南京一中实验学校数学全等三角形单元综合测试(Word版 含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南京一中实验学校数学全等三角形单元综合测试(Word 版 含答

案)

一、八年级数学轴对称三角形填空题(难)

1.在Rt △ABC 中,∠ABC=90°,AB=3,BC=4,点E ,F 分别在边AB ,AC 上,将△AEF 沿直线EF 翻折,点A 落在点P 处,且点P 在直线BC 上.则线段CP 长的取值范围是____.

【答案】15CP ≤≤

【解析】

【分析】 根据点E 、F 在边AB 、AC 上,可知当点E 与点B 重合时,CP 有最小值,当点F 与点C 重合时CP 有最大值,根据分析画出符合条件的图形即可得.

【详解】

如图,当点E 与点B 重合时,CP 的值最小,

此时BP=AB=3,所以PC=BC-BP=4-3=1,

如图,当点F 与点C 重合时,CP 的值最大,

此时CP=AC ,

Rt △ABC 中,∠ABC=90°,AB=3,BC=4,根据勾股定理可得AC=5,所以CP 的最大值为5, 所以线段CP 长的取值范围是1≤CP≤5,

故答案为1≤CP≤5.

【点睛】

本题考查了折叠问题,能根据点E、F分别在线段AB、AC上,点P在直线BC上确定出点E、F位于什么位置时PC有最大(小)值是解题的关键.

2.如图,在△ABC中,AB=10,∠B=60°,点D、E分别在AB、BC上,且BD=BE=4,将

△BDE沿DE所在直线折叠得到△B′DE(点B′在四边形ADEC内),连接AB′,则AB′的长为______.

【答案】2.

【解析】

【分析】

【详解】

过点D作DF⊥B′E于点F,过点B′作B′G⊥AD于点G,

∵∠B=60°,BE=BD=4,

∴△BDE是等边三角形,

∵△B′DE≌△BDE,

∴B′F=1

B′E=BE=2,DF=23,

2

∴GD=B′F=2,

∴B′G=DF=23,

∵AB=10,

∴AG=10﹣6=4,

∴AB′=27.

考点:1轴对称;2等边三角形.

3.如图,已知△ABC和△ADE都是正三角形,连接CE、BD、AF,BF=4,CF=7,求AF的长

_________ .

【答案】3

【解析】

【分析】

过点A作AF⊥CE交于I,AG⊥BD交于J,证明CAE≅BAD,再证明

CAI≅BAJ,求出°

7830

∠=∠=,然后求出

1

2

IF FJ AF

==,,通过设FJ x

=求出x,即可求出AF的长.

【详解】

解:过点A作AF⊥CE交于I,AG⊥BD交于J

在CAE和BAD中

AC AB

CAE BAD

AE AD

=

∠=∠

⎪=

∴CAE≅BAD

∴ICA ABJ

∠=∠

∴BFE CAB

∠=∠(8字形)

∴°

120

CFD

∠=

在CAI和BAJ中

°

90ICA ABJ CAI BJA CA BA ∠=∠⎧⎪∠=∠=⎨⎪=⎩

∴CAI ≅BAJ

,AI AJ CI BJ ==

∴°60CFA AFJ ∠=∠=

∴°30FAI FAE ∠=∠=

在RtAIF 和RtAJF 中

°30FAI FAE ∠=∠=

∴12

IF FJ AF ==

设FJ x = 7,4CF BF ==

则47x x +=-

3

2x ∴=

2AF FJ =

AF ∴=

3

【点睛】

此题主要考查了通过做辅助线证明三角形全等,得出相关的边相等,学会合理添加辅助线求解是解决本题的重点.

4.在锐角三角形ABC 中.BC=32,∠ABC=45°,BD 平分∠ABC .若M ,N 分别是边BD ,BC 上的动点,则CM +MN 的最小值是____.

【答案】4

【解析】

【分析】

过点C作CE⊥AB于点E,交BD于点M′,过点M′作M′N′⊥BC于N′,则CE即为CM+MN 的最小值,再根据BC=32,∠ABC=45°,BD平分∠ABC可知△BCE是等腰直角三角形,由锐角三角函数的定义即可求出CE的长.

【详解】

解:过点C作CE⊥AB于点E,交BD于点M′,过点M′作M′N′⊥BC于N′,

则CE即为CM+MN的最小值,

∵BC=32,∠ABC=45°,BD平分∠ABC,

∴△BCE是等腰直角三角形,

∴CE=BC•cos45°=32×2

=4.

∴CM+MN的最小值为4.

【点睛】

本题考查了轴对称最短路线问题,难度较大,根据题意作出辅助线,构造出等腰直角三角形,利用锐角三角函数的定义求解是解答此题的关键.

5.如图,∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2,B3…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4…均为等边三角形,从左起第1个等边三角形的边长记a1,第2个等边三角形的边长记为a2,以此类推,若OA1=3,则a2=_______,a2019=_______.

【答案】6; 3×22018.

【解析】

【分析】

根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及a2=2a1=6,得出

a3=4a1,a4=8a1,a5=16a1…进而得出答案.

【详解】

解:如图,

相关文档
最新文档