生物化学知识点总结-生物化学糖代谢总结
医学基础知识:生物化学之糖代谢的知识
医学基础知识:生物化学之糖代谢的知识今天今天来给大家梳理一下关于糖代谢的知识,具体内容如下:糖的分解代谢(一)糖酵解葡萄糖在无氧情况下经过三个阶段生成乳酸。
(糖酵解的产物是乳酸)1.三个阶段、三个关键酶:①第一阶段:葡萄糖生成2分子磷酸甘油醛;关键酶:己糖激酶、6磷酸果糖激酶。
②第二阶段:磷酸甘油醛生成丙酮酸;③第三阶段:丙酮酸生成乳酸;关键酶:丙酮酸激酶。
(第一阶段:葡萄糖在己糖激酶作用下生成6磷酸葡萄糖;6磷酸葡萄糖在6磷酸果糖激酶的帮助下生成1,6二磷酸果糖;1,6二磷酸果糖再裂解成2分子磷酸甘油醛。
)2.糖酵解的3个关键酶(限速酶):己糖激酶、6磷酸果糖激酶、丙酮酸激酶。
记忆:(六斤冰糖):6磷酸果糖激酶、己糖激酶、丙酮酸激酶。
3.糖酵解的作用:提供能量。
(二)糖的有氧氧化1.三个阶段:①第一阶段:葡萄糖生成丙酮酸;②第二阶段:丙酮酸进入线粒体生成乙酰辅酶A;③第三阶段:乙酰辅酶A进入三羧酸循环生成二氧化碳。
2. 三羧酸循环四步脱氢、三个关键酶、二步脱羧、一次底物磷酸化。
三羧酸循环的原料:乙酰CoA;第一步:乙酰CoA生成柠檬酸;关键酶是柠檬酸合酶;第二步:柠檬酸调整姿态,变为异柠檬酸;第三步:异柠檬酸生成-酮戊二酸;关键酶是异柠檬酸脱氢酶。
(第一次脱氢;受体是NAD)第四步:-酮戊二酸在-酮戊二酸脱氢酶的帮助下生成琥珀酰CoA;关键酶是-酮戊二酸脱氢酶。
(第二次脱氢;受体是NAD)第五步:琥珀酰CoA在某些激酶的帮助下生成琥珀酸和GTP。
(这是唯一一次底物水平磷酸化)第六步:琥珀酸在琥珀酸脱氢酶的帮助下生成延胡索酸;关键酶是琥珀色酸脱氢酶(第三次脱氢;受体是FAD)第七步:延胡索酸加水生成苹果酸。
第八步:苹果酸在苹果酸脱氢酶的帮助下生成草酰乙酸(第四次脱氢;受体是NAD)总结:三羧酸循环发生在线粒体;三羧酸循环的底物:乙酰辅酶A;三羧酸循环发生了4次脱氢;生成3个NAD、1个FAD;三羧酸循环发生2次脱羧,生成2分子CO2;三羧酸循环发生1次底物磷酸化;一个NAD可以生成2.5个ATP;一个FAD可以生成1.5个ATP;一轮三羧酸循环总共生成10个ATP;(3个NAD、1个FAD + 唯一一次底物磷酸化时生成的1个ATP)三羧酸循环通过脱氢反应生成9个ATP;三羧酸循环底物磷酸化生成1个ATP;一分子乙酰辅酶A进入三羧酸循环最终生成10个ATP;一分子葡萄糖糖酵解生成2个ATP;一分子葡萄糖彻底氧化后生成30或32个ATP;一分子丙酮酸彻底氧化后生成12.5个ATP。
生物化学糖代谢知识点总结材料
第六章糖代糖(carbohydrates)即碳水化合物,是指多羟基醛或多羟基酮及其衍生物或多聚物。
根据其水解产物的情况,糖主要可分为以下四大类:单糖:葡萄糖(G)、果糖(F),半乳糖(Gal),核糖双糖:麦芽糖(G-G),蔗糖(G-F),乳糖(G-Gal)多糖:淀粉,糖原(Gn),纤维素结合糖: 糖脂,糖蛋白其中一些多糖的生理功能如下:淀粉:植物中养分的储存形式糖原:动物体葡萄糖的储存形式纤维素:作为植物的骨架一、糖的生理功能1. 氧化供能2. 机体重要的碳源3. 参与组成机体组织结构,调节细胞信息传递,形成生物活性物质,构成具有生理功能的糖蛋白。
二、糖代概况——分解、储存、合成各种组织细胞门静脉肠粘膜上皮细胞体循环小肠肠腔三、糖的消化吸收食物中糖的存在形式以淀粉为主。
1.消化 消化部位:主要在小肠,少量在口腔。
消化过程:口腔 胃 肠腔 肠黏膜上皮细胞刷状缘吸收部位:小肠上段 吸收形式:单糖吸收机制:依赖Na+依赖型葡萄糖转运体(SGLT )转运。
2.吸收 吸收途径:SGLT肝脏过程四、糖的无氧分解第一阶段:糖酵解 第二阶段:乳酸生成反应部位:胞液产能方式:底物水平磷酸化 净生成ATP 数量:2×2-2= 2ATPE1 E2E3调节:糖无氧酵解代途径的调节主要是通过各种变构剂对三个关键酶进行变构调节。
E1:己糖激酶E2: 6-磷酸果糖激酶-1E3: 丙酮酸激酶NAD+乳 酸NADH+H+第二阶段:丙酮酸的氧化脱羧 第三阶段:三羧酸循环生理意义:五、糖的有氧氧化1、反应过程○1糖酵解途径(同糖酵解,略)②丙酮酸进入线粒体,氧化脱羧为乙酰CoA (acetyl CoA)。
总反应式:关键酶调节方式➢ 糖无氧氧化最主要的生理意义在于迅速提供能量,这对肌收缩更为重要。
➢ 是某些细胞在氧供应正常情况下的重要供能途径。
① 无线粒体的细胞,如:红细胞② 代谢活跃的细胞,如:白细胞、骨髓细胞第一阶段:糖酵解途径 G (Gn )丙酮酸乙酰CoAATP ADP胞液线粒体丙酮酸乙酰CoANAD +, HSCoA CO 2, NADH + H +丙酮酸脱氢酶复合体③乙酰CoA进入柠檬酸循环及氧化磷酸化生成ATP概述:三羧酸循环(Tricarboxylic acid Cycle, TAC)也称为柠檬酸循环或Krebs循环,这是因为循环反应中第一个中间产物是含三个羧基的柠檬酸。
糖代谢途径知识点总结
糖代谢途径知识点总结1. 糖的来源及转化:糖是生命体中最基本的能量来源之一,它主要来源于食物中的碳水化合物,如淀粉、蔗糖等。
糖在体内主要通过消化吸收、肝脏储存和释放等步骤进行转化,最终经过一系列的代谢反应转化为能量供给细胞使用。
2. 糖原的合成与降解:糖原是一种多聚糖,主要储存在肝脏和肌肉中,它是人体内最主要的能量储备物质。
当人体内的血糖浓度过高时,胰岛素的作用下,糖原会在肝脏和肌肉中合成并储存起来,以调节血糖的浓度。
而当体内需要能量时,糖原会被分解成葡萄糖并释放到血液中,供给全身各个组织细胞的能量需求。
3. 糖的磷酸化途径:糖的磷酸化是糖代谢的一个重要步骤,它发生在细胞内质膜上的糖磷酸合成途径中。
主要包括糖激酶的作用,将葡萄糖磷酸化为葡萄糖-6-磷酸等。
糖类的磷酸化是糖类代谢的起始关键环节,它不仅能使葡萄糖转化为更容易受控制的代谢产物,而且还能限制葡萄糖进入细胞的速率,从而保持细胞内的葡萄糖水平。
4. 糖酵解:糖酵解是糖代谢途径中的一个重要环节,它能将葡萄糖分解产生能量,是维持身体能量平衡的重要手段。
糖酵解共包括三个主要步骤:糖的预处理、三羧酸循环和线粒体内的氧化磷酸化。
在这些过程中,葡萄糖经过一系列酶的作用,分解成乳酸或乙醛和丙酮,释放出大量的ATP,供给细胞在活动中所需的能量。
5. 糖异生:糖异生是指细胞内非糖物质被合成为葡萄糖的过程,主要发生在肝脏和肾脏中。
当体内能量供给不足时,肝脏会通过糖异生途径将蛋白质或脂肪分解产生的丙酮酸、乳酸等合成葡萄糖,以满足全身组织细胞对能量的需求。
糖异生是体内糖代谢中的重要途径,能够保持血糖水平的稳定和维持正常的生理活动。
6. 糖类的磷酸化途径:在糖代谢途径中,糖可通过糖激酶酶这一酶的作用受磷酸化。
这一过程不仅是糖代谢的重要环节,同时也是体内维持能量平衡的重要手段,它能有效调控糖的代谢速率和保持细胞内的糖水平。
总结:糖代谢途径是细胞内进行能量代谢的重要途径之一,它通过合成与降解、磷酸化途径、酵解、异生等多个环节,将葡萄糖合理地转化为细胞内的能量源,从而维持身体的正常生理活动。
生物化学第五章糖代谢
生物化学第五章糖代谢第五章糖代谢一、糖类的生理功用:①氧化供能:糖类是人体最主要的供能物质,占全部供能物质供能量的70%;与供能有关的糖类主要是葡萄糖和糖原,前者为运输和供能形式,后者为贮存形式。
②作为结构成分:糖类可与脂类形成糖脂,或与蛋白质形成糖蛋白,糖脂和糖蛋白均可参与构成生物膜、神经组织等。
③作为核酸类化合物的成分:核糖和脱氧核糖参与构成核苷酸,DNA,RNA等。
④转变为其他物质:糖类可经代谢而转变为脂肪或氨基酸等化合物。
二、糖的无氧酵解:糖的无氧酵解是指葡萄糖在无氧条件下分解生成乳酸并释放出能量的过程。
其全部反应过程在胞液中进行,代谢的终产物为乳酸,一分子葡萄糖经无氧酵解可净生成两分子ATP。
糖的无氧酵解代谢过程可分为四个阶段:1. 活化(己糖磷酸酯的生成):葡萄糖经磷酸化和异构反应生成1,6-双磷酸果糖(FBP),即葡萄糖→6-磷酸葡萄糖→6-磷酸果糖→1,6-双磷酸果糖(F-1,6-BP)。
这一阶段需消耗两分子ATP,己糖激酶(肝中为葡萄糖激酶)和6-磷酸果糖激酶-1是关键酶。
2. 裂解(磷酸丙糖的生成):一分子F-1,6-BP裂解为两分子3-磷酸甘油醛,包括两步反应:F-1,6-BP→磷酸二羟丙酮+ 3-磷酸甘油醛和磷酸二羟丙酮→3-磷酸甘油醛。
3. 放能(丙酮酸的生成):3-磷酸甘油醛经脱氢、磷酸化、脱水及放能等反应生成丙酮酸,包括五步反应:3-磷酸甘油醛→1,3-二磷酸甘油酸→3-磷酸甘油酸→2-磷酸甘油酸→磷酸烯醇式丙酮酸→丙酮酸。
此阶段有两次底物水平磷酸化的放能反应,共可生成2×2=4分子ATP。
丙酮酸激酶为关键酶。
4.还原(乳酸的生成):利用丙酮酸接受酵解代谢过程中产生的NADH,使NADH重新氧化为NAD+。
即丙酮酸→乳酸。
三、糖无氧酵解的调节:主要是对三个关键酶,即己糖激酶(葡萄糖激酶)、6-磷酸果糖激酶-1、丙酮酸激酶进行调节。
己糖激酶的变构抑制剂是G-6-P;肝中的葡萄糖激酶是调节肝细胞对葡萄糖吸收的主要因素,受长链脂酰CoA的反馈抑制;6-磷酸果糖激酶-1是调节糖酵解代谢途径流量的主要因素,受ATP和柠檬酸的变构抑制,AMP、ADP、1,6-双磷酸果糖和2,6-双磷酸果糖的变构激活;丙酮酸激酶受1,6-双磷酸果糖的变构激活,受ATP的变构抑制,肝中还受到丙氨酸的变构抑制。
生物化学糖代谢知识点总结.doc
生物化学糖代谢知识点总结.doc糖代谢是指生物体利用糖类化合物进行生命活动所必需的合成和降解过程。
它是个复杂的化学反应链和代谢过程,涉及到多种生化反应和多个酶催化反应,同时也是维持生命的重要过程之一。
下面是生物化学糖代谢的知识点总结:1. 糖类化合物基础糖类化合物是指一类多元醇与醛或酮葡萄糖分子通过缩合反应而生成的化合物。
这类化合物可以简单分为单糖、双糖、多糖三类,其中单糖是构成生物体多种糖的基础单位。
最常见的单糖有葡萄糖(Glucose)、果糖(Fructose)、半乳糖(Galactose)等。
2. 糖代谢途径在生物体内,主要进行糖代谢途径分为两条:糖异构化途径和糖解途径。
前者是指糖分子在酶催化作用下转化为异构体的途径,后者是指将糖分子降解成各个代谢产物的途径。
单糖由异构化途径进入糖酵解途径,经过一系列酶催化反应分解为乳酸、丙酮酸或二氧化碳和水,产生 ATP 和 NADH 等物质能转化为化学能。
3. 糖异构化糖异构化途径是指糖分子在酶的催化作用下转化成异构体的过程。
在此过程中,一个糖分子的环化结构中的羟基与卤代物发生相互作用,使糖分子的环化结构发生变化,形成不同的异构体。
最常见的糖异构化途径有麦芽糖异构酶、果糖-1,6-二磷酸酶等。
根据研究,大多数人的肝脏细胞及小肠上皮细胞将小分子碳水化合物转化为葡萄糖。
但其他组织细胞也可以利用糖异生途径,这个过程包括在非糖元(如脂肪酸和氨基酸)存在的情况下,从前体化合物的合成中生成葡萄糖。
胰岛素及其反性会对该过程产生影响。
生物化学糖代谢涉及的范围很广,尤其和人和动物的生命健康息息相关,因此相应的研究和应用价值也很高。
随着现代科技水平的不断提高,生物化学糖代谢的概念和技术也在不断地完善和拓展。
生物化学第四章糖代谢
⽣物化学第四章糖代谢第四章糖代谢⼀、糖的主要⽣理功能是氧化供能1、⽣命活动中的主要作⽤是提供碳源和能源2、提供体内合成其他物质的原料3、作为机体组织细胞的组成成分⼆、汤的消化吸收主要在⼩肠进⾏三、糖的⽆氧氧化:在机体极度缺氧的条件下,葡萄糖经⼀系列酶促反应,⽣成丙酮酸,进⽽还原⽣成乳酸的过程,称为糖酵解,亦称为糖的⽆氧氧化。
糖酵解分为两个阶段:1、由葡萄糖分解为丙酮酸(2个),称之为糖酵解途径。
2、由丙酮酸转变成乳酸。
1、糖酵解总结:糖酵解的反应部位:胞浆糖酵解是⼀个不需氧的产能过程。
反应全过程中有三个不可逆反应G------(ATP)→(ADP)------G-6-P葡萄糖磷酸化为6-磷酸葡萄糖⼰糖激酶F-6-P------(ATP)→(ADP)------F-1,6-2P6-磷酸果糖转化为1,6⼆磷酸果糖磷酸果糖激酶-1PEP(磷酸烯醇式丙酮酸)------(ADP)→(ATP)-------丙酮酸丙酮酸激酶产能的⽅式和数量:⽅式:底物⽔平磷酸化净⽣成ATP数量:从G开始2*2-2=2ATP从Gn(糖原)开始2*2-1=3ATP终产物乳酸的去路:释放⼊⾎,进⼊肝脏再进⼀步代谢------分解利⽤乳酸循环(糖异⽣)调节⽅式:别构调节共价修饰调节3、糖酵解的主要⽣理意义是在机体缺氧的情况下快速供能四、糖的有氧氧化:机体氧供充⾜时,葡萄糖彻底氧化成H2O和CO2,并放出能量的过程。
是机体主要功能⽅式。
部位:胞液、线粒体1、糖有氧氧化的反应过程包括:糖酵解途径(葡萄糖循糖酵解途径分解为丙酮酸)丙酮酸氧化脱羧(丙酮酸进⼊线粒体氧化脱羧⽣成⼄酰C o A三磷酸循环(⼄酰C o A进⼊三羧酸循环以及氧化磷酸化⽣成ATP)氧化磷酸化2、三羧酸循环(TCA)是以形成柠檬酸为起始物的循环反应概念:⼄酰C o A与草酰⼄酸缩合⽣成含三个羧基的柠檬酸,反复的进⾏脱氢脱羧⼜⽣成草酰⼄酸,再重复循环反应过程部位:线粒体TCA反应由8步代谢反应组成三羧酸循环要点:经过⼀次三羧酸循环,消耗⼀个⼄酰C o A经过四次脱氢,两次脱羧,⼀次底物⽔平磷酸化⽣成1分⼦FADH,3分⼦NADH+H+ ,2分⼦CO,1分⼦GTP整个循环反应为不可逆反应三羧酸循环的中间反应起催化作⽤TCA循环受底物、产物和关键酶活性的调节TCP循环是3⼤营养物质代谢中具有重要⽣理意义:TCA循环是3⼤营养素的最终代谢通路,其作⽤在于通过四次脱氢,为氧化磷酸化反应⽣成ATP提供还原当量。
生物化学--糖代谢
COO-
C
O~ P
H2 O
CH2
烯醇化酶
磷酸烯醇式丙酮酸
(10)磷酸烯醇式丙酮酸旳磷酸转移
COO-
ADP ATP
C
O~ P
CH2
丙酮酸激酶
磷酸烯醇式丙酮酸
COO-
CO
CH
3
丙酮酸
2. 丙酮酸转变为乳酸
COOH NADH+H + NAD +
CO
CH
3
乳酸脱氢酶
丙酮酸
COOH
CHOH
CH
H2O
延胡索酸酶
COO-
HOCH
CH2 COO-
延胡索酸
苹果酸
反应8:苹果酸氧化生成草酰乙酸
乙酰-CoA H2O
草酰乙酸
苹果酸脱氢酶 (氧化)
苹果酸
NADH
柠檬酸合成酶 (缩合)
柠檬酸
顺乌头酸酶(脱水)
H2O
顺乌头酸
H2O
顺乌头酸酶
(水化)
异柠檬酸
H2O
延胡索酸酶
(加水)
延胡索酸
FADH2
NADH
非糖物质
血糖 肝、肌肉 合成糖原
(3.89~6.11mmol/L) 转变为
[血糖]> 8.9mmol/L
非糖物质
转变成其他 糖及衍生物
尿糖
血糖水平旳调整
正常情况,来路去路,维持动态平衡 1.肝脏调整 [血糖]正常水平,肝糖元Glc,[Glc]
糖异生作用加强 [血糖]正常水平,Glc肝糖元,[Glc]
糖异生作用减弱 2.肾脏调整
肾 糖 阈 : 肾 脏 所 能 保 持 旳 最 高 [Glc] 在 160180mg/dl,
生物化学糖代谢小结
糖代谢知识要点(一)糖酵解途径:糖酵解途径中,葡萄糖在一系列酶的催化下,经10 步反应降解为2 分子丙酮酸,同时产生2 分子NADH+H和2 分子ATP。
主要步骤为:(1)葡萄糖磷酸化形成二磷酸果糖;(2)二磷酸果糖分解成为磷酸甘油醛和磷酸二羟丙酮,二者可以互变;(3)磷酸甘油醛脱去2H 及磷酸变成丙酮酸,脱去的2H 被NAD所接受,形成NADH+H。
(二)丙酮酸的去路:(1)有氧条件下,丙酮酸进入线粒体氧化脱羧转变为乙酰辅酶A,同时产生1 分子NADH+H。
乙酰辅酶A 进入三羧酸循环,最后氧化为CO和HO。
(2)在厌氧条件下,可生成乳酸和乙醇。
同时NAD得到再生,使酵解过程持续进行。
(三)三羧酸循环:在线粒体基质中,丙酮酸氧化脱羧生成的乙酰辅酶A,再与草酰乙酸缩合成柠檬酸,进入三羧酸循环。
柠檬酸经脱水加水转变成异柠檬酸,异柠檬酸经连续两次脱羧和脱羧生成琥珀酰CoA;琥珀酰CoA 发生底物水平磷酸化产生1 分子GTP 和琥珀酸;琥珀酸再脱氢,加水及再脱氢作用依次变成延胡索酸,苹果酸及循环开始的草酰乙酸。
三羧酸循环每循环一次放出2 分子CO,产生3 分子NADH+H和一分子FADH。
(四)磷酸戊糖途径:在胞质中,在磷酸戊糖途径中磷酸葡萄糖经氧化阶段和非氧化阶段被氧化分解为CO,同时产生NADPH + H。
其主要过程是G-6-P 脱氧生成6-磷酸葡萄糖酸,再脱氢,脱羧生成核酮糖-5-磷酸。
6 分子核酮糖-5-磷酸经转酮反应和转醛反应生成5 分子6-磷酸葡萄糖。
中间产物甘油醛-3-磷酸,果糖-6-磷酸与糖酵解相衔接;核糖-5-磷酸是合成核酸的原料,4-磷酸赤藓糖参与芳香族氨基酸的合成;NADPH+H提供各种合成代谢所需要的还原力。
(五)糖异生作用:非糖物质如丙酮酸,草酰乙酸和乳酸等在一系列酶的作用下合成糖的过程,称为糖异生作用。
糖异生作用不是糖酵解的逆反应,因为要克服糖酵解的三个不可逆反应,且反应过程是在线粒体和细胞液中进行的。
(完整版)生物化学糖代谢知识点总结
各种组织细胞门静脉肠粘膜上皮细胞体循环 小肠肠腔 第六章糖代谢糖(carbohydrates)即碳水化合物,是指多羟基醛或多羟基酮及其衍生物或多聚物。
根据其水解产物的情况,糖主要可分为以下四大类: 单糖:葡萄糖(G )、果糖(F ),半乳糖(Gal ),核糖 双糖:麦芽糖(G-G ),蔗糖(G-F ),乳糖(G-Gal ) 多糖:淀粉,糖原(Gn ),纤维素 结合糖: 糖脂 ,糖蛋白其中一些多糖的生理功能如下: 淀粉:植物中养分的储存形式糖原:动物体内葡萄糖的储存形式 纤维素:作为植物的骨架一、糖的生理功能1. 氧化供能2. 机体重要的碳源3. 参与组成机体组织结构,调节细胞信息传递,形成生物活性物质,构成具有生理功能的糖蛋白。
二、糖代谢概况——分解、储存、合成三、糖的消化吸收食物中糖的存在形式以淀粉为主。
1.消化 消化部位:主要在小肠,少量在口腔。
消化过程:口腔 胃 肠腔 肠黏膜上皮细胞刷状缘吸收部位:小肠上段 吸收形式:单糖吸收机制:依赖Na+依赖型葡萄糖转运体(SGLT )转运。
2.吸收 吸收途径: SGLT 肝脏过程第二阶段:丙酮酸的氧化脱羧 第三阶段:三羧酸循环 第四阶段:氧化磷酸化CO 2NADH+H +FADH 2H 2O[O]TAC 循环ATPADP四、糖的无氧分解第一阶段:糖酵解 第二阶段:乳酸生成反应部位:胞液产能方式:底物水平磷酸化 净生成ATP 数量:2×2-2= 2ATPE1 E2E3 调节:糖无氧酵解代谢途径的调节主要是通过各种变构剂对三个关键酶进行变构调节。
生理意义:五、糖的有氧氧化1、反应过程E1:己糖激酶E2: 6-磷酸果糖激酶-1E3: 丙酮酸激酶NAD +乳 酸NADH+H + 关键酶 ① 己糖激酶 ② 6-磷酸果糖激酶-1 ③ 丙酮酸激酶调节方式 ① 别构调节② 共价修饰调节 ➢ 糖无氧氧化最主要的生理意义在于迅速提供能量,这对肌收缩更为重要。
➢ 是某些细胞在氧供应正常情况下的重要供能途径。
生物化学5第五章 糖代谢
丙酮酸脱氢酶复合体由三种酶单体构成:
丙酮酸脱氢酶(E1), 二氢硫辛酰胺转乙酰酶(E2), 二氢硫辛酰胺脱氢酶(E3)。
该多酶复合体有六种辅助因子: TPP,硫辛酸,NAD+,FAD,HSCoA和Mg2+。
整个反应中,中间产物不离开酶复合体,使反 应迅速完成,且没有游离的中间产物,不 会有副反应发生。
(一)葡萄糖经酵解途径生成丙酮酸:
• 此阶段在细胞胞液(cytoplasm)中进 行 , 一 分 子 葡 萄 糖 (glucose) 分 解 后 净生成2分子丙酮酸(pyruvate),2分 子ATP,和2分子(NADH + H+)。
• 两分子(NADH + H+)在有氧条件下 可 进 入 线 粒 体 (mitochondrion) 产 能 , 共 可 得 到 2×1.5 或 者 2×2.5 分 子 ATP 。 故第一阶段可净生成5或7分子ATP。
*
磷酸果糖激酶-1
(3) ATP ADP
2.裂解(lysis)——磷酸丙糖的生成:
• 一分子F-1,6-BP裂解为两分子可以互 变的磷酸丙糖(triose phosphate), 包括两步反应:
⑷ F-1,6-BP 裂 解 为 3- 磷 酸 甘 油 醛 (glyceraldehyde-3-phosphate) 和 磷 酸 二 羟 丙 酮 (dihydroxyacetone phosphate);
CaM:钙调蛋白
3 己糖激酶或葡萄糖激酶: 己糖激酶是肝脏调节葡萄糖吸收的主要的关键酶。
己糖激酶受产物6-磷酸葡萄糖反馈抑制。葡萄糖激酶 分子中没有6-磷酸葡萄糖变构部位,不受6-磷酸葡 萄糖反馈抑制。
己糖激酶有四种同工酶,肝细胞中是Ⅳ型叫葡萄糖激 酶,对葡萄糖亲和力低。
生物化学糖代谢小结
生物化学糖代谢小结糖代谢知识要点(一)糖酵解途径:糖酵解途径中,葡萄糖在一系列酶的催化下,经10 步反应降解为2 分子丙酮酸,同时产生2 分子NADH+H+与2 分子ATP。
主要步骤为:(1)葡萄糖磷酸化形成二磷酸果糖;(2)二磷酸果糖分解成为磷酸甘油醛与磷酸二羟丙酮,二者可以互变;(3)磷酸甘油醛脱去2H 及磷酸变成丙酮酸, 脱去的2H 被NAD+所接受,形成NADH+H+。
(二)丙酮酸的去路:(1)有氧条件下,丙酮酸进入线粒体氧化脱羧转变为乙酰辅酶A,同时产生1 分子NADH+H+。
乙酰辅酶A 进入三羧酸循环,最后氧化为CO2 与H2O。
(2)在厌氧条件下,可生成乳酸与乙醇。
同时NAD+得到再生,使酵解过程持续进行。
(三)三羧酸循环:在线粒体基质中,丙酮酸氧化脱羧生成的乙酰辅酶A,再与草酰乙酸缩合成柠檬酸,进入三羧酸循环。
柠檬酸经脱水加水转变成异柠檬酸,异柠檬酸经连续两次脱羧与脱羧生成琥珀酰CoA;琥珀酰CoA 发生底物水平磷酸化产生1 分子GTP 与琥珀酸;琥珀酸再脱氢,加水及再脱氢作用依次变成延胡索酸,苹果酸及循环开始的草酰乙酸。
三羧酸循环每循环一次放出2 分子CO2,产生3 分子NADH+H+,与一分子FADH2。
(四)磷酸戊糖途径:在胞质中,在磷酸戊糖途径中磷酸葡萄糖经氧化阶段与非氧化阶段被氧化分解为CO2,同时产生NADPH + H+。
其主要过程就是G-6-P 脱氧生成6-磷酸葡萄糖酸,再脱氢,脱羧生成核酮糖-5-磷酸。
6 分子核酮糖-5-磷酸经转酮反应与转醛反应生成5 分子6-磷酸葡萄糖。
中间产物甘油醛-3-磷酸,果糖-6-磷酸与糖酵解相衔接;核糖-5-磷酸就是合成核酸的原料,4-磷酸赤藓糖参与芳香族氨基酸的合成;NADPH+H+提供各种合成代谢所需要的还原力。
(五)糖异生作用:非糖物质如丙酮酸,草酰乙酸与乳酸等在一系列酶的作用下合成糖的过程,称为糖异生作用。
糖异生作用不就是糖酵解的逆反应,因为要克服糖酵解的三个不可逆反应,且反应过程就是在线粒体与细胞液中进行的。
生物化学糖代谢
生物化学糖代谢糖是生物体内最主要的能量来源之一,同时也具有许多重要的生物学功能。
糖代谢是生物体利用糖类化合物进行能量产生和物质合成的过程。
它包括糖的降解和合成两个主要过程。
本文将详细介绍糖的降解和合成途径,以及糖代谢在生物体内的作用。
一、糖的降解糖类化合物在细胞内经过一系列酶催化反应被降解成低分子产物,以产生能量和提供原料。
主要的糖降解途径包括糖酵解和糖解作用。
1. 糖酵解糖酵解是指葡萄糖通过一系列酶催化反应逐步分解成丙酮酸,产生ATP的过程。
糖酵解分为两个阶段,第一阶段是糖类分子的分解,产生丙酮酸与ATP和NADH,第二阶段是丙酮酸的氧化,进一步产生ATP和NADH。
这两个阶段共同完成了葡萄糖的降解,并释放出大量的能量。
2. 糖解作用糖解作用是指多糖类化合物通过酶的催化作用分解成低聚糖或单糖分子的过程。
常见的糖解作用包括淀粉的淀解、麦芽糖的水解和蔗糖的水解等。
这些糖解作用在生物体内起到提供能量和原料的作用。
二、糖的合成除了糖的降解,生物体还可以通过一系列酶催化反应将简单的碳水化合物转化为复杂的多糖类化合物的合成过程。
主要的糖合成途径包括糖异生和糖原合成。
1. 糖异生糖异生是指通过非糖原料合成糖类化合物的过程。
典型的糖异生途径是葡萄糖异生途径,其中胰岛素通过调节多种酶的活性,使非糖类物质如乳酸、甘油和氨基酸转化为葡萄糖,以满足生物体对葡萄糖的需求。
2. 糖原合成糖原是动物体内的一种能量储备物质,主要储存在肝脏和肌肉中。
糖原合成是指通过多糖短链的催化作用,将葡萄糖合成为糖原的过程。
这种储能的形式在机体需要时可以分解为葡萄糖,以满足能量需求。
三、糖代谢的生物学功能糖代谢在生物体内具有多种重要生物学功能,包括能量产生、物质合成和信号传递等。
1. 能量产生糖代谢是生物体产生能量的重要途径之一。
通过糖酵解和线粒体呼吸链的反应,糖类化合物可以被氧化分解,产生大量的ATP。
这种能量产生的过程对于细胞的正常代谢和生命活动至关重要。
【生物化学】糖代谢考点总结
【生物化学】糖代谢考点总结●糖的摄取与利用1、糖消化后以单体形式吸收:由于人体缺少β-葡糖苷酶,所以无法消化纤维素;缺乏乳糖酶——乳糖不耐受;葡萄糖被小肠粘膜细胞吸收后经门静脉入肝,再经血液循环供身体各组织细胞摄取2、细胞摄取葡萄糖需要转运蛋白: GLUT2 主要存在于肝和胰β细胞中,与葡萄糖的亲和力较低,使肝从餐后血中摄取过量的葡萄糖,并调节胰岛素分泌。
GLUT4主要存在于肌和脂肪组织中,以胰岛素依赖方式摄取葡萄糖,耐力训练可以使肌组织细胞膜上的GLUT4数量增加。
GLUT5 主要分布于小肠,是果糖进人细胞的重要转运载体。
3、体内糖代谢涉及分解、储存和合成三方面●糖的无氧氧化●糖的无氧氧化分为糖酵解和乳酸生成两个阶段●糖酵解①葡萄糖磷酸化生成葡糖-6-磷酸(第一个限速步骤):关键酶己糖激酶(肝细胞存在的是Ⅳ型,称为葡糖激酶,它对葡萄糖亲和力很低受激素调控,对葡糖-6-磷酸的反馈机制不敏感,所以只有当血糖显著升高时肝才会加快对葡萄糖的利用),需要Mg2+ ②葡糖-6-磷酸转变为果糖-6-磷酸:磷酸己糖异构酶,需要Mg2+参与的可逆反应③果糖-6-磷酸转变为果糖-1,6-二磷酸(第二个磷酸化反应,第二个限速反应):关键酶磷酸果糖激酶-1 ④果糖-1,6-二磷酸裂解成2分子磷酸丙糖:醛缩酶,磷酸二羟丙酮+3-磷酸甘油醛⑤磷酸二羟丙酮转变为3-磷酸甘油醛:磷酸丙糖异构酶;磷酸二羟丙酮还可转变为α-磷酸甘油是葡萄糖代谢联系脂肪代谢的重要枢纽物质⑥3-磷酸甘油醛氧化为1,3-二磷酸甘油酸(一次脱氢):3-磷酸甘油醛脱氢酶,以NAD+为辅酶接受氢和电子⑦1,3-二磷酸甘油酸转变成3-磷酸甘油酸(第一次底物水平磷酸化):磷酸甘油酸激酶,需要Mg2+ ⑧3-磷酸甘油酸转变为2-磷酸甘油酸:磷酸甘油酸变位酶,可逆,需要Mg2+ ⑨2-磷酸甘油酸脱水生成磷酸烯醇式丙酮酸:烯醇化酶⑩磷酸烯醇式丙酮酸发生底物水平磷酸化生成丙酮酸(第二次底物水平磷酸化,第三个限速反应):关键酶丙酮酸激酶,需要K+,Mg2+参与在糖酵解产能阶段的5步反应中,2分子磷酸丙糖经两次底物水平磷酸化生成4分子ATP●乳酸生成乳酸脱氢酶催化,所需的H原子由NADH+H+提供(来自于糖酵解的第六步脱氢反应中的H原子)●糖酵解的调节取决于三个关键酶活性己糖激酶(葡糖激酶)、磷酸果糖激酶-1、丙酮酸激酶●磷酸果糖激酶-1对调节糖酵解速率最重要1、ATP和柠檬酸是此酶的别构抑制剂2、磷酸果糖激酶-1有2个结合ATP 的位点,一个是活性中心内的催化部位, ATP作为底物与之结合;另一个是活性中心以外的别构部位,ATP作为别构抑制剂与之结合,别构部位与ATP的亲和力较低,因而需要较高浓度的ATP才能抑制酶活性。
糖代谢的知识点总结
糖代谢的知识点总结1. 糖的来源和分类糖是生物体内主要的能量来源之一,同时也是细胞结构和信息传递的重要组成部分。
糖类化合物可以来源于饮食摄入或者内源合成。
来自饮食摄入的糖类主要包括葡萄糖、果糖、半乳糖等,而内源合成的糖类则主要包括葡萄糖、葡萄糖酮等。
根据其化学结构,糖类可以分为单糖、双糖、多糖等不同的类别。
单糖包括葡萄糖、果糖、半乳糖等,是构成多糖和多糖的基本单位。
双糖是由两个单糖分子通过糖苷键连接而成,如蔗糖、乳糖等。
多糖是由多个单糖分子通过糖苷键连接而成,如淀粉、葡聚糖等。
不同种类的糖类在生物体内都具有各自特定的生物学功能和代谢途径。
2. 糖的吸收和转运在消化道内,食物中的碳水化合物被消化酶分解成单糖,在小肠上皮细胞内被吸收入血液循环。
被吸收的单糖通过上皮细胞内的转运蛋白转运进入血管,然后经血液循环运输到各个组织细胞内。
在细胞膜上存在多种类型的糖转运蛋白,包括Glut蛋白家族和SGLT蛋白家族等。
Glut蛋白家族主要负责细胞膜上的被动扩散转运,其在不同组织细胞内的表达量和亲和性也不尽相同。
SGLT蛋白家族则主要负责细胞膜上的主动转运,其存在于肾小管上皮细胞和肠黏膜上皮细胞等处,可以主动将葡萄糖等糖类转运进细胞内。
3. 糖的分解糖类在细胞内被分解成葡萄糖后,可以通过糖酵解途径和糖异生途径进行进一步的代谢。
糖酵解是指将葡萄糖分解成丙酮酸和丁二酸的过程,主要发生在细胞质中的细胞器内。
在糖酵解的过程中,葡萄糖分子先被磷酸化成果糖-1,6-二磷酸,然后通过一系列的酶催化反应最终产生丙酮酸和丁二酸。
这一过程中产生的ATP和NADH等高能化合物可以为细胞提供能量。
糖异生是指在机体内通过一系列酶催化反应将非糖类物质合成成糖类的代谢途径。
在糖异生的过程中,一些非糖类物质如乳酸、甘油、葡萄糖酸等可以被合成成葡萄糖分子。
这一生物合成途径在肝脏中尤为重要,可以维持血糖稳定并提供足够的能量。
4. 糖的利用糖在细胞内可以通过不同的代谢途径产生ATP和其他高能化合物,为细胞提供所需的能量。
【生物化学】糖代谢
【生物化学】糖代谢第六章糖代谢1.糖的化学本质(即组成):多羟基醛或多羟基酮类及其衍生物或多聚物2.糖的生理功能:①氧化供能②组成人体组织结构的重要成分③参与构成体内一些重要的生物活性物质④提供碳源3.糖的无氧分解指机体在不消耗氧的情况下,葡萄糖或糖原分解产生乳酸并产生能量的过程,又称糖酵解(糖酵解的全部反应过程在细胞胞浆中进行)4.糖酵解反应过程:㈠第一大阶段:葡萄糖或糖原转变生成丙酮酸,又称糖酵解途径;㈡第二大阶段:丙酮酸被还原为乳酸★三个限速酶:己糖激酶、6—磷酸果糖激酶—1、丙酮酸激酶(丙、己、磷)底物水平磷酸化能量物质在分解代谢过程中产生的高能化合物,其高能键裂解所释放的能量,驱使ADP磷酸化,产生ATP的过程,称为底物水平磷酸化。
底物水平磷酸化是糖酵解的产能方式。
★两次底物水平磷酸化是①1,3—二磷酸甘油酸→3—磷酸甘油酸②磷酸烯醇式丙酮酸→丙酮酸糖酵解的反应特点:①整个反映在细胞液中进行,起始物为葡萄糖或糖原,终产物为乳酸;②糖酵解是一个无需氧的过程;③糖酵解通过底物水平磷酸化可产生少量能量,每一分子葡萄糖净生成2分子ATP,糖原生成3分子ATP。
因此,通过糖酵解只能产生少量ATP④糖酵解中的己糖激酶、6—磷酸果糖激酶—1、丙酮酸激酶为糖酵解过程中的关键酶,分别催化了3步不可逆的单向反应⑶糖酵解的调节:①激素的调节;②代谢物对限速酶的变构调节★糖酵解的生理意义:①使机体在不消耗氧的情况下获取能量的有效方式;②是某些细胞在氧供应正常的情况下的重要供能途径:Ⅰ无线粒体的细胞Ⅱ代谢活跃的细胞;③某些病理情况下,组织细胞处于缺血缺氧状态,也需要通过糖酵解获取能量;④糖酵解的中间产物是氨基酸,是脂类合成前体糖的有氧氧化部位:胞液及线粒体⑴葡萄糖或糖原生成丙酮酸⑵丙酮酸氧化(→脱H)脱羧(→生成CO2)生成乙酰辅酶A:在线粒体中进行,关键酶:丙酮酸脱氢酶复合体⑶三羧酸循环:指乙酰辅酶A和草酰乙酸缩合成含三个羧基的柠檬酸,反复进行脱氢脱羧,又生成草酰乙酸,再重复循环反映的过程。
生化第五章_生物化学糖与糖代谢知识总结
糖与糖代谢糖类单糖二羟丙酮没有手性缩醛和缩酮反应酮糖和醛糖的互变所有的单糖都是还原性的呈色反应Molish反应糖类与非糖类Seliwanoff反应酮糖和醛糖间苯三酚反应戊糖和其他单糖寡糖多糖贮能多糖淀粉、糖原和右旋糖酐结构多糖纤维素、几丁质和肽聚糖糖酵解概述全部反应葡萄糖的磷酸化不可逆磷酸葡糖的异构化6-磷酸葡糖-转变成6-磷酸果糖磷酸果糖的磷酸化糖酵解的限速步骤、不可逆1,6-二磷酸果糖的裂解由醛缩酶催化磷酸丙糖的异构化反应机制涉及烯二醇中间体产生4 ATP3-磷酸甘油醛的脱氢整个糖酵解途径唯一的一步氧化还原第一步底物水平的磷酸化从高能磷酸化合物合成ATP磷酸甘油酸的变位磷酸基团从 C-3转移到C-2PEP的形成甘油酸-2-磷酸转变成 PEP、由烯醇化酶催化第二步底物水平的磷酸化PEP转化成丙酮酸,同时产生 ATP、不可逆、产生两个ATPNADH和丙酮酸的去向有氧状态NADH的命运:NADH在呼吸链被彻底氧化成H2O并 产生更多的ATP。
丙酮酸的命运:丙酮酸经过线粒体内膜上丙酮酸运输 体与质子一起进入线粒体基质,被基质内的丙酮酸脱 氢酶系氧化成乙酰-Co A缺氧状态或无氧状态乳酸发酵酒精发酵生理意义糖酵解的调节磷酸戊糖途径概述全部反应氧化相非氧化相功能调节糖异生概述糖异生的底物(动物)丙酮酸, 乳酸, 甘油, 生糖氨基酸,所有TCA循 环的中间物偶数脂肪酸不行因为偶数脂肪酸氧化只能产生乙酰CoA,而乙 酰CoA不能提供葡萄糖的净合成(奇数脂肪酸 可以)糖异生涉及的反应丙酮酸的羧化丙酮酸羧化酶催化,需要生物素(VB7)PEP的形成消耗GTP1,6 -二磷酸酶果糖的水解将 F-1,6-P水解成F-6-P6-磷酸葡糖的水解催化6-磷酸葡糖水解成葡萄糖生理功能植物和某些微生物使用乙酸作为糖异生的前体,使得 它们能以乙酸作为唯一碳源调节糖异生调节与糖酵解调节是高度协调的糖原代谢糖原的分解糖原磷酸化酶、糖原脱支酶、磷酸葡糖异构酶脱支酶具有1,4→1,4-葡萄糖糖基转移酶活性糖原合成糖原代谢的调节三羧酸循环概述全部反应柠檬酸的合成不可逆反应,由柠檬酸合酶催化柠檬酸的异构化柠檬酸异构化成异柠檬酸异柠檬酸的脱氢异柠檬酸氧化脱羧产生α-酮戊二酸、不可逆α-酮戊二酸的氧化脱羧第二次氧化脱羧反应(不可逆)底物水平的磷酸化TCA循环唯一的一步底物水平磷酸化反应琥珀酸的脱氢产生FADH2富马酸的形成双键的水合草酰乙酸的再生依赖于NAD+-的氧化还原反应、第四次氧化还原反应、苹果酸脱氢酶TCA 循环总结TCA循环的功能乙醛酸循环三羧酸循环的调控。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生物化学知识点总结|生物化学糖代谢总结【考纲要求】
1.糖的分解代谢:①糖酵解基本途径、关键酶和生理意义;②有氧氧化基本途径及供能;③三羧酸循环的生理意义。
2.糖原的合成与分解:①肝糖原的合成;②肝糖原的分解。
3.糖异生:①糖异生的基本途径;②糖异生的生理意义;
③乳酸循环。
4.磷酸戊糖途径:①磷酸戊糖途径的关键酶和生成物;
②磷酸戊搪途径的生理意义。
5.血糖及其调节:①血糖浓度;②胰岛素的调节;③胰高血糖素的调节;④糖皮质激素的调节。
6.糖蛋白及蛋白聚糖:①糖蛋白概念;②蛋白聚糖概念。
【考点纵览】
1.限速酶:己糖激酶,磷酸果糖激酶,丙酮酸激酶;净生成atp;2分子atp;产物:乳酸
2.糖原合成的关键酶是糖原合成酶。
糖原分解的关键酶是磷酸化酶。
3.能进行糖异生的物质主要有:甘油、氨基酸、乳酸、丙酮酸。
糖异生的四个关键酶:丙酮酸羧化酶,磷酸烯醇式丙酮酸羧激酶,果糖二磷酸酶,葡萄糖-6-磷酸酶。
4.磷酸戊糖途径的关键酶,6-磷酸葡萄糖脱氢酶,6-磷酸葡萄糖脱氢酶。
5.血糖浓度:3.9~
6.1mmol/l.
6.肾糖域概念及数值。
【历年考题点津】
1.不能异生为糖的是
a.甘油
b.氨基酸
c.脂肪酸
d.乳酸
e.丙酮酸
答案:c
2.1mol丙酮酸在线粒体内彻底氧化生成atp的mol数量是
a.12
b.15
c.18
d.21
e.24
答案:b
(3~7题共用备选答案)
a.果糖二磷酸酶-1
b.6-磷酸果糖激酶
c.hmgcoa还原酶
d.磷酸化酶[医学教育网搜集整理]
e. hmgcoa合成酶
3.糖酵解途径中的关键酶是
答案:b
4.糖原分解途径中的关键酶是答案:d
5.糖异生途径中的关键酶是
答案:a
6.参与酮体和胆固醇合成的酶是答案:e
7.胆固醇合成途径中的关键酶是答案:c
8.糖酵解的关键酶是
a.3-磷酸甘油醛脱氢酶
b.丙酮酸脱氢酶
c.磷酸果糖激酶一1
d.磷酸甘油酸激酶
e.乳酸脱氢酶
答案:c
(9~12题共用备选答案)
a.6-磷酸葡萄糖脱氢酶
b.苹果酸脱氢酶
c.丙酮酸脱氢酶
d. nadh脱氢酶
e.葡萄糖-6-磷酸酶价
9.呼吸链中的酶是
答案:d
10.属三羧酸循环中的酶是
答案:b
11.属磷酸戊糖通路的酶是
答案:a
12.属糖异生的酶是
答案:e
13.下列关于己糖激酶叙述正确的是
a.己糖激酶又称为葡萄糖激酶
b.它催化的反应基本上是可逆的
c.使葡萄糖活化以便参加反应
d.催化反应生成6-磷酸果酸
e.是酵解途径的唯一的关键酶
答案:c
14.在酵解过程中催化产生nadh和消耗无机磷酸的酶是
a.乳酸脱氢酶
b. 3-磷酸甘油醛脱氢酶
c.醛缩酶
d.丙酮酸激酶
e.烯醇化酶
答案:b
15.进行底物水平磷酸化的反应是
a.葡萄糖→6-磷酸葡萄糖
b. 6-磷酸果糖→1,6-二磷酸果糖
c.3-磷酸甘油醛→1,3-二磷酸甘油酸
d.琥珀酰coa→琥珀酸
e.丙酮酸→乙酰coa[医学教育网搜集整理] 答案:d
16.乳酸循环所需的nadh主要来自
a.三羧酸循环过程中产生的nadh
b.脂酸β-氧化过程中产生的nadh
c.糖酵解过程中3-磷酸甘油醛脱氢产生的nadh
d.磷酸戊糖途径产生的nadph经转氢生成的nadh
e.谷氨酸脱氢产生的nadh
答案:c
(17~18题共用备选答案)
a.6-磷酸葡萄糖脱氢酶
b.苹果酸脱氢酶
c.丙酮酸脱氢酶
d. nadh脱氢酶
e.葡萄糖-6-磷酸酶
17.属于磷酸戊糖通路的酶是
答案:a
18.属于糖异生的酶是
答案:e
19.糖尿出现时,全血血糖浓度至少为
a.83.33mmol/l(1500mg/dl)
b.66.67mmol/l(1200mg/dl)
c.27.78mmol/l(500mg/dl)
d.11.11mmol/l(200mg/dl)
e.8.89mmol/l(160mg/dl) 答案:e。