山东省枣庄市年中考数学试卷(word解析版)

合集下载

山东省枣庄市2021年中考数学试题真题(Word版+答案+解析)

山东省枣庄市2021年中考数学试题真题(Word版+答案+解析)

山东省枣庄市2021年中考数学试卷一、单选题1.(2021·徐州模拟)-5的倒数是( )A. 5B. -5C. −15 D. 152.(2018·海南)将一把直尺和一块含30°和60°角的三角板ABC 按如图所示的位置放置,如果∠CDE=40°,那么∠BAF 的大小为( )A. 10°B. 15°C. 20°D. 25°3.(2021·枣庄)将如图的七巧板的其中几块,拼成一个多边形,为轴对称图形的是( )A.B.C.D.4.(2018·贵阳)如图,数轴上有三个点A,B,C,若点A,B表示的数互为相反数,则图中点C对应的数是()A. ﹣2B. 0C. 1D. 45.(2020·宜宾)计算正确的是()A. 3a+2b=5abB. (−2a)2=−4a2C. (a+1)2=a2+2a+1D. a3⋅a4=a126.(2020·潍坊)为调动学生参与体育锻炼的积极性,某校组织了一分钟跳绳比赛活动,体育组随机抽取了10名参赛学生的成绩,将这组数据整理后制成统计表:则关于这组数据的结论正确的是()A. 平均数是144B. 众数是141C. 中位数是144.5D. 方差是5.47.(2021·枣庄)小明有一个呈等腰三角形的积木盒,现在积木盒中只剩下如图的九个空格,下面有四种积木的搭配,其中不能放入的有()A. 搭配①B. 搭配②C. 搭配③D. 搭配④8.(2021·枣庄)如图,四边形ABCD是菱形,对角线AC,BD相交于点O,AC=6√3,BD= 6,点P是AC上一动点,点E是AB的中点,则PD+PE的最小值为()A. 3√3B. 6√3C. 3D. 6√29.(2018·青岛)如图,三角形纸片ABC,AB=AC,∠BAC=90°,点E为AB中点.沿过点E的直线折叠,使点B与点A重合,折痕现交于点F.已知EF= 32,则BC的长是()A. 3√22B. 3√2C. 3D. 3√310.(2021·枣庄)在平面直角坐标系xOy中,直线AB垂直于x轴于点C(点C在原点的右侧),并分别与直线y=x和双曲线y=2x相交于点A,B,且AC+BC=4,则△OAB的面积为()A. 2+√2或2−√2B. 2√2+2或2√2−2C. 2−√2D. 2√2+211.(2020·黔东南州)如图,正方形ABCD的边长为2,O为对角线的交点,点E、F分别为BC、AD的中点.以C为圆心,2为半径作圆弧BD⌢,再分别以E、F为圆心,1为半径作圆弧BO⌢、OD⌢,则图中阴影部分的面积为()A. π﹣1B. π﹣2C. π﹣3D. 4﹣π12.(2021·枣庄)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,对称轴为x=12,且经过点(2,0).下列说法:① abc<0;② −2b+c=0;③ 4a+2b+c<0;④若(−12,y1),(52,y2)是抛物线上的两点,则y1<y2;⑤ 14b+c>m(am+b)+c(其中m≠12).正确的结论有()A. 2个B. 3个C. 4个D. 5个二、填空题13.(2021·枣庄)已知x ,y 满足方程组 {4x +3y =−12x +y =3,则x+y 的值为________. 14.(2021·枣庄)幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫图.将数字1~9分别填入如图所示的幻方中,要求每一横行、每一竖行以及两条斜对角线上的数字之和都是15,则 m 的值为________.15.(2021·枣庄)如图,正比例函数 y 1=k 1x(k 1≠0) 与反比例函数 y 2=k 2x(k 2≠0) 的图象相交于 A ,B 两点,其中点 A 的横坐标为1.当 k 1x <k 2x时, x 的取值范围是________.16.如图,在平面直角坐标系xOy中,△A′B′C′由△ABC绕点P旋转得到,则点P的坐标为________ .17.(2021·枣庄)若等腰三角形的一边长是4,另两边的长是关于x的方程x2−6x+n=0的两个根,则n的值为________.18.(2021·枣庄)如图,∠BOD=45°,BO=DO,点A在OB上,四边形ABCD是矩形,连接AC,BD交于点E,连接OE交AD于点F.下列4个判断:① OE⊥BD;② ∠ADB= 30°;③ DF=√2AF;④若点G是线段OF的中点,则△AEG为等腰直角三角形,其中,判断正确的是________.(填序号)三、解答题19.(2018·寮步模拟)先化简,再求值,xx2−1÷(1+1x−1)其中x=√2−120.(2021·枣庄)“大千故里,文化内江”,我市某中学为传承大千艺术精神,征集学生书画作品.王老师从全校20个班中随机抽取了A,B,C,D4个班,对征集作品进行了数量分析统计,绘制了如下两幅不完整的统计图.(1)王老师采取的调查方式是________ (填“普查”或“抽样调查”),王老师所调查的4个班共征集到作品________ 件,并补全条形统计图________;(2)在扇形统计图中,表示C班的扇形周心角的度数为________;(3)如果全校参展作品中有4件获得一等奖,其中有1名作者是男生,3名作者是女生.现要从获得一等奖的作者中随机抽取两人去参加学校的总结表彰座谈会,求恰好抽中一男一女的概率.(要求用树状图或列表法写出分析过程)21.(2020·郴州)2020年5月5日,为我国载人空间站工程研制的长征五号运较火箭在海南文昌首飞成功.运载火箭从地面O处发射、当火箭到达点A时,地面D处的雷达站测得AD=4000米,仰角为30°.3秒后,火箭直线上升到达点B处,此时地面C处的雷达站测得B处的仰角为45°.已知C,D两处相距460米,求火箭从A到B处的平均速度(结果精确到1米,参考数据:√3≈1.732,√2≈1.414)22.(2021·枣庄)小明根据学习函数的经验,参照研究函数的过程与方法,对函数y=x−2x(x≠0)的图象与性质进行探究.因为y=x−2x =1−2x,即y=−2x+1,所以可以对比函数y=−2x来探究.(1)观察图象并分析表格,回答下列问题:①当x<0时,y随x的增大而________;(填“增大”或“减小”)②函数y=x−2x 的图象是由y=−2x的图象向________ 平移________ 个单位而得到.③函数图象关于点________ 中心对称.(填点的坐标)(2)列表:下表列出y与x的几组对应值,请写出m,n的值:m=________,n=________;x252(3)描点:在平面直角坐标系中,以自变量x的取值为横坐标,以y=x−2x相应的函数值为纵坐标,描出相应的点,如图所示:请把y轴左边各点和右边各点,分别用条光滑曲线顺次连接起来:23.(2021·枣庄)如图,⊙O是△ABC的外接圆,点O在BC边上,∠BAC的平分线交⊙O于点D,连接BD,CD,过点D作⊙O的切线与AC的延长线交于点P.(1)求证:DP//BC;(2)求证:△ABD∽△DCP;(3)当AB=5cm,AC=12cm时,求线段PC的长.24.(2021·枣庄)如图1,对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由;(2)性质探究:如图1,垂美四边形ABCD的对角线AC,BD交于点O.猜想:AB2+CD2与AD2+BC2有什么关系?并证明你的猜想.(3)解决问题:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连结CE,BG,GE.已知AC=4,AB=5,求GE的长.x+3与x轴交于点A,与y轴交于点25.(2021·枣庄)如图,在平面直角坐标系中,直线y=−12x2+bx+c经过坐标原点和点A,顶点为点M.B,抛物线y=13(1)求抛物线的关系式及点M的坐标;时,求E (2)点E是直线AB下方的抛物线上一动点,连接EB,EA,当△EAB的面积等于252点的坐标;(3)将直线AB向下平移,得到过点M的直线y=mx+n,且与x轴负半轴交于点C,取点D(2,0),连接DM,求证:∠ADM−∠ACM=45°.答案解析部分一、单选题1.【答案】C【考点】有理数的倒数)=1,【解析】【解答】解:∵−5×(−15∴-5的倒数是−1,5故答案为:C.【分析】用1除以这个数的商,由此可求解.2.【答案】A【考点】平行线的性质,三角形的外角性质【解析】【解答】解:由题意知DE∥AF,∴∠AFD=∠CDE=40°,∵∠B =30°,∴∠BAF=∠AFD﹣∠B= 40°﹣30°=10°,故答案为:A.【分析】根据二直线平行同位角相等得出∠AFD=∠CDE=40°,根据三角形的外角定理得出,又∠BAF=∠AFD﹣∠B算出答案。

最新山东省枣庄市年中考数学试卷(解析版)

最新山东省枣庄市年中考数学试卷(解析版)

山东省枣庄市2019年中考数学试卷(解析版)一、选择题(本大题共12小题,每小题3分,共36分)1.下列计算,正确地是()A.﹣=B.|﹣2|=﹣C.=2D.()﹣1=22.将数字“6”旋转180°,得到数字“9”,将数字“9”旋转180°,得到数字“6”,现将数字“69”旋转180°,得到地数字是()A.96 B.69 C.66 D.993.如图,将一副三角板和一张对边平行地纸条按下列方式摆放,两个三角板地一直角边重合,含30°角地直角三角板地斜边与纸条一边重合,含45°角地三角板地一个顶点在纸条地另一边上,则∠1地度数是()A.15°B.22.5°C.30°D.45°4.实数a,b在数轴上对应点地位置如图所示,化简|a|+地结果是()A.﹣2a+b B.2a﹣b C.﹣b D.b5.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩地平均数与方差:甲乙丙丁平均数(cm)185 180 185 180 方差 3.6 3.6 7.4 8.1根据表中数据,要从中选择一名成绩好且发挥稳定地运动员参加比赛,应该选择()A.甲B.乙C.丙D.丁6.如图,在△ABC中,∠A=78°,AB=4,AC=6,将△ABC沿图示中地虚线剪开,剪下地阴影三角形与原三角形不相似地是()A.B. C.D.7.如图,把正方形纸片ABCD沿对边中点所在地直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上地点F处,折痕为BE.若AB地长为2,则FM地长为()A.2 B.C.D.18.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB 于点M,N,再分别以点M,N为圆心,大于MN地长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD地面积是()A.15 B.30 C.45 D.609.如图,O是坐标原点,菱形OABC地顶点A地坐标为(﹣3,4),顶点C在x轴地负半轴上,函数y=(x<0)地图象经过顶点B,则k地值为()A.﹣12 B.﹣27 C.﹣32 D.﹣3610.如图,在网格(每个小正方形地边长均为1)中选取9个格点(格线地交点称为格点),如果以A为圆心,r为半径画圆,选取地格点中除点A外恰好有3个在圆内,则r地取值范围为()A.2<r<B.<r<3C.<r<5 D.5<r<11.如图,直线y=x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB地中点,点P为OA上一动点,PC+PD值最小时点P地坐标为()A.(﹣3,0)B.(﹣6,0)C.(﹣,0)D.(﹣,0)12.已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确地是()A.当a=1时,函数图象经过点(﹣1,1)B.当a=﹣2时,函数图象与x轴没有交点C.若a<0,函数图象地顶点始终在x轴地下方D.若a>0,则当x≥1时,y随x地增大而增大二、填空题(本大题共6小题,每小题4分,共24分)13.化简:÷= .14.已知关于x地一元二次方程ax2﹣2x﹣1=0有两个不相等地实数根,则a地取值范围是.15.已知是方程组地解,则a2﹣b2= .16.如图,在▱ABCD中,AB为⊙O地直径,⊙O与DC相切于点E,与AD相交于点F,已知AB=12,∠C=60°,则地长为.17.如图,反比例函数y=地图象经过矩形OABC地边AB地中点D,则矩形OABC地面积为.18.在矩形ABCD中,∠B地角平分线BE与AD交于点E,∠BED地角平分线EF与DC交于点F,若AB=9,DF=2FC,则BC= .(结果保留根号)三、解答题(本大题共7小题,共60分)19.x取哪些整数值时,不等式5x+2>3(x﹣1)与x≤2﹣都成立?20.为发展学生地核心素养,培养学生地综合能力,某学校计划开设四门选修课:乐器、舞蹈、绘画、书法,学校采取随机抽样地方法进行问卷调查(每个被调查地学生必须选择而且只能选择其中一门).对调查结果进行整理,绘制成如下两幅不完整地统计图,请结合图中所给信息解答下列问题:(1)本次调查地学生共有人,在扇形统计图中,m地值是;(2)将条形统计图补充完整;(3)在被调查地学生中,选修书法地有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加某社区组织地书法活动,请写出所抽取地2名同学恰好是1名男同学和1名女同学地概率.21.如图,在平面直角坐标系中,已知△ABC三个顶点地坐标分别是A(2,2),B(4,0),C(4,﹣4).(1)请在图中,画出△ABC向左平移6个单位长度后得到地△A1B1C1;(2)以点O为位似中心,将△ABC缩小为原来地,得到△A2B2C2,请在图中y轴右侧,画出△A2B2C2,并求出∠A2C2B2地正弦值.22.如图,在△ABC中,∠C=90°,∠BAC地平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径地圆恰好经过点D,分别交AC,AB于点E,F.(1)试判断直线BC与⊙O地位置关系,并说明理由;(2)若BD=2,BF=2,求阴影部分地面积(结果保留π).23.我们知道,任意一个正整数n都可以进行这样地分解:n=p×q(p,q是正整数,且p ≤q),在n地所有这种分解中,如果p,q两因数之差地绝对值最小,我们就称p×q是n 地最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12地最佳分解,所以F(12)=.(1)如果一个正整数m是另外一个正整数n地平方,我们称正整数m是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上地数与十位上地数得到地新数减去原来地两位正整数所得地差为36,那么我们称这个数t为“吉祥数”,求所有“吉祥数”;(3)在(2)所得“吉祥数”中,求F(t)地最大值.24.已知正方形ABCD,P为射线AB上地一点,以BP为边作正方形BPEF,使点F在线段CB 地延长线上,连接EA,EC.(1)如图1,若点P在线段AB地延长线上,求证:EA=EC;(2)如图2,若点P在线段AB地中点,连接AC,判断△ACE地形状,并说明理由;(3)如图3,若点P在线段AB上,连接AC,当EP平分∠AEC时,设AB=a,BP=b,求a:b及∠AEC地度数.25.如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B,与y轴交于点C,点B坐标为(6,0),点C坐标为(0,6),点D是抛物线地顶点,过点D作x轴地垂线,垂足为E,连接BD.(1)求抛物线地解析式及点D地坐标;(2)点F是抛物线上地动点,当∠FBA=∠BDE时,求点F地坐标;(3)若点M是抛物线上地动点,过点M作MN∥x轴与抛物线交于点N,点P在x轴上,点Q在坐标平面内,以线段MN为对角线作正方形MPNQ,请写出点Q地坐标.2019年山东省枣庄市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.下列计算,正确地是()A.﹣=B.|﹣2|=﹣C.=2D.()﹣1=2【考点】24:立方根;1A:有理数地减法;22:算术平方根;6F:负整数指数幂.【分析】根据立方根地概念、二次根式地加减运算法则、绝对值地性质、负整数指数幂地运算法则计算,即可判断.【解答】解:﹣=2﹣=,A错误;|﹣2|=,B错误;=2,C错误;()﹣1=2,D正确,故选:D.2.将数字“6”旋转180°,得到数字“9”,将数字“9”旋转180°,得到数字“6”,现将数字“69”旋转180°,得到地数字是()A.96 B.69 C.66 D.99【考点】R1:生活中地旋转现象.【分析】直接利用中心对称图形地性质结合69地特点得出答案.【解答】解:现将数字“69”旋转180°,得到地数字是:69.故选:B.3.如图,将一副三角板和一张对边平行地纸条按下列方式摆放,两个三角板地一直角边重合,含30°角地直角三角板地斜边与纸条一边重合,含45°角地三角板地一个顶点在纸条地另一边上,则∠1地度数是()A.15°B.22.5°C.30°D.45°【考点】JA:平行线地性质.【分析】过A点作AB∥a,利用平行线地性质得AB∥b,所以∠1=∠2,∠3=∠4=30°,加上∠2+∠3=45°,易得∠1=15°.【解答】解:如图,过A点作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选:A.4.实数a,b在数轴上对应点地位置如图所示,化简|a|+地结果是()A.﹣2a+b B.2a﹣b C.﹣b D.b【考点】73:二次根式地性质与化简;29:实数与数轴.【分析】直接利用数轴上a,b地位置,进而得出a<0,a﹣b<0,再利用绝对值以及二次根式地性质化简得出答案.【解答】解:由图可知:a<0,a﹣b<0,则|a|+=﹣a﹣(a﹣b)=﹣2a+b.故选:A.5.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩地平均数与方差:甲乙丙丁平均数(cm)185 180 185 180 方差 3.6 3.6 7.4 8.1根据表中数据,要从中选择一名成绩好且发挥稳定地运动员参加比赛,应该选择()A.甲B.乙C.丙D.丁【考点】W7:方差;W1:算术平均数.【分析】首先比较平均数,平均数相同时选择方差较小地运动员参加.【解答】解:∵=>=,∴从甲和丙中选择一人参加比赛,∵=<<,∴选择甲参赛,故选:A.6.如图,在△ABC中,∠A=78°,AB=4,AC=6,将△ABC沿图示中地虚线剪开,剪下地阴影三角形与原三角形不相似地是()A.B. C.D.【考点】S8:相似三角形地判定.【分析】根据相似三角形地判定定理对各选项进行逐一判定即可.【解答】解:A、阴影部分地三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;B、阴影部分地三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;C、两三角形地对应边不成比例,故两三角形不相似,故本选项正确.D、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误;故选C.7.如图,把正方形纸片ABCD沿对边中点所在地直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上地点F处,折痕为BE.若AB地长为2,则FM地长为()A.2 B.C.D.1【考点】PB:翻折变换(折叠问题).【分析】根据翻折不变性,AB=FB=2,BM=1,在Rt△BFM中,可利用勾股定理求出FM地值.【解答】解:∵四边形ABCD为正方形,AB=2,过点B折叠纸片,使点A落在MN上地点F 处,∴FB=AB=2,BM=1,则在Rt△BMF中,FM=,故选:B.8.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB 于点M,N,再分别以点M,N为圆心,大于MN地长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD地面积是()A.15 B.30 C.45 D.60【考点】KF:角平分线地性质.【分析】判断出AP是∠BAC地平分线,过点D作DE⊥AB于E,根据角平分线上地点到角地两边距离相等可得DE=CD,然后根据三角形地面积公式列式计算即可得解.【解答】解:由题意得AP是∠BAC地平分线,过点D作DE⊥AB于E,又∵∠C=90°,∴DE=CD,∴△ABD地面积=AB•DE=×15×4=30.故选B.9.如图,O是坐标原点,菱形OABC地顶点A地坐标为(﹣3,4),顶点C在x轴地负半轴上,函数y=(x<0)地图象经过顶点B,则k地值为()A.﹣12 B.﹣27 C.﹣32 D.﹣36【考点】L8:菱形地性质;G6:反比例函数图象上点地坐标特征.【分析】根据点C地坐标以及菱形地性质求出点B地坐标,然后利用待定系数法求出k地值即可.【解答】解:∵A(﹣3,4),∴OA==5,∵四边形OABC是菱形,∴AO=CB=OC=AB=5,则点B地横坐标为﹣3﹣5=﹣8,故B地坐标为:(﹣8,4),将点B地坐标代入y=得,4=,解得:k=﹣32.故选C.10.如图,在网格(每个小正方形地边长均为1)中选取9个格点(格线地交点称为格点),如果以A为圆心,r为半径画圆,选取地格点中除点A外恰好有3个在圆内,则r地取值范围为()A.2<r<B.<r<3C.<r<5 D.5<r<【考点】M8:点与圆地位置关系;KQ:勾股定理.【分析】利用勾股定理求出各格点到点A地距离,结合点与圆地位置关系,即可得出结论.【解答】解:给各点标上字母,如图所示.AB==2,AC=AD==,AE==3,AF==,AG=AM=AN==5,∴<r<3时,以A为圆心,r为半径画圆,选取地格点中除点A外恰好有3个在圆内.故选B.11.如图,直线y=x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB地中点,点P为OA上一动点,PC+PD值最小时点P地坐标为()A.(﹣3,0)B.(﹣6,0)C.(﹣,0)D.(﹣,0)【考点】F8:一次函数图象上点地坐标特征;PA:轴对称﹣最短路线问题.【分析】(方法一)根据一次函数解析式求出点A、B地坐标,再由中点坐标公式求出点C、D地坐标,根据对称地性质找出点D′地坐标,结合点C、D′地坐标求出直线CD′地解析式,令y=0即可求出x地值,从而得出点P地坐标.(方法二)根据一次函数解析式求出点A、B地坐标,再由中点坐标公式求出点C、D地坐标,根据对称地性质找出点D′地坐标,根据三角形中位线定理即可得出点P为线段CD′地中点,由此即可得出点P地坐标.【解答】解:(方法一)作点D关于x轴地对称点D′,连接CD′交x轴于点P,此时PC+PD 值最小,如图所示.令y=x+4中x=0,则y=4,∴点B地坐标为(0,4);令y=x+4中y=0,则x+4=0,解得:x=﹣6,∴点A地坐标为(﹣6,0).∵点C、D分别为线段AB、OB地中点,∴点C(﹣3,2),点D(0,2).∵点D′和点D关于x轴对称,∴点D′地坐标为(0,﹣2).设直线CD′地解析式为y=kx+b,∵直线CD′过点C(﹣3,2),D′(0,﹣2),∴有,解得:,∴直线CD′地解析式为y=﹣x﹣2.令y=﹣x﹣2中y=0,则0=﹣x﹣2,解得:x=﹣,∴点P地坐标为(﹣,0).故选C.(方法二)连接CD,作点D关于x轴地对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图所示.令y=x+4中x=0,则y=4,∴点B地坐标为(0,4);令y=x+4中y=0,则x+4=0,解得:x=﹣6,∴点A地坐标为(﹣6,0).∵点C、D分别为线段AB、OB地中点,∴点C(﹣3,2),点D(0,2),CD∥x轴,∵点D′和点D关于x轴对称,∴点D′地坐标为(0,﹣2),点O为线段DD′地中点.又∵OP∥CD,∴点P为线段CD′地中点,∴点P地坐标为(﹣,0).故选C.12.已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确地是()A.当a=1时,函数图象经过点(﹣1,1)B.当a=﹣2时,函数图象与x轴没有交点C.若a<0,函数图象地顶点始终在x轴地下方D.若a>0,则当x≥1时,y随x地增大而增大【考点】HA:抛物线与x轴地交点;H4:二次函数图象与系数地关系.【分析】A、将a=1代入原函数解析式,令x=﹣1求出y值,由此得出A选项不符合题意;B、将a=2代入原函数解析式,令y=0,根据根地判别式△=8>0,可得出当a=﹣2时,函数图象与x轴有两个不同地交点,即B选项不符合题意;C、利用配方法找出二次函数图象地顶点坐标,令其纵坐标小于零,可得出a地取值范围,由此可得出C选项不符合题意;D、利用配方法找出二次函数图象地对称轴,结合二次函数地性质,即可得出D选项符合题意.此题得解.【解答】解:A、当a=1时,函数解析式为y=x2﹣2x﹣1,当x=﹣1时,y=1+2﹣1=2,∴当a=1时,函数图象经过点(﹣1,2),∴A选项不符合题意;B、当a=﹣2时,函数解析式为y=﹣2x2+4x﹣1,令y=﹣2x2+4x﹣1=0,则△=42﹣4×(﹣2)×(﹣1)=8>0,∴当a=﹣2时,函数图象与x轴有两个不同地交点,∴B选项不符合题意;C、∵y=ax2﹣2ax﹣1=a(x﹣1)2﹣1﹣a,∴二次函数图象地顶点坐标为(1,﹣1﹣a),当﹣1﹣a<0时,有a>﹣1,∴C选项不符合题意;D、∵y=ax2﹣2ax﹣1=a(x﹣1)2﹣1﹣a,∴二次函数图象地对称轴为x=1.若a>0,则当x≥1时,y随x地增大而增大,∴D选项符合题意.故选D.二、填空题(本大题共6小题,每小题4分,共24分)13.化简:÷= .【考点】6A:分式地乘除法.【分析】根据分式地乘除法地法则进行计算即可.【解答】解:÷=•=,故答案为:.14.已知关于x地一元二次方程ax2﹣2x﹣1=0有两个不相等地实数根,则a地取值范围是a>﹣1且a≠0 .【考点】AA:根地判别式.【分析】根据一元二次方程地定义和判别式地意义得到a≠0且△=(﹣2)2﹣4a(﹣1)>0,然后求出两不等式地公共部分即可.【解答】解:根据题意得a≠0且△=(﹣2)2﹣4a(﹣1)>0,解得a>﹣1且a≠0.故答案为a>﹣1且a≠0.15.已知是方程组地解,则a2﹣b2= 1 .【考点】97:二元一次方程组地解.【分析】根据是方程组地解,可以求得a+b和a﹣b地值,从而可以解答本题.【解答】解:∵是方程组地解,∴,解得,①﹣②,得a﹣b=,①+②,得a+b=﹣5,∴a2﹣b2=(a+b)(a﹣b)=(﹣5)×(﹣)=1,故答案为:1.16.如图,在▱ABCD中,AB为⊙O地直径,⊙O与DC相切于点E,与AD相交于点F,已知AB=12,∠C=60°,则地长为π.【考点】MC:切线地性质;L5:平行四边形地性质;MN:弧长地计算.【分析】先连接OE、OF,再求出圆心角∠EOF地度数,然后根据弧长公式即可求出地长.【解答】解:如图连接OE、OF,∵CD是⊙O地切线,∴OE⊥CD,∴∠OED=90°,∵四边形ABCD是平行四边形,∠C=60°,∴∠A=∠C=60°,∠D=120°,∵OA=OF,∴∠A=∠OFA=60°,∴∠DFO=120°,∴∠EOF=360°﹣∠D﹣∠DFO﹣∠DEO=30°,地长==π.故答案为:π.17.如图,反比例函数y=地图象经过矩形OABC地边AB地中点D,则矩形OABC地面积为4 .【考点】G5:反比例函数系数k地几何意义.【分析】可设D点坐标为(x,y),则可表示出B点坐标,从而可表示出矩形OABC地面积,利用xy=2可求得答案.【解答】解:设D(x,y),∵反比例函数y=地图象经过点D,∴xy=2,∵D为AB地中点,∴B(x,2y),∴OA=x,OC=2y,∴S=OA•OC=x•2y=2xy=2×2=4,矩形OABC故答案为:4.18.在矩形ABCD中,∠B地角平分线BE与AD交于点E,∠BED地角平分线EF与DC交于点F,若AB=9,DF=2FC,则BC= .(结果保留根号)【考点】LB:矩形地性质;KI:等腰三角形地判定;S9:相似三角形地判定与性质.【分析】先延长EF和BC,交于点G,再根据条件可以判断三角形ABE为等腰直角三角形,并求得其斜边BE地长,然后根据条件判断三角形BEG为等腰三角形,最后根据△EFD∽△GFC得出CG与DE地倍数关系,并根据BG=BC+CG进行计算即可.【解答】解:延长EF和BC,交于点G∵矩形ABCD中,∠B地角平分线BE与AD交于点E,∴∠ABE=∠AEB=45°,∴AB=AE=9,∴直角三角形ABE中,BE==,又∵∠BED地角平分线EF与DC交于点F,∴∠BEG=∠DEF∵AD∥BC∴∠G=∠DEF∴∠BEG=∠G∴BG=BE=由∠G=∠DEF,∠EFD=∠GFC,可得△EFD∽△GFC∴设CG=x,DE=2x,则AD=9+2x=BC∵BG=BC+CG∴=9+2x+x解得x=∴BC=9+2(﹣3)=故答案为:三、解答题(本大题共7小题,共60分)19.x取哪些整数值时,不等式5x+2>3(x﹣1)与x≤2﹣都成立?【考点】C7:一元一次不等式地整数解.【分析】根据题意分别求出每个不等式解集,根据口诀:大小小大中间找,确定两不等式解集地公共部分,即可得整数值.【解答】解:根据题意解不等式组,解不等式①,得:x>﹣,解不等式②,得:x≤1,∴﹣<x≤1,故满足条件地整数有﹣2、﹣1、0、1.20.为发展学生地核心素养,培养学生地综合能力,某学校计划开设四门选修课:乐器、舞蹈、绘画、书法,学校采取随机抽样地方法进行问卷调查(每个被调查地学生必须选择而且只能选择其中一门).对调查结果进行整理,绘制成如下两幅不完整地统计图,请结合图中所给信息解答下列问题:(1)本次调查地学生共有50 人,在扇形统计图中,m地值是30% ;(2)将条形统计图补充完整;(3)在被调查地学生中,选修书法地有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加某社区组织地书法活动,请写出所抽取地2名同学恰好是1名男同学和1名女同学地概率.【考点】X6:列表法与树状图法;VB:扇形统计图;VC:条形统计图.【分析】(1)由舞蹈地人数除以占地百分比求出调查学生总数,确定出扇形统计图中m地值;(2)求出绘画与书法地学生数,补全条形统计图即可;(3)列表得出所有等可能地情况数,找出恰好为一男一女地情况数,即可求出所求概率.【解答】解:(1)20÷40%=50(人),15÷50=30%;故答案为:50;30%;(2)50×20%=10(人),50×10%=5(人),如图所示:(3)∵5﹣2=3(名),∴选修书法地5名同学中,有3名男同学,2名女同学,男1 男2 男3 女1 女2 男1 ﹣﹣﹣男2男1 男3男1 女1男1 女2男1男2 (男1男2)﹣﹣﹣男3男2 女1男2 女2男2男3 (男1男3)男2男3 ﹣﹣﹣女1男3 女2男3女1 (男1,女1)男2女1 男3女1 ﹣﹣﹣女2女1女2 (男1女2)男2女2 男3女2 女1女2 ﹣﹣﹣所有等可能地情况有20种,其中抽取地2名同学恰好是1名男同学和1名女同学地情况有12种,则P(一男一女)==.21.如图,在平面直角坐标系中,已知△ABC三个顶点地坐标分别是A(2,2),B(4,0),C(4,﹣4).(1)请在图中,画出△ABC向左平移6个单位长度后得到地△A1B1C1;(2)以点O为位似中心,将△ABC缩小为原来地,得到△A2B2C2,请在图中y轴右侧,画出△A2B2C2,并求出∠A2C2B2地正弦值.【考点】SD:作图﹣位似变换;Q4:作图﹣平移变换;T7:解直角三角形.【分析】(1)直接利用平移地性质得出对应点位置进而得出答案;(2)利用位似图形地性质得出对应点位置,再利用锐角三角三角函数关系得出答案.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求,由图形可知,∠A2C2B2=∠ACB,过点A作AD⊥BC交BC地延长线于点D,由A(2,2),C(4,﹣4),B(4,0),易得D(4,2),故AD=2,CD=6,AC==2,∴sin∠ACB===,即sin∠A2C2B2=.22.如图,在△ABC中,∠C=90°,∠BAC地平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径地圆恰好经过点D,分别交AC,AB于点E,F.(1)试判断直线BC与⊙O地位置关系,并说明理由;(2)若BD=2,BF=2,求阴影部分地面积(结果保留π).【考点】MB:直线与圆地位置关系;MO:扇形面积地计算.【分析】(1)连接OD,证明OD∥AC,即可证得∠ODB=90°,从而证得BC是圆地切线;(2)在直角三角形OBD中,设OF=OD=x,利用勾股定理列出关于x地方程,求出方程地解得到x地值,即为圆地半径,求出圆心角地度数,直角三角形ODB地面积减去扇形DOF面积即可确定出阴影部分面积.【解答】解:(1)BC与⊙O相切.证明:连接OD.∵AD是∠BAC地平分线,∴∠BAD=∠CAD.又∵OD=OA,∴∠OAD=∠ODA.∴∠CAD=∠ODA.∴OD∥AC.∴∠ODB=∠C=90°,即OD⊥BC.又∵BC过半径OD地外端点D,∴BC与⊙O相切.(2)设OF=OD=x,则OB=OF+BF=x+2,根据勾股定理得:OB2=OD2+BD2,即(x+2)2=x2+12,解得:x=2,即OD=OF=2,∴OB=2+2=4,∵Rt△ODB中,OD=OB,∴∠B=30°,∴∠DOB=60°,∴S扇形AOB==,则阴影部分地面积为S△ODB ﹣S扇形DOF=×2×2﹣=2﹣.故阴影部分地面积为2﹣.23.我们知道,任意一个正整数n都可以进行这样地分解:n=p×q(p,q是正整数,且p ≤q),在n地所有这种分解中,如果p,q两因数之差地绝对值最小,我们就称p×q是n 地最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12地最佳分解,所以F(12)=.(1)如果一个正整数m是另外一个正整数n地平方,我们称正整数m是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上地数与十位上地数得到地新数减去原来地两位正整数所得地差为36,那么我们称这个数t为“吉祥数”,求所有“吉祥数”;(3)在(2)所得“吉祥数”中,求F(t)地最大值.【考点】59:因式分解地应用.【分析】(1)对任意一个完全平方数m,设m=n2(n为正整数),找出m地最佳分解,确定出F(m)地值即可;(2)设交换t地个位上数与十位上地数得到地新数为t′,则t′=10y+x,根据“吉祥数”地定义确定出x与y地关系式,进而求出所求即可;(3)利用“吉祥数”地定义分别求出各自地值,进而确定出F(t)地最大值即可.【解答】解:(1)证明:对任意一个完全平方数m,设m=n2(n为正整数),∵|n﹣n|=0,∴n×n是m地最佳分解,∴对任意一个完全平方数m,总有F(m)==1;(2)设交换t地个位上数与十位上地数得到地新数为t′,则t′=10y+x,∵t是“吉祥数”,∴t′﹣t=(10y+x)﹣(10x+y)=9(y﹣x)=36,∴y=x+4,∵1≤x≤y≤9,x,y为自然数,∴满足“吉祥数”地有:15,26,37,48,59;(3)F(15)=,F(26)=,F(37)=,F(48)==,F(59)=,∵>>>>,∴所有“吉祥数”中,F(t)地最大值为.24.已知正方形ABCD,P为射线AB上地一点,以BP为边作正方形BPEF,使点F在线段CB 地延长线上,连接EA,EC.(1)如图1,若点P在线段AB地延长线上,求证:EA=EC;(2)如图2,若点P在线段AB地中点,连接AC,判断△ACE地形状,并说明理由;(3)如图3,若点P在线段AB上,连接AC,当EP平分∠AEC时,设AB=a,BP=b,求a:b及∠AEC地度数.【考点】LO:四边形综合题.【分析】(1)根据正方形地性质证明△APE≌△CFE,可得结论;(2)分别证明∠PAE=45°和∠BAC=45°,则∠CAE=90°,即△ACE是直角三角形;(3)分别计算PG和BG地长,利用平行线分线段成比例定理列比例式得:,即,解得:a=b,得出a与b地比,再计算GH和BG地长,根据角平分线地逆定理得:∠HCG=∠BCG,由平行线地内错角得:∠AEC=∠ACB=45°.【解答】证明:(1)∵四边形ABCD和四边形BPEF是正方形,∴AB=BC,BP=BF,∴AP=CF,在△APE和△CFE中,∵,∴△APE≌△CFE,∴EA=EC;(2)△ACE是直角三角形,理由是:如图2,∵P为AB地中点,∴PA=PB,∵PB=PE,∴PA=PE,∴∠PAE=45°,又∵∠BAC=45°,∴∠CAE=90°,即△ACE是直角三角形;(3)设CE交AB于G,∵EP平分∠AEC,EP⊥AG,∴AP=PG=a﹣b,BG=a﹣(2a﹣2b)=2b﹣a,∵PE∥CF,∴,即,解得:a=b,∴a:b=:1,作GH⊥AC于H,∵∠CAB=45°,∴HG=AG=(2b﹣2b)=(2﹣)b,又∵BG=2b﹣a=(2﹣)b,∴GH=GB,GH⊥AC,GB⊥BC,∴∠HCG=∠BCG,∵PE∥CF,∴∠PEG=∠BCG,∴∠AEC=∠ACB=45°.25.如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B,与y轴交于点C,点B坐标为(6,0),点C坐标为(0,6),点D是抛物线地顶点,过点D作x轴地垂线,垂足为E,连接BD.(1)求抛物线地解析式及点D地坐标;(2)点F是抛物线上地动点,当∠FBA=∠BDE时,求点F地坐标;(3)若点M是抛物线上地动点,过点M作MN∥x轴与抛物线交于点N,点P在x轴上,点Q在坐标平面内,以线段MN为对角线作正方形MPNQ,请写出点Q地坐标.【考点】HF:二次函数综合题.【分析】(1)由B、C地坐标,利用待定系数法可求得抛物线解析式,再求其顶点D即可;(2)过F作FG⊥x轴于点G,可设出F点坐标,利用△FBG∽△BDE,由相似三角形地性质可得到关于F点坐标地方程,可求得F点地坐标;(3)由于M、N两点关于对称轴对称,可知点P为对称轴与x轴地交点,点Q在对称轴上,可设出Q点地坐标,则可表示出M地坐标,代入抛物线解析式可求得Q点地坐标.【解答】解:(1)把B、C两点坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=﹣x2+2x+6,∵y=﹣x2+2x+6=﹣(x﹣2)2+8,∴D(2,8);(2)如图1,过F作FG⊥x轴于点G,设F(x,﹣x2+2x+6),则FG=|﹣x2+2x+6|,∵∠FBA=∠BDE,∠FGB=∠BED=90°,∴△FBG∽△BDE,∴=,∵B(6,0),D(2,8),∴E(2,0),BE=4,DE=8,OB=6,∴BG=6﹣x,∴=,当点F在x轴上方时,有=,解得x=﹣1或x=6(舍去),此时F点地坐标为(﹣1,);当点F在x轴下方时,有=﹣,解得x=﹣3或x=6(舍去),此时F点地坐标为(﹣3,﹣);综上可知F点地坐标为(﹣1,)或(﹣3,﹣);(3)如图2,设对称轴MN、PQ交于点O′,∵点M、N关于抛物线对称轴对称,且四边形MPNQ为正方形,∴点P为抛物线对称轴与x轴地交点,点Q在抛物线地对称轴上,设Q(2,2n),则M坐标为(2﹣n,n),∵点M在抛物线y=﹣x2+2x+6地图象上,∴n=﹣(2﹣n)2+2(2﹣n)+6,解得n=﹣1+或n=﹣1﹣,∴满足条件地点Q有两个,其坐标分别为(2,﹣2+2)或(2,﹣2﹣2).2019年6月15日。

山东省枣庄市2020年中考数学试题及详解(WORD版)

山东省枣庄市2020年中考数学试题及详解(WORD版)

第一部分2020年枣庄市初中学业水平考试数学试题(1-8)第二部分2020年枣庄市初中学业水平考试数学试题详解(9-19) 注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,36分;第Ⅱ卷为非选择题,84分;全卷共6页,满分120分.考试时间为120分钟.2.答卷时,考生务必将第Ⅰ卷和第Ⅱ卷的答案填涂或书写在答题卡指定位置上,并在本页上方空白处写上姓名和准考证号.考试结束,将试卷和答题卡一并交回.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均计零分. 1.12- 的绝对值是( ) A. -2 B. 12- C. 2 D. 12 2.一副直角三角板如图放置,点C 在FD 的延长线上,AB//CF ,∠F=∠ACB=90°,则∠DBC 的度数为( ) A. 10°B. 15°C. 18°D. 30° 3.计算2136⎛⎫--- ⎪⎝⎭的结果为( ) A . 12-B. 12C. 56-D. 56 4.实数a ,b 在数轴上对应点的位置如图所示,下列判断正确的是( )A. ||1a <B. 0ab >C. 0a b +>D. 11a -> 5.布袋中装有除颜色外没有其他区别的1个红球和2个白球,搅匀后从中摸出一个球,放回搅匀,再摸出第二个球,两次都摸出白球的概率是( )A. 49B. 29C. 23D. 136.如图,在△ABC 中,AB 的垂直平分线交AB 于点D ,交BC 于点E ,若BC=6,AC=5,则△ACE 的周长为( )A. 8B. 11C. 16D. 177. 图(1)是一个长为2a ,宽为2b (a >b )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是A. B. ()2a b - C. D.8.在下图的四个三角形中,不能由ABC 经过旋转或平移得到的是( )A. B. C. D.9.对于实数a 、b ,定义一种新运算“⊗”为:21a b a b ⊗=-,这里等式右边是实数运算.例如:21113138⊗==--.则方程()2214⊗-=--x x 的解是( ) A. 4x =B. 5x =C. 6x =D. 7x = 10.如图,平面直角坐标系中,点B 在第一象限,点A 在x 轴的正半轴上,30AOB B ∠=∠=︒,2OA =,将AOB ∆绕点O 逆时针旋转90︒,点B 的对应点B '的坐标是( )A. (1,23-+B. ()3,3C. (3,23-+D. (3-11.如图,在矩形纸片ABCD 中,AB=3,点E 在边BC 上,将△ABE 沿直线AE 折叠,点B 恰好落在对角线AC 上的点F 处,若∠EAC=∠ECA ,则AC 的长是( )A. 33B. 6C. 4D. 512.如图,已知抛物线2y ax bx c =++的对称轴为直线1x =.给出下列结论:①0ac <; ②240b ac ->; ③20a b -=; ④0a b c -+=.其中,正确的结论有( )A. 1个B. 2个C. 3个D. 4个第Ⅱ卷(非选择题 共84分)二、填空题:本大题共6小题,满分24分.只填写最后结果,每小题填对得4分.13.若a +b =3,a 2+b 2=7,则ab =_____.14.已知关于x 的一元二次方程22(1)210a x x a --+-=有一个根为0x =,则a 的值为_______. 15.如图,AB 是O 的直径,P A 切O 于点A ,线段PO 交O 于点C .连接BC ,若36P ∠=︒,则B ∠=________.16.如图,人字梯AB ,AC 的长都为2米.当50a =︒时,人字梯顶端高地面的高度AD 是____米(结果精确到0.1m .参考依据:sin500.77︒≈,cos500.64︒≈,tan50 1.19︒≈)17.如图,E ,F 是正方形ABCD 的对角线AC 上的两点,8AC =,2AE CF ==,则四边形BEDF 的周长是_____.18.各顶点都在方格纸的格点(横竖格子线的交错点)上的多边形称为格点多边形,它的面积S 可用公式112S a b =+-(a 是多边形内的格点数,b 是多边形边界上的格点数)计算,这个公式称为“皮克(Pick )定理”.如图给出了一个格点五边形,则该五边形的面积S =________.三、解答题:本大题共7小题,满分60分.解答时,要写出必要的文字说明、证明过程或演算步骤.19.解不等式组4(1)713843x x x x +≤+⎧⎪-⎨-<⎪⎩,并求它的所有整数解的和.20.欧拉(Euler,1707年~1783年)为世界著名的数学家、自然科学家,他在数学、物理、建筑、航海等领域都做出了杰出的贡献.他对多面体做过研究,发现多面体的顶点数(Vertex)、棱数E(Edge)、面数F(Flat surface)之间存在一定的数量关系,给出了著名的欧拉公式.(1)观察下列多面体,并把下表补充完整:名称三棱锥三棱柱正方体正八面体图形顶点数V 4 6 8棱数E 6 12面数F 4 5 8(2)分析表中的数据,你能发现V、E、F之间有什么关系吗?请写出关系式:____________________________.21.2020年,新型冠状病毒肆虐全球,疫情期间学生在家进行网课学习和锻炼,学习和身体健康状况都有一定的影响.为了解学生身体健康状况,某校对学生进行立定跳远水平测试.随机抽取50名学生进行测试,并把测试成绩(单位:m)绘制成不完整的频数分布表和频数分布直方图.学生立定跳远测试成绩的频数分布表分组频数1.2 1.6x< ax<121.62.02.0 2.4x< bx<102.4 2.8学生立定跳远测试成绩的频数分布直方图请根据图表中所提供的信息,完成下列问题:(1)表中a=________,b=________;(2)样本成绩的中位数落在________范围内;(3)请把频数分布直方图补充完整;(4)该校共有1200名学生,估计该学校学生立定跳远成绩在2.4 2.8x<范围内的有多少人?22.如图,在平面直角坐标系xOy中,一次函数152y x=+和2y x=-的图象相交于点A,反比例函数kyx=的图象经过点A.(1)求反比例函数的表达式;(2)设一次函数152y x=+的图象与反比例函数kyx=的图象的另一个交点为B,连接OB,求ABO∆的面积.23.如图,在ABC 中,AB AC =,以AB 为直径的O 分别交AC 、BC 于点D 、E ,点F 在AC 的延长线上,且2BAC CBF ∠=∠.(1)求证:BF 是O 的切线; (2)若O 的直径为4,6CF =,求tan CBF ∠.24.在ABC 中,90ACB ∠=︒,CD 是中线,AC BC =,一个以点D 为顶点的45°角绕点D 旋转,使角的两边分别与AC 、BC 的延长线相交,交点分别为点E 、F ,DF 与AE 交于点M ,DE 与BC 交于点N . (1)如图1,若CE CF =,求证:DE DF =;(2)如图2,在EDF ∠绕点D 旋转的过程中,试证明2CD CE CF =⋅恒成立;(3)若2CD =,2CF =DN 的长.25.如图,抛物线24y ax bx =++交x 轴于(3,0)A -,(4,0)B 两点,与y 轴交于点C ,AC ,BC .M 为线段OB 上的一个动点,过点M 作PM x ⊥轴,交抛物线于点P ,交BC 于点Q .(1)求抛物线的表达式;(2)过点P 作PN BC ⊥,垂足为点N .设M 点的坐标为(,0)M m ,请用含m 的代数式表示线段PN 的长,并求出当m 为何值时PN 有最大值,最大值是多少?(3)试探究点M 在运动过程中,是否存在这样的点Q ,使得以A ,C ,Q 为顶点的三角形是等腰三角形.若存在,请求出此时点Q 的坐标;若不存在,请说明理由.2020年枣庄市初中学业水平考试数学试题详解注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,36分;第Ⅱ卷为非选择题,84分;全卷共6页,满分120分.考试时间为120分钟.2.答卷时,考生务必将第Ⅰ卷和第Ⅱ卷的答案填涂或书写在答题卡指定位置上,并在本页上方空白处写上姓名和准考证号.考试结束,将试卷和答题卡一并交回.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均计零分.1、解:12-的绝对值是12. 故选:D .2、由题意可得:∠EDF=45°,∠ABC=30°,∵AB ∥CF ,∴∠ABD=∠EDF=45°,∴∠DBC=45°﹣30°=15°.故选B.3、解:2121413136366662⎛⎫---=-+=-+=-=- ⎪⎝⎭, 故选:A .4、解:由数轴上a 与1的位置可知:||1a >,故选项A 错误;因为a <0,b >0,所以0ab <,故选项B 错误;因为a <0,b >0,所以0a b +<,故选项C 错误;因为a <0,则11a ->,故选项D 正确;故选:D .5、解:画树状图得:则共有9种等可能的结果,两次都摸到白球的有4种情况,∴两次都摸到白球的概率为49. 故选A .6、解:∵DE 垂直平分AB ,∴AE=BE ,∴△ACE 的周长=AC+CE+AE=AC+CE+BE=AC+BC=5+6=11.故选B .7、由题意可得,正方形的边长为a b +,故正方形的面积为()2a b +.又∵原矩形的面积为2a 2b 4ab ⋅=,∴中间空的部分的面积=()()22a b 4ab a b +-=-. 故选C .8、A 、可由△ABC 逆时针旋转一个角度得到;B 、可由△ABC 翻折得到;C 、可由△ABC 逆时针旋转一个角度得到;D 、可由△ABC 逆时针旋转一个角度得到.故选B .9、解:211(2)(2)4x x x ⊗-==--- ∴方程表达为:12144x x =--- 解得:5x =, 经检验,5x =是原方程的解,故选:B .10、如图,作B H y '⊥轴于H .由题意:2OA A B '''==,60B A H ''∠=︒,∴30A B H ''∠=︒,∴112AH A B '''==,B H '= ∴3OH =,∴()B ',故选B .11、∵将△ABE 沿直线AE 折叠,点B 恰好落在对角线AC 上的点F 处,∴AF=AB ,∠AFE=∠B=90°,∴EF ⊥AC ,∵∠EAC=∠ECA ,∴AE=CE ,∴AF=CF ,∴AC=2AB=6,故选B .12、解:∵抛物线开口向下,则a <0,∵抛物线交于y 轴的正半轴,则c >0,∴ac <0,故①正确;∵抛物线与x轴有两个交点,∴240b ac ->,故②正确;∵抛物线的对称轴为直线1x =,则12b a-=,即2a=-b , ∴2a+b=0,故③错误;∵抛物线经过点(3,0),且对称轴为直线1x =,∴抛物线经过点(-1,0),则0a b c -+=,故④正确;∴正确的有①②④,共3个,故选:C .第Ⅱ卷(非选择题 共84分)二、填空题:本大题共6小题,满分24分.只填写最后结果,每小题填对得4分. 13、(a +b )2=32=9,(a +b )2=a 2+b 2+2ab =9.∵a 2+b 2=7,∴2ab =2,ab =1,故答案为1.14、0x =代入方程得:210a -=解得:1a =±∵22(1)210a x x a --+-=是关于x 的一元二次方程∴10,1a a -≠≠∴1a =-故答案为-115、如图,连接AC ,AB 是O 的直径,∴90ACB ∠=︒,∴90B BAC ∠+∠=︒,∵P A 切O 于点A ,∴90BAP ∠=︒,∴B PAC ∠=∠,∵ACO P PAC ∠=∠+∠,90ACO BCO ACO B ∠+∠=∠+∠=︒,∴9036B B ︒-∠=∠+︒,解得27B ∠=︒,故答案为:27︒.16、在Rt ADC ∆中,∵2AC =,50ACD ∠=︒, ∴sin 50AD AC︒=, ∴sin5020.77 1.5AD AC =⨯︒=⨯≈.故答案为1.5.17、如图,连接BD 交AC 于点O ,∵四边形ABCD 为正方形,∴BD AC ⊥,OD OB OA OC ===,∵2AE CF ==,∴OA AE OC CF -=-,即OE OF =,∴四边形BEDF 为平行四边形,且BD EF ⊥,∴四边形BEDF 为菱形,∴DE DF BE BF ===,∵8AC BD ==,8422OE OF -===, 由勾股定理得:22224225DE OD OE =+=+=,∴四边形BEDF 的周长442585DE ==⨯=, 故答案为85.18、由图可知:五边形内部格点有4个,故4a =五边形边上格点有6个,故6b =∴112S a b =+-=146162+⨯-= 故答案为:6.三、解答题:本大题共7小题,满分60分.解答时,要写出必要的文字说明、证明过程或演算步骤.19、解不等式4(1)713x x ++,得3x -;解不等式843x x --<,得2x <. 所以,不等式组的解集为32x -<.该不等式组的所有整数解为-3,-2,-1,0,1.所以,该不等式组的所有整数解的和为(3)(2)(1)015-+-+-++=-.20、解:(1)填表如下:名称三棱锥 三棱柱 正方体 正八面体图形顶点数V 4 6 8 6棱数E 6 9 12 12面数F4 5 6 8(2)据上表中的数据规律发现,多面体的顶点数V 、棱数E 、面数F 之间存在关系式:2V F E +-=.21、解(1)由统计图可得8a =,508121020b =---=;(2)有50名学生进行测试,第25和26名的成绩和的平均数为中位数∴样本成绩的中位数落在2.0 2.4x <范围内;(3)由(1)知,20b =,补全的频数分布直方图如右图所示;学生立定跳远测试成绩的频数分布直方图(4)10120024050⨯=(人), 答:估计该学校学生立定跳远成绩在2.4 2.8x <范围内有240人.22、(1)由题意:联立直线方程1522y x y x⎧=+⎪⎨⎪=-⎩,可得24x y =-⎧⎨=⎩,故A 点坐标为(-2,4)将A(-2,4)代入反比例函数表达式kyx=,有42k=-,∴8k=-故反比例函数的表达式为8yx=-(2)联立直线152y x=+与反比例函数8yx=-,1528xy xy⎧=+⎪⎪⎨⎪=-⎪⎩解得122,8x x=-=-,当8x=-时,1y=,故B(-8,1)如图,过A,B两点分别作x轴的垂线,交x轴于M、N两点,由模型可知S梯形AMNB=S△AOB,∴S梯形AMNB=S△AOB=12121()()2y y x x+-⨯=1(14)[(2)(8)]2+⨯---⨯=156152⨯⨯= 23、(1)(1)证明:如图,连接AE.∵AB是O的直径,∴90AEB=︒∠,1290∠+∠=︒.∵AB AC=,∴21BAC∠=∠.∵2BAC CBF ∠=∠,∴1CBF ∠=∠.∴290CBF ∠+∠=︒,即90ABF ∠=︒.∵AB 是O 的直径,∴直线BF 是O 的切线. (2)解:过点C 作CH BF ⊥于点H .∵AB AC =,O 的直径为4, ∴4AC =.∵6CF =,90ABF ∠=︒, ∴2222104221AF AB BF -=-==.∵CHF ABF ∠=∠,F F ∠=∠,∴CHF ABF ∽△△.∴CH CF AB AF =,即6446CH =+. ∴125CH =,222212621655HF CF CH ⎛⎫=-=-= ⎪⎝⎭. ∴621421221BH BF HF =-=-=. ∴12215tan 7421CH CBF BH ∠===.24、(1)证明:∵90ACB ∠=︒,AC BC =,CD 是中线,∴45BCD ACD ∠=∠=︒,90BCE ACF ∠=∠=︒,∴135DCE DCF ∠=∠=︒.在DCE 与DCF 中,CE CF DCE DCF CD CD =⎧⎪∠=∠⎨⎪=⎩,∴DCE DCF ≌△△.∴DE DF =;(2)证明:∵135DCF DCE ∠=∠=︒,∴18013545CDF F ∠+∠=︒-︒=︒∵45CDF CDE ∠+∠=︒,∴F CDE ∠=∠.∴CDF CED △∽△. ∴CD CF CE CD=,即2CD CE CF =⋅. (3)如图,过D 作DG BC ⊥于点G ,则90DGN ECN ∠=∠=︒,CG DG =.当2CD =,CF =由2CD CE CF =⋅,得CE =在Rt DCG 中,sin 2sin 45CG DG CD DCG ==⋅∠=⨯︒=∵ECN DGN ∠=∠,ENC DNG ∠=∠,∴CEN GDN △∽△.∴2CN CE GN DG ===,∴11333GN CG ===.∴DN ===25、解:(1)将(3,0)A -,(4,0)B 代入24y ax bx =++,得934016440a b a b -+=⎧⎨++=⎩,解之,得1313a b ⎧=-⎪⎪⎨⎪=⎪⎩. 所以,抛物线的表达式为211433y x x =-++. (2)由211433y x x =-++,得(0,4)C . 将点(4,0)B 、(0,4)C 代入y kx b =+,得404k b b +=⎧⎨=⎩,解之,得14k b =-⎧⎨=⎩. 所以,直线BC 的表达式为:4y x =-+.由(,0)M m ,得211,433P m m m ⎛⎫-++ ⎪⎝⎭,4(),Q m m -+. ∴221114443333PQ m m m m m =-+++-=-+ ∵OB OC =,∴45ABC OCB ∠=∠=︒.∴45PQN BQM ∠=∠=︒.∴22214222sin 4533PN PQ m m ⎫=︒=-+=⎪⎝⎭. 222(2)63m =--+. ∵206-< ∴当2m =时,PN 有最大值,最大值为223. (3)存在,理由如下:由点(3,0)A -,(0,4)C ,知5AC =.①当AC CQ =时,过Q 作QE y ⊥轴于点E ,易得222222[4(4)]2CQ EQ CE m m m =+=+--+=, 由2225m =,得152m =,252m =(舍) 此时,点5285222Q ⎛- ⎝⎭;②当AC AQ =时,则5AQ AC ==.在Rt AMQ △中,由勾股定理,得22[(3)](4)25m m --+-+=.解之,得1m =或0m =(舍)此时,点()1,3Q ;③当CQ AQ =时,由2222[(3)](4)m m m =--+-+,得252m =(舍). 综上知所述,可知满足条件的点Q 有两个,坐标分别为:()1,3Q ,5285222Q ⎛-⎝⎭.。

枣庄市中考数学试题解析版

枣庄市中考数学试题解析版

2020年山东省枣庄市中考数学试卷一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个均计零分。

1.下列计算,正确的是()A.a2•a2=2a2B.a2+a2=a4C.(﹣a2)2=a4D.(a+1)2=a2+12.如图,∠AOB的一边OA为平面镜,∠AOB=37°36′,在OB上有一点E,从E点射出一束光线经OA上一点D反射,反射光线DC恰好与OB平行,则∠DEB的度数是()A.75°36′ B.75°12′ C.74°36′ D.74°12′3.某中学篮球队12名队员的年龄如表:年龄(岁)13 14 15 16人数 1 5 4 2关于这12名队员年龄的年龄,下列说法错误的是()A.众数是14 B.极差是3 C.中位数是14.5 D.平均数是14.84.如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE 的平分线相交于点D,则∠D的度数为()A.15° B.17.5° C.20° D.22.5°5.已知关于x的方程x2+3x+a=0有一个根为﹣2,则另一个根为()A.5 B.﹣1 C.2 D.﹣56.有3块积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同,现把它们摆放成不同的位置(如图),请你根据图形判断涂成绿色一面的对面的颜色是()A.白 B.红 C.黄 D.黑7.如图,△ABC的面积为6,AC=3,现将△ABC沿AB所在直线翻折,使点C落在直线AD上的C′处,P为直线AD上的一点,则线段BP的长不可能是()A.3 B.4 C.5.5 D.108.若关于x的一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()A. B. C. D.9.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于()A. B. C.5 D.410.已知点P(a+1,﹣ +1)关于原点的对称点在第四象限,则a的取值范围在数轴上表示正确的是()A. B.C. D.11.如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=2,则阴影部分的面积为()A.2π B.π C. D.12.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下四个结论:①abc=0,②a+b+c>0,③a>b,④4ac﹣b2<0;其中正确的结论有()A.1个 B.2个 C.3个 D.4个二、填空题:本大题共6小题,满分24分,只填写最后结果,每小题填对得4分。

全国各省市-山东省枣庄市中考数学试卷(解析版).doc

全国各省市-山东省枣庄市中考数学试卷(解析版).doc

2019年山东省枣庄市中考数学试卷一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均计零分1.(3分)的倒数是()A.﹣2 B.﹣ C.2 D.2.(3分)下列计算,正确的是()A.a5+a5=a10B.a3÷a﹣1=a2C.a•2a2=2a4D.(﹣a2)3=﹣a63.(3分)已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为()A.20°B.30°C.45°D.50°4.(3分)实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b|B.|ac|=ac C.b<d D.c+d>05.(3分)如图,直线l是一次函数y=kx+b的图象,若点A(3,m)在直线l上,则m的值是()A.﹣5 B.C.D.76.(3分)如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为()A.3a+2b B.3a+4b C.6a+2b D.6a+4b7.(3分)在平面直角坐标系中,将点A(﹣1,﹣2)向右平移3个单位长度得到点B,则点B关于x轴的对称点B′的坐标为()A.(﹣3,﹣2)B.(2,2) C.(﹣2,2)D.(2,﹣2)8.(3分)如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为()A. B.2 C.2D.89.(3分)如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是直线x=1,下列结论正确的是()A.b2<4ac B.ac>0 C.2a﹣b=0 D.a﹣b+c=010.(3分)如图是由8个全等的矩形组成的大正方形,线段AB的端点都在小矩形的顶点上,如果点P是某个小矩形的顶点,连接PA、PB,那么使△ABP为等腰直角三角形的点P的个数是()A.2个 B.3个 C.4个 D.5个11.(3分)如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则tan∠BDE的值是()A.B.C.D.12.(3分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则CE的长为()A.B.C.D.二、填空题:本大题共6小题,满分24分,只填写最后结果,每小题填对得4分13.(4分)若二元一次方程组的解为,则a﹣b=.14.(4分)如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,则大厅两层之间的高度为米.(结果保留两个有效数字)【参考数据;sin31°=0.515,cos31°=0.857,tan31°=0.601】15.(4分)我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a,b,c,则该三角形的面积为S=.现已知△ABC的三边长分别为1,2,,则△ABC的面积为.16.(4分)如图,在正方形ABCD中,AD=2,把边BC绕点B逆时针旋转30°得到线段BP,连接AP并延长交CD于点E,连接PC,则三角形PCE的面积为.17.(4分)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是.18.(4分)将从1开始的连续自然数按以下规律排列:第1行1第2行234第3行98765第4行10111213141516第5行252423222120191817…则2018在第行.三、解答题:本大题共7小题,满分60分.解答时,要写出必要的文字说明、证明过程或演算步骤19.(8分)计算:|﹣2|+sin60°﹣﹣(﹣1)2+2﹣220.(8分)如图,在4×4的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中,画出一个与△ABC成中心对称的格点三角形;(2)在图2中,画出一个与△ABC成轴对称且与△ABC有公共边的格点三角形;(3)在图3中,画出△ABC绕着点C按顺时针方向旋转90°后的三角形.21.(8分)如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(n为常数,且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂足为D,若OB=2OA=3OD=12.(1)求一次函数与反比例函数的解析式;(2)记两函数图象的另一个交点为E,求△CDE的面积;(3)直接写出不等式kx+b≤的解集.22.(8分)现今“微信运动”被越来越多的人关注和喜爱,某兴趣小组随机调查了我市50名教师某日“微信运动”中的步数情况进行统计整理,绘制了如下的统计图表(不完整):步数频数频率0≤x<40008a4000≤x<8000150.38000≤x<1200012b12000≤x<16000c0.216000≤x<2000030.0620000≤x<24000d0.04请根据以上信息,解答下列问题:(1)写出a,b,c,d的值并补全频数分布直方图;(2)本市约有37800名教师,用调查的样本数据估计日行走步数超过12000步(包含12000步)的教师有多少名?(3)若在50名被调查的教师中,选取日行走步数超过16000步(包含16000步的两名教师与大家分享心得,求被选取的两名教师恰好都在20000步(包含20000步)以上的概率.23.(8分)如图,在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC为直径作⊙O交AB于点D.(1)求线段AD的长度;(2)点E是线段AC上的一点,试问:当点E在什么位置时,直线ED与⊙O相切?请说明理由.24.(10分)如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.(1)求证:四边形EFDG是菱形;(2)探究线段EG、GF、AF之间的数量关系,并说明理由;(3)若AG=6,EG=2,求BE的长.25.(10分)如图1,已知二次函数y=ax2+x+c(a≠0)的图象与y轴交于点A (0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)请直接写出二次函数y=ax2+x+c的表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请写出此时点N的坐标;(4)如图2,若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.2019年山东省枣庄市中考数学试卷参考答案与试题解析一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均计零分1.(3分)的倒数是()A.﹣2 B.﹣ C.2 D.【分析】根据倒数的定义,直接解答即可.【解答】解:的倒数是﹣2.故选:A.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(3分)下列计算,正确的是()A.a5+a5=a10B.a3÷a﹣1=a2C.a•2a2=2a4D.(﹣a2)3=﹣a6【分析】根据合并同类项法则、同底数幂的除法法则、幂的乘方法则、单项式乘单项式的运算法则计算,判断即可.【解答】解:a5+a5=2a5,A错误;a3÷a﹣1=a3﹣(﹣1)=a4,B错误;a•2a2=2a3,C错误;(﹣a2)3=﹣a6,D正确,故选:D.【点评】本题考查的是合并同类项、同底数幂的除法、幂的乘方、单项式乘单项式,掌握它们的运算法则是解题的关键.3.(3分)已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为()A.20°B.30°C.45°D.50°【分析】根据平行线的性质即可得到结论.【解答】解:∵直线m∥n,∴∠2=∠ABC+∠1=30°+20°=50°,故选:D.【点评】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.4.(3分)实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b|B.|ac|=ac C.b<d D.c+d>0【分析】本题利用实数与数轴的对应关系结合实数的运算法则计算即可解答.【解答】解:从a、b、c、d在数轴上的位置可知:a<b<0,d>c>1;A、|a|>|b|,故选项正确;B、a、c异号,则|ac|=﹣ac,故选项错误;C、b<d,故选项正确;D、d>c>1,则a+d>0,故选项正确.故选:B.【点评】此题主要考查了数轴的知识:从原点向右为正数,向左为负数.右边的数大于左边的数.5.(3分)如图,直线l是一次函数y=kx+b的图象,若点A(3,m)在直线l上,则m的值是()A.﹣5 B.C.D.7【分析】待定系数法求出直线解析式,再将点A代入求解可得.【解答】解:将(﹣2,0)、(0,1)代入,得:解得:,∴y=x+1,将点A(3,m)代入,得:+1=m,即m=,故选:C.【点评】本题主要考查直线上点的坐标特点,熟练掌握待定系数法求函数解析式是解题的关键.6.(3分)如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为()A.3a+2b B.3a+4b C.6a+2b D.6a+4b【分析】观察图形可知,这块矩形较长的边长=边长为3a的正方形的边长﹣边长2b的小正方形的边长+边长2b的小正方形的边长的2倍,依此计算即可求解.【解答】解:依题意有3a﹣2b+2b×2=3a﹣2b+4b=3a+2b.故这块矩形较长的边长为3a+2b.故选:A.【点评】考查了列代数式,关键是得到这块矩形较长的边长与两个正方形边长的关系.7.(3分)在平面直角坐标系中,将点A(﹣1,﹣2)向右平移3个单位长度得到点B,则点B关于x轴的对称点B′的坐标为()A.(﹣3,﹣2)B.(2,2) C.(﹣2,2)D.(2,﹣2)【分析】首先根据横坐标右移加,左移减可得B点坐标,然后再根据关于x轴对称点的坐标特点:横坐标不变,纵坐标符号改变可得答案.【解答】解:点A(﹣1,﹣2)向右平移3个单位长度得到的B的坐标为(﹣1+3,﹣2),即(2,﹣2),则点B关于x轴的对称点B′的坐标是(2,2),故选:B.【点评】此题主要考查了坐标与图形变化﹣平移,以及关于x轴对称点的坐标,关键是掌握点的坐标变化规律.8.(3分)如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为()A. B.2 C.2D.8【分析】作OH⊥CD于H,连结OC,如图,根据垂径定理由OH⊥CD得到HC=HD,再利用AP=2,BP=6可计算出半径OA=4,则OP=OA﹣AP=2,接着在Rt△OPH中根据含30度的直角三角形的性质计算出OH=OP=1,然后在Rt△OHC中利用勾股定理计算出CH=,所以CD=2CH=2.【解答】解:作OH⊥CD于H,连结OC,如图,∵OH⊥CD,∴HC=HD,∵AP=2,BP=6,∴AB=8,∴OA=4,∴OP=OA﹣AP=2,在Rt△OPH中,∵∠OPH=30°,∴∠POH=60°,∴OH=OP=1,在Rt△OHC中,∵OC=4,OH=1,∴CH==,∴CD=2CH=2.故选:C.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理以及含30度的直角三角形的性质.9.(3分)如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是直线x=1,下列结论正确的是()A.b2<4ac B.ac>0 C.2a﹣b=0 D.a﹣b+c=0【分析】根据抛物线与x轴有两个交点有b2﹣4ac>0可对A进行判断;由抛物线开口向上得a>0,由抛物线与y轴的交点在x轴下方得c<0,则可对B进行判断;根据抛物线的对称轴是x=1对C选项进行判断;根据抛物线的对称性得到抛物线与x轴的另一个交点为(﹣1,0),所以a﹣b+c=0,则可对D选项进行判断.【解答】解:∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即b2>4ac,所以A选项错误;∵抛物线开口向上,∴a>0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴ac<0,所以B选项错误;∵二次函数图象的对称轴是直线x=1,∴﹣=1,∴2a+b=0,所以C选项错误;∵抛物线过点A(3,0),二次函数图象的对称轴是x=1,∴抛物线与x轴的另一个交点为(﹣1,0),∴a﹣b+c=0,所以D选项正确;故选:D.【点评】本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c);当b2﹣4ac>0,抛物线与x轴有两个交点;当b2﹣4ac=0,抛物线与x轴有一个交点;当b2﹣4ac<0,抛物线与x轴没有交点.10.(3分)如图是由8个全等的矩形组成的大正方形,线段AB的端点都在小矩形的顶点上,如果点P是某个小矩形的顶点,连接PA、PB,那么使△ABP为等腰直角三角形的点P的个数是()A.2个 B.3个 C.4个 D.5个【分析】根据等腰直角三角形的判定即可得到结论.【解答】解:如图所示,使△ABP为等腰直角三角形的点P的个数是3,故选:B.【点评】本题考查了等腰直角三角形的判定,正确的找出符合条件的点P是解题的关键.11.(3分)如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则tan∠BDE的值是()A.B.C.D.【分析】证明△BEF∽△DAF,得出EF=AF,EF=AE,由矩形的对称性得:AE=DE,得出EF=DE,设EF=x,则DE=3x,由勾股定理求出DF==2x,再由三角函数定义即可得出答案.【解答】解:∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∵点E是边BC的中点,∴BE=BC=AD,∴△BEF∽△DAF,∴=,∴EF=AF,∴EF=AE,∵点E是边BC的中点,∴由矩形的对称性得:AE=DE,∴EF=DE,设EF=x,则DE=3x,∴DF==2x,∴tan∠BDE===;故选:A.【点评】本题考查了相似三角形的判定和性质,矩形的性质,三角函数等知识;熟练掌握矩形的性质,证明三角形相似是解决问题的关键.12.(3分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则CE的长为()A.B.C.D.【分析】根据三角形的内角和定理得出∠CAF+∠CFA=90°,∠FAD+∠AED=90°,根据角平分线和对顶角相等得出∠CEF=∠CFE,即可得出EC=FC,再利用相似三角形的判定与性质得出答案.【解答】解:过点F作FG⊥AB于点G,∵∠ACB=90°,CD⊥AB,∴∠CDA=90°,∴∠CAF+∠CFA=90°,∠FAD+∠AED=90°,∵AF平分∠CAB,∴∠CAF=∠FAD,∴∠CFA=∠AED=∠CEF,∴CE=CF,∵AF平分∠CAB,∠ACF=∠AGF=90°,∴FC=FG,∵∠B=∠B,∠FGB=∠ACB=90°,∴△BFG∽△BAC,∴=,∵AC=3,AB=5,∠ACB=90°,∴BC=4,∴=,∵FC=FG,∴=,解得:FC=,即CE的长为.故选:A.【点评】本题考查了直角三角形性质、等腰三角形的性质和判定,三角形的内角和定理以及相似三角形的判定与性质等知识,关键是推出∠CEF=∠CFE.二、填空题:本大题共6小题,满分24分,只填写最后结果,每小题填对得4分13.(4分)若二元一次方程组的解为,则a﹣b=.【分析】把x、y的值代入方程组,再将两式相加即可求出a﹣b的值.【解答】解:将代入方程组,得:,①+②,得:4a﹣4b=7,则a﹣b=,故答案为:.【点评】本题考查二元一次方程组的解,解题的关键是观察两方程的系数,从而求出a﹣b的值,本题属于基础题型.14.(4分)如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,则大厅两层之间的高度为 6.18米.(结果保留两个有效数字)【参考数据;sin31°=0.515,cos31°=0.857,tan31°=0.601】【分析】根据题意和锐角三角函数可以求得BC的长,从而可以解答本题.【解答】解:在Rt△ABC中,∵∠ACB=90°,∴BC=AB•sin∠BAC=12×0.515=6.18(米),答:大厅两层之间的距离BC的长约为6.18米.故答案为:6.18.【点评】本题考查解直角三角形的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用锐角三角函数和数形结合的思想解答.15.(4分)我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a,b,c,则该三角形的面积为S=.现已知△ABC的三边长分别为1,2,,则△ABC的面积为1.【分析】根据题目中的面积公式可以求得△ABC的三边长分别为1,2,的面积,从而可以解答本题.【解答】解:∵S=,∴△ABC的三边长分别为1,2,,则△ABC的面积为:S==1,故答案为:1.【点评】本题考查二次根式的应用,解答本题的关键是明确题意,利用题目中的面积公式解答.16.(4分)如图,在正方形ABCD中,AD=2,把边BC绕点B逆时针旋转30°得到线段BP,连接AP并延长交CD于点E,连接PC,则三角形PCE的面积为9﹣5.【分析】根据旋转的思想得PB=BC=AB,∠PBC=30°,推出△ABP是等边三角形,得到∠BAP=60°,AP=AB=2,解直角三角形得到CE=2﹣2,PE=4﹣2,过P 作PF⊥CD于F,于是得到结论.【解答】解:∵四边形ABCD是正方形,∴∠ABC=90°,∵把边BC绕点B逆时针旋转30°得到线段BP,∴PB=BC=AB,∠PBC=30°,∴∠ABP=60°,∴△ABP是等边三角形,∴∠BAP=60°,AP=AB=2,∵AD=2,∴AE=4,DE=2,∴CE=2﹣2,PE=4﹣2,过P作PF⊥CD于F,∴PF=PE=2﹣3,∴三角形PCE的面积=CE•PF=×(2﹣2)×(2﹣3)=9﹣5,故答案为:9﹣5.【点评】本题考查了旋转的性质,正方形的性质,等边三角形的判定和性质,解直角三角形,正确的作出辅助线是解题的关键.17.(4分)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是12.【分析】根据图象可知点P在BC上运动时,此时BP不断增大,而从C向A运动时,BP先变小后变大,从而可求出BC与AC的长度.【解答】解:根据图象可知点P在BC上运动时,此时BP不断增大,由图象可知:点P从B向C运动时,BP的最大值为5,即BC=5,由于M是曲线部分的最低点,∴此时BP最小,即BP⊥AC,BP=4,∴由勾股定理可知:PC=3,由于图象的曲线部分是轴对称图形,∴PA=3,∴AC=6,∴△ABC的面积为:×4×6=12故答案为:12【点评】本题考查动点问题的函数图象,解题的关键是注意结合图象求出BC与AC的长度,本题属于中等题型.18.(4分)将从1开始的连续自然数按以下规律排列:第1行1第2行234第3行98765第4行10111213141516第5行252423222120191817…则2018在第45行.【分析】通过观察可得第n行最大一个数为n2,由此估算2018所在的行数,进一步推算得出答案即可.【解答】解:∵442=1936,452=2025,∴2018在第45行.故答案为:45.【点评】本题考查了数字的变化规律,解题的关键是通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题.三、解答题:本大题共7小题,满分60分.解答时,要写出必要的文字说明、证明过程或演算步骤19.(8分)计算:|﹣2|+sin60°﹣﹣(﹣1)2+2﹣2【分析】根据特殊角的三角函数值、负整数指数幂的意义和绝对值的意义计算.【解答】解:原式=2﹣+﹣3﹣+=﹣.【点评】本题考查了实数的运算:实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.20.(8分)如图,在4×4的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中,画出一个与△ABC成中心对称的格点三角形;(2)在图2中,画出一个与△ABC成轴对称且与△ABC有公共边的格点三角形;(3)在图3中,画出△ABC绕着点C按顺时针方向旋转90°后的三角形.【分析】(1)根据中心对称的性质即可作出图形;(2)根据轴对称的性质即可作出图形;(3)根据旋转的性质即可求出图形.【解答】解:(1)如图所示,△DCE为所求作(2)如图所示,△ACD为所求作(3)如图所示△ECD为所求作【点评】本题考查图形变换,解题的关键是正确理解图形变换的性质,本题属于基础题型.21.(8分)如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(n为常数,且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂足为D,若OB=2OA=3OD=12.(1)求一次函数与反比例函数的解析式;(2)记两函数图象的另一个交点为E,求△CDE的面积;(3)直接写出不等式kx+b≤的解集.【分析】(1)根据三角形相似,可求出点C坐标,可得一次函数和反比例函数解析式;(2)联立解析式,可求交点坐标;(3)根据数形结合,将不等式转化为一次函数和反比例函数图象关系.【解答】解:(1)由已知,OA=6,OB=12,OD=4∵CD⊥x轴∴OB∥CD∴△ABO∽△ACD∴∴∴CD=20∴点C坐标为(﹣4,20)∴n=xy=﹣80∴反比例函数解析式为:y=﹣把点A(6,0),B(0,12)代入y=kx+b得:解得:∴一次函数解析式为:y=﹣2x+12(2)当﹣=﹣2x+12时,解得x1=10,x2=﹣4当x=10时,y=﹣8∴点E坐标为(10,﹣8)∴S=S△CDA+S△EDA=△CDE(3)不等式kx+b≤,从函数图象上看,表示一次函数图象不低于反比例函数图象∴由图象得,x≥10,或﹣4≤x<0【点评】本题考查了应用待定系数法求一次函数和反比例函数解析式以及用函数的观点通过函数图象解不等式.22.(8分)现今“微信运动”被越来越多的人关注和喜爱,某兴趣小组随机调查了我市50名教师某日“微信运动”中的步数情况进行统计整理,绘制了如下的统计图表(不完整):步数频数频率0≤x<40008a4000≤x<8000150.38000≤x<1200012b12000≤x<16000c0.216000≤x<2000030.0620000≤x<24000d0.04请根据以上信息,解答下列问题:(1)写出a,b,c,d的值并补全频数分布直方图;(2)本市约有37800名教师,用调查的样本数据估计日行走步数超过12000步(包含12000步)的教师有多少名?(3)若在50名被调查的教师中,选取日行走步数超过16000步(包含16000步的两名教师与大家分享心得,求被选取的两名教师恰好都在20000步(包含20000步)以上的概率.【分析】(1)根据频率=频数÷总数可得答案;(2)用样本中超过12000步(包含12000步)的频率之和乘以总人数可得答案;(3)画树状图列出所有等可能结果,根据概率公式求解可得.【解答】解:(1)a=8÷50=0.16,b=12÷50=0.24,c=50×0.2=10,d=50×0.04=2,补全频数分布直方图如下:(2)37800×(0.2+0.06+0.04)=11340,答:估计日行走步数超过12000步(包含12000步)的教师有11340名;(3)设16000≤x<20000的3名教师分别为A、B、C,20000≤x<24000的2名教师分别为X、Y,画树状图如下:由树状图可知,被选取的两名教师恰好都在20000步(包含20000步)以上的概率为=.【点评】此题考查了频率分布直方图,用到的知识点是频率=频数÷总数,用样本估计整体让整体×样本的百分比,读懂统计表,运用数形结合思想来解决由统计图形式给出的数学实际问题是本题的关键.23.(8分)如图,在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC为直径作⊙O交AB于点D.(1)求线段AD的长度;(2)点E是线段AC上的一点,试问:当点E在什么位置时,直线ED与⊙O相切?请说明理由.【分析】(1)由勾股定理易求得AB的长;可连接CD,由圆周角定理知CD⊥AB,易知△ACD∽△ABC,可得关于AC、AD、AB的比例关系式,即可求出AD的长.(2)当ED与⊙O相切时,由切线长定理知EC=ED,则∠ECD=∠EDC,那么∠A 和∠DEC就是等角的余角,由此可证得AE=DE,即E是AC的中点.在证明时,可连接OD,证OD⊥DE即可.【解答】解:(1)在Rt△ACB中,∵AC=3cm,BC=4cm,∠ACB=90°,∴AB=5cm;连接CD,∵BC为直径,∴∠ADC=∠BDC=90°;∵∠A=∠A,∠ADC=∠ACB,∴Rt△ADC∽Rt△ACB;∴,∴;(2)当点E是AC的中点时,ED与⊙O相切;证明:连接OD,∵DE是Rt△ADC的中线;∴ED=EC,∴∠EDC=∠ECD;∵OC=OD,∴∠ODC=∠OCD;∴∠EDO=∠EDC+∠ODC=∠ECD+∠OCD=∠ACB=90°;∴ED⊥OD,∴ED与⊙O相切.【点评】此题综合考查了圆周角定理、相似三角形的判定和性质、直角三角形的性质、切线的判定等知识.24.(10分)如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.(1)求证:四边形EFDG是菱形;(2)探究线段EG、GF、AF之间的数量关系,并说明理由;(3)若AG=6,EG=2,求BE的长.【分析】(1)先依据翻折的性质和平行线的性质证明∠DGF=∠DFG,从而得到GD=DF,接下来依据翻折的性质可证明DG=GE=DF=EF;(2)连接DE,交AF于点O.由菱形的性质可知GF⊥DE,OG=OF=GF,接下来,证明△DOF∽△ADF,由相似三角形的性质可证明DF2=FO•AF,于是可得到GE、AF、FG的数量关系;(3)过点G作GH⊥DC,垂足为H.利用(2)的结论可求得FG=4,然后再△ADF中依据勾股定理可求得AD的长,然后再证明△FGH∽△FAD,利用相似三角形的性质可求得GH的长,最后依据BE=AD﹣GH求解即可.【解答】解:(1)证明:∵GE∥DF,∴∠EGF=∠DFG.∵由翻折的性质可知:GD=GE,DF=EF,∠DGF=∠EGF,∴∠DGF=∠DFG.∴GD=DF.∴DG=GE=DF=EF.∴四边形EFDG为菱形.(2)EG2=GF•AF.理由:如图1所示:连接DE,交AF于点O.∵四边形EFDG为菱形,∴GF⊥DE,OG=OF=GF.∵∠DOF=∠ADF=90°,∠OFD=∠DFA,∴△DOF∽△ADF.∴,即DF2=FO•AF.∵FO=GF,DF=EG,∴EG2=GF•AF.(3)如图2所示:过点G作GH⊥DC,垂足为H.∵EG2=GF•AF,AG=6,EG=2,∴20=FG(FG+6),整理得:FG2+6FG﹣40=0.解得:FG=4,FG=﹣10(舍去).∵DF=GE=2,AF=10,∴AD==4.∵GH⊥DC,AD⊥DC,∴GH∥AD.∴△FGH∽△FAD.∴,即=.∴GH=.∴BE=AD﹣GH=4﹣=.【点评】本题主要考查的是四边形与三角形的综合应用,解答本题主要应用了矩形的性质、菱形的判定和性质、相似三角形的性质和判定、勾股定理的应用,利用相似三角形的性质得到DF2=FO•AF是解题答问题(2)的关键,依据相似三角形的性质求得GH的长是解答问题(3)的关键.25.(10分)如图1,已知二次函数y=ax2+x+c(a≠0)的图象与y轴交于点A (0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)请直接写出二次函数y=ax2+x+c的表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请写出此时点N的坐标;(4)如图2,若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.【分析】(1)根据待定系数法即可求得;(2)根据抛物线的解析式求得B的坐标,然后根据勾股定理分别求得AB2=20,AC2=80,BC10,然后根据勾股定理的逆定理即可证得△ABC是直角三角形.(3)分别以A、C两点为圆心,AC长为半径画弧,与x轴交于三个点,由AC 的垂直平分线与x轴交于一个点,即可求得点N的坐标;(4)设点N的坐标为(n,0),则BN=n+2,过M点作MD⊥x轴于点D,根据三角形相似对应边成比例求得MD=(n+2),然后根据S=S△ABN﹣S△BMN△AMN得出关于n的二次函数,根据函数解析式求得即可.【解答】解:(1)∵二次函数y=ax2+x+c的图象与y轴交于点A(0,4),与x 轴交于点B、C,点C坐标为(8,0),∴,解得.∴抛物线表达式:y=﹣x2+x+4;(2)△ABC是直角三角形.令y=0,则﹣x2+x+4=0,解得x1=8,x2=﹣2,∴点B的坐标为(﹣2,0),由已知可得,在Rt△ABO中AB2=BO2+AO2=22+42=20,在Rt△AOC中AC2=AO2+CO2=42+82=80,又∵BC=OB+OC=2+8=10,∴在△ABC中AB2+AC2=20+80=102=BC2∴△ABC是直角三角形.(3)∵A(0,4),C(8,0),∴AC==4,①以A为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(﹣8,0),②以C为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(8﹣4,0)或(8+4,0)③作AC的垂直平分线,交x轴于N,此时N的坐标为(3,0),综上,若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,点N的坐标分别为(﹣8,0)、(8﹣4,0)、(3,0)、(8+4,0).(4)如图,设点N的坐标为(n,0),则BN=n+2,过M点作MD⊥x轴于点D,∴MD∥OA,∴△BMD∽△BAO,∴=,∵MN∥AC∴=,∴=,∵OA=4,BC=10,BN=n+2∴MD=(n+2),=S△ABN﹣S△BMN∵S△AMN=BN•OA﹣BN•MD=(n+2)×4﹣×(n+2)2=﹣(n﹣3)2+5,当n=3时,△AMN面积最大是5,∴N点坐标为(3,0).∴当△AMN面积最大时,N点坐标为(3,0).【点评】本题是二次函数的综合题,解(1)的关键是待定系数法求解析式,解(2)的关键是勾股定理和逆定理,解(3)的关键是等腰三角形的性质,解(4)的关键是三角形相似的判定和性质以及函数的最值等.。

2024年山东省枣庄市中考 数学试题(枣庄聊城临沂菏泽)(解析版)

2024年山东省枣庄市中考 数学试题(枣庄聊城临沂菏泽)(解析版)

2024年枣庄市初中学业水平考试数学本试卷共8页.满分120分.考试用时120分钟.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号和座号填写在答题卡规定的位置上,并在本页上方空白处写上姓名和准考证号.2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.3.非选择题必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.一、选择题:本题共10小题,每小题3分,共30分.每小题只有一个选项符合题目要求.1. 下列实数中,平方最大的数是()A. 3B. 12C. 1−D. 2−【答案】A【解析】【分析】本题考查的是实数的大小比较,乘方运算,先分别计算各数的乘方,再比较大小即可.【详解】解:∵239=,21124=,()211−=,()224−=,而1149 4<<<,∴平方最大的数是3;故选A2. 用一个平面截正方体,可以得到以下截面图形,其中既是轴对称图形又是中心对称图形的是()A.B. C. D.【答案】D【解析】 【分析】本题考查的是中心对称图形与轴对称图形的概念,常见的中心对称图形有平行四边形、圆形、正方形、长方形等等.常见的轴对称图形有等腰三角形,矩形,正方形,等腰梯形,圆等等.根据中心对称图形与轴对称图形的概念,进行判断即可.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A .该图形是轴对称图形,不是中心对称图形,故此选项不合题意;B .该图形是轴对称图形,不是中心对称图形,故此选项不合题意;C .该图形是轴对称图形,不是中心对称图形,故此选项不合题意;D .该图形既是轴对称图形,又是中心对称图形,故此选项符合题意.故选:D .3. 2023年山东省扎实落实民生实事,全年新增城乡公益性岗位61.9万个,将61.9万用科学记数法表示应为( )A. 30.61910×B. 461.910×C. 56.1910×D. 66.1910× 【答案】C【解析】【分析】本题考查用科学记数法的表示方法,一般形式为10n a ×,其中110a ≤<,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的值与小数点移动位数相同,确定a 与n 的值是解题关键.【详解】解:61.9万5619000 6.1910=×,故选:C .4. 下列几何体中,主视图是如图的是( )A B. C. D. .【答案】D【解析】【分析】本题考查了几何体的三视图,从前面看到的图形是主视图,从上面看到的图形是俯视图,从左边看到的图形是左视图.能看到的线画实线,看不到的线画虚线.根据主视图是从正面看到的图形分析即可.【详解】解:A .主视图是等腰三角形,不符合题意;B .主视图是共底边的两个等腰三角形,故不符合题意;C .主视图是上面三角形,下面半圆,故不符合题意;D .主视图是上面等腰三角形,下面矩形,故符合题意;故选:D .5. 下列运算正确的是( )A. 437a a a +=B. ()2211a a −=−C. ()2332a b a b =D. ()2212a a a a +=+ 【答案】D【解析】【分析】本题考查合并同类项,幂的乘方运算,完全平方公式,单项式乘以多项式,掌握其运算法则是解决此题的关键.按照运算规律进行计算即可.【详解】解:A .式子中两项不是同类项,不能合并,故A 不符合题意;B . ()22121a a a −=−+,故B 不符合题意;C . ()2362a b a b =,故C 不符合题意;D . ()2212a a a a +=+,故D 符合题意.故选D .6. 为提高生产效率,某工厂将生产线进行升级改造,改造后比改造前每天多生产100件,改造后生产600件的时间与改造前生产400件的时间相同,则改造后每天生产的产品件数为( )A. 200B. 300C. 400D. 500【答案】B【解析】【分析】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.设改造后每天生产的产品件数为x ,则改造前每天生产的产品件数为()100x −,根据“改造后生产600件的时间与改造前生产400件的时间相同”列出分式方程,解方程即可.【详解】解:设改造后每天生产的产品件数为x ,则改造前每天生产的产品件数为()100x −, 根据题意,得:600400100x x =−, 解得:300x =,经检验300x =是分式方程的解,且符合题意,答:改造后每天生产产品件数300.故选:B .7. 如图,已知AB ,BC ,CD 是正n 边形的三条边,在同一平面内,以BC 为边在该正n 边形的外部作正方形BCMN .若120ABN ∠=°,则n 的值为( )A. 12B. 10C. 8D. 6【答案】A【解析】 【分析】本题考查的是正多边形的性质,正多边形的外角和,先求解正多边形的1个内角度数,得到正多边形的1个外角度数,再结合外角和可得答案.【详解】解:∵正方形BCMN ,∴90NBC ∠=°,∵120ABN ∠=°,∴36090120150ABC ∠=°−°−°=°,∴正n 边形的一个外角为18015030°−°=°,∴n 的值为3601230°=°; 故选A8. 某校课外活动期间开展跳绳、踢毽子、韵律操三项活动,甲、乙两位同学各自任选其中一项参加,则他们选择同一项活动的概率是( ) A. 19 B. 29 C. 13 D. 23【答案】C【解析】的【分析】本题考查了用列表法或画树状图法求概率.首先根据题意画出树状图,然后由树状图求得所有等可能的结果以及甲与乙恰好选择同一项活动的情况,再利用概率公式求解即可求得答案.【详解】解:设跳绳、踢毽子、韵律操分别为A 、B 、C ,画树状图如下,共有9种等可能的结果,甲、乙恰好选择同一项活动的有3种情况, 故他们选择同一项活动的概率是3193=, 故选:C .9. 如图,点E 为ABCD 的对角线AC 上一点,5AC =,1CE =,连接DE 并延长至点F ,使得EF DE =,连接BF ,则BF 为( )A. 52B. 3C. 72D. 4【答案】B【解析】【分析】本题考查了平行四边形的性质,平行线分线段成比例定理,平行证明相似等知识点,正确作辅助线是解题关键.作辅助线如图,由平行正相似先证DEC GAE ∽,再证BGF AGE ∽,即可求得结果.【详解】解:延长DF 和AB ,交于G 点,∵四边形ABCD 是平行四边形,∴DC AB ∥,DC AB =即DC AG ∥,∴DEC GAE ∽∴CEDE DC AE GE AG==, ∵5AC =,1CE =,∴514AE AC CE =−=−=, ∴14CE DE DC AE GE AG ===, 又∵EF DE =,14DE DE GE EF FG ==+, ∴13EF FG =, ∵14DC DC AG AB BG ==+,DC AB =, ∴13DC BG =, ∴13EF DC FG BG ==, ∴34BG FG AG EG == ∴AE BF ∥,∴BGF AGE ∽, ∴34BFFG AE EG == ∵4AE =,∴3BF =.故选:B .10. 根据以下对话,给出下列三个结论:①1班学生的最高身高为180cm ;②1班学生的最低身高小于150cm ;③2班学生的最高身高大于或等于170cm .上述结论中,所有正确结论的序号是( )A. ①②B. ①③C. ②③D. ①②③【答案】D【解析】 【分析】本题考查了二元一次方程、不等式的应用,设1班同学的最高身高为cm x ,最低身高为cm y ,2班同学的最高身高为cm a ,最低身高为cm b ,根据1班班长的对话,得180x ≤,350x a +=,然后利用不等式性质可求出170a ≥,即可判断①,③;根据2班班长的对话,得140b >,290y b +=,然后利用不等式性质可求出150y <,即可判断②.【详解】解:设1班同学的最高身高为cm x ,最低身高为cm y ,2班同学的最高身高为cm a ,最低身高为cm b ,根据1班班长的对话,得180x ≤,350x a +=,∴350x a =−∴350180a −≤,解得170a ≥,故①,③正确;根据2班班长的对话,得140b >,290y b +=, ∴290b y =−, ∴290140y −>,∴150y <,故②正确,故选:D .二、填空题:本题共6小题,每小题3分,共18分.11. 因式分解:22x y xy +=________. 【答案】()2xy x +【解析】分析】本题考查了因式分解,直接提取公因式xy 即可.【详解】解:原式()2xy x +,故答案为: ()2xy x +.【12. 写出满足不等式组21215x x +≥ −<的一个整数解________. 【答案】1−(答案不唯一)【解析】【分析】本题考查一元一次不等式组的解法,解题的关键是正确掌握解一元一次不等式组的步骤.先解出一元一次不等式组的解集为13x −≤<,然后即可得出整数解.【详解】解:21215x x +≥ −< ①②,由①得:1x ≥−,由②得:3x <,∴不等式组的解集为:13x −≤<,∴不等式组的一个整数解为:1−;故答案为:1−(答案不唯一).13. 若关于x 的方程2420x x m −+=有两个相等的实数根,则m 的值为________. 【答案】14##0.25 【解析】“当Δ0=时,方程有两个相等的实数根”是解题的关键. 根据方程的系数结合根的判别式,即可得出2242440b ac m ∆=−=−××=,解之即可得出结论.【详解】解:∵关于x 的方程2420x x m −+=有两个相等的实数根,∴2242444160b ac m m ∆=−=−××=−=, 解得:14m =. 故答案为:14. 14. 如图,ABC 是O 的内接三角形,若OA CB ∥,25ACB ∠=°,则CAB ∠=________.【答案】40°##40度【解析】【分析】本题考查了圆周角定理,等腰三角形的性质,三角形内角和定理等知识,利用圆周角定理求出AOB ∠的度数,利用等边对等角、三角形内角和定理求出OAB ∠的度数,利用平行线的性质求出OAC ∠的度数,即可求解.【详解】解∶连接OB ,∵25ACB ∠=°,∴250AOB ACB ∠=∠=°,∵OA OB =, ∴()1180652OAB OBA AOB ∠=∠=°−∠=°, ∵OA CB ∥,∴25A OAC CB ∠=°∠=,∴40CAB OAB OAC ∠=∠−∠=°,故答案为:40°.15. 如图,已知MAN ∠,以点A 为圆心,以适当长为半径作弧,分别与AM 、AN 相交于点B ,C ;分别以B ,C 为圆心,以大于12BC 的长为半径作弧,两弧在MAN ∠内部相交于点P ,作射线AP .分别以A ,B 为圆心,以大于12AB 的长为半径作弧,两弧相交于点D ,E ,作直线DE 分别与AB ,AP 相交于点F ,Q .若4AB =,67.5PQE ∠=°,则F 到AN 的距离为________.【解析】【分析】如图,过F 作FH AC ⊥于H ,证明BAP CAP ∠=∠,DE AB ⊥,122AFBF AB ===,再证明45FAH ∠=°,再结合勾股定理可得答案.【详解】解:如图,过F 作FH AC ⊥于H ,由作图可得:BAP CAP ∠=∠,DE AB ⊥,122AFBF AB ===, ∵67.5PQE ∠=°,∴67.5AQF ∠=°,∴9067.522.5BAP CAP ∠=∠=°−°=°,∴45FAH ∠=°,∴AH FH AF ===,∴F 到AN ;【点睛】本题考查了作图−复杂作图:基本作图,三角形的内角和定理的应用,勾股定理的应用,等腰三角形的判定,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质,逐步操作. 16. 任取一个正整数,若是奇数,就将该数乘3再加上1;若是偶数,就将该数除以2.反复进行上述两种运算,经过有限次运算后,必进入循环圈1→4→2→1,这就是“冰雹猜想”.在平面直角坐标系xOy 中,将点(),x y 中的x ,y 分别按照“冰雹猜想”同步进行运算得到新的点的横、纵坐标,其中x ,y 均为正整数.例如,点()6,3经过第1次运算得到点()3,10,经过第2次运算得到点()10,5,以此类推.则点()1,4经过2024次运算后得到点________.【答案】()2,1【解析】【分析】本题考查了新定义,点的规律,根据新定义依次计算出各点的坐标,然后找出规律,最后应用规律求解即可.【详解】解:点()1,4经过1次运算后得到点为()131,42×+÷,即为()4,2,经过2次运算后得到点为()42,21÷÷,即为()2,1,经过3次运算后得到点为()22,131÷×+,即为()1,4,……,发现规律:点()1,4经过3次运算后还是()1,4,∵202436742÷= ,∴点()1,4经过2024次运算后得到点()2,1,故答案为:()2,1.三、解答题:本题共7小题,共72分.解答应写出文字说明、证明过程或演算步骤.17. (11122− +−−; (2)先化简,再求值:212139a a a +−÷ +− ,其中1a =. 【答案】(1)3 (2)3a − 2−【解析】【分析】本题主要考查实数的运算、分式的运算:(1)根据求算术平方根和负整数指数幂、有理数的减法的运算法则计算即可;(2)先通分,然后求解即可.【详解】(1)原式112+322=+= (2)原式()()3123333a a a a a a ++ −÷ +++− ()()332·32a a a a a +−+=++ 3a =−将1a =代入,得原式132=−=−18. 【实践课题】测量湖边观测点A 和湖心岛上鸟类栖息点P 之间的距离【实践工具】皮尺、测角仪等测量工具【实践活动】某班甲小组根据胡岸地形状况,在岸边选取合适的点B .测量A ,B 两点间的距离以及∠PAB 和PBA ∠,测量三次取平均值,得到数据:60AB =米,79PAB ∠=°,64PBA ∠=°.画出示意图,如图【问题解决】(1)计算A ,P 两点间的距离.(参考数据:sin640.90°≈,sin790.98°≈,cos790.19°≈,sin370.60°≈,tan370.75°≈)【交流研讨】甲小组回班汇报后,乙小组提出了另一种方案:如图2,选择合适的点D ,E ,F ,使得A ,D ,E 在同一条直线上,且AD DE =,DEF DAP ∠=∠,当F ,D ,P 在同一条直线上时,只需测量EF 即可.(2)乙小组的方案用到了________.(填写正确答案的序号)①解直角三角形 ②三角形全等【教师评价】甲、乙两小组的方案都很好,对于实际测量,要根据现场地形状况选择可实施的方案.【答案】(1)A ,P 两点间的距离为89.8米;(2)② 【解析】【分析】本题考查的是全等三角形的判定与性质的应用,解直角三角形的应用,灵活应用知识点是解本题的关键;(1)如图,过B 作BH AP ⊥于H ,先求解cos79600.1911.4AH AB =⋅°≈×=,sin79600.9858.8BH AB =⋅°≈×=,再求解37APB ∠=°及PH 即可;(2)由全等三角形的判定方法可得()ASA ADP EDF ≌,可得AP EF =,从而可得答案.【详解】解:如图,过B 作BH AP ⊥于H ,∵60AB =米,79PAB ∠=°,sin790.98°≈,cos790.19°≈,∴cos79600.1911.4AH AB =⋅°≈×=,sin79600.9858.8BH AB =⋅°≈×=,∵79PAB ∠=°,64PBA ∠=°, ∴180796437APB ∠=°−°−°=°, ∴tan tan 370.75BH APBPH ∠=°=≈, ∴58.878.40.75PH ≈=, ∴11.478.489.8AP AH PH =+=+=(米); 即A ,P 两点间的距离为89.8米;(2)∵AD DE =,DEF DAP ∠=∠,当F ,D ,P 在同一条直线上时,∴ADP EDF ∠=∠,∴()ASA ADP EFD ≌,∴AP EF =,∴只需测量EF 即可得到AP 长度;∴乙小组的方案用到了②;19. 某学校开展了“校园科技节”活动,活动包含模型设计、科技小论文两个项目.为了解学生的模型设计水平,从全校学生的模型设计成绩中随机抽取部分学生的模型设计成绩(成绩为百分制,用x 表示),并将其分成如下四组:6070x ≤<,7080x ≤<,8090x ≤<,90100x ≤≤.下面给出了部分信息:8090x ≤<的成绩为:81,81,82,82,83,83,84,84,84,85,86,86,86,87,88,88,88,89,89,89.根据以上信息解决下列问题:(1)请补全频数分布直方图;(2)所抽取学生的模型设计成绩的中位数是________分;(3)请估计全校100080分的人数;(4)根据活动要求,学校将模型设计成绩、科技小论文成绩按3:2的比例确定这次活动各人的综合成绩.某班甲、乙两位学生的模型设计成绩与科技小论文成绩(单位:分)如下:模型设计 科技小论文甲的成绩9490 乙的成绩9095 通过计算,甲、乙哪位学生的综合成绩更高?【答案】(1)画图见解析(2)83(3)600人(4)甲的综合成绩比乙高.【解析】【分析】(1)先求解总人数,再求解7080x ≤<的人数,再补全图形即可;(2)根据中位数的含义确定第25个,第26个数据的平均数即可得到中位数;(3)由总人数乘以80分含80以上的人数百分比即可得到答案;(4)根据加权平均数公式分别计算甲,乙二人成绩,再比较即可【小问1详解】解:∵510%50÷=,而8090x ≤<有20人,∴7080x ≤<有502051015−−−=,补全图形如下:。

2023年山东省枣庄市中考数学真题(原卷版和解析版)

2023年山东省枣庄市中考数学真题(原卷版和解析版)

2023年枣庄市初中学业水平考试数学注意事项:1.本试题分第I 卷和第II 卷两部分,第I 卷为选择题,30分;第II 卷为非选择题,90分;全卷共6页,满分120分.考试时间为120分钟.2.答卷时,考生务必将第I 卷和第II 卷的答案填涂或书写在答题卡指定位置上,并在本页上方空白处写上姓名和准考证号,考试结束,将试卷和答题卡一并交回.第I 卷(选择题共30分)一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是正确的.1.下列各数中比1大的数是()A.2 B.0 C.-1 D.-32.榫卯是古代中国建筑、家具及其它器械的主要结构方式,是我国工艺文化精神的传奇;凸出部分叫榫,凹进部分叫卯,下图是某个部件“卯”的实物图,它的主视图是()A. B. C. D.3.随着全球新一轮科技革命和产业变革的蓬勃发展,新能源汽车已经成为全球汽车产业转型发展的主要方向,根据中国乘用车协会的统计数据,2023年第一季度,中国新能源汽车销量为159万辆,同比增长26.2%,其中159万用科学记数法表示为()A.61.5910⨯ B.515910⨯. C.415910⨯ D.215910⨯.4.我国元朝朱世杰所著的《算学启蒙》一书是中国较早的数学著作之一,书中记载一道问题:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之?”题意是:快马每天走240里,慢马每天走150里,慢马先走12天,试问快马几天可以追上慢马?若设快马x 天可以追上慢马,则下列方程正确的是()A.24015015012x x +=⨯B.24015024012x x -=⨯C.24015024012x x +=⨯ D.24015015012x x -=⨯5.下列运算结果正确的是()A.4482x x x += B.()32626x x -=- C.633x x x ÷= D.236x x x ⋅=6.4月23日是世界读书日,学校举行“快乐阅读,健康成长”读书活动.小明随机调查了本校七年级30名同学近4个月内每人阅读课外书的数量,数据如下表所示:人数67107课外书数量(本)67912则阅读课外书数量的中位数和众数分别是()A.8,9B.10,9C.7,12D.9,97.如图,在O 中,弦AB CD ,相交于点P ,若4880A APD ∠=︒∠=︒,,则B ∠的度数为()A.32︒B.42︒C.48︒D.52︒8.如图,一束太阳光线平行照射在放置于地面的正六边形上,若144∠=︒,则2∠的度数为()A.14︒B.16︒C.24︒D.26︒9.如图,在ABC 中,9030ABC C ∠=︒∠=︒,,以点A 为圆心,以AB 的长为半径作弧交AC 于点D ,连接BD ,再分别以点B ,D 为圆心,大于12BD 的长为半径作弧,两弧交于点P ,作射线AP 交BC 于点E ,连接DE ,则下列结论中不正确的是()A.BE DE =B.AE CE =C.2CE BE =D.3EDC ABC S S =△△10.二次函数2(0)y ax bx c a =++≠的图象如图所示,对称轴是直线1x =,下列结论:①0abc <;②方程20ax bx c ++=(0a ≠)必有一个根大于2且小于3;③若()1230,,,2y y ⎛⎫ ⎪⎝⎭是抛物线上的两点,那么12y y <;④1120a c +>;⑤对于任意实数m ,都有()m am b a b +≥+,其中正确结论的个数是()A.5 B.4 C.3 D.2第II 卷(非选择题共90分)二、填空题,大题共6小题,每小题填对得3分,共18分,只填写最后结果.11.计算)10112-⎛⎫+= ⎪⎝⎭_________.12.若3x =是关x 的方程26ax bx -=的解,则202362a b -+的值为___________.13.银杏是著名的活化石植物,其叶有细长的叶柄,呈扇形.如图是一片银杏叶标本,叶片上两点B ,C 的坐标分别为(3,2),(4,3)-,将银杏叶绕原点顺时针旋转90︒后,叶柄上点A 对应点的坐标为___________.14.如图所示,桔棒是一种原始的汲水工具,它是在一根竖立的架子上加上一根细长的杠杆,末端悬挂一重物,前端悬挂水桶.当人把水桶放入水中打满水以后,由于杠杆末端的重力作用,便能轻易把水提升至所需处,若已知:杠杆6AB =米,:2:1AO OB =,支架3OM EF OM ⊥=,米,AB 可以绕着点O 自由旋转,当点A 旋转到如图所示位置时45AOM ∠=︒,此时点B 到水平地面EF 的距离为___________米.(结果保留根号)15.如图,在正方形ABCD 中,对角线AC 与BD 相交于点O ,E 为BC 上一点,7CE =,F 为DE 的中点,若CEF △的周长为32,则OF 的长为___________.16.如图,在反比例函数8(0)y x x=>的图象上有1232024,,,P P P P 等点,它们的横坐标依次为1,2,3,…,2024,分别过这些点作x 轴与y 轴的垂线,图中所构成的阴影部分的面积从左到右依次为1232023,,,,S S S S ,则1232023S S S S ++++= ___________.三、解答题:本大题共8小题,共72分,解答时,要写出必要的文字说明,证明过程或演算步骤.17.先化简,再求值:222211a a a a a ⎛⎫-÷ ⎪--⎝⎭,其中a 的值从不等式组1a -<<的解集中选取一个合适的整数.18.(1)观察分析:在一次数学综合实践活动中,老师向同学们展示了图①,图②,图③三幅图形,请你结合自己所学的知识,观察图中阴影部分构成的图案,写出三个图案都具有的两个共同特征:___________,___________.(2)动手操作:请在图④中设计一个新的图案,使其满足你在(1)中发现的共同特征.19.对于任意实数a ,b ,定义一种新运算:()26(2)a b a b a b a b a b ⎧-≥=⎨+-<⎩※,例如:31312=-=※,545463=+-=※.根据上面的材料,请完成下列问题:(1)43=※___________,(1)(3)--=※___________;(2)若(32)(1)5x x +-=※,求x 的值.20.《义务教育课程方案》和《义务教育劳动课程标准(2022年版)》正式发布,劳动课正式成为中小学的一门独立课程,日常生活劳动设定四个任务群:A 清洁与卫生,B 整理与收纳,C 家用器具使用与维护,D 烹饪与营养.学校为了较好地开设课程,对学生最喜欢的任务群进行了调查,并将调查结果绘制成以下两幅不完整的统计图.请根据统计图解答下列问题:(1)本次调查中,一共调查了___________名学生,其中选择“C 家用器具使用与维护”的女生有___________名,“D 烹饪与营养”的男生有___________名.(2)补全上面的条形统计图和扇形统计图;(3)学校想从选择“C 家用器具使用与维护”的学生中随机选取两名学生作为“家居博览会”的志愿者,请用画树状图或列表法求出所选的学生恰好是一名男生和一名女生的概率.21.如图,一次函数(0)y kx b k =+≠的图象与反比例函数4y x=的图象交于(,1),(2,)A m B n -两点.(1)求一次函数的表达式,并在所给的平面直角坐标系中画出这个一次函数的图象;(2)观察图象,直接写出不等式4kx b x+<的解集;(3)设直线AB 与x 轴交于点C ,若(0,)P a 为y 轴上的一动点,连接,AP CP ,当APC △的面积为52时,求点P 的坐标.22.如图,AB 为O 的直径,点C 是 AD 的中点,过点C 做射线BD 的垂线,垂足为E .(1)求证:CE 是O 切线;(2)若34BE AB ==,,求BC 的长;(3)在(2)的条件下,求阴影部分的面积(用含有π的式子表示).23.如图,抛物线2y x bx c =-++经过(1,0),(0,3)A C -两点,并交x 轴于另一点B ,点M 是抛物线的顶点,直线AM 与轴交于点D .(1)求该抛物线的表达式;(2)若点H 是x 轴上一动点,分别连接MH ,DH ,求MH DH +的最小值;(3)若点P 是抛物线上一动点,问在对称轴上是否存在点Q ,使得以D ,M ,P ,Q 为顶点的四边形是平行四边形?若存在,请直接..写出所有满足条件的点Q 的坐标;若不存在,请说明理由.24.问题情境:如图1,在ABC 中,1730AB AC BC ===,,AD 是BC 边上的中线.如图2,将ABC 的两个顶点B ,C 分别沿,EF GH 折叠后均与点D 重合,折痕分别交,,AB AC BC 于点E ,G ,F ,H .猜想证明:(1)如图2,试判断四边形AEDG 的形状,并说明理由.问题解决;(2)如图3,将图2中左侧折叠的三角形展开后,重新沿MN 折叠,使得顶点B 与点H 重合,折痕分别交,AB BC 于点M ,N ,BM 的对应线段交DG 于点K ,求四边形MKGA 的面积.2023年枣庄市初中学业水平考试数学注意事项:1.本试题分第I卷和第II卷两部分,第I卷为选择题,30分;第II卷为非选择题,90分;全卷共6页,满分120分.考试时间为120分钟.2.答卷时,考生务必将第I卷和第II卷的答案填涂或书写在答题卡指定位置上,并在本页上方空白处写上姓名和准考证号,考试结束,将试卷和答题卡一并交回.第I卷(选择题共30分)一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是正确的.1.下列各数中比1大的数是()A.2B.0C.-1D.-3【答案】A【解析】【详解】试题分析:根据正数大于0,0大于负数,两个负数,绝对值大的反而小可得题目选项中的各数中比1大的数是2,故选A.考点:有理数的大小比较.2.榫卯是古代中国建筑、家具及其它器械的主要结构方式,是我国工艺文化精神的传奇;凸出部分叫榫,凹进部分叫卯,下图是某个部件“卯”的实物图,它的主视图是()A. B. C. D.【答案】C【解析】【分析】根据主视图是从前向后观察到的图形,进行判断即可.【详解】解:由题意,得:“卯”的主视图为:【点睛】本题考查三视图,熟练掌握三视图的画法,是解题的关键.3.随着全球新一轮科技革命和产业变革的蓬勃发展,新能源汽车已经成为全球汽车产业转型发展的主要方向,根据中国乘用车协会的统计数据,2023年第一季度,中国新能源汽车销量为159万辆,同比增长26.2%,其中159万用科学记数法表示为()A.61.5910⨯ B.515910⨯. C.415910⨯ D.215910⨯.【答案】A【解析】【分析】根据科学记数法的表示方法进行表示即可.【详解】解:159万61590000 1.5910==⨯;故选A .【点睛】本题考查科学记数法,熟练掌握科学记数法的表示方法:()11100≤⨯<n a a ,n 为整数,是解题的关键.4.我国元朝朱世杰所著的《算学启蒙》一书是中国较早的数学著作之一,书中记载一道问题:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之?”题意是:快马每天走240里,慢马每天走150里,慢马先走12天,试问快马几天可以追上慢马?若设快马x 天可以追上慢马,则下列方程正确的是()A.24015015012x x +=⨯B.24015024012x x -=⨯C.24015024012x x +=⨯ D.24015015012x x -=⨯【答案】D【解析】【分析】设快马x 天可以追上慢马,根据路程=速度×时间,即可得出关于x 的一元一次方程,此题得解.【详解】解:设快马x 天可以追上慢马,依题意,得:240x -150x =150×12.故选:D .【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.5.下列运算结果正确的是()A.4482x x x += B.()32626x x -=- C.633x x x ÷= D.236x x x ⋅=【解析】【分析】根据积的乘方,同底数幂的乘法,除法法则,合并同类项法则,逐一进行计算即可得出结论.【详解】解:A 、4442x x x +=,选项计算错误,不符合题意;B 、()32628x x -=-,选项计算错误,不符合题意;C 、633x x x ÷=,选项计算正确,符合题意;D 、235x x x ×=,选项计算错误,不符合题意;故选C .【点睛】本题考查积的乘方,同底数幂的乘法,除法,合并同类项.熟练掌握相关运算法则,是解题的关键.6.4月23日是世界读书日,学校举行“快乐阅读,健康成长”读书活动.小明随机调查了本校七年级30名同学近4个月内每人阅读课外书的数量,数据如下表所示:人数67107课外书数量(本)67912则阅读课外书数量的中位数和众数分别是()A .8,9 B.10,9 C.7,12 D.9,9【答案】D【解析】【分析】利用中位数,众数的定义即可解决问题.中位数:把一组数据按从小到大的顺序排列,在中间的一个数字(或者两个数字的平均值)叫做这组数据的中位数.众数:在一组数据中出现次数最多的数.【详解】解:中位数为第15个和第16个的平均数为:9992+=,众数为9.故选:D .【点睛】本题考查了中位数和众数,解题的关键是掌握平均数、中位数和众数的概念.7.如图,在O 中,弦AB CD ,相交于点P ,若4880A APD ∠=︒∠=︒,,则B ∠的度数为()A.32︒B.42︒C.48︒D.52︒【答案】A【解析】【分析】根据圆周角定理,可以得到D ∠的度数,再根据三角形外角的性质,可以求出B ∠的度数.【详解】解:48A D A ∠=∠∠=︒ ,,48D ∴∠=︒,80APD APD B D ∠=︒∠=∠+∠ ,,804832B APD D ∴∠=∠-∠=︒-︒=︒,故选:A .【点睛】本题考查圆周角定理、三角形外角的性质,解答本题的关键是求出D ∠的度数.8.如图,一束太阳光线平行照射在放置于地面的正六边形上,若144∠=︒,则2∠的度数为()A.14︒B.16︒C.24︒D.26︒【答案】B【解析】【分析】如图,求出正六边形的一个内角和一个外角的度数,得到460,25120∠=︒∠+∠=︒,平行线的性质,得到3144∠=∠=︒,三角形的外角的性质,得到534104∠=∠+∠=︒,进而求出2∠的度数.【详解】解:如图:∵正六边形的一个外角的度数为:360606︒=︒,∴正六边形的一个内角的度数为:18060120︒-︒=︒,即:460,25120∠=︒∠+∠=︒,∵一束太阳光线平行照射在放置于地面的正六边形上,144∠=︒,∴3144∠=∠=︒,∴534104∠=∠+∠=︒,∴2120516∠=︒-∠=︒;故选B .【点睛】本题考查正多边形的内角和、外角和的综合应用,平行线的性质.熟练掌握多边形的外角和是360︒,是解题的关键.9.如图,在ABC 中,9030ABC C ∠=︒∠=︒,,以点A 为圆心,以AB 的长为半径作弧交AC 于点D ,连接BD ,再分别以点B ,D 为圆心,大于12BD 的长为半径作弧,两弧交于点P ,作射线AP 交BC 于点E ,连接DE ,则下列结论中不正确的是()A.BE DE= B.AE CE = C.2CE BE = D.33EDC ABC S S =△△【答案】D【解析】【分析】利用等腰三角形的性质和线段垂直平分线的性质可以判断①的正确;利用等边三角形的性质结合①的结论和等腰三角形的三线合一的性质可以判断②正确;利用直有三角形中30度角所对的直角边等于斜边的一半判断③的正确;利用相似三角形的面积比等于相似比的平方即可判断④的错误.【详解】解:由题意得:AB AD =,AP 为BAC ∠的平分线,90ABC ∠=︒ ,30C ∠=︒,60BAC ∴∠=︒,ABD ∴ 为等边三角形,AP ∴为BD 的垂直平分线,BE DE ∴=,故A 的结论正确;ABD 为等边三角形,60ABD ∴∠=︒,60ADB ∠=︒,30DBE ∴∠=︒,BE DE = ,30EDB EBD ∴∠=∠=︒,90ADE ADB EDB ∴∠=∠+∠=︒,DE AC ∴⊥.90ABC ∠=︒ ,30C ∠=︒,2AC AB ∴=,AB AD = ,AD CD ∴=,DE ∴垂直平分线段AC ,AE CE ∴=,故B 的结论正确;Rt CDE 中,30C ∠=︒,2CE DE ∴=,BE DE = ,2CE BE ∴=,故C 的结论正确.90EDC ABC ∠=∠=︒ ,C C ∠=∠,CDE CBA ∴ ∽,∴2(CDE CBA S DE S AB∆∆=,= AD AB ,∴tan tan 303DE DE DAE AB AD ==∠=︒=,∴21(3CDE CBA S DE S AB ∆∆==,故D 的结论错误;故选:D .【点睛】本题主要考查了含30︒角的直角三角形的性质,角平分线,线段垂直平分线的判定与性质,相似三角形的判定与性质,等边三角形的判定与性质,等腰三角形的性质,熟练掌握含30︒角的直角三角形的性质和相似三角形的判定与性质是解题的关键.10.二次函数2(0)y ax bx c a =++≠的图象如图所示,对称轴是直线1x =,下列结论:①0abc <;②方程20ax bx c ++=(0a ≠)必有一个根大于2且小于3;③若()1230,,,2y y ⎛⎫ ⎪⎝⎭是抛物线上的两点,那么12y y <;④1120a c +>;⑤对于任意实数m ,都有()m am b a b +≥+,其中正确结论的个数是()A.5B.4C.3D.2【答案】C【解析】【分析】根据抛物线的开口方向,对称轴,与y 轴的交点位置,判断①;对称性判断②;增减性,判断③;对称轴和特殊点判断④;最值判断⑤.【详解】解:∵抛物线开口向上,对称轴为直线12b x a=-=,与y 轴交于负半轴,∴0,20,0a b a c >=-<<,∴0abc >;故①错误;由图可知,抛物线与x 轴的一个交点的横坐标的取值范围为:10x -<<,∵抛物线关于直线1x =对称,∴抛物线与x 轴的一个交点的横坐标的取值范围为:23x <<,∴方程20ax bx c ++=(0a ≠)必有一个根大于2且小于3;故②正确;∵0a >,∴抛物线上的点离对称轴的距离越远,函数值越大,∵()1230,,,2y y ⎛⎫ ⎪⎝⎭是抛物线上的两点,且30112->-,∴12y y >;故③错误;∵0,2a b a>=-∴()112522252a c a a b c a a b c +=+-+=+-+,由图象知:=1x -,0y a b c =-+>,∴()112520a c a a b c +=+-+>;故④正确;∵0a >,对称轴为直线1x =,∴当1x =时,函数值最小为:a b c ++,∴对于任意实数m ,都有2am bm c a b c ++≥++,即:2am bm a b +≥+,∴()m am b a b +≥+;故⑤正确;综上:正确的有3个;故选C .【点睛】本题考查二次函数的图象和性质,正确的识图,熟练掌握二次函数的性质,是解题的关键.第II 卷(非选择题共90分)二、填空题,大题共6小题,每小题填对得3分,共18分,只填写最后结果.11.计算)10112-⎛⎫+= ⎪⎝⎭_________.【答案】3【解析】【分析】根据零指数幂和负整数指数幂的计算法则求解即可.【详解】解:)10112-⎛⎫-+ ⎪⎝⎭12=+3=故答案为:3.【点睛】本题主要考查了零指数幂和负整数指数幂,正确计算是解题的关键,注意非零底数的零指数幂的结果为1.12.若3x =是关x 的方程26ax bx -=的解,则202362a b -+的值为___________.【答案】2019【解析】【分析】将3x =代入方程,得到32a b -=,利用整体思想代入求值即可.【详解】解:∵3x =是关x 的方程26ax bx -=的解,∴2336a b ⋅-=,即:32a b -=,∴202362a b-+()202323a b =--202322=-⨯20234=-2019=;故答案为:2019.【点睛】本题考查方程的解,代数式求值.熟练掌握方程的解是使等式成立的未知数的值,是解题的关键.13.银杏是著名的活化石植物,其叶有细长的叶柄,呈扇形.如图是一片银杏叶标本,叶片上两点B ,C 的坐标分别为(3,2),(4,3)-,将银杏叶绕原点顺时针旋转90︒后,叶柄上点A 对应点的坐标为___________.【答案】()3,1-【解析】【分析】根据点的坐标,确定坐标系的位置,再根据旋转的性质,进行求解即可.【详解】解:∵B ,C 的坐标分别为(3,2),(4,3)-,∴坐标系的位置如图所示:∴点A 的坐标为:()1,3--,连接OA ,将OA 绕点O 顺时针旋转90︒后,如图,叶柄上点A 对应点的坐标为()3,1-;故答案为:()3,1-【点睛】本题考查坐标与旋转.解题的关键是确定原点的位置,熟练掌握旋转的性质.14.如图所示,桔棒是一种原始的汲水工具,它是在一根竖立的架子上加上一根细长的杠杆,末端悬挂一重物,前端悬挂水桶.当人把水桶放入水中打满水以后,由于杠杆末端的重力作用,便能轻易把水提升至所需处,若已知:杠杆6AB =米,:2:1AO OB =,支架3OM EF OM ⊥=,米,AB 可以绕着点O 自由旋转,当点A 旋转到如图所示位置时45AOM ∠=︒,此时点B 到水平地面EF 的距离为___________米.(结果保留根号)【答案】(32##)23+【解析】【分析】过点B 作BD EF ⊥于点D ,过点A 作AC BD ⊥交BD 于点C ,交OM 于点N ,易得四边形MDCN 为矩形,分别解Rt ANO ,Rt ACB △,求出,,ON BC CD 的长,利用BD BC CD =+进行求解即可.【详解】解:过点B 作BD EF ⊥于点D ,过点A 作AC BD ⊥交BD 于点C ,交OM 于点N ,∵OM EF ⊥,∴OM BC ∥,∴AN OM ⊥,∴四边形MDCN 为矩形,∴MN CD =,∵6AB =,:2:1AO OB =,∴243AO AB ==,在Rt ANO 中,4AO =,45AOM ∠=︒,∴2cos 454222ON OA =⋅︒=⨯=∴322CD MN OM ON ==-=-在Rt ACB △中,6AB =,45AOM ∠=︒,∴2cos 456322BC AB =⋅︒=⨯=;∴3232232BD BC CD =+=-=;故答案为:32.【点睛】本题考查解直角三角形的实际应用,矩形的性质与判定.解题的关键是添加辅助线,构造直角三角形.15.如图,在正方形ABCD 中,对角线AC 与BD 相交于点O ,E 为BC 上一点,7CE =,F 为DE 的中点,若CEF △的周长为32,则OF 的长为___________.【答案】172【解析】【分析】利用斜边上的中线等于斜边的一半和CEF △的周长,求出,CF EF 的长,进而求出DE 的长,勾股定理求出CD 的长,进而求出BE 的长,利用三角形的中位线定理,即可得解.【详解】解:7,CE CEF = 的周长为32,32725CF EF ∴+=-=.F 为DE 的中点,DF EF ∴=.90BCD ∠=︒ ,12CF DE ∴=,112.52EF CF DE ∴===,225DE EF ∴==,2224CD DE CE ∴=-=.四边形ABCD 是正方形,24BC CD ∴==,O 为BD 的中点,OF ∴是BDE 的中位线,1117()(247)222OF BC CE ∴=-=-=.故答案为:172.【点睛】本题考查正方形的性质,斜边上的中线,三角形的中位线定理.熟练掌握斜边上的中线等于斜边的一半,是解题的关键.16.如图,在反比例函数8(0)y x x=>的图象上有1232024,,,P P P P 等点,它们的横坐标依次为1,2,3,…,2024,分别过这些点作x 轴与y 轴的垂线,图中所构成的阴影部分的面积从左到右依次为1232023,,,,S S S S ,则1232023S S S S ++++= ___________.【答案】2023253【解析】【分析】求出1234,,,P P P P …的纵坐标,从而可计算出1234,,,S S S S …的高,进而求出1234,,,S S S S …,从而得出123n S S S S +++⋯+的值.【详解】当1x =时,1P 的纵坐标为8,当2x =时,2P 的纵坐标为4,当3x =时,3P 的纵坐标为83,当4x =时,4P 的纵坐标为2,当5x =时,5P 的纵坐标为85,…则11(84)84S =⨯-=-;2881(4)433S =⨯-=-;3881(2)233S =⨯-=-;481(22558S =⨯-=-;…881n S n n =-+;1238888888844228335111n nS S S S n n n n +++⋯+=-+-+-+-++-=-=+++ ,∴12320238202320242532023S S S S ⨯+++⋯+==.故答案为:2023253.【点睛】本题考查了反比例函数与几何的综合应用,解题的关键是求出881n S n n =-+.三、解答题:本大题共8小题,共72分,解答时,要写出必要的文字说明,证明过程或演算步骤.17.先化简,再求值:222211a a a a a ⎛⎫-÷ ⎪--⎝⎭,其中a 的值从不等式组1a -<<的解集中选取一个合适的整数.【答案】21a a a--,12【解析】【分析】先根据分式的混合运算法则,进行化简,再选择一个合适的整数,代入求值即可.【详解】解:原式222223111a a a a a a a ⎛⎫=-÷ ⎪-⎝⎭---()2222111a a a a a a =⋅----21a aa =--;∵220,10a a ≠-≠,∴0,1a a ≠≠±,23=<<=,∴1a -<<的整数解有:0,1,2,∵0,1a a ≠≠±,∴2a =,原式2122221--==.【点睛】本题考查分式的化简求值,求不等式组的整数解.熟练掌握相关运算法则,正确的进行计算,是解题的关键.18.(1)观察分析:在一次数学综合实践活动中,老师向同学们展示了图①,图②,图③三幅图形,请你结合自己所学的知识,观察图中阴影部分构成的图案,写出三个图案都具有的两个共同特征:___________,___________.(2)动手操作:请在图④中设计一个新的图案,使其满足你在(1)中发现的共同特征.【答案】(1)观察发现四个图形都是轴对称图形,且面积相等;(2)见解析【解析】【分析】(1)应从对称方面,阴影部分的面积等方面入手思考;(2)应画出既是轴对称图形,且面积为4的图形.【详解】解:(1)观察发现四个图形都是轴对称图形,且面积相等;故答案为:观察发现四个图形都是轴对称图形,且面积相等;(2)如图:【点睛】此题主要考查了利用轴对称图形设计图案,关键是掌握利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.19.对于任意实数a ,b ,定义一种新运算:()26(2)a b a b a b a b a b ⎧-≥=⎨+-<⎩※,例如:31312=-=※,545463=+-=※.根据上面的材料,请完成下列问题:(1)43=※___________,(1)(3)--=※___________;(2)若(32)(1)5x x +-=※,求x 的值.【答案】(1)1;2;(2)1x =,【解析】【分析】(1)原式利用题中的新定义计算即可求出值;(2)已知等式利用已知的新定义进行分类讨论并列出方程,再计算求出x 的值即可.【小问1详解】4⨯ <32,434361∴=+-=※,()132--⨯ >(1)(3)1(3)2∴--=---=※;故答案为:1;2;【小问2详解】若322(1)x x +≥-时,即4x ≥-时,则(32)(1)5x x +--=,解得:1x =,若322(1)x x +-<时,即4x -<时,则(32)(1)65x x ++--=,解得:52x =,不合题意,舍去,1x ∴=,【点睛】此题考查了实数的新定义运算及解一元一次方程,弄清题中的新定义是解本题的关键.20.《义务教育课程方案》和《义务教育劳动课程标准(2022年版)》正式发布,劳动课正式成为中小学的一门独立课程,日常生活劳动设定四个任务群:A 清洁与卫生,B 整理与收纳,C 家用器具使用与维护,D 烹饪与营养.学校为了较好地开设课程,对学生最喜欢的任务群进行了调查,并将调查结果绘制成以下两幅不完整的统计图.请根据统计图解答下列问题:(1)本次调查中,一共调查了___________名学生,其中选择“C 家用器具使用与维护”的女生有___________名,“D 烹饪与营养”的男生有___________名.(2)补全上面的条形统计图和扇形统计图;(3)学校想从选择“C 家用器具使用与维护”的学生中随机选取两名学生作为“家居博览会”的志愿者,请用画树状图或列表法求出所选的学生恰好是一名男生和一名女生的概率.【答案】(1)20,2,1(2)图见解析(3)35【解析】【分析】(1)利用A 组人数除以所占的百分比求出总数,总数乘以C 组的百分比,求出C 组人数,进而求出C 组女生人数,总数乘以D 组的百分比,求出D 组的人数,进而求出D 组男生人数;(2)根据(1)中所求数据,补全图形即可;(3)利用列表法求出概率即可.【小问1详解】解:()1215%20+÷=(人),∴一共调查了20人;∴C 组人数为:2025%5⨯=(人),∴C 组女生有:532-=(人);由扇形统计图可知:D 组的百分比为115%25%50%10%---=,∴D 组人数为:2010%2⨯=(人),∴D 组男生有:211-=(人);故答案为:20,2,1【小问2详解】补全图形如下:【小问3详解】用,,A B C 表示3名男生,用,D E 表示两名女生,列表如下:ABCDEA (),A B (),A C (),A D (),A E B (),B A (),B C (),B D (),B E C (),C A (),C B (),C D (),C E D (),D A (),D B (),D C (),D E E(),E A (),E B (),E C (),E D 共有20种等可能的结果,其中所选的学生恰好是一名男生和一名女生的结果有12种,∴123205P ==.【点睛】本题考查扇形图与条形图的综合应用,以及利用列表法求概率.从统计图中有效的获取信息,利用频数除以百分比求出总数,熟练掌握列表法求概率,是解题的关键.21.如图,一次函数(0)y kx b k =+≠的图象与反比例函数4y x=的图象交于(,1),(2,)A m B n -两点.(1)求一次函数的表达式,并在所给的平面直角坐标系中画出这个一次函数的图象;(2)观察图象,直接写出不等式4kx b x+<的解集;(3)设直线AB 与x 轴交于点C ,若(0,)P a 为y 轴上的一动点,连接,AP CP ,当APC △的面积为52时,求点P 的坐标.【答案】(1)112y x =-,图见解析(2)<2x -或04x <<(3)30,2P ⎛⎫ ⎪⎝⎭或70,2P ⎛-⎫ ⎪⎝⎭【解析】【分析】(1)先根据反比例函数的解析式,求出,A B 的坐标,待定系数法,求出一次函数的解析式即可,连接AB ,画出一次函数的图象即可;(2)图象法求出不等式的解集即可;(3)分点P 在y 轴的正半轴和负半轴,两种情况进行讨论求解.【小问1详解】解:∵一次函数(0)y kx b k =+≠的图象与反比例函数4y x=的图象交于(,1),(2,)A m B n -两点,∴24m n =-=,∴4,2m n ==-,∴(4,1),(2,2)A B --,∴4122k b k b +=⎧⎨-+=-⎩,解得:121k b ⎧=⎪⎨⎪=-⎩,∴112y x =-,图象如图所示:【小问2详解】解:由图象可知:不等式4kx b x+<的解集为<2x -或04x <<;【小问3详解】解:当点P 在y轴正半轴上时:设直线AB 与y 轴交于点D ,∵112y x =-,当0x =时,1y =-,当0y =时,2x =,∴()()2,0,0,1C D -,∴1PD a =+,∴()()1151412222APC APD PCD S S S a a =-=⨯+⨯-⨯+⨯= ,解得:32a =;∴30,2P ⎛⎫ ⎪⎝⎭;当点P 在y 轴负半轴上时:1PD a =--,∴1151412222APC APD PCD S S S a a =-=⨯--⨯-⨯--⨯= 解得:72a =-或32a =(不合题意,舍去);∴70,2P ⎛-⎫ ⎪⎝⎭.综上:30,2P ⎛⎫ ⎪⎝⎭或70,2P ⎛-⎫ ⎪⎝⎭.【点睛】本题考查一次函数与反比例函数的综合应用.正确的求出函数解析式,利用数形结合和分类讨论的思想进行求解,是解题的关键.22.如图,AB 为O 的直径,点C 是 AD 的中点,过点C 做射线BD 的垂线,垂足为E .(1)求证:CE 是O 切线;(2)若34BE AB ==,,求BC 的长;(3)在(2)的条件下,求阴影部分的面积(用含有π的式子表示).【答案】(1)见解析;(2)23BC =;(3)23π【解析】【分析】(1)连接OC ,证明OC BE ∥,即可得到结论;(2)连接AC ,证明ACB CEB ∽,从而可得AB BCBC BE=,再代入求值即可;(2)连接OD CD ,,证明CD AB ∥,从而可得COD CBD S S = ,,求出扇形COD 的面积即可得到阴影部分的面积.【小问1详解】证明:连接OC ,∵点C 是 AD 的中点,,∴ AC DC=,∴ABC EBC ∠=∠,∵OC OB =,∴ABC OCB ∠=∠,∴EBC OCB ∠=∠,∴OC BE ∥,∵BE CE ⊥,∴半径OC CE ⊥,∴CE 是O 切线;【小问2详解】连接AC ,∵AB 是O 的直径,∴90ACB ∠=︒,∴90ACB CEB ∠=∠=︒,∵ABC EBC ∠=∠,∴ACB CEB ∽,∴AB BCBC BE =,∴43BC BC =,∴BC =;【小问3详解】连接OD CD ,,∵4AB =,∴2OC OB ==,∵在Rt BCE △中,3BC BE ==,∴3cos2BE CBE BC ∠===,∴30CBE ∠=︒,∴60COD ∠=︒,∴60AOC ∠=︒,∵OC OD =,∴COD △是等边三角形,∴60CDO ∠=︒,∴CDO AOC ∠=∠,∴CD AB ∥,∴COD CBD S S = ,∴COD S S =阴扇形260223603ππ⨯==,【点睛】本题主要考查了相似三角形的性质及判定、切线的判定以及扇形面积的求法,熟练掌握切线的判定定理以及扇形面积的求法是解答此题的关键.23.如图,抛物线2y x bx c =-++经过(1,0),(0,3)A C -两点,并交x 轴于另一点B ,点M 是抛物线的顶点,直线AM 与轴交于点D .(1)求该抛物线的表达式;(2)若点H 是x 轴上一动点,分别连接MH ,DH ,求MH DH +的最小值;(3)若点P 是抛物线上一动点,问在对称轴上是否存在点Q ,使得以D ,M ,P ,Q 为顶点的四边形是平行四边形?若存在,请直接..写出所有满足条件的点Q 的坐标;若不存在,请说明理由.。

枣庄中考数学试题及答案

枣庄中考数学试题及答案

枣庄中考数学试题及答案一、选择题(每题2分,共10分)1. 下列哪个数是正整数?A. -3B. 0C. 1D. -1答案:C2. 如果a > 0,b < 0,且|a| < |b|,那么a + b的值是:A. 正数B. 负数C. 零D. 无法确定答案:B3. 一个直角三角形的两条直角边长分别为3和4,那么斜边的长度是:A. 5B. 6C. 7D. 8答案:A4. 下列哪个表达式的结果不是整数?A. 2^3B. 5 ÷ 2C. 3 × 4D. 8 - 4答案:B5. 一个数的平方根是2,那么这个数是:A. 4B. -4C. 2D. 8答案:A二、填空题(每题1分,共5分)6. 圆的周长公式为C = 2πr,如果半径r=5,则周长C=________。

答案:10π7. 一个数的立方根是3,那么这个数是________。

答案:278. 如果一个角的度数是45°,那么它的余角是________。

答案:45°9. 一个数的相反数是-5,那么这个数是________。

答案:510. 一个数的绝对值是5,那么这个数可以是________或________。

答案:5 或 -5三、解答题(共85分)11. 计算下列各题,并写出计算过程:a. (3x - 2y) - (5x + 4y)b. 2(4x - 3y) ÷ 4答案:a. (3x - 2y) - (5x + 4y) = 3x - 2y - 5x - 4y = -2x - 6yb. 2(4x - 3y) ÷ 4 = 8x - 6y ÷ 4 = 2x - 1.5y12. 解下列方程:a. 2x + 3 = 7b. 3x - 5 = 10答案:a. 2x + 3 = 7 → 2x = 4 → x = 2b. 3x - 5 = 10 → 3x = 15 → x = 513. 一个长方体的长、宽、高分别是10cm、8cm、6cm,求它的体积。

2022年山东枣庄中考数学试题及答案详解

2022年山东枣庄中考数学试题及答案详解

2022年山东枣庄中考数学试题及答案详解(试题部分)一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是正确的)1.实数-2023的绝对值是()A.2023B.-2023C.12 023D.-12 0232.下列运算正确的是()A.3a2-a2=3B.a3÷a2=aC.(-3ab2)2=-6a2b4D.(a+b)2=a2+ab+b23.某正方体的每个面上,都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“亮”字所在面的相对面上的汉字是()A.青B.春C.梦D.想4.剪纸文化是中国最古老的民间艺术之一。

下列剪纸图案中,既是轴对称图形又是中心对称图形的是()A B C D5. 2022年5月,神舟十三号搭载的1.2万粒作物种子顺利出舱,其中1.2万用科学记数法表示为()A.12×103B.1.2×104C.0.12×103D.1.2×1056.在践行“安全在我心中,你我一起行动”主题手抄报评比话动中,共设置“交通安全、消防安全、饮食安全、防疫安全”四个主题内容,推荐两名学生参加评比,若他们每人从以上四个主题内容中随机选取一个,则两人恰好选中同一主题的概率是()A.12B.13C.23D.147.将量角器按如图所示的方式放置在三角形纸板上,使点C在半圆上,点A,B的读数分别为86°,30°,则∠ACB的度数是()A.28°B.30°C.36°D.56°8.如图,将△ABC先向右平移1个单位,再绕点P按顺时针方向旋转90°,得到△A'B'C',则点B的对应点B'的坐标是()A.(4,0)B.(2,-2)C.(4,-1)D.(2,-3)9.已知y1和y2均是以x为自变量的函数,当x=n时,函数值分别是N1和N2,若存在实数n,使得N1+N2=1,则称函数y1和y2是“和谐函数”。

枣庄市中考数学试题解析(2)

枣庄市中考数学试题解析(2)

枣庄市中考数学试题解析(2)∴∠B1AB=45°,∴∠DAB1=90°﹣45°=45°,∴AC1过D点,即A、D、C1三点共线,∵正方形ABCD的边长是1,∴四边形AB1C1D1的边长是1,在Rt△C1 D1A中,由勾股定理得:AC1= = ,那么DC1= ﹣1,∵∠AC1B1=45°,∠C1DO=90°,∴∠C1OD=45°=∠DC1O,∴DC1=OD= ﹣1,∴S△ADO= ×ODAD= ,∴四边形AB1OD的面积是=2× = ﹣1,应选:D.点评:此题考查了正方形性质,勾股定理等知识点,主要考查学生运用性质进行计算的能力,正确的作出辅助线是解题的关键.10.(3分)(xx枣庄)如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,左上角阴影局部是一个以格点为顶点的正方形(简称格点正方形).假设再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形,那么这个格点正方形的作法共有( )A. 2种B. 3种C. 4种D. 5种考点:利用旋转设计图案;利用轴对称设计图案..分析:利用轴对称图形的性质以及中心对称图形的性质分析得出符合题意的图形即可.解答:解:如下图:组成的图形是轴对称图形,又是中心对称图形,那么这个格点正方形的作法共有4种.应选:C.点评:此题主要考查了利用轴对称以及旋转设计图案,正确把握相关定义是解题关键.11.(3分)(xx枣庄)如图,一个边长为4cm的等边三角形ABC的高与⊙O的直径相等.⊙O与BC相切于点C,与AC相交于点E,那么CE的长为( )A. 4cmB. 3cmC. 2cmD. 1.5cm考点:切线的性质;等边三角形的性质..分析:连接OC,并过点O作OF⊥CE于F,求出等边三角形的高即可得出圆的直径,继而得出OC的长度,在Rt△OFC中,可得出FC的长,利用垂径定理即可得出CE的长.解答:解:连接OC,并过点O作OF⊥CE于F,∵△ABC为等边三角形,边长为4cm,∴△ABC的高为2 cm,∴OC= cm,又∵∠ACB=60°,∴∠OCF=30°,在Rt△OFC中,可得FC= cm,即CE=2FC=3cm.应选B.点评:此题主要考查了切线的性质,等边三角形的性质和解直角三角形的有关知识,题目不是太难,属于根底性题目.12.(3分)(xx枣庄)如图是二次函数y=ax2+bx+c(a≠0)图象的一局部,对称轴为x= ,且经过点(2,0),有以下说法:①abc<0;②a+b=0;③4a+2b+c<0;④假设(0,y1),(1,y2)是抛物线上的两点,那么y1=y2.上述说法正确的选项是( )A. ①②④B. ③④C. ①③④D. ①②考点:二次函数图象与系数的关系..分析:①根据抛物线开口方向、对称轴位置、抛物线与y轴交点位置求得a、b、c的符号;②根据对称轴求出b=﹣a;③把x=2代入函数关系式,结合图象判断函数值与0 的大小关系;④求出点(0,y1)关于直线x= 的对称点的坐标,根据对称轴即可判断y1和y2的大小.解答:解:①∵二次函数的图象开口向下,∴a<0,∵二次函数的图象交y轴的正半轴于一点,∴c>0,∵对称轴是直线x= ,∴﹣,∴b=﹣a>0,∴abc<0.故①正确;②∵由①中知b=﹣a,∴a+b=0,故②正确;③把x=2代入y=ax2+bx+c得:y=4a+2b+c,∵抛物线经过点(2,0),∴当x=2时,y=0,即4a+2b+c=0.故③错误;④∵(0,y1)关于直线x= 的对称点的坐标是(1,y1),∴y1=y2.故④正确;综上所述,正确的结论是①②④.应选:A点评:此题考查了二次函数的图象和系数的关系的应用,注意:当a>0时,二次函数的图象开口向上,当a<0时,二次函数的图象开口向下.二、填空题:本大题共6小题,总分值24分,只要求写最后结果,每题填对得4分。

2013山东省枣庄市中考数学试题及答案(Word解析版)

2013山东省枣庄市中考数学试题及答案(Word解析版)

二○一三年枣庄市初中学业考试数学试题满分120分.考试时间为120分钟.一、选择题:本大题共12小题,每小题选对得3分. 1.下列计算,正确的是A.33--=-B.030=C.133-=-D.93=± 答案:A解析:因为30=1,3-1=13,9=3,所以,B 、C 、D 都错,选A 。

2.如图,AB //CD ,∠CDE =140︒,则∠A 的度数为A.140︒B.60︒C.50︒D.40︒ 答案:D解析:∠CDA =180°-140°=40°,由两直线平行,内错角相等,得:∠A =∠CDA =40°,选D 。

3.估计61+的值在A. 2到3之间B.3到4之间C.4到5之间D.5到6之间 答案:B解析:因为469<<,即2<6<3,所以,3<6+1<4,选B 。

4.化简xxx x -+-112的结果是 A.x +1 B.1x - C.x - D.x 答案:D解析:原式=2(1)111x x x x x x x x --==---,故选D 。

5.某种商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为A.240元B.250元C.280元D.300元 答案:A解析:设进价为x 元,则3300.810%xx⨯-=,解得:x =240,故选A >6.如图,ABC △中,AB =AC =10,BC =8,AD 平分BAC ∠交BC 于点D ,点E 为AC 的中点,连接DE ,则CDE △的周长为A.20B.18C.14D.13 答案:C解析:因为AB =AC ,AD 平分∠BAC ,所以,D 为BC 中点,又E 为AC 中点,所以,DE =12AB =5,DC =4,EC =5,故所求周长为5+5+4=14。

7.若关于x 的一元二次方程220x x m -+=有两个不相等的实数根,则m 的取值范围是A. 1m <-B. 1m <C. 1m >-D. 1m >第2题图OAPB ab (1) (2)ABCGDEF M 答案:B解析:△=4-4m >0,解得:m <1,选B 。

枣庄地区中考数学试卷真题

枣庄地区中考数学试卷真题

枣庄地区中考数学试卷真题第一部分:选择题题目1:已知函数f(x)的定义域为实数集R,f(x)在(x_1,+\infty)上是上凸函数,下列说法正确的是()A. f(x)在R上是凹函数B.在(x_1,+\infty)上f(x)递增C. f(x)在R上是下凸函数D.在(x_1,+\infty)上f(x)递减解析:根据题意,可以确定选项B为正确答案。

题目2:若直线y=2x+3与抛物线y=ax^2+bx+c(a≠0)相切,则常数a、b、c满足的条件是()A. a=1, b=2, c=3B. a=2, b=1, c=3C. a=3, b=1, c=2D. a=3, b=2, c=1解析:根据题意,可以列出方程组:y = 2x + 3y = ax^2 + bx + c由于相切,两个方程组有且只有一个解,解得a=1, b=2, c=3,因此选项A为正确答案。

题目3:化简:(2a^2b^-3c^2)^3 / (4a^-2b^4c^-3)A. a^3b^7c^-9B. 8a^5b^-10cC. 8a^7b^-1c^-5D. (1/8)a^11b^-7c解析:根据乘方的运算法则,化简得到 8a^5b^-10c,因此选项B为正确答案。

第二部分:填空题题目1:设集合A={x | 3 ≤ x ≤ 10},集合B={y | y > 5},则集合B∩A=______。

解析:根据题意,集合A∩B为{y | y > 5},因此填空为{y | y > 5}。

题目2:对于非零的实数x,若|x+2| < 5,则x的取值范围为______。

解析:根据题意,有-5 < x + 2 < 5,解得-7 < x < 3,因此空白处填入-7 < x < 3。

第三部分:解答题题目1:已知等差数列的前5项和为50,公差为3,求该等差数列的前n项和Sn。

解析:设等差数列的首项为a,前n项和为Sn,则有公式:Sn = (2a + (n-1)d) * n / 2代入已知条件,得到:50 = (2a + (5-1)3) * 5 / 2化简得到:20a = 100 - 12a = 4因此,该等差数列的前n项和Sn = (2 * 4 + (n-1)3) * n / 2。

山东省枣庄市2021年中考数学试卷(word版,含解析)

山东省枣庄市2021年中考数学试卷(word版,含解析)

山东省枣庄市2021年中考数学试卷一、选择题(共12小题,每小题3分,满分36分)1.(3分)(2021•枣庄)2的算术平方根是( )A.±B.C.±4 D.4考点: 算术平方根.分析:根据开方运算,可得算术平方根.解答:解:2的算术平方根是,故选;B.点评:本题考查了算术平方根,开方运算是解题关键.2.(3分)(2021•枣庄)2021年世界杯即将在巴西举行,根据预算巴西将总共花费14000000000美元,用于修建和翻新12个体育场,升级联邦、各州和各市的基础设施,以及为32支队伍和预计约60万A.140×108B.14.0×109C.1.4×1010D.1.4×1011考点: 科学记数法—表示较大的数分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:14 000 000 000=1.4×1010,故选:C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2021•枣庄)如图,AB∥CD,AE交CD于C,∠A=34°,∠DEC=90°,则∠D的度数为( )A.17°B.34°C.56°D.124°考点: 平行线的性质;直角三角形的性质分析:根据两直线平行,同位角相等可得∠DCE=∠A,再根据直角三角形两锐角互余列式计算即可得解.解答:解:∵AB∥CD,∴∠DCE=∠A=34°,∵∠DEC=90°,∴∠D=90°﹣∠DCE=90°﹣34°=56°.故选C.点评:本题考查了平行线的性质,直角三角形两锐角互余的性质,熟记性质是解题的关键.A.“明天降雨的概率是50%”表示明天有半天都在降雨B.数据4,4,5,5,0的中位数和众数都是5C.要了解一批钢化玻璃的最少允许碎片数,应采用普查的方式D.若甲、乙两组数中各有20个数据,平均数=,方差s2=1.25,s2乙甲=0.96,则说明乙组数据比甲组数据稳定考点: 概率的意义;全面调查与抽样调查;中位数;众数;方差分析:根据概率的意义,众数、中位数的定义,以及全面调查与抽样调查的选择,方差的意义对各选项分析判断利用排除法求解.解答:解:A、“明天降雨的概率是50%”表示明天降雨和不降雨的可能性相等,不表示半天都在降雨,故本选项错误;B、数据4,4,5,5,0的中位数是4,众数是4和5,故本选项错误;C、要了解一批钢化玻璃的最少允许碎片数,应采用抽样调查的方式,故本选项错误;D、∵方差s2甲>s2乙,∴乙组数据比甲组数据稳定正确,故本选项正确.故选D.点评:本题解决的关键是理解概率的意义以及必然事件的概念;用到的知识点为:不太容易做到的事要采用抽样调查;反映数据波动情况的量有极差、方差和标准差等.5.(3分)(2021•枣庄)⊙O1和⊙O2的直径分别是6cm和8cm,若圆心距O1O2=2cm,则两圆的位置A.外离B.外切C.相交D.内切考点: 圆与圆的位置关系分析:由⊙O1、⊙O2的直径分别为8和6,圆心距O1O2=2,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可求得两圆位置关系.解答:解:∵⊙O1、⊙O2的直径分别为6cm和8cm,∴⊙O1、⊙O2的半径分别为3cm和4cm,∴1<d<7,∵圆心距O1O2=2,∴⊙O1与⊙O2的位置关系是相交.故选C.点评:此题考查了圆与圆的位置关系.此题比较简单,注意掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系是解此题的关键.6.(3分)(2021•枣庄)某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这种A.350元B.400元C.450元D.500元考点: 一元一次方程的应用分析:设该服装标价为x元,根据售价﹣进价=利润列出方程,解出即可.解答:解:设该服装标价为x元,由题意,得0.6x﹣200=200×20%,解得:x=400.答:该服装标价为400元.故选B.点评:本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程.7.(3分)(2021•枣庄)如图,菱形ABCD的边长为4,过点A、C作对角线AC的垂线,分别交CB 和AD的延长线于点E、F,AE=3,则四边形AECF的周长为( )A.22 B.18 C.14 D.11考点: 菱形的性质分析:根据菱形的对角线平分一组对角可得∠BAC=∠BCA,再根据等角的余角相等求出∠BAE=∠E,根据等角对等边可得BE=AB,然后求出EC,同理可得AF,然后判断出四边形AECF是平行四边形,再根据周长的定义列式计算即可得解.解答:解:在菱形ABCD中,∠BAC=∠BCA,∵AE⊥AC,∴∠BAC+∠BAE=∠BCA+∠E=90°,∴∠BAE=∠E,∴BE=AB=4,∴EC=BE+BC=4+4=8,同理可得AF=8,∵AD∥BC,∴四边形AECF是平行四边形,∴四边形AECF的周长=2(AE+EC)=2(3+8)=22.故选A.点评:本题考查了菱形的对角线平分一组对角的性质,等角的余角相等的性质,平行四边形的判定与性质,熟记性质并求出EC的长度是解题的关键.8.(3分)(2021•枣庄)将一次函数y=x的图象向上平移2个单位,平移后,若y>0,则x的取值范围是( )A.x>4 B.x>﹣4 C.x>2 D.x>﹣2考点: 一次函数图象与几何变换分析:利用一次函数平移规律得出平移后解析式,进而得出图象与坐标轴交点坐标,进而利用图象判断y>0时,x的取值范围.解答:解:∵将一次函数y=x的图象向上平移2个单位,∴平移后解析式为:y=x+2,当y=0,则x=﹣4,x=0时,y=2,如图:∴y>0,则x的取值范围是:x>﹣4,故选:B.点评:此题主要考查了一次函数图象与几何变换以及图象画法,得出函数图象进而判断x的取值范围是解题关键.9.(3分)(2021•枣庄)如图,在边长为2a的正方形中央剪去一边长为(a+2)的小正方形(a>2),将剩余部分剪开密铺成一个平行四边形,则该平行四边形的面积为( )A.a2+4 B.2a2+4a C.3a2﹣4a﹣4 D.4a2﹣a﹣2考点: 平方差公式的几何背景分析:根据拼成的平行四边形的面积等于大正方形的面积减去小正方形的面积,列式整理即可得解.解答:解:(2a)2﹣(a+2)2=4a2﹣a2﹣4a﹣4=3a2﹣4a﹣4,故选:C.点评:本题考查了平方差公式的几何背景,根据拼接前后的图形的面积相等列式是解题的关键.10.(3分)(2021•枣庄)x1、x2是一元二次方程3(x﹣1)2=15的两个解,且x1<x2,下列说法正确的是( )B.x1小于﹣2,x2大于3A.x1小于﹣1,x2大于3C.x1,x2在﹣1和D.x1,x2都小于33之间考点: 解一元二次方程-直接开平方法;估算无理数的大小分析:利用直接开平方法解方程得出两根进而估计无理数的大小得出答案.解答:解:∵x1、x2是一元二次方程3(x﹣1)2=15的两个解,且x1<x2,∴(x﹣1)2=5,∴x﹣1=±,∴x1=1+>3,x2=1﹣<﹣1,故选:A.点评:此题主要考查了直接开平方法解方程以及估计无理数的大小,求出两根是解题关键.11.(3分)(2021•枣庄)已知二次函数y=ax2+bx+c的x、y的部分对应值如下表:x ﹣1 0 1 2 3y 5 1 ﹣1 ﹣1 1A.y轴B.直线x=C.直线x=2 D.直线x=考点: 二次函数的性质分析:由于x=1、2时的函数值相等,然后根据二次函数的对称性列式计算即可得解.解答:解:∵x=1和2时的函数值都是﹣1,∴对称轴为直线x==.故选D.点评:本题考查了二次函数的性质,主要利用了二次函数的对称性,比较简单.12.(3分)(2021•枣庄)如图,△ABC中,AB=4,AC=3,AD、AE分别是其角平分线和中线,过点C作CG⊥AD于F,交AB于G,连接EF,则线段EF的长为( )A.B.1C.D.7考点: 三角形中位线定理;等腰三角形的判定与性质分析:由等腰三角形的判定方法可知三角形AGC是等腰三角形,所以F为GC中点,再由已知条件可得EF为△CBG的中位线,利用中位线的性质即可求出线段EF的长.解答:解:∵AD是其角平分线,CG⊥AD于F,∴△AGC是等腰三角形,∴AG=AC,∵AB=4,AC=3,∴BG=1,∵AE是中线,∴BD=CD,∴EF为△CBG的中位线,∴EF=BG=,故选A.点评:本题考查了等腰三角形的判定和性质、三角形的中位线性质定理:三角形的中位线平行于第三边,并且等于第三边的一半.二、填空题(共6小题,每小题4,满分24分)13.(4分)(2021•枣庄)如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有3种.考点: 利用轴对称设计图案分析:根据轴对称图形的概念:把一个图形沿着某条直线折叠,直线两旁的部分能够完全重合及正方形的对称轴是两条对角线所在的直线和两组对边的垂直平分线,得出结果.解答:解:在1,2,3处分别涂黑都可得一个轴对称图形,故涂法有3种,故答案为:3.点评:考查了利用轴对称设计图案,此题要首先找到大正方形的对称轴,然后根据对称轴,进一步确定可以涂黑的正方形.14.(4分)(2021•枣庄)已知x、y是二元一次方程组的解,则代数式x2﹣4y2的值为.考点: 二元一次方程组的解;因式分解-运用公式法分析:根据解二元一次方程组的方法,可得二元一次方程组的解,根据代数式求值的方法,可得答案.解答:解:,①×2﹣②得﹣8y=1,y=﹣,把y=﹣代入②得2x﹣=5,x=,x2﹣4y2=()=,故答案为:.点评:本题考查了二元一次方程组的解,先求出二元一次方程组的解,再求代数式的值.15.(4分)(2021•枣庄)有两组卡片,第一组卡片上分别写有数字“2,3,4”,第二组卡片上分别写有数字“3,4,5”,现从每组卡片中各随机抽出一张,用抽取的第一组卡片上的数字减去抽取的第二组卡片上的数字,差为负数的概率为.考点: 列表法与树状图法专题: 计算题.分析:列表得出所有等可能的情况数,找出差为负数的情况数,即可求出所求的概率.解答:解:列表得:2 3 43 (2,3)(3,3)(4,3)4 (2,4)(3,4)(4,4)5 (2,5)(3,5)(4,5)所有等可能的情况有9种,其中差为负数的情况有5种,则P=.故答案为:点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.16.(4分)(2021•枣庄)如图,将四个圆两两相切拼接在一起,它们的半径均为1cm,则中间阴影部分的面积为4﹣πcm2.考点: 扇形面积的计算;相切两圆的性质分析:根据题意可知图中阴影部分的面积=边长为2的正方形面积﹣一个圆的面积.解答:解:∵半径为1cm的四个圆两两相切,∴四边形是边长为2cm的正方形,圆的面积为πcm2,阴影部分的面积=2×2﹣π=4﹣π(cm2),故答案为:4﹣π.点评:此题主要考查了圆与圆的位置关系和扇形的面积公式.本题的解题关键是能看出阴影部分的面积为边长为2的正方形面积减去4个扇形的面积(一个圆的面积).17.(4分)(2021•枣庄)如图,将矩形ABCD沿CE向上折叠,使点B落在AD边上的点F处.若AE=BE,则长AD与宽AB的比值是.考点: 翻折变换(折叠问题)分析:由AE=BE,可设AE=2k,则BE=3k,AB=5k.由四边形ABCD是矩形,可得∠A=∠ABC=∠D=90°,CD=AB=5k,AD=BC.由折叠的性质可得∠EFC=∠B=90°,EF=EB=3k,CF=BC,由同角的余角相等,即可得∠DCF=∠AFE.在Rt△AEF中,根据勾股定理求出AF==k,由cos∠AFE=cos∠DCF得出CF=3k,即AD=3k,进而求解即可.解答:解:∵AE=BE,∴设AE=2k,则BE=3k,AB=5k.∵四边形ABCD是矩形,∴∠A=∠ABC=∠D=90°,CD=AB=5k,AD=BC.∵将矩形ABCD沿CE向上折叠,使点B落在AD边上的点F处,∴∠EFC=∠B=90°,EF=EB=3k,CF=BC,∴∠AFE+∠DFC=90°,∠DFC+∠FCD=90°,∴∠DCF=∠AFE,∴cos∠AFE=cos∠DCF.在Rt△AEF中,∵∠A=90°,AE=2k,EF=3k,∴AF==k,∴=,即=,∴CF=3k,∴AD=BC=CF=3k,∴长AD与宽AB的比值是=.故答案为.点评:此题考查了折叠的性质,矩形的性质,勾股定理以及三角函数的定义.解此题的关键是数形结合思想与转化思想的应用.18.(4分)(2021•枣庄)图①所示的正方体木块棱长为6cm,沿其相邻三个面的对角线(图中虚线)剪掉一角,得到如图②的几何体,一只蚂蚁沿着图②的几何体表面从顶点A爬行到顶点B的最短距离为(3+3) cm.考点: 平面展开-最短路径问题;截一个几何体分析:要求蚂蚁爬行的最短距离,需将图②的几何体表面展开,进而根据“两点之间线段最短”得出结果.解答:解:如图所示:△BCD是等腰直角三角形,△ACD是等边三角形,在Rt△BCD中,CD==6cm,∴BE=CD=3cm,在Rt△ACE中,AE==3cm,∴从顶点A爬行到顶点B的最短距离为(3+3)cm.故答案为:(3+3).点评:考查了平面展开﹣最短路径问题,本题就是把图②的几何体表面展开成平面图形,根据等腰直角三角形的性质和等边三角形的性质解决问题.三、解答题(共7小题,满分60分)19.(8分)(2021•枣庄)(1)计算:(﹣2)3+()﹣1﹣|﹣5|+(﹣2)0(2)化简:(﹣)÷.考点: 实数的运算;分式的混合运算;零指数幂;负整数指数幂专题: 计算题.分析:(1)原式第一项利用乘方的意义化简,第二项利用负指数幂法则计算,第三项利用绝对值的代数意义化简,最后一项利用零指数幂法则计算即可得到结果;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.解答:解:(1)原式=﹣8+3﹣5+1=﹣9;(2)原式=•(x﹣1)=•(x﹣1)=﹣.点评:此题考查了实数的运算,以及分式的混合运算,熟练掌握运算法则解本题的关键.20.(8分)(2021•枣庄)一个不透明的口袋装有若干个红、黄、蓝、绿四种颜色的小球,小球除颜色外完全相同,为估计该口袋中四种颜色的小球数量,每次从口袋中随机摸出一球记下颜色并放回,重复多次试验,汇总实验结果绘制如图不完整的条形统计图和扇形统计图.根据以上信息解答下列问题:(1)求实验总次数,并补全条形统计图;(2)扇形统计图中,摸到黄色小球次数所在扇形的圆心角度数为多少度?(3)已知该口袋中有10个红球,请你根据实验结果估计口袋中绿球的数量.考点: 条形统计图;扇形统计图;模拟实验分析:(1)用摸到红色球的次数除以占的百分比即是实验总次数,用总次数减去红黄绿球的次数即为摸蓝球的次数,再补全条形统计图即可;(2)用摸到黄色小球次数除以实验总次数,再乘以360°即可得摸到黄色小球次数所在扇形的圆心角度数;(3)先得出摸到绿色小球次数所占的百分比,再用口袋中有10个红球除以红球所占的百分比得出口袋中小球的总数,最后乘以绿色小球所占的百分比即可.解答:解:(1)50÷25%=200(次),所以实验总次数为200次,条形统计图如下:(2)=144°;(3)10÷25%×=2(个),答:口袋中绿球有2个.点评:本题主要考查了条形统计图,用样本估计总体,弄清题意是解本题的关键.21.(8分)(2021•枣庄)如图,一扇窗户垂直打开,即OM⊥OP,AC是长度不变的滑动支架,其中一端固定在窗户的点A处,另一端在OP上滑动,将窗户OM按图示方向想内旋转35°到达ON位置,此时,点A、C的对应位置分别是点B、D.测量出∠ODB为25°,点D到点O的距离为30cm.(1)求B点到OP的距离;(2)求滑动支架的长.(结果精确到1cm.参考数据:sin25°≈0.42,cos25°≈0.91,tan25°≈0.47,sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)考点: 解直角三角形的应用分析:(1)根据三角函数分别表示出OE和DE,再根据点D到点O的距离为30cm可列方程求解;(2)在Rt△BDE中,根据三角函数即可得到滑动支架的长.解答:解:(1)在Rt△BOE中,OE=,在Rt△BDE中,DE=,则+=30,解得BE≈10.6cm.故B点到OP的距离大约为10.6cm;(2)在Rt△BDE中,BD=≈25.3cm.故滑动支架的长25.3cm.点评:此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键是运用数学知识解决实际问题.22.(8分)(2021•枣庄)如图,四边形ABCD的对角线AC、BD交于点O,已知O是AC的中点,AE=CF,DF∥BE.(1)求证:△BOE≌△DOF;(2)若OD=AC,则四边形ABCD是什么特殊四边形?请证明你的结论.考点: 全等三角形的判定与性质;平行四边形的判定与性质;矩形的判定专题: 计算题.分析:(1)由DF与BE平行,得到两对内错角相等,再由O为AC的中点,得到OA=OC,又AE=CF,得到OE=OF,利用AAS即可得证;(2)若OD=AC,则四边形ABCD为矩形,理由为:由OD=AC,得到OB=AC,即OD=OA=OC=OB,利用对角线互相平分且相等的四边形为矩形即可得证.解答:(1)证明:∵DF∥BE,∴∠FDO=∠EBO,∠DFO=∠BEO,∵O为AC的中点,即OA=OC,AE=CF,∴OA﹣AE=OC﹣CF,即OE=OF,在△BOE和△DOF中,,∴△BOE≌△DOF(AAS);(2)若OD=AC,则四边形ABCD是矩形,理由为:证明:∵△BOE≌△DOF,∴OB=OD,∴OA=OB=OC=OD,即BD=AC,∴四边形ABCD为矩形.点评:此题考查了全等三角形的判定与性质,矩形的判定与性质,以及平行线的性质,熟练掌握全等三角形的判定与性质是解本题的关键.23.(8分)(2021•枣庄)如图,A为⊙O外一点,AB切⊙O于点B,AO交⊙O于C,CD⊥OB于E,交⊙O于点D,连接OD.若AB=12,AC=8.(1)求OD的长;(2)求CD的长.考点: 切线的性质专题: 计算题.分析:(1)设⊙O的半径为R,根据切线定理得OB⊥AB,则在Rt△ABO中,利用勾股定理得到R2+122=(R+8)2,解得R=5,即OD的长为5;(2)根据垂径定理由CD⊥OB得DE=CE,再证明△OEC∽△OBA,利用相似比可计算出CE=,所以CD=2CE=.解答:解:(1)设⊙O的半径为R,∵AB切⊙O于点B,∴OB⊥AB,在Rt△ABO中,OB=R,AO=OC+AC=R+8,AB=12,∵OB2+AB2=OA2,∴R2+122=(R+8)2,解得R=5,∴OD的长为5;(2)∵CD⊥OB,∴DE=CE,而OB⊥AB,∴CE∥AB,∴△OEC∽△OBA,∴=,即=,∴CE=,∴CD=2CE=.点评:本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了勾股定理、垂径定理和相似三角形的判定与性质.24.(10分)(2021•枣庄)如图,一次函数y=ax+b与反比例函数y=的图象交于A、B两点,点A坐标为(m,2),点B坐标为(﹣4,n),OA与x轴正半轴夹角的正切值为,直线AB交y轴于点C,过C作y轴的垂线,交反比例函数图象于点D,连接OD、BD.(1)求一次函数与反比例函数的解析式;(2)求四边形OCBD的面积.考点: 反比例函数与一次函数的交点问题分析:(10根据正切值,可得OE的长,可得A点坐标,根据待定系数法,可得反比例函数解析式,根据点的坐标满足函数解析式,可得B点坐标,根据待定系数法,可得一次函数解析式;(2)根据面积的和差,可得答案.解答:解:(1)如图:,tan∠AOE=,OE=6,A(6,2),y=的图象过A(6,2),∴,k=12,反比例函数的解析式为y=,B(﹣4,n)在y=的图象上,n==﹣3,B(﹣4,﹣3),一次函数y=ax+b过A、B点,,解得,一次函数解析式为y=﹣1;(2)当x=0时,y=﹣1,C(0,﹣1),当y=﹣1时,﹣1=,x=﹣12,D(﹣12,﹣1),s OCDB=S△ODC+S△BDC=+|﹣12|×|﹣2|=6+12=18.点评:本题考查了反比例函数与一次函数的交点问题,待定系数法求解析式的关键,利用面积的和差求解四边形的面积.25.(10分)(2021•枣庄)如图,在平面直角坐标系中,二次函数y=x2﹣2x﹣3的图象与x轴交于A、B两点,与y轴交于点C,连接BC,点D为抛物线的顶点,点P是第四象限的抛物线上的一个动点(不与点D重合).(1)求∠OBC的度数;(2)连接CD、BD、DP,延长DP交x轴正半轴于点E,且S△OCE=S四边形OCDB,求此时P点的坐标;(3)过点P作PF⊥x轴交BC于点F,求线段PF长度的最大值.考点: 二次函数综合题分析:(1)由抛物线已知,则可求三角形OBC的各个顶点,易知三角形形状及内角.(2)因为抛物线已固定,则S四边形OCDB固定,对于坐标系中的不规则图形常用分割求和、填补求差等方法求面积,本图形过顶点作x轴的垂线及可将其分为直角梯形及直角三角形,面积易得.由此可得E点坐标,进而可求ED直线方程,与抛物线解析式联立求解即得P点坐标.(3)PF的长度即为y F﹣y P.由P、F的横坐标相同,则可直接利用解析式作差.由所得函数为二次函数,则可用二次函数性质讨论最值,解法常规.解答:解:(1)∵y=x2﹣2x﹣3=(x﹣3)(x+2),∴由题意得,A(﹣1,0),B(3,0),C(0,﹣3),D(1,﹣4).在Rt△OBC中,∵OC=OB=3,∴△OBC为等腰直角三角形,∴∠OBC=45°.(2)如图1,过点D作DH⊥x轴于H,此时S四边形OCDB=S梯形OCDH+S△HBD,∵OH=1,OC=3,HD=4,HB=2,∴S梯形OCDH=•(OC+HD)•OH=,S△HBD=•HD•HB=4,∴S四边形OCDB=.∴S△OCE=S四边形OCDB==,∴OE=5,∴E(5,0).设l DE:y=kx+b,∵D(1,﹣4),E(5,0),∴,解得,∴l DE:y=x﹣5.∵DE交抛物线于P,设P(x,y),∴x2﹣2x﹣3=x﹣5,解得x=2 或x=1(D点,舍去),∴x P=2,代入l DE:y=x﹣5,∴P(2,﹣3).(3)如图2,设l BC:y=kx+b,∵B(3,0),C(0,﹣3),∴,解得,∴l BC:y=x﹣3.∵F在BC上,∴y F=x F﹣3,∵P在抛物线上,∴y P=x P2﹣2x P﹣3,∴线段PF长度=y F﹣y P=x F﹣3﹣(x P2﹣2x P﹣3),∵x P=x F,∴线段PF长度=﹣x P2+3x P=﹣(x P﹣)2+,(1<x P≤3),∴当x P=时,线段PF长度最大为.点评:本题考查了抛物线图象性质、已知两点求直线解析式、直角三角形性质及二次函数最值等基础知识点,题目难度适中,适合学生加强练习.。

初中毕业升学考试(山东枣庄卷)数学(解析版)(初三)中考真卷.doc

初中毕业升学考试(山东枣庄卷)数学(解析版)(初三)中考真卷.doc

初中毕业升学考试(山东枣庄卷)数学(解析版)(初三)中考真卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)【题文】下列计算,正确的是A. B. C. D.【答案】C.【解析】试题分析:选项A,同底数幂相乘,底数不变,指数相加,原式=,错误;选项B,合并同类项法则:将各系数相加减,字母和字母的指数不变.原式=2,错误;选项C,幂的乘方,底数不变,指数相乘.原式=;选项D,由完全平方公式可得原式=,错误;故答案选C.考点:同底数幂的计算;合并同类项;完全平方公式.【题文】如图,∠AOB的一边OA为平面镜,∠AOB=37°36′,在OB上有一点E,从E点射出一束光线经OA 上一点D反射,反射光线DC恰好与OB平行,则∠DEB的度数是A.75°36′ B.75°12′ C.74°36′ D.74°12′【答案】B.【解析】【题文】某中学篮球队12名队员的年龄如下表:年龄:(岁)13141516人数评卷人得分1542关于这12名队员的年龄,下列说法错误的是A.众数是14 B.极差是3 C.中位数是14.5 D.平均数是14.8【答案】D.【解析】试题分析:众数是一组数据中出现次数最多的数据,所以众数是14,选项A正确;极差是用最大的数减去最小的数所得的值,极差为16-13=3,选项B正确;把数据按从小到大顺序排列,可得中位数=(14+15)÷2=14.5,选项C正确;这组数据的平均数为(13×1+14×5+15×4+16×2)÷12=14.58,选项D错误,故答案选D. 考点:众数;中位数;极差;平均数.【题文】如图,在△ABC中,AB = AC,∠A = 30°,E为BC延长线上一点,∠ABC与∠ACE 的平分线相交于点D,则∠D等于A.15° B.17.5° C.20° D.22.5°【答案】A.【解析】试题分析:在△ABC中,AB=AC,∠A=30°,根据等腰三角形的性质可得∠ABC=∠ACB=75°,所以∠ACE=180°-∠ACB=180°-75°=105°,根据角平分线的性质可得∠DBC=37.5°,∠ACD=52.5°,即可得∠BCD=127.5°,根据三角形的内角和定理可得∠D=180°-∠DBC-∠BCD=180°-37.5°-127.5°=15°,故答案选A.考点:等腰三角形的性质;三角形的内角和定理.【题文】已知关于x的方程有一个根为-2,则另一个根为A.5 B.-1 C.2 D.-5【答案】B.【解析】试题分析:设方程的里一个根为b,根据一元二次方程根与系数的关系可得-2+b=-3,解得b=-1,故答案选B.考点:一元二次方程根与系数的关系.【题文】有3块积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同.现把它们摆放成不同的位置(如图),请你根据图形判断涂成绿色一面的对面涂的颜色是A.白B. 红C.黄D.黑【答案】C.【解析】试题分析:由第一个图可知绿色和白色、黑色相邻,由第二个图可知绿色和蓝色、红色相邻,由已知可得每一块的各面都涂上不同的颜色,3块的涂法完全相同.根据第三个图可知涂成绿色一面的对面涂的颜色是黄色,故答案选C.考点:几何体的侧面展开图.【题文】如图,△ABC的面积为6,AC=3,现将△ABC沿AB所在直线翻折,使点C落在直线AD上的C′处,P为直线AD上的一点,则线段BP的长不可能是A.3 B.4 C.5.5 D.10【答案】A.【解析】试题分析:由题意可知,△ABC′是由△ABC翻折得到的,所以△ABC′的面积也为6,当BC′⊥AD时,BP 最短,因AC=AC′=3,△ABC′的面积为6,可求得BP=4,即BP最短为4,所以线段BP的长不可能是3,故答案选A.考点:点到直线的距离.【题文】若关于的一元二次方程有两个不相等的实数根,则一次函数的图象可能是【答案】B.【解析】试题分析:由方程有两个不相等的实数根,可得△=4-4(kb+1)>0,解得kb<0,即a 、b异号,当k>0,b<0时,一次函数的图象过一三四象限,当k<0,b>0时,一次函数的图象过一二四象限,故答案选B.考点:根的判别式;一次函数的性质.【题文】如图,四边形ABCD是菱形,,,于H,则DH等于A. B. C.5 D.4【答案】A.【解析】试题分析:如图,四边形ABCD是菱形,,,根据菱形的性质可得OA=4,OB=3,由勾股定理可得AB=5,再由即可求得DH=,故答案选A.考点:菱形的性质.【题文】已知点P(a+1,+1)关于原点的对称点在第四象限,则a的取值范围在数轴上表示正确的是【答案】C.【解析】试题分析:已知点P(a+1,+1)关于原点的对称点在第四象限,可得点P在第二象限,所以a+1<0,+1>0,解得a<-1,在数轴上表示为,故答案选C.考点:点的坐标;不等式组的解集.【题文】如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=,则阴影部分的面积为A.2π B.π C. D.【答案】D.【解析】试题分析:已知,AB是⊙O的直径,弦CD⊥AB,根据圆的对称性可得阴影部分的面积等于扇形AOB的面积,由垂径定理可得CE=,由圆周角定理可得∠COB=60°,在Rt△COE中,求得OC=2,所以,故答案选D.考点:垂径定理;圆周角定理;扇形面积公式.【题文】已知二次函数()的图象如图所示,给出以下四个结论:①;②;③;④.其中,正确的结论有A.1个B.2个C.3个D.4个【答案】C.【解析】试题分析:观察图象可知抛物线的图象过原点,所以c=0,可得abc=0,①正确;当x=1时,图象位于x轴的下方,y<0,即a+b+c<0,②错误;抛物线的图象开口向下,a<0,对称轴在y轴的左侧,可得b<0,又因,所以b=3a,又因a<0,b<0,所以a>b,③正确;抛物线的图象与x轴有两个交点,可得,即可得,④正确,故答案选C.考点:抛物线的图象与系数的关系.【题文】计算:.【答案】.【解析】试题分析:原式=3-+2-2=.考点:实数的运算.【题文】如图是矗立在高速公路边水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为米(结果精确到0.1米,参考数据: =1.41,=1.73).【答案】2.9.【解析】试题分析:在Rt△AMD中,∠MAD=45°,AM=4米,可得MD=4米;在Rt△BMC中,BM=AM+AB=12米,∠MBC=30°,可求得MC=4米,所以警示牌的高CD=4-4=2.9米.考点:解直角三角形.【题文】如图,在半径为3的⊙O中,直径AB与弦CD相交于点E,连接AC,BD,若AC=2,则tanD= .【答案】.【解析】试题分析:如图,连接BC,根据直径所对的圆周角为直角可得△ACB为直角三角形,在直角三角形△ACB中,AC=2,AB=6,由勾股定理可得BC=4,由圆周角定理可得∠A=∠D,所以tanD=tanA=.考点:圆周角定理;勾股定理;锐角三角函数.【题文】如图,点 A的坐标为(-4,0),直线与坐标轴交于点B,C,连结AC,如果∠ACD =90°,则n的值为 .【答案】.【解析】试题分析:已知直线与直线AC互相垂直,可设直线AC的解析式为,把A的坐标(-4,0)代入得,解得b=,所以点C的坐标为(0,),即可得n=.考点:一次函数的性质.【题文】如图,已知△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B= .【答案】.【解析】试题分析:如图,连接CC′,过点B作BP⊥CC′于点P,根据旋转的性质可得AC=AC′,∠CAC′=60°,可得△ACC′为等边三角形,根据等边三角形的性质可得AC=CC′=,∠ACC′=60°,由∠ACB=90°,可得∠BCP=30°.在Rt△BPC中,∠BCP=30°,BC=,可求得BP=,CP=,所以PC′=CC′-CP=-;在Rt△BPC′中,由勾股定理可得.考点:旋转的性质;勾股定理.【题文】一列数,,,…满足条件:,(n≥2,且n为整数),则= .【答案】-1.【解析】试题分析:根据题意可知,,,,,.......,由此可得这组数据3个一循环,2016÷3=672,所以是第672个循环中的第3个数,即=-1.考点:规律探究题.【题文】先化简,再求值:,其中a是方程的解.【答案】原式=, 由,得,又∴.原式=.【解析】试题分析:先把分式化简后,再解方程确定a的值,最后代入求值即可.试题解析:原式===由,得,又∴.∴原式=.考点:分式的化简求值;一元二次方程的解法.【题文】表示n边形的对角线的交点个数(指落在其内部的交点),如果这些交点都不重合,那么与n的关系式是:(其中,a,b是常数,n≥4)(1)通过画图,可得四边形时,=(填数字);五边形时,=(填数字).(2)请根据四边形和五边形对角线交点的个数,结合关系式,求a,b的值.【答案】(1),;(2)【解析】试题分析:(1)根据题意画出图形即可得,;(2)把n=4,n=5分别代入公式,可得以a、b为未知数的二元一次方程组,解方程组即可得a、b的值.试题解析:(1)由画图,可得当时,;当时,.(2)将上述数值代入公式,得解之,得考点:数形结合思想;二元一次方程组的解法.【题文】小军同学在学校组织的社会实践活动中,负责了解他所居住的小区450户居民的生活用水情况,他从中随机调查了50户居民的月均用水量(单位:t),并绘制了样本的频数分布表:月均用水量频数212①10②32百分比4%24%30%20%③6%4%(1)请根据题中已有的信息补全频数分布表:①,②,③;(2)如果家庭月均用水量“大于或等于5t且小于8t”为中等用水量家庭,请你通过样本估计总体中的中等用水量家庭大约有多少户?(3)记月均用水量在范围内的两户为、,在范围内3户为、、,从这5户家庭中任意抽取2户,试完成下表,并求出抽取的2户家庭来自不同范围的概率.【答案】(1)①15,②6,③12%;(2)171;(3)表格见解析,.【解析】试题分析:(1)用50乘以30%即可得①的数值,用50减去其它的频数即可得②的数值,用②的数值除以50即可得③;(2)用总户数450乘以中等用水量家庭所占的百分比即可得中等用水量家庭大的户数;(3)填写表格,列举出所有情况,根据概率公式求得抽取的2户家庭来自不同范围的概率即可.试题解析:(1)①15②6③12%(2)中等用水量家庭大约有450×(20%+12%+6%)=171(户)(3)表格(略),(,)(,)(,)(,)(,)(,)(,)(,)(,)(,)(,)(,)(,)(,)(,)(,)(,)(,)(,)(,)抽取的2户家庭来自不同范围的概率P=.考点:【题文】如图,在矩形OABC中,OA=3,OC=2,F是AB上的一个动点(F不A、B与重合),过点F的反比例函数y=的图象与边BC交于点E.(1)当F为AB的中点时,求该函数的解析式;(2)当k为何值时,△EFA的面积最大,最大面积是多少?【答案】(1);(2)当k=3时,S有最大值,S最大值=.【解析】试题分析:(1)根据题意可得点F的坐标为(3,1)代入即可求得k值,也就求出反比例函数的解析式;(2)E、F在反比例函数的图象上,可得E,F两点坐标分别为E(,2),F(3,),利用构造出与k之间的二次函数关系,根据二次函数的性质求出△EFA的面积最大时k 值及△EFA的面积最大值.试题解析:(1)在矩形OABC中,OA=3,OC=2,∴B(3,2),∵F为AB的中点,∴F(3,1).∵点F在反比例函数的图象上,∴k=3.∴该函数的解析式为.(2)由题意,知E,F两点坐标分别为E(,2),F(3,),∴所以当k=3时,S有最大值,S最大值=.考点:反比例函数的性质;二次函数的应用.【题文】如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PA,PB,AB,已知∠PBA=∠C.(1)求证:PB是⊙O的切线;(2)连接OP,若OP∥BC,且OP=8,⊙O的半径为,求BC的长.【答案】(1)详见解析;(2)2.【解析】试题分析:(1)连接OB,由AC是⊙O的直径可得∠ABC=90°,∠C+∠BAC=90°.再由OA=OB可得∠BAC=∠OBA. 又因∠PBA=∠C,所以∠PBA+∠OBA=90°,即PB⊥OB.即可判定PB是⊙O的切线.(2)可证△ABC∽△PBO,根据相似三角形的性质即可求BC的长.试题解析:(1)证明:如图所示,连接OB.∵AC是⊙O的直径,∴∠ABC=90°,∠C+∠BAC=90°.∵OA=OB,∴∠BAC=∠OBA.∵∠PBA=∠C,∴∠PBA+∠OBA=90°,即PB⊥OB.∴PB是⊙O的切线.(2)解:⊙O的半径为,∴OB=,AC=.∵OP∥BC,∴∠BOP=∠OB C=∠C.又∵∠ABC=∠PBO=90°,∴△ABC∽△PBO,∴,即.∴BC=2.考点:切线的判定;相似三角形的判定及性质.【题文】如图,把△EFP放置在菱形ABCD中,使得顶点E,F,P分别在线段AB,AD,AC上,已知EP=FP=6,EF=,∠BAD=60°,且AB>.(1)求∠EPF的大小;(2)若AP=8,求AE+AF的值;(3)若△EFP的三个顶点E,F,P分别在线段AB,AD,AC上运动,请直接写出AP长的最大值和最小值. 【答案】(1)120°;(2);(3)AP的最大值为12,AP的最小值为6.【解析】试题分析:(1)如图,过点P作PG⊥EF于G,已知PE=PF=6,EF=,根据等腰三角形的性质可得FG=EG=,∠FPG=∠EPG=.在Rt△FPG中,由sin∠FPG=可求得∠FPG=60°,所以∠EPF=2∠FPG=120°.(2)作PM⊥AB于M,PN⊥AD于N,根据菱形的性质可得∠DAC=∠BAC,AM=AN,PM=PN,再利用HL证明Rt△PME≌Rt△PNF,即可得NF=ME.又因AP=10,,所以AM= AN =APcos30°==.所以AE+AF=(AM+ME)+(AN-NF)=AM+AN=.(3)如图,当△EFP的三个顶点E,F,P分别在线段AB,AD,AC上运动时,点P在,之间运动,易知,,所以AP 的最大值为12,AP的最小值为6.试题解析:(1)如图,过点P作PG⊥EF于G.∵PE=PF=6,EF=,∴FG=EG=,∠FPG=∠EPG=.在Rt△FPG中,sin∠FPG=.∴∠FPG=60°,∴∠EPF=2∠FPG=120°.(2)作PM⊥AB于M,PN⊥AD于N.∵AC为菱形ABCD的对角线,∴∠DAC=∠BAC,AM=AN,PM=PN.在Rt△PME和Rt△PNF 中,PM=PN,PE=PF,∴Rt△PME≌Rt△PNF∴NF=ME.又AP=10,,∴AM= AN =APcos30°==.∴AE+AF=(AM+ME)+(AN-NF)=AM+AN=.(3)如图,当△EFP的三个顶点E,F,P分别在线段AB,AD,AC上运动时,点P在,之间运动,易知,,∴AP的最大值为12,AP的最小值为6.考点:四边形综合题.【题文】如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=-1,且经过A(1,0),C(0,3)两点,与x轴的另一个交点为B.(1)若直线y=mx+n经过B,C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=-1上找一点M,使点M到点A的距离与到点C的距离之和最小,求点M的坐标;(3)设点P为抛物线的对称轴x=-1上的一个动点,求使△BPC为直角三角形的点P的坐标.【答案】(1),;(2)M(-1,2);(3)满足条件的点P共有四个,分别为(-1,-2), (-1,4), (-1,) ,(-1,).【解析】试题分析:(1)已知抛物线y=ax2+bx+c的对称轴为直线x=-1,且经过A(1,0),C(0,3)两点,可得方程组,解方程组可求得a、b、c的值,即可得抛物线的解析式;根据抛物线的对称性和点A的坐标(1,0)可求得B点的坐标(-3,0),用待定系数法可求得直线BC的解析式;(2)使MA+MC最小的点M应为直线BC与对称轴x=-1的交点,把x=-1代入直线BC的解析式求得y的值,即可得点M的坐标;(3)分①B为直角顶点,②C为直角顶点,③P为直角顶点三种情况分别求点P的坐标.试题解析:(1)依题意,得解之,得∴抛物线解析式为.∵对称轴为x=-1,且抛物线经过A(1,0),∴B(-3,0).把B(-3,0)、C(0,3)分别直线y=mx+n,得解之,得∴直线BC的解析式为.(2)∵MA=MB,∴MA+MC=MB+MC.∴使MA+MC最小的点M应为直线BC与对称轴x=-1的交点.设直线BC与对称轴x=-1的交点为M,把x=-1代入直线,得y=2.∴M(-1,2)(3)设P(-1,t),结合B(-3,0),C(0, 3),得BC2=18,PB2=(-1+3)2+t2=4+t2,PC2=(-1)2+(t-3)2=t2-6t+10.①若B为直角顶点,则BC2+PB2=PC2,即18+4+t2=t2-6t+10.解之,得t=-2.②若C为直角顶点,则BC2+PC2=PB2,即18+t2-6t+10=4+t2.解之,得t=4.③若P为直角顶点,则PB2+PC2=BC2,即4+t2+t2-6t+10=18.解之,得t1=,t2=.综上所述,满足条件的点P共有四个,分别为(-1,-2), (-1,4), (-1,) ,(-1,).考点:二次函数综合题.。

山东省枣庄市2020年中考数学试题(Word版,含答案与解析)

山东省枣庄市2020年中考数学试题(Word版,含答案与解析)

山东省枣庄市2020年中考数学试卷一、单选题(共12题;共24分)1.−12的绝对值是()A. -2B. −12C. 2 D. 12【答案】 D【考点】绝对值及有理数的绝对值【解析】【解答】解:−12的绝对值是12.故答案为:D.【分析】直接利用绝对值的定义得出答案.2.一副直角三角板如图放置,点C在FD的延长线上,AB//CF,∠F=∠ACB=90°,则∠DBC的度数为( )A. 10°B. 15°C. 18°D. 30°【答案】B【考点】平行线的性质,直角三角形的性质【解析】【解答】由题意可得:∠EDF=45°,∠ABC=30°,∵AB∥CF,∴∠ABD=∠EDF=45°,∴∠DBC=45°﹣30°=15°.故答案为:B.【分析】直接利用三角板的特点,结合平行线的性质得∠ABD=60°,即而求解。

3.计算−23−(−16)的结果为()A. −12B. 12C. −56D. 56【答案】A【考点】有理数的减法【解析】【解答】解:−23−(−16)=−23+16=−46+16=−36=−12,故答案为:A.【分析】根据有理数的加减运算法则即可解答.4.实数a , b 在数轴上对应点的位置如图所示,下列判断正确的是( )A. |a|<1B. ab >0C. a +b >0D. 1−a >1 【答案】 D【考点】实数在数轴上的表示【解析】【解答】解:由数轴上a 与1的位置可知: |a|>1 ,A 不符合题意; 因为a <0,b >0,所以 ab <0 ,B 不符合题意; 因为a <0,b >0,所以 a +b <0 ,C 不符合题意; 因为a <0,则 1−a >1 ,D 符合题意; 故答案为:D .【分析】直接利用a ,b 在数轴上位置进而分别分析得出答案.5.布袋中装有除颜色外没有其他区别的1个红球和2个白球,搅匀后从中摸出一个球,放回搅匀,再摸出第二个球,两次都摸出白球的概率是( )A. 49 B. 29 C. 23 D. 13 【答案】 A【考点】列表法与树状图法,概率公式 【解析】【解答】画树状图得:则共有9种等可能的结果,两次都摸到白球的有4种情况,∴两次都摸到白球的概率为 49 . 故答案为:A【分析】根据题意画出树状图,由图知:则共有9种等可能的结果,两次都摸到白球的有4种情况,根据概率公式即可得出两次都摸到白球的概率。

枣庄中考数学试卷真题

枣庄中考数学试卷真题

枣庄中考数学试卷真题真题回顾:一、选择题:从A、B、C、D四个选项中选择正确的答案。

1. 已知正方形的边长为a,则正方形的周长是()。

A. 2aB. 3aC. 4aD. a²2. 设正方形ABCD的边长为3cm,则其对角线AC的长度为()。

A. 6cmB. 3cmC. 3√2cmD. 9cm3. 若一个整数能被3整除且不能被2整除,则这个整数一定能被()整除。

A. 1B. 2C. 3D. 44. 已知△ABC中,∠A=60°,BC=5cm,则AB的长度为()。

A. 5cmB. 10cmC. 5√3cmD. 10√3cm5. 若正方形ABCD的边长为a,则正方形AB'CD'的边长是()。

A. aB. 2aC. 3aD. 4a二、填空题:根据题意完成填空。

1. 已知α是一个锐角,则α的补角是_________。

2. 若正方形ABCD的边长为6cm,则正方形BCEF的周长为_________cm。

3. 设函数f(x)=3x+7,则f(4)的值是_________。

4. 若△ABC中,∠C=90°,BC=12cm,AB=5cm,则△ABC的面积是_________平方厘米。

5. 10本书按一定比例分给A、B两人,A得到6本,B得到4本,则这个比例是_________∶_________。

三、解答题:请写出详细的解题过程和最终结果。

1. 计算:(3/4)^2。

2. 设正方形ABCD的面积为16m²,点P是边AB的中点,连接DP并延长交边BC于点E,求AB与DE的交点的坐标。

3. 设正方形ABCD中,点P在边AD上,且AP:PD=2:5,若AB=12cm,求BC的长度。

4. ∠A、∠B、∠C是三角形ABC的三个内角,已知∠A:∠B=4:5,∠B:∠C=1:2,求∠A:∠B:∠C的比值。

5. 直线y=-2x+7与x轴和y轴分别交于点P和Q,求△PQC的面积。

山东省枣庄市中考数学试卷(word版 解析版)

山东省枣庄市中考数学试卷(word版 解析版)

·2018·山东省枣庄市中考数学试卷(解析版)一、选择题:本大题共12小题,在每小题给出四个选项中,只有一项是正确,请把正确选项选出来.每小题选对得3分,选错、不选或选出答案超过一个均计零分1.(3分)倒数是()A.﹣2 B.﹣ C.2 D.【分析】根据倒数定义,直接解答即可.【解答】解:倒数是﹣2.故选:A.【点评】主要考查倒数概念及性质.倒数定义:若两个数乘积是1,我们就称这两个数互为倒数.2.(3分)下列计算,正确是()A.a5+a5=a10B.a3÷a﹣1=a2C.a•2a2=2a4D.(﹣a2)3=﹣a6【分析】根据合并同类项法则、同底数幂除法法则、幂乘方法则、单项式乘单项式运算法则计算,判断即可.【解答】解:a5+a5=2a5,A错误;a3÷a﹣1=a3﹣(﹣1)=a4,B错误;a•2a2=2a3,C错误;(﹣a2)3=﹣a6,D正确,故选:D.【点评】本题考查是合并同类项、同底数幂除法、幂乘方、单项式乘单项式,掌握它们运算法则是解题关键.3.(3分)已知直线m∥n,将一块含30°角直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2度数为()A.20°B.30°C.45°D.50°【分析】根据平行线性质即可得到结论.【解答】解:∵直线m∥n,∴∠2=∠ABC+∠1=30°+20°=50°,故选:D.【点评】本题考查了平行线性质,熟练掌握平行线性质是解题关键.4.(3分)实数a,b,c,d在数轴上位置如图所示,下列关系式不正确是()A.|a|>|b|B.|ac|=ac C.b<d D.c+d>0【分析】本题利用实数与数轴对应关系结合实数运算法则计算即可解答.【解答】解:从a、b、c、d在数轴上位置可知:a<b<0,d>c>1;A、|a|>|b|,故选项正确;B、a、c异号,则|ac|=﹣ac,故选项错误;C、b<d,故选项正确;D、d>c>1,则a+d>0,故选项正确.故选:B.【点评】此题主要考查了数轴知识:从原点向右为正数,向左为负数.右边数大于左边数.5.(3分)如图,直线l是一次函数y=kx+b图象,若点A(3,m)在直线l上,则m值是()A.﹣5 B.C.D.7【分析】待定系数法求出直线解析式,再将点A代入求解可得.【解答】解:将(﹣2,0)、(0,1)代入,得:解得:,∴y=x+1,将点A(3,m)代入,得:+1=m,即m=,故选:C.【点评】本题主要考查直线上点坐标特点,熟练掌握待定系数法求函数解析式是解题关键.6.(3分)如图,将边长为3a正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b小正方形后,再将剩下三块拼成一块矩形,则这块矩形较长边长为()A.3a+2b B.3a+4b C.6a+2b D.6a+4b【分析】观察图形可知,这块矩形较长边长=边长为3a正方形边长﹣边长2b小正方形边长+边长2b小正方形边长2倍,依此计算即可求解.【解答】解:依题意有3a﹣2b+2b×2=3a﹣2b+4b=3a+2b.故这块矩形较长边长为3a+2b.故选:A.【点评】考查了列代数式,关键是得到这块矩形较长边长与两个正方形边长关系.7.(3分)在平面直角坐标系中,将点A(﹣1,﹣2)向右平移3个单位长度得到点B,则点B关于x轴对称点B′坐标为()A.(﹣3,﹣2)B.(2,2) C.(﹣2,2)D.(2,﹣2)【分析】首先根据横坐标右移加,左移减可得B点坐标,然后再根据关于x轴对称点坐标特点:横坐标不变,纵坐标符号改变可得答案.【解答】解:点A(﹣1,﹣2)向右平移3个单位长度得到B坐标为(﹣1+3,﹣2),即(2,﹣2),则点B关于x轴对称点B′坐标是(2,2),故选:B.【点评】此题主要考查了坐标与图形变化﹣平移,以及关于x轴对称点坐标,关键是掌握点坐标变化规律.8.(3分)如图,AB是⊙O直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD长为()A. B.2 C.2D.8【分析】作OH⊥CD于H,连结OC,如图,根据垂径定理由OH⊥CD得到HC=HD,再利用AP=2,BP=6可计算出半径OA=4,则OP=OA﹣AP=2,接着在Rt△OPH中根据含30度直角三角形性质计算出OH=OP=1,然后在Rt△OHC中利用勾股定理计算出CH=,所以CD=2CH=2.【解答】解:作OH⊥CD于H,连结OC,如图,∵OH⊥CD,∴HC=HD,∵AP=2,BP=6,∴AB=8,∴OA=4,∴OP=OA﹣AP=2,在Rt△OPH中,∵∠OPH=30°,∴∠POH=60°,∴OH=OP=1,在Rt△OHC中,∵OC=4,OH=1,∴CH==,∴CD=2CH=2.故选:C.【点评】本题考查了垂径定理:垂直于弦直径平分这条弦,并且平分弦所对两条弧.也考查了勾股定理以及含30度直角三角形性质.9.(3分)如图是二次函数y=ax2+bx+c图象一部分,且过点A(3,0),二次函数图象对称轴是直线x=1,下列结论正确是()A.b2<4ac B.ac>0 C.2a﹣b=0 D.a﹣b+c=0【分析】根据抛物线与x轴有两个交点有b2﹣4ac>0可对A进行判断;由抛物线开口向上得a>0,由抛物线与y轴交点在x轴下方得c<0,则可对B进行判断;根据抛物线对称轴是x=1对C选项进行判断;根据抛物线对称性得到抛物线与x轴另一个交点为(﹣1,0),所以a﹣b+c=0,则可对D选项进行判断.【解答】解:∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即b2>4ac,所以A选项错误;∵抛物线开口向上,∴a>0,∵抛物线与y轴交点在x轴下方,∴c<0,∴ac<0,所以B选项错误;∵二次函数图象对称轴是直线x=1,∴﹣=1,∴2a+b=0,所以C选项错误;∵抛物线过点A(3,0),二次函数图象对称轴是x=1,∴抛物线与x轴另一个交点为(﹣1,0),∴a﹣b+c=0,所以D选项正确;故选:D.【点评】本题考查了二次函数图象与系数关系:二次函数y=ax2+bx+c(a≠0)图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=﹣;抛物线与y轴交点坐标为(0,c);当b2﹣4ac>0,抛物线与x轴有两个交点;当b2﹣4ac=0,抛物线与x轴有一个交点;当b2﹣4ac<0,抛物线与x轴没有交点.10.(3分)如图是由8个全等矩形组成大正方形,线段AB端点都在小矩形顶点上,如果点P是某个小矩形顶点,连接PA、PB,那么使△ABP为等腰直角三角形点P个数是()A.2个 B.3个 C.4个 D.5个【分析】根据等腰直角三角形判定即可得到结论.【解答】解:如图所示,使△ABP为等腰直角三角形点P个数是3,故选:B.【点评】本题考查了等腰直角三角形判定,正确找出符合条件点P是解题关键.11.(3分)如图,在矩形ABCD中,点E是边BC中点,AE⊥BD,垂足为F,则tan∠BDE值是()A.B.C.D.【分析】证明△BEF∽△DAF,得出EF=AF,EF=AE,由矩形对称性得:AE=DE,得出EF=DE,设EF=x,则DE=3x,由勾股定理求出DF==2x,再由三角函数定义即可得出答案.【解答】解:∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∵点E是边BC中点,∴BE=BC=AD,∴△BEF∽△DAF,∴=,∴EF=AF,∴EF=AE,∵点E是边BC中点,∴由矩形对称性得:AE=DE,∴EF=DE,设EF=x,则DE=3x,∴DF==2x,∴tan∠BDE===;故选:A.【点评】本题考查了相似三角形判定和性质,矩形性质,三角函数等知识;熟练掌握矩形性质,证明三角形相似是解决问题关键.12.(3分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则CE长为()A.B.C.D.【分析】根据三角形内角和定理得出∠CAF+∠CFA=90°,∠FAD+∠AED=90°,根据角平分线和对顶角相等得出∠CEF=∠CFE,即可得出EC=FC,再利用相似三角形判定与性质得出答案.【解答】解:过点F作FG⊥AB于点G,∵∠ACB=90°,CD⊥AB,∴∠CDA=90°,∴∠CAF+∠CFA=90°,∠FAD+∠AED=90°,∵AF平分∠CAB,∴∠CAF=∠FAD,∴∠CFA=∠AED=∠CEF,∴CE=CF,∵AF平分∠CAB,∠ACF=∠AGF=90°,∴FC=FG,∵∠B=∠B,∠FGB=∠ACB=90°,∴△BFG∽△BAC,∴=,∵AC=3,AB=5,∠ACB=90°,∴BC=4,∴=,∵FC=FG,∴=,解得:FC=,即CE长为.故选:A.【点评】本题考查了直角三角形性质、等腰三角形性质和判定,三角形内角和定理以及相似三角形判定与性质等知识,关键是推出∠CEF=∠CFE.二、填空题:本大题共6小题,满分24分,只填写最后结果,每小题填对得4分13.(4分)若二元一次方程组解为,则a﹣b=.【分析】把x、y值代入方程组,再将两式相加即可求出a﹣b值.【解答】解:将代入方程组,得:,①+②,得:4a﹣4b=7,则a﹣b=,故答案为:.【点评】本题考查二元一次方程组解,解题关键是观察两方程系数,从而求出a ﹣b值,本题属于基础题型.14.(4分)如图,某商店营业大厅自动扶梯AB倾斜角为31°,AB长为12米,则大厅两层之间高度为 6.18米.(结果保留两个有效数字)【参考数据;sin31°=0.515,cos31°=0.857,tan31°=0.601】【分析】根据题意和锐角三角函数可以求得BC长,从而可以解答本题.【解答】解:在Rt△ABC中,∵∠ACB=90°,∴BC=AB•sin∠BAC=12×0.515=6.18(米),答:大厅两层之间距离BC长约为6.18米.故答案为:6.18.【点评】本题考查解直角三角形应用,解答本题关键是明确题意,找出所求问题需要条件,利用锐角三角函数和数形结合思想解答.15.(4分)我国南宋著名数学家秦九韶在他著作《数书九章》一书中,给出了著名秦九韶公式,也叫三斜求积公式,即如果一个三角形三边长分别为a,b,c,则该三角形面积为S=.现已知△ABC三边长分别为1,2,,则△ABC面积为1.【分析】根据题目中面积公式可以求得△ABC三边长分别为1,2,面积,从而可以解答本题.【解答】解:∵S=,∴△ABC三边长分别为1,2,,则△ABC面积为:S==1,故答案为:1.【点评】本题考查二次根式应用,解答本题关键是明确题意,利用题目中面积公式解答.16.(4分)如图,在正方形ABCD中,AD=2,把边BC绕点B逆时针旋转30°得到线段BP,连接AP并延长交CD于点E,连接PC,则三角形PCE面积为9﹣5.【分析】根据旋转思想得PB=BC=AB,∠PBC=30°,推出△ABP是等边三角形,得到∠BAP=60°,AP=AB=2,解直角三角形得到CE=2﹣2,PE=4﹣2,过P 作PF⊥CD于F,于是得到结论.【解答】解:∵四边形ABCD是正方形,∴∠ABC=90°,∵把边BC绕点B逆时针旋转30°得到线段BP,∴PB=BC=AB,∠PBC=30°,∴∠ABP=60°,∴△ABP是等边三角形,∴∠BAP=60°,AP=AB=2,∵AD=2,∴AE=4,DE=2,∴CE=2﹣2,PE=4﹣2,过P作PF⊥CD于F,∴PF=PE=2﹣3,∴三角形PCE面积=CE•PF=×(2﹣2)×(2﹣3)=9﹣5,故答案为:9﹣5.【点评】本题考查了旋转性质,正方形性质,等边三角形判定和性质,解直角三角形,正确作出辅助线是解题关键.17.(4分)如图1,点P从△ABC顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP长度y随时间x变化关系图象,其中M为曲线部分最低点,则△ABC面积是12.【分析】根据图象可知点P在BC上运动时,此时BP不断增大,而从C向A运动时,BP先变小后变大,从而可求出BC与AC长度.【解答】解:根据图象可知点P在BC上运动时,此时BP不断增大,由图象可知:点P从B向C运动时,BP最大值为5,即BC=5,由于M是曲线部分最低点,∴此时BP最小,即BP⊥AC,BP=4,∴由勾股定理可知:PC=3,由于图象曲线部分是轴对称图形,∴PA=3,∴AC=6,∴△ABC面积为:×4×6=12故答案为:12【点评】本题考查动点问题函数图象,解题关键是注意结合图象求出BC与AC 长度,本题属于中等题型.18.(4分)将从1开始连续自然数按以下规律排列:第1行1第2行234第3行98765第4行1111213141516第5行25242322212191817…则2018在第45行.【分析】通过观察可得第n行最大一个数为n2,由此估算2018所在行数,进一步推算得出答案即可.【解答】解:∵442=1936,452=2025,∴2018在第45行.故答案为:45.【点评】本题考查了数字变化规律,解题关键是通过观察,分析、归纳并发现其中规律,并应用发现规律解决问题.三、解答题:本大题共7小题,满分60分.解答时,要写出必要文字说明、证明过程或演算步骤19.(8分)计算:|﹣2|+sin60°﹣﹣(﹣1)2+2﹣2【分析】根据特殊角三角函数值、负整数指数幂意义和绝对值意义计算.【解答】解:原式=2﹣+﹣3﹣+=﹣.【点评】本题考查了实数运算:实数运算和在有理数范围内一样,值得一提是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.20.(8分)如图,在4×4方格纸中,△ABC三个顶点都在格点上.(1)在图1中,画出一个与△ABC成中心对称格点三角形;(2)在图2中,画出一个与△ABC成轴对称且与△ABC有公共边格点三角形;(3)在图3中,画出△ABC绕着点C按顺时针方向旋转90°后三角形.【分析】(1)根据中心对称性质即可作出图形;(2)根据轴对称性质即可作出图形;(3)根据旋转性质即可求出图形.【解答】解:(1)如图所示,△DCE为所求作(2)如图所示,△ACD为所求作(3)如图所示△ECD为所求作【点评】本题考查图形变换,解题关键是正确理解图形变换性质,本题属于基础题型.21.(8分)如图,一次函数y=kx+b(k、b为常数,k≠0)图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(n为常数,且n≠0)图象在第二象限交于点C.CD⊥x轴,垂足为D,若OB=2OA=3OD=12.(1)求一次函数与反比例函数解析式;(2)记两函数图象另一个交点为E,求△CDE面积;(3)直接写出不等式kx+b≤解集.【分析】(1)根据三角形相似,可求出点C坐标,可得一次函数和反比例函数解析式;(2)联立解析式,可求交点坐标;(3)根据数形结合,将不等式转化为一次函数和反比例函数图象关系.【解答】解:(1)由已知,OA=6,OB=12,OD=4∵CD⊥x轴∴OB∥CD∴△ABO∽△ACD∴∴∴CD=20∴点C坐标为(﹣4,20)∴n=xy=﹣80∴反比例函数解析式为:y=﹣把点A(6,0),B(0,12)代入y=kx+b得:解得:∴一次函数解析式为:y=﹣2x+12(2)当﹣=﹣2x+12时,解得x1=10,x2=﹣4当x=10时,y=﹣8∴点E坐标为(10,﹣8)∴S=S△CDA+S△EDA=△CDE(3)不等式kx+b≤,从函数图象上看,表示一次函数图象不低于反比例函数图象∴由图象得,x≥10,或﹣4≤x<0【点评】本题考查了应用待定系数法求一次函数和反比例函数解析式以及用函数观点通过函数图象解不等式.22.(8分)现今“微信运动”被越来越多人关注和喜爱,某兴趣小组随机调查了我市50名教师某日“微信运动”中步数情况进行统计整理,绘制了如下统计图表(不完整):步数频数频率0≤x<40008a4000≤x<8000150.38000≤x<1200012b12000≤x<16000c0.216000≤x<2000030.0620000≤x<24000d0.04请根据以上信息,解答下列问题:(1)写出a,b,c,d值并补全频数分布直方图;(2)本市约有37800名教师,用调查样本数据估计日行走步数超过12000步(包含12000步)教师有多少名?(3)若在50名被调查教师中,选取日行走步数超过16000步(包含16000步两名教师与大家分享心得,求被选取两名教师恰好都在20000步(包含20000步)以上概率.【分析】(1)根据频率=频数÷总数可得答案;(2)用样本中超过12000步(包含12000步)频率之和乘以总人数可得答案;(3)画树状图列出所有等可能结果,根据概率公式求解可得.【解答】解:(1)a=8÷50=0.16,b=12÷50=0.24,c=50×0.2=10,d=50×0.04=2,补全频数分布直方图如下:(2)37800×(0.2+0.06+0.04)=11340,答:估计日行走步数超过12000步(包含12000步)教师有11340名;(3)设16000≤x<200003名教师分别为A、B、C,20000≤x<240002名教师分别为X、Y,画树状图如下:由树状图可知,被选取两名教师恰好都在20000步(包含20000步)以上概率为=.【点评】此题考查了频率分布直方图,用到知识点是频率=频数÷总数,用样本估计整体让整体×样本百分比,读懂统计表,运用数形结合思想来解决由统计图形式给出数学实际问题是本题关键.23.(8分)如图,在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC为直径作⊙O交AB于点D.(1)求线段AD长度;(2)点E是线段AC上一点,试问:当点E在什么位置时,直线ED与⊙O相切?请说明理由.【分析】(1)由勾股定理易求得AB长;可连接CD,由圆周角定理知CD⊥AB,易知△ACD∽△ABC,可得关于AC、AD、AB比例关系式,即可求出AD长.(2)当ED与⊙O相切时,由切线长定理知EC=ED,则∠ECD=∠EDC,那么∠A 和∠DEC就是等角余角,由此可证得AE=DE,即E是AC中点.在证明时,可连接OD,证OD⊥DE即可.【解答】解:(1)在Rt△ACB中,∵AC=3cm,BC=4cm,∠ACB=90°,∴AB=5cm;连接CD,∵BC为直径,∴∠ADC=∠BDC=90°;∵∠A=∠A,∠ADC=∠ACB,∴Rt△ADC∽Rt△ACB;∴,∴;(2)当点E是AC中点时,ED与⊙O相切;证明:连接OD,∵DE是Rt△ADC中线;∴ED=EC,∴∠EDC=∠ECD;∵OC=OD,∴∠ODC=∠OCD;∴∠EDO=∠EDC+∠ODC=∠ECD+∠OCD=∠ACB=90°;∴ED⊥OD,∴ED与⊙O相切.【点评】此题综合考查了圆周角定理、相似三角形判定和性质、直角三角形性质、切线判定等知识.24.(10分)如图,将矩形ABCD沿AF折叠,使点D落在BC边点E处,过点E 作EG∥CD交AF于点G,连接DG.(1)求证:四边形EFDG是菱形;(2)探究线段EG、GF、AF之间数量关系,并说明理由;(3)若AG=6,EG=2,求BE长.【分析】(1)先依据翻折性质和平行线性质证明∠DGF=∠DFG,从而得到GD=DF,接下来依据翻折性质可证明DG=GE=DF=EF;(2)连接DE,交AF于点O.由菱形性质可知GF⊥DE,OG=OF=GF,接下来,证明△DOF∽△ADF,由相似三角形性质可证明DF2=FO•AF,于是可得到GE、AF、FG数量关系;(3)过点G作GH⊥DC,垂足为H.利用(2)结论可求得FG=4,然后再△ADF中依据勾股定理可求得AD长,然后再证明△FGH∽△FAD,利用相似三角形性质可求得GH长,最后依据BE=AD﹣GH求解即可.【解答】解:(1)证明:∵GE∥DF,∴∠EGF=∠DFG.∵由翻折性质可知:GD=GE,DF=EF,∠DGF=∠EGF,∴∠DGF=∠DFG.∴GD=DF.∴DG=GE=DF=EF.∴四边形EFDG为菱形.(2)EG2=GF•AF.理由:如图1所示:连接DE,交AF于点O.∵四边形EFDG为菱形,∴GF⊥DE,OG=OF=GF.∵∠DOF=∠ADF=90°,∠OFD=∠DFA,∴△DOF∽△ADF.∴,即DF2=FO•AF.∵FO=GF,DF=EG,∴EG2=GF•AF.(3)如图2所示:过点G作GH⊥DC,垂足为H.∵EG2=GF•AF,AG=6,EG=2,∴20=FG(FG+6),整理得:FG2+6FG﹣40=0.解得:FG=4,FG=﹣10(舍去).∵DF=GE=2,AF=10,∴AD==4.∵GH⊥DC,AD⊥DC,∴GH∥AD.∴△FGH∽△FAD.∴,即=.∴GH=.∴BE=AD﹣GH=4﹣=.【点评】本题主要考查是四边形与三角形综合应用,解答本题主要应用了矩形性质、菱形判定和性质、相似三角形性质和判定、勾股定理应用,利用相似三角形性质得到DF2=FO•AF是解题答问题(2)关键,依据相似三角形性质求得GH长是解答问题(3)关键.25.(10分)如图1,已知二次函数y=ax2+x+c(a≠0)图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)请直接写出二次函数y=ax2+x+c表达式;(2)判断△ABC形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点三角形是等腰三角形时,请写出此时点N坐标;(4)如图2,若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N坐标.【分析】(1)根据待定系数法即可求得;(2)根据抛物线解析式求得B坐标,然后根据勾股定理分别求得AB2=20,AC2=80,BC10,然后根据勾股定理逆定理即可证得△ABC是直角三角形.(3)分别以A、C两点为圆心,AC长为半径画弧,与x轴交于三个点,由AC 垂直平分线与x轴交于一个点,即可求得点N坐标;(4)设点N坐标为(n,0),则BN=n+2,过M点作MD⊥x轴于点D,根据三角形相似对应边成比例求得MD=(n+2),然后根据S=S△ABN﹣S△BMN△AMN得出关于n二次函数,根据函数解析式求得即可.【解答】解:(1)∵二次函数y=ax2+x+c图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),∴,解得.∴抛物线表达式:y=﹣x2+x+4;(2)△ABC是直角三角形.令y=0,则﹣x2+x+4=0,解得x1=8,x2=﹣2,∴点B坐标为(﹣2,0),由已知可得,在Rt△ABO中AB2=BO2+AO2=22+42=20,在Rt△AOC中AC2=AO2+CO2=42+82=80,又∵BC=OB+OC=2+8=10,∴在△ABC中AB2+AC2=20+80=102=BC2∴△ABC是直角三角形.(3)∵A(0,4),C(8,0),∴AC==4,①以A为圆心,以AC长为半径作圆,交x轴于N,此时N坐标为(﹣8,0),②以C为圆心,以AC长为半径作圆,交x轴于N,此时N坐标为(8﹣4,0)或(8+4,0)③作AC垂直平分线,交x轴于N,此时N坐标为(3,0),综上,若点N在x轴上运动,当以点A、N、C为顶点三角形是等腰三角形时,点N坐标分别为(﹣8,0)、(8﹣4,0)、(3,0)、(8+4,0).(4)如图,设点N坐标为(n,0),则BN=n+2,过M点作MD⊥x轴于点D,∴MD∥OA,∴△BMD∽△BAO,∴=,∵MN∥AC∴=,∴=,∵OA=4,BC=10,BN=n+2∴MD=(n+2),=S△ABN﹣S△BMN∵S△AMN=BN•OA﹣BN•MD=(n+2)×4﹣×(n+2)2=﹣(n﹣3)2+5,当n=3时,△AMN面积最大是5,∴N点坐标为(3,0).∴当△AMN面积最大时,N点坐标为(3,0).【点评】本题是二次函数综合题,解(1)关键是待定系数法求解析式,解(2)关键是勾股定理和逆定理,解(3)关键是等腰三角形性质,解(4)关键是三角形相似判定和性质以及函数最值等.。

山东枣庄2020年中考数学试卷及解析

山东枣庄2020年中考数学试卷及解析

2020年山东省枣庄市中考数学试卷一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均计零分.1.(3分)﹣的绝对值是( )A.﹣B.﹣2C.D.22.(3分)一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,则∠DBC的度数为( )A.10°B.15°C.18°D.30°3.(3分)计算﹣﹣(﹣)的结果为( )A.﹣B.C.﹣D.4.(3分)实数a,b在数轴上对应点的位置如图所示,下列判断正确的是( )A.|a|<1B.ab>0C.a+b>0D.1﹣a>15.(3分)不透明布袋中装有除颜色外没有其他区别的1个红球和2个白球,搅匀后从中摸出一个球,放回搅匀,再摸出一个球,两次都摸出白球的概率是( )A.B.C.D.6.(3分)如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,连接AE.若BC=6,AC=5,则△ACE的周长为( )A.8B.11C.16D.177.(3分)图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空余的部分的面积是( )A.ab B.(a+b)2C.(a﹣b)2D.a2﹣b28.(3分)如图的四个三角形中,不能由△ABC经过旋转或平移得到的是( )A.B.C.D.9.(3分)对于实数a、b,定义一种新运算“⊗”为:a⊗b=,这里等式右边是实数运算.例如:1⊗3=.则方程x⊗(﹣2)=﹣1的解是( )A.x=4B.x=5C.x=6D.x=710.(3分)如图,平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,∠AOB =∠B=30°,OA=2.将△AOB绕点O逆时针旋转90°,点B的对应点B'的坐标是( )(﹣,,)(﹣,2+)2+)3。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年山东省枣庄市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.下列计算,正确的是( )A.﹣=B.|﹣2|=﹣C.=2ﻩD.()﹣1=2【考点】立方根;有理数的减法;算术平方根;负整数指数幂.【分析】根据立方根的概念、二次根式的加减运算法则、绝对值的性质、负整数指数幂的运算法则计算,即可判断.【解答】解:﹣=2﹣=,A错误;|﹣2|=,B错误;=2,C错误;()﹣1=2,D正确,故选:D.2.将数字“6”旋转180°,得到数字“9”,将数字“9”旋转180°,得到数字“6”,现将数字“69”旋转180°,得到的数字是()A.96 B.69ﻩC.66ﻩD.99【考点】生活中的旋转现象.【分析】直接利用中心对称图形的性质结合69的特点得出答案.【解答】解:现将数字“69”旋转180°,得到的数字是:69.故选:B.3.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.15°ﻩB.22.5°C.30°ﻩD.45°【考点】平行线的性质.【分析】过A点作AB∥a,利用平行线的性质得AB∥b,所以∠1=∠2,∠3=∠4=30°,加上∠2+∠3=45°,易得∠1=15°.【解答】解:如图,过A点作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选:A.4.实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是()A.﹣2a+b B.2a﹣bﻩC.﹣bﻩD.b【考点】二次根式的性质与化简;实数与数轴.【分析】直接利用数轴上a,b的位置,进而得出a<0,a﹣b<0,再利用绝对值以及二次根式的性质化简得出答案.【解答】解:由图可知:a<0,a﹣b<0,则|a|+=﹣a﹣(a﹣b)=﹣2a+b.故选:A.5.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm)185180185180方差 3.6 3.67.48.1根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A.甲ﻩB.乙ﻩC.丙ﻩD.丁【考点】方差;算术平均数.【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加.【解答】解:∵=>=,∴从甲和丙中选择一人参加比赛,∵=<<,∴选择甲参赛,故选:A.6.如图,在△ABC中,∠A=78°,AB=4,AC=6,将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是( )A.ﻩB.ﻩC. D.【考点】相似三角形的判定.【分析】根据相似三角形的判定定理对各选项进行逐一判定即可.【解答】解:A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;C、两三角形的对应边不成比例,故两三角形不相似,故本选项正确.D、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误;故选C.7.如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE.若AB的长为2,则FM的长为()A.2 B.ﻩC. D.1【考点】翻折变换(折叠问题).【分析】根据翻折不变性,AB=FB=2,BM=1,在Rt△BFM中,可利用勾股定理求出FM的值.【解答】解:∵四边形ABCD为正方形,AB=2,过点B折叠纸片,使点A落在MN上的点F处,∴FB=AB=2,BM=1,则在Rt△BMF中,FM=,故选:B.8.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15 B.30ﻩC.45ﻩD.60【考点】角平分线的性质.【分析】判断出AP是∠BAC的平分线,过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,然后根据三角形的面积公式列式计算即可得解.【解答】解:由题意得AP是∠BAC的平分线,过点D作DE⊥AB于E,又∵∠C=90°,∴DE=CD,∴△ABD的面积=AB•DE=×15×4=30.故选B.9.如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,4),顶点C在x轴的负半轴上,函数y=(x<0)的图象经过顶点B,则k的值为()A.﹣12ﻩB.﹣27 C.﹣32 D.﹣36【考点】菱形的性质;反比例函数图象上点的坐标特征.【分析】根据点C的坐标以及菱形的性质求出点B的坐标,然后利用待定系数法求出k的值即可.【解答】解:∵A(﹣3,4),∴OA==5,∵四边形OABC是菱形,∴AO=CB=OC=AB=5,则点B的横坐标为﹣3﹣5=﹣8,故B的坐标为:(﹣8,4),将点B的坐标代入y=得,4=,解得:k=﹣32.故选C.10.如图,在网格(每个小正方形的边长均为1)中选取9个格点(格线的交点称为格点),如果以A为圆心,r为半径画圆,选取的格点中除点A外恰好有3个在圆内,则r的取值范围为()A.2<r<ﻩB.<r<3C.<r<5ﻩD.5<r<【考点】点与圆的位置关系;勾股定理.【分析】利用勾股定理求出各格点到点A的距离,结合点与圆的位置关系,即可得出结论.【解答】解:给各点标上字母,如图所示.AB==2,AC=AD==,AE==3,AF==,AG=AM=AN==5,∴<r<3时,以A为圆心,r为半径画圆,选取的格点中除点A外恰好有3个在圆内.故选B.11.如图,直线y=x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为()A.(﹣3,0) B.(﹣6,0) C.(﹣,0)ﻩD.(﹣,0)【考点】一次函数图象上点的坐标特征;轴对称﹣最短路线问题.【分析】(方法一)根据一次函数解析式求出点A、B的坐标,再由中点坐标公式求出点C、D的坐标,根据对称的性质找出点D′的坐标,结合点C、D′的坐标求出直线CD′的解析式,令y=0即可求出x的值,从而得出点P的坐标.(方法二)根据一次函数解析式求出点A、B的坐标,再由中点坐标公式求出点C、D的坐标,根据对称的性质找出点D′的坐标,根据三角形中位线定理即可得出点P 为线段CD′的中点,由此即可得出点P的坐标.【解答】解:(方法一)作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图所示.令y=x+4中x=0,则y=4,∴点B的坐标为(0,4);令y=x+4中y=0,则x+4=0,解得:x=﹣6,∴点A的坐标为(﹣6,0).∵点C、D分别为线段AB、OB的中点,∴点C(﹣3,2),点D(0,2).∵点D′和点D关于x轴对称,∴点D′的坐标为(0,﹣2).设直线CD′的解析式为y=kx+b,∵直线CD′过点C(﹣3,2),D′(0,﹣2),∴有,解得:,∴直线CD′的解析式为y=﹣x﹣2.令y=﹣x﹣2中y=0,则0=﹣x﹣2,解得:x=﹣,∴点P的坐标为(﹣,0).故选C.(方法二)连接CD,作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD 值最小,如图所示.令y=x+4中x=0,则y=4,∴点B的坐标为(0,4);令y=x+4中y=0,则x+4=0,解得:x=﹣6,∴点A的坐标为(﹣6,0).∵点C、D分别为线段AB、OB的中点,∴点C(﹣3,2),点D(0,2),CD∥x轴,∵点D′和点D关于x轴对称,∴点D′的坐标为(0,﹣2),点O为线段DD′的中点.又∵OP∥CD,∴点P为线段CD′的中点,∴点P的坐标为(﹣,0).故选C.12.已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是()A.当a=1时,函数图象经过点(﹣1,1)B.当a=﹣2时,函数图象与x轴没有交点C.若a<0,函数图象的顶点始终在x轴的下方D.若a>0,则当x≥1时,y随x的增大而增大【考点】抛物线与x轴的交点;二次函数图象与系数的关系.【分析】A、将a=1代入原函数解析式,令x=﹣1求出y值,由此得出A选项不符合题意;B、将a=2代入原函数解析式,令y=0,根据根的判别式△=8>0,可得出当a=﹣2时,函数图象与x轴有两个不同的交点,即B选项不符合题意;C、利用配方法找出二次函数图象的顶点坐标,令其纵坐标小于零,可得出a的取值范围,由此可得出C选项不符合题意;D、利用配方法找出二次函数图象的对称轴,结合二次函数的性质,即可得出D选项符合题意.此题得解.【解答】解:A、当a=1时,函数解析式为y=x2﹣2x﹣1,当x=﹣1时,y=1+2﹣1=2,∴当a=1时,函数图象经过点(﹣1,2),∴A选项不符合题意;B、当a=﹣2时,函数解析式为y=﹣2x2+4x﹣1,令y=﹣2x2+4x﹣1=0,则△=42﹣4×(﹣2)×(﹣1)=8>0,∴当a=﹣2时,函数图象与x轴有两个不同的交点,∴B选项不符合题意;C、∵y=ax2﹣2ax﹣1=a(x﹣1)2﹣1﹣a,∴二次函数图象的顶点坐标为(1,﹣1﹣a),当﹣1﹣a<0时,有a>﹣1,∴C选项不符合题意;D、∵y=ax2﹣2ax﹣1=a(x﹣1)2﹣1﹣a,∴二次函数图象的对称轴为x=1.若a>0,则当x≥1时,y随x的增大而增大,∴D选项符合题意.故选D.二、填空题(本大题共6小题,每小题4分,共24分)13.化简:÷=.【考点】分式的乘除法.【分析】根据分式的乘除法的法则进行计算即可.【解答】解:÷=•=,故答案为:.14.已知关于x的一元二次方程ax2﹣2x﹣1=0有两个不相等的实数根,则a的取值范围是a>﹣1且a≠0 .【考点】根的判别式.【分析】根据一元二次方程的定义和判别式的意义得到a≠0且△=(﹣2)2﹣4a(﹣1)>0,然后求出两不等式的公共部分即可.【解答】解:根据题意得a≠0且△=(﹣2)2﹣4a(﹣1)>0,解得a>﹣1且a≠0.故答案为a>﹣1且a≠0.15.已知是方程组的解,则a2﹣b2=1.【考点】二元一次方程组的解.【分析】根据是方程组的解,可以求得a+b和a﹣b的值,从而可以解答本题.【解答】解:∵是方程组的解,∴,解得,①﹣②,得a﹣b=,①+②,得a+b=﹣5,∴a2﹣b2=(a+b)(a﹣b)=(﹣5)×(﹣)=1,故答案为:1.16.如图,在▱ABCD中,AB为⊙O的直径,⊙O与DC相切于点E,与AD相交于点F,已知AB=12,∠C=60°,则的长为π .【考点】切线的性质;平行四边形的性质;弧长的计算.【分析】先连接OE、OF,再求出圆心角∠EOF的度数,然后根据弧长公式即可求出的长.【解答】解:如图连接OE、OF,∵CD是⊙O的切线,∴OE⊥CD,∴∠OED=90°,∵四边形ABCD是平行四边形,∠C=60°,∴∠A=∠C=60°,∠D=120°,∵OA=OF,∴∠A=∠OFA=60°,∴∠DFO=120°,∴∠EOF=360°﹣∠D﹣∠DFO﹣∠DEO=30°,的长==π.故答案为:π.17.如图,反比例函数y=的图象经过矩形OABC的边AB的中点D,则矩形OAB C的面积为4.【考点】反比例函数系数k的几何意义.【分析】可设D点坐标为(x,y),则可表示出B点坐标,从而可表示出矩形OABC的面积,利用xy=2可求得答案.【解答】解:设D(x,y),∵反比例函数y=的图象经过点D,∴xy=2,∵D为AB的中点,∴B(x,2y),∴OA=x,OC=2y,=OA•OC=x•2y=2xy=2×2=4,∴S矩形OABC故答案为:4.18.在矩形ABCD中,∠B的角平分线BE与AD交于点E,∠BED的角平分线EF与DC交于点F,若AB=9,DF=2FC,则BC= .(结果保留根号)【考点】矩形的性质;等腰三角形的判定;相似三角形的判定与性质.【分析】先延长EF和BC,交于点G,再根据条件可以判断三角形ABE为等腰直角三角形,并求得其斜边BE的长,然后根据条件判断三角形BEG为等腰三角形,最后根据△EFD∽△GFC得出CG与DE的倍数关系,并根据BG=BC+CG进行计算即可.【解答】解:延长EF和BC,交于点G∵矩形ABCD中,∠B的角平分线BE与AD交于点E,∴∠ABE=∠AEB=45°,∴AB=AE=9,∴直角三角形ABE中,BE==,又∵∠BED的角平分线EF与DC交于点F,∴∠BEG=∠DEF∵AD∥BC∴∠G=∠DEF∴∠BEG=∠G∴BG=BE=由∠G=∠DEF,∠EFD=∠GFC,可得△EFD∽△GFC∴设CG=x,DE=2x,则AD=9+2x=BC∵BG=BC+CG∴=9+2x+x解得x=∴BC=9+2(﹣3)=故答案为:三、解答题(本大题共7小题,共60分)19.x取哪些整数值时,不等式5x+2>3(x﹣1)与x≤2﹣都成立?【考点】一元一次不等式的整数解.【分析】根据题意分别求出每个不等式解集,根据口诀:大小小大中间找,确定两不等式解集的公共部分,即可得整数值.【解答】解:根据题意解不等式组,解不等式①,得:x>﹣,解不等式②,得:x≤1,∴﹣<x≤1,故满足条件的整数有﹣2、﹣1、0、1.20.为发展学生的核心素养,培养学生的综合能力,某学校计划开设四门选修课:乐器、舞蹈、绘画、书法,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查结果进行整理,绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)本次调查的学生共有50人,在扇形统计图中,m的值是30% ;(2)将条形统计图补充完整;(3)在被调查的学生中,选修书法的有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加某社区组织的书法活动,请写出所抽取的2名同学恰好是1名男同学和1名女同学的概率.【考点】列表法与树状图法;扇形统计图;条形统计图.【分析】(1)由舞蹈的人数除以占的百分比求出调查学生总数,确定出扇形统计图中m的值;(2)求出绘画与书法的学生数,补全条形统计图即可;(3)列表得出所有等可能的情况数,找出恰好为一男一女的情况数,即可求出所求概率.【解答】解:(1)20÷40%=50(人),15÷50=30%;故答案为:50;30%;(2)50×20%=10(人),50×10%=5(人),如图所示:(3)∵5﹣2=3(名),∴选修书法的5名同学中,有3名男同学,2名女同学,男1男2男3女1女2男1﹣﹣﹣男2男1男3男1女1男1女2男1男2(男1男2)﹣﹣﹣男3男2女1男2女2男2男3(男1男3)男2男3﹣﹣﹣女1男3女2男3女1(男1,女1)男2女1男3女1﹣﹣﹣女2女1女2(男1女2)男2女2男3女2女1女2﹣﹣﹣所有等可能的情况有20种,其中抽取的2名同学恰好是1名男同学和1名女同学的情况有12种,则P(一男一女)==.21.如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别是A(2,2),B(4,0),C(4,﹣4).(1)请在图中,画出△ABC向左平移6个单位长度后得到的△A1B1C1;(2)以点O为位似中心,将△ABC缩小为原来的,得到△A2B2C2,请在图中y轴右侧,画出△A2B2C2,并求出∠A2C2B2的正弦值.【考点】作图﹣位似变换;作图﹣平移变换;解直角三角形.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)利用位似图形的性质得出对应点位置,再利用锐角三角三角函数关系得出答案.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求,B2=∠ACB,由图形可知,∠A2C2过点A作AD⊥BC交BC的延长线于点D,由A(2,2),C(4,﹣4),B(4,0),易得D(4,2),故AD=2,CD=6,AC==2,∴sin∠ACB===,即sin∠A2C2B2=.22.如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC,AB于点E,F.(1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若BD=2,BF=2,求阴影部分的面积(结果保留π).【考点】直线与圆的位置关系;扇形面积的计算.【分析】(1)连接OD,证明OD∥AC,即可证得∠ODB=90°,从而证得BC 是圆的切线;(2)在直角三角形OBD中,设OF=OD=x,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即为圆的半径,求出圆心角的度数,直角三角形ODB的面积减去扇形DOF面积即可确定出阴影部分面积.【解答】解:(1)BC与⊙O相切.证明:连接OD.∵AD是∠BAC的平分线,∴∠BAD=∠CAD.又∵OD=OA,∴∠OAD=∠ODA.∴∠CAD=∠ODA.∴OD∥AC.∴∠ODB=∠C=90°,即OD⊥BC.又∵BC过半径OD的外端点D,∴BC与⊙O相切.(2)设OF=OD=x,则OB=OF+BF=x+2,根据勾股定理得:OB2=OD2+BD2,即(x+2)2=x2+12,解得:x=2,即OD=OF=2,∴OB=2+2=4,∵Rt △O DB中,OD=OB , ∴∠B =30°, ∴∠D OB =60°, ∴S 扇形AO B==,则阴影部分的面积为S △ODB ﹣S 扇形DOF =×2×2﹣=2﹣.故阴影部分的面积为2﹣.23.我们知道,任意一个正整数n 都可以进行这样的分解:n=p ×q(p ,q是正整数,且p≤q ),在n 的所有这种分解中,如果p,q 两因数之差的绝对值最小,我们就称p ×q 是n 的最佳分解.并规定:F (n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=.(1)如果一个正整数m是另外一个正整数n 的平方,我们称正整数m 是完全平方数.求证:对任意一个完全平方数m,总有F (m )=1;(2)如果一个两位正整数t ,t =10x +y(1≤x ≤y ≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t 为“吉祥数”,求所有“吉祥数”; (3)在(2)所得“吉祥数”中,求F(t)的最大值. 【考点】因式分解的应用.【分析】(1)对任意一个完全平方数m ,设m =n 2(n为正整数),找出m的最佳分解,确定出F(m)的值即可;(2)设交换t 的个位上数与十位上的数得到的新数为t′,则t′=10y +x,根据“吉祥数”的定义确定出x与y的关系式,进而求出所求即可;(3)利用“吉祥数”的定义分别求出各自的值,进而确定出F(t)的最大值即可.【解答】解:(1)证明:对任意一个完全平方数m,设m=n2(n为正整数),∵|n﹣n|=0,∴n×n是m的最佳分解,∴对任意一个完全平方数m,总有F(m)==1;(2)设交换t的个位上数与十位上的数得到的新数为t′,则t′=10y+x,∵t是“吉祥数”,∴t′﹣t=(10y+x)﹣(10x+y)=9(y﹣x)=36,∴y=x+4,∵1≤x≤y≤9,x,y为自然数,∴满足“吉祥数”的有:15,26,37,48,59;(3)F(15)=,F(26)=,F(37)=,F(48)==,F(59)=,∵>>>>,∴所有“吉祥数”中,F(t)的最大值为.24.已知正方形ABCD,P为射线AB上的一点,以BP为边作正方形BPEF,使点F在线段CB的延长线上,连接EA,EC.(1)如图1,若点P在线段AB的延长线上,求证:EA=EC;(2)如图2,若点P在线段AB的中点,连接AC,判断△ACE的形状,并说明理由;(3)如图3,若点P在线段AB上,连接AC,当EP平分∠AEC时,设AB=a,BP=b,求a:b及∠AEC的度数.【考点】四边形综合题.【分析】(1)根据正方形的性质证明△APE≌△CFE,可得结论;(2)分别证明∠PAE=45°和∠BAC=45°,则∠CAE=90°,即△ACE是直角三角形;(3)分别计算PG和BG的长,利用平行线分线段成比例定理列比例式得:,即,解得:a=b,得出a与b的比,再计算GH和BG的长,根据角平分线的逆定理得:∠HCG=∠BCG,由平行线的内错角得:∠AEC=∠ACB=45°.【解答】证明:(1)∵四边形ABCD和四边形BPEF是正方形,∴AB=BC,BP=BF,∴AP=CF,在△APE和△CFE中,∵,∴△APE≌△CFE,∴EA=EC;(2)△ACE是直角三角形,理由是:如图2,∵P为AB的中点,∴PA=PB,∵PB=PE,∴PA=PE,∴∠PAE=45°,又∵∠BAC=45°,∴∠CAE=90°,即△ACE是直角三角形;(3)设CE交AB于G,∵EP平分∠AEC,EP⊥AG,∴AP=PG=a﹣b,BG=a﹣(2a﹣2b)=2b﹣a,∵PE∥CF,∴,即,解得:a=b,∴a:b=:1,作GH⊥AC于H,∵∠CAB=45°,∴HG=AG=(2b﹣2b)=(2﹣)b,又∵BG=2b﹣a=(2﹣)b,∴GH=GB,GH⊥AC,GB⊥BC,∴∠HCG=∠BCG,∵PE∥CF,∴∠PEG=∠BCG,∴∠AEC=∠ACB=45°.25.如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B,与y轴交于点C,点B坐标为(6,0),点C坐标为(0,6),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接BD.(1)求抛物线的解析式及点D的坐标;(2)点F是抛物线上的动点,当∠FBA=∠BDE时,求点F的坐标;(3)若点M是抛物线上的动点,过点M作MN∥x轴与抛物线交于点N,点P在x轴上,点Q在坐标平面内,以线段MN为对角线作正方形MPNQ,请写出点Q 的坐标.【考点】二次函数综合题.【分析】(1)由B、C的坐标,利用待定系数法可求得抛物线解析式,再求其顶点D即可;(2)过F作FG⊥x轴于点G,可设出F点坐标,利用△FBG∽△BDE,由相似三角形的性质可得到关于F点坐标的方程,可求得F点的坐标;(3)由于M、N两点关于对称轴对称,可知点P为对称轴与x轴的交点,点Q在对称轴上,可设出Q点的坐标,则可表示出M的坐标,代入抛物线解析式可求得Q点的坐标.【解答】解:(1)把B、C两点坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=﹣x2+2x+6,∵y=﹣x2+2x+6=﹣(x﹣2)2+8,∴D(2,8);(2)如图1,过F作FG⊥x轴于点G,设F(x,﹣x2+2x+6),则FG=|﹣x2+2x+6|,∵∠FBA=∠BDE,∠FGB=∠BED=90°,∴△FBG∽△BDE,∴=,∵B(6,0),D(2,8),∴E(2,0),BE=4,DE=8,OB=6,∴BG=6﹣x,∴=,当点F在x轴上方时,有=,解得x=﹣1或x=6(舍去),此时F点的坐标为(﹣1,);当点F在x轴下方时,有=﹣,解得x=﹣3或x=6(舍去),此时F 点的坐标为(﹣3,﹣);综上可知F点的坐标为(﹣1,)或(﹣3,﹣);(3)如图2,设对称轴MN、PQ交于点O′,∵点M、N关于抛物线对称轴对称,且四边形MPNQ为正方形,∴点P为抛物线对称轴与x轴的交点,点Q在抛物线的对称轴上,设Q(2,2n),则M坐标为(2﹣n,n),∵点M在抛物线y=﹣x2+2x+6的图象上,∴n=﹣(2﹣n)2+2(2﹣n)+6,解得n=﹣1+或n=﹣1﹣,∴满足条件的点Q有两个,其坐标分别为(2,﹣2+2)或(2,﹣2﹣2).。

相关文档
最新文档