梯度下单位面积上的流量表示流体通过孔隙骨架的难易程度,称之为渗透系数。

11. 流网:在渗流场中,由流线和等水头线组成的网络称为流网。

12.折射现象:地下水在非均质岩层中运动,当水流通过渗透系数突变的分界面时,出现流线改变方向的现象。

13.裘布依假设:绝大多数地下水具有缓变流的特点。

14. 缓变流:各流线接近于平行直线的运动14.完整井:贯穿整个含水层,在全部含水层厚度上都安装有过滤器并能全断面进水的井。

15.非完整井:未揭穿整个含水层、只有井底和含水层的部分厚度上能进水或进水部分仅揭穿部分含水层的井。

16.水位降深:抽水井及其周围某时刻的水头比初始水头的降低值。

17.水位降落漏斗:抽水井周围由抽水(排水)而形成的漏斗状水头(水位)下降区,称为降落漏斗。

18.影响半径:是从抽水井到实际观测不到水位降深处的径向距离。

19.有效井半径:由井轴到井管外壁某一点的水平距离。

在该点,按稳定流计算的理论降深正好等于过滤器外壁的实际降深。

20.井损水流经过滤器的水头损失和在井内向上运动至水泵吸水口时的水头损失,统称为井损。

21.水跃:在实验室砂槽中进行井流模拟实验时发现,只有当井中水位降低非常小时,抽水井中的水位与井壁外的水位才基本一致,当井中水位降低较大时,抽水井中的水位与井壁外的水位之间存在差值的现象。

22.渗出面(水跃):当潜水流入井中时,井壁水位高于井中水位,称其为渗出面。

23.叠加原理:在数学物理中经常出现这样的现象:几种不同原因的综合所产生的效果,等于这些不同原因单独产生效果的累加。

24.有效孔隙度:有效孔隙的体积与多孔介质的总体积之比。

25.有效孔隙:互相连通,不被结合水所占据的空隙25.死端孔隙:一端与孔隙相连,另一端封闭,其中的地下水相对停滞。

26.贮水率:面积为一个单位,厚度为一个单位,当水头降低一个单位时所释放出的水量27.贮水系数:面积为一个单位,厚度为含水层整个厚度M的水层柱体积,当水头改变一个单位时的弹性释水或贮存的水量。

28.过水断面:垂直于渗流方向取一个岩石截面29.水力坡度:在渗流场中,大小等于梯度值,方向沿着等水头面的法线,并指向水头降低方向的矢量。

31.渗透系数与渗透率:水力坡度为1时,渗透系数大小就等于渗透流速,在液体动力黏质系数为0.001pa.s,压力差为101325pa,通过面积为1平方厘米,长度为1cm时的流量为1立方厘米每秒32.导水系数:水力坡度为1时,通过含水层整个厚度的单宽流33.水力坡度:等于梯度值,由等水头面指向水头降低的方向的矢量值34.渗透力:渗透水流作用对土骨架产生的拖拽力35.管涌:在渗透水流作用下,土中细颗粒在粗颗粒所形成的空隙通道中移动、流失,土的空隙不断扩大,渗流量也随之加大,最终导致土体内形成贯通的渗流通道,土体发生破坏的现象。

36.越流:在半承压含水层与相邻含水层之间存在水头差,就会导致高水头通过透水界面流向低水头。

37.入渗强度(入渗率):入渗是水渗入土壤的现象,单位时间深水深38.似稳定:井中的水位降深趋于稳定,在短时间内无法观测到水位降深,若延长观测时间,又可以观测到缓慢的水位降深,这种情况就叫做似稳定状态1.地下水动力学的研究对象:广义:研究地下水在多孔介质中的运动规律及应用,分为三个方面: ①水头场分布规律(水量模型)非饱和带:毛细水运动规律饱和带:重力水运动规律②浓度场分布规律(水质模型)③温度场分布规律(水温模型)狭义:研究饱水带地下水水头分布规律,对含水层进行定量评价,为合理开采地下水提供依据。

2.达西定律适用于层流范围是否正确?为什么?不正确。

由J-v的经验关系曲线表明,当v很小时,v与J呈线性关系,此时Re<1~10,地下水的运动符合达西定律;当v增大,v与J的关系曲线不符合达西定律,但此时地下水运动仍为层流运动。

3.渗流的三个假设条件:①假象水流的性质(如密度、粘滞性等)和真实地下水相同,但它充满了既包括含水层也包括岩石颗粒占据的空间②假象水流运动时,在任意岩石体积内所受的阻力等于其真实水流所受阻力③通过任一断面的流量及任意一点的压力或水头均和实际水流相同3.Dupuit公式的假设条件有哪些?①含水层均质同性,产状水平,无限延伸;②天然水力坡度为零,为稳定流;③服从达西定律;④影响半径处有定水头补给;⑤二维流。

4.潜水流中的滞后现象是由于渗透系数值变小而引起的吗?为什么?不正确。

因为潜水含水层被疏干时,大部分水是在重力作用下排出的——即重力疏干,重力疏干不能瞬时完成,而是逐渐被排放出来,即出现滞后现象。

渗透系数只影响给水度的大小,而不会影响滞后现象的发生。

5.简述有均匀入渗时,河间地块均质潜水含水层中地下水分岭的存在与移动规律及其影响因素①分水岭若存在,则由此得移动规律:由上式时,则,分水岭位于河渠中央;时,则,分水岭靠近左河;时,则,分水岭靠近右河。

②影响因素:分水岭的存在有移动规律与关。

6.给水度是时间t的函数这种说法是否正确?并说明理由:正确由于饱水带中水分的运动滞后于地下水位的降落速度,存在滞后疏干。

潜水面虽然下降了,但潜水面以上的非饱和带内的水继续向下不断地补给潜水。

因此,给水度在抽水期间是以一个递减的速率逐渐增大的。

当时间足够长时,给水度才趋于一个常数值。

7.常见的水文地质边界类型:第一类边界条件:给定水头边界条件,具有无限补给或排泄地下水的能力,如与地下水具有水力联系的地表河流、湖泊等;第二类边界条件:给定流量边界条件,典型的有隔水边界、地下水分水岭。

第三类边界条件:混合边界,流量和水头呈某种线性关系的边界。

8.折射现象特点:①当K1≠K2,且K1和K2均不等于0,角度都等于0,表明水流垂直通过界面不发生折射;②当K1=K2,α1= α2,表示在均质岩层中不发生折射;③当K1≠K2,且K1,K2均为有限值时,角度都等于90℃,表明水流平行于界面时不发生折射;④当水流斜向通过界面时,介质的渗透系数K越大,角度也越大,流线越靠近界面。

K相差越大,角度也相差越大,流线通过界面后偏移程度也越大。

9.信手流网绘制原则:①首先分析水文地质条件,搞清补给区、排泄区、或源汇项分布、边界条件等;②先绘制肯定的流线和等水头线;③隔水边界是流线;④无入渗、无蒸发条件下潜水面是流线;⑤湖泊、河流边界可看成等水头线;⑥有两个以上排泄点时应确定分水线、面、点。

10.流网的意义:①解释水文地质现象;②判断地下水系统内部结构;③分析地下水的补给、排泄、径流特征;④计算渗流场任意点的水头、压强、水力坡度、渗透流速等;⑤依据流网选择垃圾填埋场位置等。

11.流网的性质/特性:①在各向同性介质中,流线与等势线处处垂直,故流网为正交网②在均匀各向同性介质中,流网中每一个网格的边长比为常数③当流网中各相邻流线的流函数差值相同,且每个网格的水头差值相等时,通过每个网格的流量相等④当两个透水性不同的介质相邻时,在一个介质中为曲边正方形的流网,越过界面进入另一介质中,则变成曲边矩形。

11.试述渗透系数K,渗透率k,导水系数T的主要区别。

K——定义(略)。

与岩性和渗透液体的物理性质有关。

k——定义(略)。

只与岩性有关,与渗透液体性质无关。

T——定义(略)。

与岩性、渗透液体的物理性质和含水层厚度有关。

12.Dupuit假设无效的地区:(1)存在入渗的潜水分水岭地段;(2)渗出面附近。

渗出面是在下游边界面上,潜水面以下、下游水面以上的地段。

渗出面上潜水面往往和边界面相切,有较大的垂向分速度;(3)垂直的隔水边界附近。

13.指导野外调查工作,分析影响水库渗漏的因素(a<0) ①K愈大,愈易渗漏。

水库调查时要避开喀斯特发育带、构造破碎带或古河道发育带;②渗流途径l 小,即两河之间距离越短越易渗漏。

要避免将库址选在分水岭过于狭窄的地带;③入渗补给量W愈小,愈易渗漏。

在干旱地区水库选址时,要避开存在渗透性差的覆盖层(地下水无法得到有效补给量);④邻河水位愈低(h2愈小),愈易渗漏。

选址时应注意选在邻河水位高的地段。

14.稳定井流与非稳定井流的区别:①稳定井流中,当无垂向补给时,地下水流向井的过程中任一断面的流量都相等,并等于抽水井流量Q,地下水位h不随时间t变化。

②非稳定井流中,地下水流向井的过程中,沿途不断得到含水层释放补给,通过任一断面的流量都不相等,井壁处流量最大并等于抽水井流量,地下水位h 随时间t 而变化,初期变化大,后期变化减小。

15.潜水井流的特征:①流线与等水头线都是弯曲的曲线,井壁不是等水头面,抽水井附近存在三维流,井壁内外存在水头差值;②降落漏斗位于含水层内部,水位降落漏斗的曲面就是含水层的上部界面,导水系数T 随时间t 和径向距离r 变化;③潜水含水层水位下降伴有弹性释水和重力疏干,为缓慢排水过程,抽水量主要来源于含水层疏干。

16.承压水井流的特征:①流线与等水头线在剖面上的形状不相同,等水头线近似直线,等水头面即为铅垂面,降深不太大时承压井流为二维流;②降落漏斗在含水层外部呈虚拟状态变化,导水系数不随时间t 变化;③承压井流的抽水量来自承压含水层水头降落漏斗范围内由于减压作用造成的弹性释放,是瞬时完成的。

17.产生水跃的原因:①井损的存在:渗透水流由井壁外通过过滤器或缝隙进入抽水井时要克服阻力,产生一部分水头损失h1;②水进入抽水井后,井内水流井水向水泵及水笼头流动过程中要克服一定阻力,产生一部分水头差h2;③井壁附近的三维流也产生水头差 h3。

18.利用Theis 公式确定水文地质参数的配线法的步骤?在双对数坐标中绘制w (u )和1/u①在另一张模数相同的透明双对数纸上绘制实测的s —t/r2曲线或s —t 曲线。

相关文档
最新文档