《金榜1号》二轮总复习文科数学:专题八第3讲分类讨论思想

合集下载

中考历史二轮专题复习科举制创立

中考历史二轮专题复习科举制创立

历史中考二轮复习专题卷--科举制创立附详细参考答案学校:___________姓名:___________班级:___________考号:___________一、单项选择题()1、古代科举考试中,最早将进士科考试第一名称为“状元〞皇帝是A.隋炀帝B.唐太宗C.武那么天D.唐玄宗2、“朝为田舍郎,暮登天子堂。

将相本无种,男儿当自强。

少小须勤学,文章可立身。

满朝朱紫贵,尽是读书人。

〞这首诗歌赞颂是我国古代〔〕A.世袭制B.分封制C.科举制D.郡县制3、我国科举制考试始于隋朝,到明朝时期发生了巨大变化。

明朝科举考试最突出特点是A.八股取士B.开场有殿试与武举C.以诗词为主要内容D.试题类型繁多4、“朝为田舍郎,暮登天子堂。

将相本无种,男儿当自强。

少小须勤学,文章可立身。

满朝朱紫贵,尽是读书人。

〞这首诗歌赞颂是我国古代〔〕A.世袭制B.分封制C.科举制D.郡县制5、元代高明在琵琶记中说:“十年寒窗无人问,一举成名天下知。

〞这句话反映社会现象在中国最早出现时期是〔〕A.秦汉时期B.隋唐时期C.宋元时期D.明清时期6、“水国寒消春日长,燕莺催促花枝忙。

风吹金榜落凡世,三十三人名字香。

〞这首及第谣与以下哪一制度直接相关A.中央集权制B.科举制度C.三省六部制D.行省制度度7、“太宗皇帝真长策,赚得英雄尽白头。

〞该诗句是说唐太宗〔〕A.善于用人B.虚心纳谏C.科举取士D.勤政爱民8、南宋时期,潮州人王大宝参加廷试〔殿试〕,中榜眼〔进士第二名〕,后来成为岭南名宦。

殿试制度创立者是A.隋炀帝B.唐太宗C.武那么天D.唐玄宗9、“风吹金榜落凡世,三十三人名字香。

〞“十年寒窗无人问,一举成名天下知。

〞诗句反映现象与以下哪一制度相关?A.科举制B.郡县制C.分封制D.行省制10、封建统治者重视科举制度根本原因是〔〕A.为了选拔有用人才B.为了控制选官权力C.为了稳固自身统治D.让更多读书人改变命运11、“朝为田舍郞,暮登天子堂〞是古代中国许多知识分子追求,他们通过读书考试平步青云,入朝做官。

2024年高考数学一轮复习课件(新高考版) 第10章 §10.8 概率与统计的综合问题

2024年高考数学一轮复习课件(新高考版)  第10章 §10.8 概率与统计的综合问题

X012 3
P
27 27 9 64 64 64
1 64
则 E(X)=3×14=34.
思维升华
高考常将独立性检验与分布列等交汇在一起进行考查,解决独立性检 验问题,要注意过好“三关”:假设关、公式关、对比关.解决概率 问题要准确地把握题中所涉及的事件,明确所求问题所属的事件类型.
跟踪训练3 (2023·昆明模拟)2022年,举世瞩目的冬奥会在北京举行,冬 奥会吉祥物“冰墩墩”和“雪容融”有着可爱的外表和丰富的寓意,自 亮相以来就好评不断,深受各国人民的喜爱.某市一媒体就本市小学生是 否喜爱这两种吉祥物对他们进行了一次抽样调查,列联表如下(单位:人):
2024年高考数学一轮复习课件(新高考版)
第十章 计数原理、概率、随机变量及其分布
§10.8 概率与统计 的综合问题
题型一 频率分布直方图与分布列的综合问题
例1 2022年是中国共产主义青年团成立100周年,为引导和带动青少年 重温共青团百年光辉历程,某校组织全体学生参加共青团百年历史知识 竞赛,现从中随机抽取了100名学生的 成绩组成样本,并将得分分成以下6组: [40,50),[50,60),[60,70),…,[90,100], 统计结果如图所示. (1)试估计这100名学生得分的平均数;
^
^
,a= y -b x .
n
x2i -n x 2
i=1
由题意得, x =1+2+3+10…+9+10=5.5,
10
10
又 y =1.5,xiyi=89.1,x2i =385,
i=1
i=1
10
xiyi-10 x y
^ i=1
所以b=
10
=89.318-5-101×0×5.55×.521.5=0.08,

2022年高考数学一轮复习专题3-3 函数的奇偶性与周期性(含答案解析)

2022年高考数学一轮复习专题3-3 函数的奇偶性与周期性(含答案解析)
又由 ,可得 , , ,
则 ,
所以 .
故选:C.
【点睛】本题考查函数奇偶性与对称性,周期性,解题关键是由奇函数的性质和对称性得出函数为周期函数.
12.奇函数 的定义域为R,若 为偶函数,且 ,则 =( )
A.﹣2B.﹣1C.0D.1
【答案】B
【解析】
【分析】根据题意和函数的奇偶性,得到函数 是周期为4的周期函数,进而利用函数的周期性,求得 的值,即可得到答案.
∴1=2- ,∴a=2.
(2)由(1)知f(x)=x- ,
定义域为(-∞,0)∪(0,+∞)关于原点对称.
f(-x)=-x- =-x+ =-(x- )=-f(x),
∴函数f(x)为奇函数.
【点睛】本题考查函数解析式中参数的求解,利用奇偶性的定义判断函数奇偶性,属综合基础题.
高频考点二:函数奇偶性的应用
对于选项 ,令 ,则 .
在 中,将 换为 ,得 ,
【点睛】本题考查利用函数周期性求函数值,涉及函数奇偶性的应用,属综合基础题.
14.已知定义在 上的奇函数 满足 ,当 时, ,则 ()
A.2019B.1C.0D.-1
【答案】C
【解析】
【分析】根据题意推导出函数 的对称性和周期性,可得出该函数的周期为 ,于是得出
可得出答案.
【详解】 函数 是 上的奇函数,则 ,
对于D选项,令 ,则 , , 且 ,
所以,函数 为非奇非偶函数.
故选:B.
【点睛】本题考查函数奇偶性的判断,考查函数奇偶性定义的应用,考查推理能力,属于基础题.
【知识拓展】
(1)奇、偶函数定义域的特点.
由于f(x)和f(-x)须同时有意义,所以奇、偶函数的定义域关于原点对称.这是函数具有奇偶性的必要不充分条件,所以首先考虑定义域;

数学学习计划

数学学习计划

数学学习计划数学学习计划汇编6篇数学学习计划篇1数学的学习有一个循序渐进的过程,妄想一步登天是不现实的。

熟记书本内容后将书后习题认真写好,有些同学可能认为书后习题太简单不值得做,这种想法是极不可取的,书后习题的作用不仅帮助你将书本内容记牢,还辅助你将书写格式规范化,从而使自己的解题结构紧密而又严整,公式定理能够运用的恰如其分,以减少考试中无谓的失分。

1、按部就班:数学是环环相扣的一门学科,哪一个环节脱节都会影响整个学习的进程。

所以,平时学习不应贪快,要一章一章过关,不要轻易留下自己不明白或者理解不深刻的问题。

2、强调理解:概念、定理、公式要在理解的基础上记忆。

每新学一个定理,尝试先不看答案,做一次例题,看是否能正确运用新定理;若不行,则对照答案,加深对定理的理解。

3、基本训练:学习数学是不能缺少训练的,平时多做一些难度适中的练习,当然莫要陷入死钻难题的误区,要熟悉考试中的题型,训练要做到有的放矢。

4、重视平时考试出现的错误:订一个错题本,专门搜集自己的错题,这些往往就是自己的薄弱之处。

复习时,这个错题本也就成了宝贵的复习资料。

数学学习计划篇21、给自己定一个明确的学习目标比如,语文能够认识多少字、读多少书、期末考试能考多少分,数学、英语、体育等,计划要全面。

有的家长和孩子制定学习计划时只考虑三件事:吃饭、睡觉和学习,对集体活动不管不顾,对锻炼身体不予考虑。

至于娱乐和休息,计划内更是没有它们的位置。

这种“单打一”的学习计划,使得学习生活单调、乏味,从而容易引起疲劳,既影响学习效果,也影响全面发展。

2、弄清楚时间都到哪儿去了每天什么时候上课?什么时候下课?什么时候吃饭?什么时候放学回家?路上要花多少时间?多少睡眠时间?列出来,看一看自己每天的时间都花在哪些方面了。

3、搞清楚自己还有多少自由时间将上课、吃饭、睡觉等这些硬性需要的时间去掉之后,看看自己还剩下多少时间,分别在什么时候,把这些能够自己自由支配的空白时间全部写在纸上。

初中金榜学案数学八年级上册答案

初中金榜学案数学八年级上册答案

初中金榜学案数学八年级上册答案一、选择题(每小题3分,共24分)1.1449的平方根是()3.12A 3.12B ±12.3C ±12.3D 2.若0m <,则m 的立方根是()A.3mB.3m±-C.3m±D.3m -3.在实数23-,0,3,-3.14,4中,无理数有()A.1个B.2个C.3个D.4个4.下列运算正确的是()A、426a a a =-B、()532a a =[来C、326a a a =÷D、532a a a =⋅5.已知等腰三角形的两边分别为4和5,该三角形的周长是()A.13B.14C.13或14D.以上都不对6.如果()()n mx x x x +-=+-22423,那么m、n 的值分别是()A、2,12B、-2,12C、2,-12D、-2,-127.如图,在ABC △中,点D 在BC 上,AB AD DC ==,80B ∠=︒,则C ∠的度数为()A.30°B.40°C.45°D.60°8.如图,已知AB CD ∥,AD BC ∥,AC 与BD 交于点O ,AE BD ⊥于点E ,CF BD ⊥于点F ,那么图中全等的三角形有()A.5对B.6对C.7对D.8对第8题图第7题图二、填空题(每小题3分,共18分)9.比较大小:513-13(填“>”“<”或“=”).10.若xy=2,x-y =2-1,则(x +1)(y -1)=______.11.等腰三角形一腰上的高与另一腰的夹角为36°,则该等腰三角形的底角的度数为.12.命题“对顶角相等”的条件是.13.如图,两个全等的等边三角形的边长为1m,一个微型机器人由A 点开始按ABCDBEA 的顺序沿等边三角形的边循环运动,行走2012m 停下,则这个微型机器人停在点处(填A、B、C、E)14.如图,在Rt ABC △中,90ACB ∠=︒,30ABC ∠=︒,将ABC △绕点C 顺时针旋转至A B C ''△,使得点A '恰好落在AB 上,则旋转角度为.三、解答题(本大题共10小题,共78分)15.(6分)计算:)()(284232a a a a a -÷+⋅+-16.(6分)因式分解:x 4y-2x 3y 2+x 2y3第13题图第14题图17.(6分)先化简,在求值:()()2212224,5,.5xy xy x y xy x y ⎡⎤+--+÷==⎣⎦其中18.(7分)223,4,5,mn k m n k aa a a +-===已知:试求:的值。

数学学习计划锦集八篇

数学学习计划锦集八篇

数学学习计划锦集八篇数学学习计划篇1如何制定学习与复习计划学习不是一朝一夕的事,古人寒窗十载,才得以有金榜题名的荣耀,现在虽说废除了八股取士,在入大学之前同样有十几年的书要读,读这么长时间书,计划显然必不可少,“宜未雨而绸缪,忘临渴而掘井。

”下面说一说如何制定计划。

学习是温故而知新的过程,所以作计划自然也分学习计划与复习计划两种。

首先说一下如何制定学习计划。

由于针对高考,所以暂只就高中而谈。

从新生入学开始,就应当有明确的目标,考大学,考什么大学,高考中考到什么程度,这是学习计划的第一条:终极目标。

然后就是根据这一目标制定远近期计划。

从长期看,一个学期、一个学年都可,但一般以一学期为宜。

计划的内容可以包括以下两个方面:1、打算考到的名次,包括保位名次或超出几个名次;2、对总分及各科分数的阶段性要求。

这就使你在短期内有了目标,在每次小测验、单元考中向所定的目标靠拢,但切记目标不可定得太高,否则结果如果离目标太远会十分打击自信心。

从短期看,作出一周至一天的计划来,可以使自己对学过的东西有一个更好的掌握。

对于一周的计划,每周可以有一至两个重点科目,如果你对知识的渴望超过对升学的热衷,计划中的自由时间可以多一些,反之可以少一些。

对于一天的计划来说,要注意对老师所讲内容消化时间的安排,并留出适当的时间以备调整。

对于新生来说,全面掌握是十分重要的。

总之,远期与近期计划都应符合自身情况,并要结合学习情况进行调整,才能达到它的效果。

下面是复习计划的制定问题。

复习计划的制定已是完全针对中考而言的。

学完所有的内容后,老师一般会按他出的计划带领同学们复习,而对同学来说,课余时间没有必要按老师的思路做。

首先,计划书中要有充足的时间留给基础知识,无论哪一科,基础知识往往比考生忽视,实际上,这才是高分的基石,必须踏实。

其次,考试题型训练,熟悉中考,消除手生的感觉,做到熟练解题。

第三,留出时间放松心情,这对考前的学生来说必不可少,很多考生就是在冲刺阶段搞坏了身体,以致无法正常发挥的。

2024届高考语文二轮复习散文阅读专题一:梳理行文思路题提升练(原卷版)

2024届高考语文二轮复习散文阅读专题一:梳理行文思路题提升练(原卷版)

2024届高考语文二轮复习散文阅读专题一:梳理行文思路题提升练(原卷版)一、阅读下面的文字,完成文后题目。

火车穿越的身与心阿来①离开格尔木,从海拔4100多米的玉珠峰车站开始,我们一路都在用汽车追赶试运行的火车,借此反复感受青藏高原上从未有过的机械与钢铁巨大力量的冲击。

②我驾驶着吉普在高旷的青藏路上奔驰,一次次冲到火车前方,等待火车蜿蜒着驶近,感受火车从面前不远处轰隆着经过时,脚下的地面传导到心中的轻轻震颤,再目送它从某个山口处消失。

③然后,一踩油门,开始新一轮的追赶。

这样直到海拔高度达到5000米以上的唐古拉山。

④当我看到铁路在高原灿烂的阳光下强劲地延伸,火车在亮闪闪的两股铁轨上呼啸而至时,内心的感觉远非兴奋这样的字眼可以形容。

20世纪80年代刚刚工作时,去一个一百来公里的地方,只能牵着马,驮着行李与书籍,翻越两座雪山,徒步行走三天时间。

后来,我坐着汽车、火车、轮船、飞机去过很多地方。

记得在科罗拉多州的某个地方,在美国的高原上,有一天开着汽车在高速公路上驱驰,公路两边的金黄秋草中不断有马匹出现,草原尽头是裸露着岩石筋骨的落基山脉,这景色自然就触发了一个旅人的思乡病,让我想起了景色相仿的青藏高原。

有一次,在公路与铁路交叉处,我们停下车来,看长长的铁路线上,长长的一列火车在草原和积雪的山脉之间蜿蜒而过。

那时,我就想,要是也有这样一条铁路穿过青藏高原,会是一种什么样的景象。

当即,我就要求朋友帮忙退掉机票,要坐这条线上的火车,穿过落基山脉,直到美国的西部海岸。

⑤这是一种情感的代入法,这样,几乎就有了在青藏高原上乘坐火车的感觉。

没有想到的是,才过了几年,就在青藏高原真切地看到火车奔跑了。

⑥此次青藏之行前,我正在我的小说中写到一种新型的交通工具——马车,马车在一个藏族村庄的出现。

⑦此前村子里有马,也有马上英雄的传奇,但是没有车,没有马车。

其实,不只是这个村子,方圆好几百里,上下两三千年,这个地区都没有这个东西。

【高考数学考点突破】分类讨论思想(2020-2021)

【高考数学考点突破】分类讨论思想(2020-2021)

难点38 分类讨论思想分类讨论思想就是根据所研究对象的性质差异,分各种不同的情况予以分析解决.分类讨论题覆盖知识点较多,利于考查学生的知识面、分类思想和技巧;同时方式多样,具有较高的逻辑性及很强的综合性,树立分类讨论思想,应注重理解和掌握分类的原则、方法与技巧、做到“确定对象的全体,明确分类的标准,分层别类不重复、不遗漏的分析讨论.”1.(★★★★★)若函数514121)1(31)(23+-+-=x ax x a x f 在其定义域内有极值点,则a 的取值为 .2.(★★★★★)设函数f (x )=x 2+|x –a |+1,x ∈R . (1)判断函数f (x )的奇偶性; (2)求函数f (x )的最小值.[例1]已知{a n }是首项为2,公比为21的等比数列,S n 为它的前n 项和. (1)用S n 表示S n +1;(2)是否存在自然数c 和k ,使得21>--+cS cS k k 成立.命题意图:本题主要考查等比数列、不等式知识以及探索和论证存在性问题的能力,属★★★★★级题目.知识依托:解决本题依据不等式的分析法转化,放缩、解简单的分式不等式;数列的基本性质.错解分析:第2问中不等式的等价转化为学生的易错点,不能确定出k k S c S <<-223. 技巧与方法:本题属于探索性题型,是高考试题的热点题型.在探讨第2问的解法时,采取优化结论的策略,并灵活运用分类讨论的思想:即对双参数k ,c 轮流分类讨论,从而获得答案.解:(1)由S n =4(1–n 21),得 221)211(411+=-=++n n n S S ,(n ∈N *)(2)要使21>--+c S c S k k ,只要0)223(<---kk S c S c 因为4)211(4<-=k k S 所以0212)223(>-=--k k k S S S ,(k ∈N *) 故只要23S k –2<c <S k ,(k ∈N *)因为S k +1>S k ,(k ∈N *) ① 所以23S k –2≥23S 1–2=1. 又S k <4,故要使①成立,c 只能取2或3.当c =2时,因为S 1=2,所以当k =1时,c <S k 不成立,从而①不成立. 当k ≥2时,因为c S >=-252232,由S k <S k +1(k ∈N *)得 23S k –2<23S k +1–2 故当k ≥2时,23S k –2>c ,从而①不成立.当c =3时,因为S 1=2,S 2=3, 所以当k =1,k =2时,c <Sk因为c S >=-4132233,又23S k –2<23S k +1–2 所以当k ≥3时,23S k –2>c ,从而①成立.综上所述,不存在自然数c ,k ,使21>--+cS cS k k 成立.[例2]给出定点A (a ,0)(a >0)和直线l :x =–1,B 是直线l 上的动点,∠BOA 的角平分线交AB 于点C .求点C 的轨迹方程,并讨论方程表示的曲线类型与a 值的关系.命题意图:本题考查动点的轨迹,直线与圆锥曲线的基本知识,分类讨论的思想方法.综合性较强,解法较多,考查推理能力和综合运用解析几何知识解题的能力.属★★★★★级题目.知识依托:求动点轨迹的基本方法步骤.椭圆、双曲线、抛物线标准方程的基本特点. 错解分析:本题易错点为考生不能巧妙借助题意条件,构建动点坐标应满足的关系式和分类讨论轨迹方程表示曲线类型.技巧与方法:精心思考,发散思维、多途径、多角度的由题设条件出发,探寻动点应满足的关系式.巧妙地利用角平分线的性质.解法一:依题意,记B (–1,b ),(b ∈R ),则直线OA 和OB 的方程分别为y =0和y =–bx .设点C (x ,y ),则有0≤x <a ,由OC 平分∠AOB ,知点C 到OA 、OB 距离相等.根据点到直线的距离公式得|y |=21||bbx y ++ ①依题设,点C 在直线AB 上,故有)(1a x aby -+-= 由x –a ≠0,得ax ya b -+-=)1( ②将②式代入①式,得y 2[(1–a )x 2–2ax +(1+a )y 2]=0 若y ≠0,则(1–a )x 2–2ax +(1+a )y 2=0(0<x <a )若y =0则b =0,∠AOB =π,点C 的坐标为(0,0)满足上式. 综上,得点C 的轨迹方程为(1–a )x 2–2ax +(1+a )y 2=0(0<x <a )(i)当a =1时,轨迹方程化为y 2=x (0≤x <1) ③ 此时方程③表示抛物线弧段; (ii)当a ≠1,轨迹方程化为)0(11)1()1(22222a x a a y a a a a x <≤=-+---④所以当0<a <1时,方程④表示椭圆弧段; 当a >1时,方程④表示双曲线一支的弧段.解法二:如图,设D 是l 与x 轴的交点,过点C 作CE ⊥x 轴,E 是垂足.(i )当|BD |≠0时,设点C (x ,y ),则0<x <a ,y ≠0由CE ∥BD ,得)1(||||||||||a xa y EA DA CE BD +-=⋅=.∵∠COA =∠COB =∠COD –∠BOD =π–∠COA –∠BOD∴2∠COA =π–∠BOD ∴COACOACOA 2tan 1tan 2)2tan(-=∠ BOD BOD tan )tan(-=∠-π∵xy COA ||tan =)1(||||||tan a xa y OD BD BOD +-==∴)1(||1||22a x a y x y x y +--=-⋅整理,得 (1–a )x 2–2ax +(1+a )y 2=0(0<x <a )(ii)当|BD |=0时,∠BOA =π,则点C 的坐标为(0,0),满足上式. 综合(i)、(ii),得点C 的轨迹方程为 (1–a )x 2–2ax +(1+a )y 2=0(0≤x <a ) 以下同解法一.解法三:设C (x ,y )、B (–1,b ),则BO 的方程为y =–bx ,直线AB 的方程为)(1a x aby -+-=∵当b ≠0时,OC 平分∠AOB ,设∠AOC =θ,∴直线OC 的斜率为k =tan θ,OC 的方程为y =kx 于是2212tan 1tan 22tan kk-=-=θθθ 又tan2θ=–b ∴–b =212k k- ① ∵C 点在AB 上 ∴)(1a x abkx -+-= ② 由①、②消去b ,得)(12)1(2a x kkkx a --=+ ③ 又xyk =,代入③,有 )(12)1(22a x xy x y x x y a --⋅⋅⋅+ 整理,得(a –1)x 2–(1+a )y 2+2ax =0 ④当b =0时,即B 点在x 轴上时,C (0,0)满足上式:a ≠1时,④式变为11)1()1(22222=-+---a a y a a a a x 当0<a <1时,④表示椭圆弧段;当a >1时,④表示双曲线一支的弧段; 当a =1时,④表示抛物线弧段.分类讨论思想就是依据一定的标准,对问题分类、求解,要特别注意分类必须满足互斥、无漏、最简的原则.分类讨论常见的依据是:1.由概念内涵分类.如绝对值、直线的斜率、指数对数函数、直线与平面的夹角等定义包含了分类.2.由公式条件分类.如等比数列的前n 项和公式、极限的计算、圆锥曲线的统一定义中图形的分类等.3.由实际意义分类.如排列、组合、概率中较常见,但不明显、有些应用问题也需分类讨论.在学习中也要注意优化策略,有时利用转化策略,如反证法、补集法、变更多元法、数形结合法等简化甚至避开讨论.一、选择题1.(★★★★)已知122lim =+-∞→nnnn n a a 其中a ∈R ,则a 的取值范围是( ) A.a <0 B.a <2或a ≠–2C.–2<a <2D.a <–2或a >22.(★★★★★)四面体的顶点和各棱的中点共10个点,在其中取4个不共面的点,不同的取法共有( )A.150种B.147种C.144种D.141种 二、填空题3.(★★★★)已知线段AB 在平面α外,A 、B 两点到平面α的距离分别为1和3,则线段AB 的中点到平面α的距离为 .4.(★★★★★)已知集合A ={x |x 2–3x +2=0},B ={x |x 2–ax +(a –1)=0},C ={x |x 2–mx +2=0},且A ∪B =A ,A ∩C =C ,则a 的值为 ,m 的取值范围为 .三、解答题5.(★★★★)已知集合A ={x |x 2+px +q =0},B ={x |qx 2+px +1=0},A ,B 同时满足: ①A ∩B ≠∅,②A ∩B ={–2}.求p 、q 的值.6.(★★★★)已知直角坐标平面上点Q (2,0)和圆C :x 2+y 2=1,动点M 到圆C 的切线长与|MQ |的比等于常数λ(λ>0).求动点M 的轨迹方程,并说明它表示什么曲线.7.(★★★★★)已知函数y =f (x )的图象是自原点出发的一条折线.当n ≤y ≤n +1(n =0,1,2,…)时,该图象是斜率为b n 的线段(其中正常数b ≠1),设数列{x n }由f (x n )=n (n =1,2,…)定义.(1)求x 1、x 2和x n 的表达式;(2)计算∞→n lim x n ;(3)求f (x )的表达式,并写出其定义域.8.(★★★★★)已知a >0时,函数f (x )=ax –bx 2(1)当b >0时,若对任意x ∈R 都有f (x )≤1,证明a ≤2b ;(2)当b >1时,证明:对任意x ∈[0,1],|f (x )|≤1的充要条件是b –1≤a ≤2b ; (3)当0<b ≤1时,讨论:对任意x ∈[0,1],|f (x )|≤1的充要条件.参 考 答 案●难点磁场1.解析:即f (x )=(a –1)x 2+ax –41=0有解. 当a –1=0时,满足.当a –1≠0时,只需Δ=a 2–(a –1)>0. 答案:252252+-<<--a 或a =1 2.解:(1)当a =0时,函数f (–x )=(–x )2+|–x |+1=f (x ),此时f (x )为偶函数.当a ≠0时,f (a )=a 2+1,f (–a )=a 2+2|a |+1.f (–a )≠f (a ),f (–a )≠–f (a ) 此时函数f (x )既不是奇函数,也不是偶函数. (2)①当x ≤a 时,函数f (x )=x 2–x +a +1=(x –21)2+a +43 若a ≤21,则函数f (x )在(–∞,a ]上单调递减. 从而函数f (x )在(–∞,a ]上的最小值为f (a )=a 2+1若a >21,则函数f (x )在(–∞,a ]上的最小值为f (21)=43+a ,且f (21)≤f (a ). ②当x ≥a 时,函数f (x )=x 2+x –a +1=(x +21)2–a +43若a ≤–21,则函数f (x )在[a ,+∞]上的最小值为f (–21)=43–a ,且f (–21)≤f (a );若a >–21,则函数f (x )在[a ,+∞)单调递增.从而函数f (x )在[a ,+∞]上的最小值为f (a )=a 2+1. 综上,当a ≤–21时,函数f (x )的最小值为43–a ; 当–21<a ≤21时,函数f (x )的最小值是a 2+1; 当a >21时,函数f (x )的最小值是a +43.●歼灭难点训练一、1.解析:分a =2、|a |>2和|a |<2三种情况分别验证. 答案:C2.解析:任取4个点共C 410=210种取法.四点共面的有三类:(1)每个面上有6个点,则有4×C 46=60种取共面的取法;(2)相比较的4个中点共3种;(3)一条棱上的3点与对棱的中点共6种. 答案:C二、3.解析:分线段AB 两端点在平面同侧和异侧两种情况解决. 答案:1或24.解析:A ={1,2},B ={x |(x –1)(x –1+a )=0}, 由A ∪B =A 可得1–a =1或1–a =2; 由A ∩C =C ,可知C ={1}或∅.答案:2或3 3或(–22,22) 三、5.解:设x 0∈A ,x 0是x 02+px 0+q =0的根. 若x 0=0,则A ={–2,0},从而p =2,q =0,B ={–21}. 此时A ∩B =∅与已知矛盾,故x 0≠0. 将方程x 02+px 0+q =0两边除以x 02,得01)1()1(20=++x p x q . 即01x 满足B 中的方程,故01x ∈B . ∵A ∩B ={–2},则–2∈A ,且–2∈B .设A ={–2,x 0},则B ={01,21x -},且x 0≠2(否则A ∩B =∅). 若x 0=–21,则01x –2∈B ,与–2∉B 矛盾.又由A ∩B ≠∅,∴x 0=1x ,即x 0=±1. 即A ={–2,1}或A ={–2,–1}.故方程x 2+px +q =0有两个不相等的实数根–2,1或–2,–1 ∴⎩⎨⎧=-⋅-==---=⎩⎨⎧-=⨯-==+--=2)1()2(3)12(21)2(1)12(q p q p 或 6.解:如图,设MN 切圆C 于N ,则动点M 组成的集合是P ={M ||MN |=λ|MQ |,λ>0}.∵ON ⊥MN ,|ON |=1,∴|MN |2=|MO |2–|ON |2=|MO |2–1 设动点M 的坐标为(x ,y ),则2222)2(1y x y x +-=-+λ即(x 2–1)(x 2+y 2)–4λ2x +(4λ2+1)=0.经检验,坐标适合这个方程的点都属于集合P ,故方程为所求的轨迹方程. (1)当λ=1时,方程为x =45,它是垂直于x 轴且与x 轴相交于点(45,0)的直线; (2)当λ≠1时,方程化为:2222222)1(31)12(-+=+--λλλλy x 它是以)0,12(22-λλ为圆心,|1|3122-+λλ为半径的圆. 7.解:(1)依题意f (0)=0,又由f (x 1)=1,当0≤y ≤1,函数y =f (x )的图象是斜率为b 0=1的线段,故由10)0()(11=--x f x f∴x 1=1又由f (x 2)=2,当1≤y ≤2时,函数y =f (x )的图象是斜率为b 的线段,故由b x x x f x f =--1212)()(即x 2–x 1=b1∴x 2=1+b1 记x 0=0,由函数y =f (x )图象中第n 段线段的斜率为b n –1,故得111)()(---=--n n n n n b x x x f x f又由f (x n )=n ,f (x n –1)=n –1 ∴x n –x n –1=(b1)n –1,n =1,2,…… 由此知数列{x n –x n –1}为等比数列,其首项为1,公比为b1. 因b ≠1,得∑==nk n x 1(x k –x k –1)=1+b 1+…+1)1(111--=--b b b bn n 即x n =1)1(1---b b b n (2)由(1)知,当b >1时,11)1(lim lim 1-=--=-∞→∞→b b b b b x n n n n 当0<b <1,n →∞, x n 也趋于无穷大.∞→n lim x n 不存在.(3)由(1)知,当0≤y ≤1时,y =x ,即当0≤x ≤1时,f (x )=x ;当n ≤y ≤n +1,即x n ≤x ≤x n +1由(1)可知 f (x )=n +b n (x –x n )(n =1,2,…),由(2)知 当b >1时,y =f (x )的定义域为[0,1-b b ); 当0<b <1时,y =f (x )的定义域为[0,+∞). 8.(1)证明:依设,对任意x ∈R ,都有f (x )≤1∵ba b a x b x f 4)2()(22+--= ∴ba b a f 4)2(2=≤1∵a >0,b >0 ∴a ≤2b .(2)证明:必要性: 对任意x ∈[0,1],|f (x )|≤1⇒–1≤f (x ),据此可以推出–1≤f (1) 即a –b ≥–1,∴a ≥b –1对任意x ∈[0,1],|f (x )|≤1⇒f (x )≤1. 因为b >1,可以推出f (b 1)≤1即a ·b1–1≤1, ∴a ≤2b ,∴b –1≤a ≤2b充分性:因为b >1,a ≥b –1,对任意x ∈[0,1]. 可以推出ax –bx 2≥b (x –x 2)–x ≥–x ≥–1 即ax –bx 2≥–1因为b >1,a ≤2b ,对任意x ∈[0,1],可以推出ax –bx 2≤2b x –bx 2≤1 即ax –bx 2≤1,∴–1≤f (x )≤1综上,当b >1时,对任意x ∈[0,1],|f (x )|≤1的充要条件是b –1≤a ≤2b . (3)解:∵a >0,0<b ≤1∴x ∈[0,1],f (x )=ax –bx 2≥–b ≥–1 即f (x )≥–1f (x )≤1⇒f (1)≤1⇒a –b ≤1 即a ≤b +1a ≤b +1⇒f (x )≤(b +1)x –bx 2≤1 即f (x )≤1所以当a >0,0<b ≤1时,对任意x ∈[0,1],|f (x )|≤1的充要条件是a ≤b +1.。

高三数学一轮总结复习目录

高三数学一轮总结复习目录

高三数学一轮总结复习目录理科数学 -模拟试题分类目录1第一章会合与常用逻辑用语1.1 会合的观点与运算专题 1 会合的含义与表示、会合间的基本关系专题 2 会合的基本运算专题 3 与会合有关的新观点问题1.2 命题及其关系、充要条件专题 1 四种命题及其关系、命题真假的判断专题 2 充足条件和必需条件专题 3 充足、必需条件的应用与研究(利用关系或条件求解参数范围问题)1.3 简单的逻辑联络词、全称量词与存在量词专题 1 含有简单逻辑联络词的命题的真假专题 2 全称命题、特称命题的真假判断专题 3 含有一个量词的命题的否认专题 4 利用逻辑联络词求参数范围第二章函数2.1 函数及其表示专题 1 函数的定义域专题 2 函数的值域专题 3 函数的分析式专题 4 分段函数2.2 函数的单一性与最值专题 1 确立函数的单一性(或单一区间)专题 2 函数的最值专题 3 单一性的应用2.3 函数的奇偶性与周期性专题 1 奇偶性的判断专题 2 奇偶性的应用专题 3 周期性及其应用2.4 指数与指数函数专题 1 指数幂的运算专题 2 指数函数的图象及应用专题 3 指数函数的性质及应用2.5 对数与对数函数专题 1 对数的运算专题 2 对数函数的图象及应用专题 3 对数函数的性质及应用2.6 幂函数与二次函数专题 1 幂函数的图象与性质专题 2 二次函数的图象与性质2.7 函数的图像专题 1 函数图象的辨别专题 2 函数图象的变换专题 3 函数图象的应用2.8 函数与方程专题 1 函数零点所在区间的判断专题 2 函数零点、方程根的个数专题 3 函数零点的综合应用2.9 函数的应用专题 1 一次函数与二次函数模型专题 2 分段函数模型2专题 3 指数型、对数型函数模型第三章导数及其应用3.1 导数的观点及运算专题 1 导数的观点与几何意义专题 2 导数的运算3.2 导数与函数的单一性、极值、最值专题 1 导数与函数的单一性专题 2 导数与函数的极值专题 3 导数与函数的最值3.3 导数的综合应用专题 1 利用导数解决生活中的优化问题专题 2 利用导数研究函数的零点或方程的根专题 3 利用导数解决不等式的有关问题3.4 定积分与微积分基本定理专题 1 定积分的计算专题 2 利用定积分求平面图形的面积专题 4 定积分在物理中的应用第四章三角函数、解三角形4.1 三角函数的观点、同角三角函数的基本关系及引诱公式专题 1 三角函数的观点专题 2 同角三角函数的基本关系专题 3 引诱公式4.2 三角函数的图像与性质专题 1 三角函数的定义域、值域、最值专题 2 三角函数的单一性专题 3 三角函数的奇偶性、周期性和对称性4.3 函数 y = A sin(wx +j ) 的图像及应用专题 1 三角函数的图象与变换专题 2 函数 y=Asin( ωx+φ ) 图象及性质的应用4.4 两角和与差的正弦、余弦与正切公式专题 1 非特别角的三角函数式的化简、求值专题 2 含条件的求值、求角问题专题 3 两角和与差公式的应用4.5 三角恒等变换专题 1 三角函数式的化简、求值专题 2 给角求值与给值求角专题 3 三角变换的综合问题4.6 解三角形专题 1 利用正弦定理、余弦定理解三角形专题 2 判断三角形的形状专题 3 丈量距离、高度及角度问题专题 4 与平面向量、不等式等综合的三角形问题第五章平面向量5.1 平面向量的观点及线性运算专题 1 平面向量的线性运算及几何意义专题 2 向量共线定理及应用专题 3 平面向量基本定理的应用5.2 平面向量基本定理及向量的坐标表示专题 1 平面向量基本定理的应用3专题 2 平面向量的坐标运算专题 3 平面向量共线的坐标表示5.3 平面向量的数目积专题 1 平面向量数目积的运算专题 2 平面向量数目积的性质专题 3 平面向量数目积的应用5.4 平面向量的应用专题 1 平面向量在几何中的应用专题 2 平面向量在物理中的应用专题 3 平面向量在三角函数中的应用专题 4 平面向量在分析几何中的应用第六章数列6.1 数列的观点与表示专题 1 数列的观点专题 2 数列的通项公式6.2 等差数列及其前 n 项和专题 1 等差数列的观点与运算专题 2 等差数列的性质专题 3 等差数列前 n 项和公式与最值6.3 等比数列及其前 n 项和专题 1 等比数列的观点与运算专题 2 等比数列的性质专题 3 等比数列前 n 项和公式6.4 数列乞降专题 1 分组乞降与并项乞降专题 2 错位相减乞降专题 3 裂项相消乞降6.5 数列的综合应用专题 1 数列与不等式相联合问题专题 2 数列与函数相联合问题专题 3 数列中的研究性问题第七章不等式推理与证明7.1 不等关系与一元二次不等式专题 1 不等式的性质及应用专题 2 一元二次不等式的解法专题 3 一元二次不等式恒建立问题7.2 二元一次不等式(组)与简单的线性规划问题专题 1 二元一次不等式(组)表示的平面地区问题专题 2 与目标函数有关的最值问题专题 3 线性规划的实质应用7.3 基本不等式及其应用专题 1 利用基本不等式求最值专题 2 利用基本不等式证明不等式专题 3 基本不等式的实质应用7.4 合情推理与演绎推理专题 1 概括推理专题 2 类比推理专题 3 演绎推理7.5 直接证明与间接证明专题 1 综合法4专题 2 剖析法专题 3 反证法7.6 数学概括法专题 1 用数学概括法证明等式专题 2 用数学概括法证明不等式专题 3 概括-猜想-证明第八章立体几何8.1 空间几何体的构造及其三视图和直观图专题 1 空间几何体的构造专题 2 三视图与直观图8.2 空间几何体的表面积与体积专题 1 空间几何体的表面积专题 2 空间几何体的体积专题 3 组合体的“接”“切”综合问题8.3 空间点、直线、平面之间的地点关系专题 1 平面的基天性质及应用专题 2 空间两条直线的地点关系专题 3 异面直线所成的角8.4 直线、平面平行的判断与性质专题 1 线面平行、面面平行基本问题专题 2 直线与平面平行的判断与性质专题 3 平面与平面平行的判断与性质8.5 直线、平面垂直的判断与性质专题 1 垂直关系的基本问题专题 2 直线与平面垂直的判断与性质专题 3 平面与平面垂直的判断与性质专题 4 空间中的距离问题专题 5 平行与垂直的综合问题(折叠、研究类)8.6 空间向量及其运算专题 1 空间向量的线性运算专题 2 共线定理、共面定理的应用专题 3 空间向量的数目积及其应用8.7 空间几何中的向量方法专题 1 利用空间向量证明平行、垂直专题 2 利用空间向量解决研究性问题专题 3 利用空间向量求空间角第九章分析几何9.1 直线的倾斜角、斜率与直线的方程专题 1 直线的倾斜角与斜率专题 2 直线的方程9.2 点与直线、两条直线的地点关系专题 1 两条直线的平行与垂直专题 2 直线的交点问题专题 3 距离公式专题 4 对称问题9.3 圆的方程专题 1 求圆的方程专题 2 与圆有关的轨迹问题专题 3 与圆有关的最值问题59.4 直线与圆、圆与圆的地点关系专题 1 直线与圆的地点关系专题 2 圆与圆的地点关系专题 3 圆的切线与弦长问题专题 4 空间直角坐标系9.5 椭圆专题 1 椭圆的定义及标准方程专题 2 椭圆的几何性质专题 3 直线与椭圆的地点关系9.6 双曲线专题 1 双曲线的定义与标准方程专题 2 双曲线的几何性质9.7 抛物线专题 1 抛物线的定义与标准方程专题 2 抛物线的几何性质专题 3 直线与抛物线的地点关系9.8 直线与圆锥曲线专题 1 轨迹与轨迹方程专题 2 圆锥曲线中的范围、最值问题专题 3 圆锥曲线中的定值、定点问题专题 4 圆锥曲线中的存在、研究性问题第十章统计与统计事例10.1 随机抽样专题 1 简单随机抽样专题 2 系统抽样专题 3 分层抽样10.2 用样本预计整体专题 1 频次散布直方图专题 2 茎叶图专题 3 样本的数字特点专题 4 用样本预计整体10.3 变量间的有关关系、统计事例专题 1 有关关系的判断专题 2 回归方程的求法及回归剖析专题 3 独立性查验第十一章计数原理11.1 分类加法计数原理与分步乘法计数原理专题 1 分类加法计数原理专题 2 分步乘法计数原理专题 3 两个计数原理的综合应用11.2 摆列与组合专题 1 摆列问题专题 2 组合问题专题 3 摆列、组合的综合应用11.3 二项式定理专题 1 通项及其应用专题 2 二项式系数的性质与各项系数和专题 3 二项式定理的应用第十二章概率与统计612.1 随机事件的概率专题 1 事件的关系专题 2 随机事件的频次与概率专题 3 互斥事件、对峙事件12.2 古典概型与几何概型专题 1 古典概型的概率专题 2 古典概型与其余知识的交汇(平面向量、直线、圆、函数等)专题 3 几何概型在不一样测度中的概率专题 4 生活中的几何概型问题12.3 失散型随机变量及其散布列专题 1 失散型随机变量的散布列的性质专题 2 求失散型随机变量的散布列专题 3 超几何散布12.4 失散型随机变量的均值与方差专题 1 简单的均值、方差问题专题 2 失散型随机变量的均值与方差专题 3 均值与方差在决议中的应用12.5 二项散布与正态散布专题 1 条件概率专题 2 互相独立事件同时发生的概率专题 3 独立重复试验与二项散布专题 4 正态散布下的概率第十三章算法初步、复数13.1 算法与程序框图专题 1 次序构造专题 2 条件构造专题 3 循环构造13.2 基本算法语句专题 1 输入、输出和赋值语句专题 2 条件语句专题 3 循环语句13.3 复数专题 1 复数的有关观点专题 2 复数的几何意义专题 3 复数的代数运算第十四章选修模块14.1 几何证明选讲专题 1 平行线分线段成比率定理专题 2 相像三角形的判断与性质专题 3 直角三角形的射影定理专题 4 圆周角、弦切角及圆的切线专题 5 圆内接四边形的判断及性质专题 6 圆的切线的性质与判断专题 7 与圆有关的比率线段14.2 坐标系与参数方程专题 1 极坐标与直角坐标的互化专题 2 直角坐标方程与极坐标方程的互化专题 3 曲线的极坐标方程的求解专题 4 曲线的参数方程的求解专题 5 参数方程与一般方程的互化7专题 6 极坐标方程与参数方程的应用14.3 不等式选讲专题 1 含绝对值不等式的解法专题 2 绝对值三角不等式的应用专题 3 含绝对值不等式的问题专题 4 不等式的证明8。

世纪金榜高中数学必修一

世纪金榜高中数学必修一

世纪金榜高中数学必修一1.引言1.1 介绍《世纪金榜高中数学必修一》的重要性和普遍性《世纪金榜高中数学必修一》所包含的知识内容涵盖了高中数学的基本概念和原理,是学习数学知识的基石。

这些知识点又是后续高中数学学习的基础,对于学生的数学学习之路具有重要的引导作用,因此其重要性体现在对学生学习数学的全面性和系统性方面。

《世纪金榜高中数学必修一》作为高中数学课程的一部分,具有普遍性。

在全国范围内,高中生都会学习这门课程,因此它为所有学生提供了一个相对公平的学习机会。

这也说明了它的重要性和普适性。

在培养学生的数学思维和解决问题的能力方面,这门课程的重要性不容忽视。

学生们应该重视并认真对待这门课程,因为它对他们未来的发展具有重要的意义。

1.2 强调数学学习对学生发展的重要性数学学习对学生的发展具有非常重要的意义。

数学是一门普遍适用的学科,几乎涉及到生活中的方方面面,包括物理、化学、经济、工程等各个领域。

通过学习数学,学生将能够培养良好的逻辑思维能力和分析问题的能力,这对于他们未来的学习和工作都具有非常重要的意义。

数学学习可以培养学生的坚持和耐心。

数学是一门需要反复练习和思考的学科,学生们需要不断地去解决各种各样的数学问题,这可以锻炼他们的耐心和毅力,为他们以后面对各种困难奠定了良好的基础。

数学学习还可以激发学生的创造力。

数学是一门既严谨又富有创造性的学科,通过学习数学,学生们将能够体会到数学中的美妙和奥妙,激发出他们的创造力和想象力,为他们的全面发展打下良好的基础。

数学学习对学生的发展具有极其重要的意义,不仅可以提高他们的综合素质,还可以培养他们的创造力和耐心,我们应该高度重视数学学习,为学生们提供更好的学习环境和更多的学习资源。

1.3 提出文章的目的和结构文章的目的是通过《世纪金榜高中数学必修一》的介绍,强调数学学习对学生发展的重要性,帮助学生树立正确的学习态度,提高数学学习的兴趣和效果。

通过对数学的基本概念和原理介绍,数学运算和公式推导讲解,数学实际应用案例分析,以及数学学习方法和技巧分享,帮助学生掌握数学学科的基础知识和解题技巧,提高数学学习成绩。

名师伴你行高考一轮总复习新高考版[数学] 第1章

名师伴你行高考一轮总复习新高考版[数学] 第1章

第一章集合与常用逻辑用语第一节集合运算[复习要点] 1.了解集合的含义、体会元素与集合的属于关系.2.能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.3.理解集合之间包含与相等的含义,能识别给定集合的子集.4.在具体情境中,了解全集与空集的含义.5.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.6.理解在给定集合中一个子集的补集的含义,会求给定子集的补集.7.能使用韦恩(Venn)图表达集合间的关系及集合运算.知识点一集合的基本概念1.集合中元素的性质:________、________、________.2.元素与集合的关系(1)属于,记为________;(2)不属于,记为________.3.常见数集的符号4.答案:1.确定性无序性互异性2.(1)∈(2)∉3.N N*或N+Z Q R4.(1)列举法(2)描述法(3)图示法知识点二集合间的基本关系少有一个元素不是A 中的元素空集空集是________的子集,是________的真子集∅⊆A ∅B (B ≠∅)答案:相同 A ⊆B B ⊆A A ⊆B 或B ⊇A A B 或BA 任何集合 任何非空集合知识点三 集合的基本运算集合的并集 集合的交集 集合的补集 符号 表示 ________________若全集为U ,则集合A 的补集为________图形 表示意义{x |________}{x |______}{x |=________}答案:A ∪B A ∩B ∁U A x ∈A ,或x ∈B x ∈A ,且x ∈B x ∈U ,且x ∉A链/接/教/材1.[必修1·P11·A 组T1改编]若集合P ={x ∈N |x ≤ 2 021},a =22,则( ) A .a ∈P B .{a }∈P C .{a }⊆P D .a ∉P答案:D2.[必修1·P12·A 组T6改编]已知集合A ={x |x 2-2x -3≤0},B ={x |0<x ≤4},则A ∪B =( ) A .[-1,4] B .(0,3] C .(-1,0]∪(1,4] D .[-1,0]∪(1,4] 答案:A3.[必修1·P12·B 组T3改编]设全集为R ,集合A ={x |0<x <2},B ={x |x ≥1},则A ∩(∁R B )=( ) A .{x |0<x ≤1} B .{x |0<x <1} C .{x |1≤x <2} D .{x |0<x <2} 答案:B 易/错/问/题 1.忽视元素的互异性(1)已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为________. (2)已知集合A ={1,3,m },B ={1,m },若B ⊆A ,则m =________.答案:(1)-32 (2)0或32.集合中的两个易混结论:集合中元素的个数;集合子集的个数.(1)已知集合A ={1,2,3},B ={2,4,5},则集合A ∪B 中元素的个数为________.(2)集合A ={1,4,7,10,13,16,19,21},则集合A 有________个子集、________个真子集、________个非空子集、________个非空真子集.(1)答案:5 解析:因为A ∪B ={1,2,3,4,5},所以A ∪B 中元素的个数为5.(2)答案:28 28-1 28-1 28-2 解析:因为集合A 中有8个元素,所以集合A 有28个子集、28-1个真子集、28-1个非空子集、28-2个非空真子集.通/性/通/法1.解决集合问题的两个方法:列举法;图示法.(1)若集合A ={1,2,3},B ={1,3,4},则A ∩B 的子集的个数为________. (2)若集合A ={x |-5<x <2},B ={x |-3<x <3},则A ∩B =________.(1)答案:4 解析:A ∩B ={1,3},其子集分别为∅,{1},{3},{1,3},共4个.(2)答案:{x |-3<x <2} 解析:在数轴上画出表示集合A ,B 的两个区间,观察可知A ∩B ={x |-3<x <2}. 2.集合中两组常用结论:集合间的基本关系;集合的运算.(1)[2021湖南湘潭模拟]已知全集U =R ,集合M ={x ||x |<1},N ={y |y =2x ,x ∈R },则集合∁U (M ∪N )=( ) A .(-∞,-1]B .(-1,2)C .(-∞,-1]∪[2,+∞)D .[2,+∞)(2)[2021皖北协作区联考]已知集合A ={y |y =x 2-1},B ={x |y =lg(x -2x 2)},则∁R (A ∩B )=( ) A .⎣⎢⎡⎭⎪⎫0,12B .(-∞,0)∪⎣⎢⎡⎭⎪⎫12,+∞C .⎝ ⎛⎭⎪⎫0,12D .(-∞,0]∪⎣⎢⎡⎭⎪⎫12,+∞(1)答案:A(2)答案:D 解析:因为A ={y |y =x 2-1}=[0,+∞),B ={x |y =lg(x -2x 2)}=⎝ ⎛⎭⎪⎫0,12,所以A ∩B =⎝ ⎛⎭⎪⎫0,12,所以∁R (A ∩B )=(-∞,0]∪⎣⎢⎡⎭⎪⎫12,+∞.题型集合的含义与表示角度Ⅰ.用描述法表示集合试/题/调/研(题题精选,每题都代表一个方向) 1.已知集合A ={6x -5∈Z |}x ∈N *,则集合A 用列举法表示为_______________. 思考:已知集合A ={x ∈N *⎪⎪⎪⎭⎬⎫6x -5∈Z ,则A 中的元素分别是________. [答案] {-2,-3,-6,6,3,2,1} [解析] 集合中的元素为6x -5的取值,当x =2,3,4,6,7,8,11时,6x -5的值为-2,-3,-6,6,3,2,1,共有7个取值,集合A 用列举法表示为{-2,-3,-6,6,3,2,1}.思考:2,3,4,6,7,8,11 2.[2021湖北天门调研]集合M =⎩⎨⎧⎭⎬⎫x |x =k 2+14,k ∈Z ,N =⎩⎨⎧⎭⎬⎫x |x =k 4+12,k ∈Z ,则( )A .M =NB .M NC .NMD .M 与N 没有相同的元素[答案] B [解析] 由题可知, 集合M =⎩⎨⎧⎭⎬⎫x |x =k 2+14,k ∈Z =⎩⎨⎧⎭⎬⎫x |x =14(2k +1),k ∈Z , N =⎩⎨⎧⎭⎬⎫x |x =k 4+12,k ∈Z =⎩⎨⎧⎭⎬⎫x |x =14(k +2),k ∈Z ,当k ∈Z 时,2k +1是奇数,k +2是整数,又知奇数均为整数,而整数不一定为奇数,所以M N ,故选B.方/法/指/导(来自课堂的最有用的方法)与集合中的元素有关的问题的求解策略(1)确定集合中的元素是什么,即集合是数集还是点集. (2)看这些元素满足什么限制条件.(3)根据限制条件列式求参数的值或确定集合中元素的个数. [易错警示] 要注意检验集合中元素的互异性. 角度Ⅱ.元素的互异性与参数的求值试/题/调/研(题题精选,每题都代表一个方向) 3.已知a ,b ∈R ,若⎩⎨⎧⎭⎬⎫a ,ba ,1={a 2,a +b,0},则a 2 021+b 2 021为( )A .1B .0C .-1D .±1[答案] C [解析] 只有b =0,a 2=1⇒a =-1(a =1不满足互异性),从而b =0,且a =-1,有a 2 021+b 2 021=-1.4.[2021山东百师联盟测试三]已知集合P ={-1,2a +1,a 2-1},若0∈P ,则实数a 的取值集合为( )A .⎩⎨⎧⎭⎬⎫-12,1,-1B .⎩⎨⎧⎭⎬⎫-12,0C .⎩⎨⎧⎭⎬⎫-12,1D .⎩⎨⎧⎭⎬⎫-12,-1 [答案] C [解析] 当2a +1=0时,a =-12,满足题意;当a 2-1=0时,a =±1,经检验,a =1满足题意,故a ∈⎩⎨⎧⎭⎬⎫-12,1.5.已知集合A ={a 2,a +1,-3},B ={a -3,a -2,a 2+1},若A ∩B ={-3},则a =________. [答案] -1 [解析] 因为A ∩B ={-3}, 所以只可能a -3=-3或a -2=-3, 解得a =0或a =-1.当a =0时,A ={0,1,-3},B ={-3,-2,1},此时A ∩B ={1,-3},不合题意.当a =-1时,A ={1,0,-3},B ={-4,-3,2},此时A ∩B ={-3},符合题意,故a =-1.解/题/感/悟(小题示,大智慧)要深刻理解元素的互异性,在解决集合中含有字母的问题时,一定要返回代入验证,防止与集合中元素的互异性相矛盾.题型集合的基本关系角度Ⅰ.子集、真子集关系的判断试/题/调/研(题题精选,每题都代表一个方向) 1.已知集合M =⎩⎨⎧⎭⎬⎫x |x =m +16,m ∈Z ,N =⎩⎨⎧⎭⎬⎫x |x =n 2-13,n ∈Z ,P =⎩⎨⎧⎭⎬⎫x |x =p 2+16,p ∈Z ,试分析集合M ,N ,P之间的关系.[解] 集合M =⎩⎨⎧⎭⎬⎫x |x =m +16,m ∈Z .关于集合N :当n 是偶数时,令n =2m (m ∈Z ),则N =⎩⎨⎧⎭⎬⎫x |x =m -13,m ∈Z ; 当n 是奇数时,令n =2m +1(m ∈Z ), 则N =⎩⎨⎧⎭⎬⎫x |x =2m +12-13,m ∈Z=⎩⎨⎧⎭⎬⎫x |x =m +16,m ∈Z , 从而得M N .关于集合P :当p =2m (m ∈Z )时, 则P =⎩⎨⎧⎭⎬⎫x |x =m +16,m ∈Z ; 当p =2m -1(m ∈Z )时, 则P =⎩⎨⎧⎭⎬⎫x |x =2m -12+16,m ∈Z=⎩⎨⎧⎭⎬⎫x |x =m -13,m ∈Z , 从而得N =P . 综上可知,M N =P .角度Ⅱ.子集、真子集的个数问题试/题/调/研(题题精选,每题都代表一个方向)2.[2021山东省实验中学期中]设A ={x |x 2-8x +15=0},B ={x |ax -1=0},若A ∩B =B ,则实数a 组成的集合的子集个数是( )A .2B .3C .4D .8[答案] D [解析] A ={x |x 2-8x +15=0}={3,5},因为A ∩B =B ,所以B ⊆A ,结合题意可知B =∅或{3}或{5},对应实数a 的值分别为0,13,15,其组成有3个元素的集合:⎩⎨⎧⎭⎬⎫0,13,15,所以所求子集个数是23=8,故选D. 3.已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为( ) A .1 B .2 C .3 D .4[答案] D角度Ⅲ.根据集合间的关系求参数试/题/调/研(题题精选,每题都代表一个方向)4.[2021湖南长沙长郡中学适应性考试]已知集合A ={x ∈Z |x ≥a },集合B ={x ∈Z |2x ≤4}.若A ∩B 只有4个子集,则实数a 的取值范围是( )A .(-2,-1]B .[-2,-1]C .[0,1]D .(0,1][答案] D [解析] 本题考查根据集合的子集个数求参数的取值.集合A ={x ∈Z |x ≥a },集合B ={x ∈Z |2x ≤4}={x ∈Z |x ≤2},故A ∩B ={x ∈Z |a ≤x ≤2}.因为A ∩B 只有4个子集,所以A ∩B 中元素只能有2个,即A ∩B ={1,2},所以0<a ≤1,故选D.5.[多选]设集合P ={x ⎪⎪⎪⎭⎬⎫2x 2+2x =⎝ ⎛⎭⎪⎫12-x -6,集合T ={x |mx +1=0},若T ⊆P ,则实数m 的取值可以是( ) A .12 B .-12 C .0D .13[答案] BCD [解析] 由2x 2+2x =⎝ ⎛⎭⎪⎫12-x -6,得2x 2+2x =2x +6,∴x 2+2x =x +6,即x 2+x -6=0, 解得x =-3或x =2, ∴集合P ={2,-3}. 若m =0,则T =∅,∴T ⊆P . 若m ≠0,则T =⎩⎨⎧⎭⎬⎫-1m .由T ⊆P ,得-1m =2或-1m =-3, ∴m =-12或m =13.综上,实数m 的取值是13,-12,0. 故选BCD.方/法/指/导(来自课堂的最有用的方法)根据两集合的关系求参数的方法(1)若集合元素是一一列举的,依据集合间的关系,转化为解方程(组)求解,此时注意集合中元素的互异性. (2)若集合表示的是不等式的解集,常依据数轴转化为不等式(组)求解,此时需注意端点值能否取到. [易错警示] 题目中若有条件B ⊆A ,则应分B =∅和B ≠∅两种情况进行讨论.题型集合的运算角度Ⅰ.交集、并集、补集的综合运算试/题/调/研(题题精选,每题都代表一个方向)1.[2020全国卷Ⅲ,理]已知集合A ={(x ,y )|x ,y ∈N *,y ≥x },B ={(x ,y )|x +y =8},则A ∩B 中元素的个数为( )A .2B .3C .4D .6[答案] C [解析] 本题考查集合的表示方法,集合的交集运算,集合中元素的个数.依题意A ∩B 的元素是直线x +y =8上满足x ,y ∈N *且y ≥x 的点,即点(1,7),(2,6),(3,5),(4,4).故选C.2.[多选][2021山东济宁一中一模]若集合A ={x |sin x =1},B ={y ⎪⎪⎪⎭⎬⎫y =π4+k π2,k ∈Z ,则正确的结论有( )A .A ∪B =B B .∁R B ⊆∁R AC .A ∩B =∅D .∁R A ⊆∁R B[答案] AB [解析] 本题考查集合的包含关系与补集关系. 由A ={x |sin 2x =1}=⎩⎨⎧⎭⎬⎫x |x =k π+π4,k ∈Z =⎩⎨⎧⎭⎬⎫x |x =4k π+π4,k ∈Z, 又B ={y ⎪⎪⎪⎭⎬⎫y =π4+k π2,k ∈Z ={y ⎪⎪⎪⎭⎬⎫y =2k π+π4,k ∈Z , 显然集合{x |x =4k π+π,k ∈Z }⊆{x |x =2k π+π,k ∈Z }, 所以A ⊆B ,则A ∪B =B 成立,所以选项A 正确; 且∁R B ⊆∁R A 成立,所以选项B 正确,选项D 不正确; A ∩B =A ,所以选项C 不正确.故选AB.角度Ⅱ.根据集合的运算求参数试/题/调/研(题题精选,每题都代表一个方向)3.[2021湖北名校学术联盟联考]已知A ={1,2,3,4},B ={a +1,2a }.若A ∩B ={4},则a =( ) A .3 B .2 C .2或3D .3或1[答案] A [解析] ∵A ∩B ={4},∴a +1=4或2a =4.若a +1=4,则a =3,此时B ={4,6},符合题意;若2a =4,则a =2,此时B ={3,4},不符合题意.综上,a =3,故选A.4.[2021豫北名校联考]设集合A ={x |x 2+2x -3>0},集合B ={x |x 2-2ax -1≤0,a >0},若A ∩B 中恰含有一个整数,则实数a 的取值范围是( )A .⎝ ⎛⎭⎪⎫0,34B .⎣⎢⎡⎭⎪⎫34,43C .⎣⎢⎡⎭⎪⎫34,+∞D .(1,+∞)[答案] B [解析] A ={x |x 2+2x -3>0}={x |x >1或x <-3},设函数f (x )=x 2-2ax -1,因为函数f (x )=x 2-2ax -1图象的对称轴为直线x =a (a >0),f (0)=-1<0,根据对称性可知,若A ∩B 中恰有一个整数,则这个整数为2,所以有⎩⎪⎨⎪⎧ f (2)≤0,f (3)>0,即⎩⎪⎨⎪⎧4-4a -1≤0,9-6a -1>0,所以⎩⎪⎨⎪⎧a ≥34,a <43,即34≤a <43.故选B.角度Ⅲ.补集思想在解题中的应用试/题/调/研(题题精选,每题都代表一个方向)5.已知集合A ={x |x 2+ax +1=0},B ={x |x 2+2x -a =0},C ={x |x 2+2ax +2=0},若三个集合至少有一个集合不是空集,则实数a 的取值范围是________.[答案] {a |a ≤-2或a ≥-1} [解析] 假设三个集合都是空集,即三个方程均无实根,则有⎩⎪⎨⎪⎧Δ1=a 2-4<0,Δ2=4+4a <0,Δ3=4a 2-8<0,解得⎩⎪⎨⎪⎧-2<a <2,a <-1,-2<a <2,解得-2<a <-1,∴a ≤-2或a ≥-1时,三个方程至少有一个方程有实根,即三个集合至少有一个集合不是空集.故实数a 的取值范围为{a |a ≤-2或a ≥-1}.解/题/感/悟(小提示,大智慧)运用补集思想求参数取值范围的步骤第一步:把已知的条件否定,考虑反面问题; 第二步:求解反面问题对应的参数的取值范围; 第三步:求反面问题对应的参数的取值集合的补集. 角度Ⅳ.集合的新定义问题试/题/调/研(题题精选,每题都代表一个方向)6.[2021名师原创]对集合A ,B ,记A -B ={x |x ∈A 且x ∉B },定义A △B =(A -B )∪(B -A )为A ,B 的对称差集.若A ={x ,xy ,lg(xy )},B ={0,y ,|x |},且A △B =∅,则⎝ ⎛⎭⎪⎫1x +1y +⎝ ⎛⎭⎪⎫1x 2+1y 2+⎝ ⎛⎭⎪⎫1x 3+1y 3+…+⎝ ⎛⎭⎪⎫1x 2 020+1y 2 020+⎝ ⎛⎭⎪⎫1x 2 021+1y 2 021=________.[答案] -2 [解析] 依题意及Venn 图知,图中左侧阴影部分为A -B ,右侧阴影部分为B -A ,两阴影部分合起来就是A △B ,因为A △B =∅,所以A =B ,根据集合中元素的互异性,且结合集合B 知x ≠0,y ≠0,因为0∈B ,且A =B ,所以0∈A ,故只有lg(xy )=0, 从而xy =1,而1=xy ∈A ,由A =B 得⎩⎪⎨⎪⎧ xy =1,|x |=1或⎩⎪⎨⎪⎧xy =1,y =1,其中x =y =1与集合中元素的互异性矛盾,所以x =y =-1,代入得⎝ ⎛⎭⎪⎫1x +1y +⎝ ⎛⎭⎪⎫1x 2+1y 2+⎝ ⎛⎭⎪⎫1x 3+1y 3+…+⎝ ⎛⎭⎪⎫1x 2 020+1y 2 020+⎝ ⎛⎭⎪⎫1x 2 021+1y 2 021=-2+2-2+…+2-2=-2. 7.[2021四川成都联考]已知集合A ={1,2,3,4,5,6}的所有三个元素的子集记为B 1,B 2,B 3,…,B k ,k ∈N *.记b i 为集合B i (i =1,2,3,…,k )中的最大元素,则b 1+b 2+b 3+…+b k =( )A .45B .105C .150D .210[答案] B [解析] 本题考查集合的新定义问题.集合A 的含有3个元素的子集共有C 36=20个,所以k =20.在集合B i (i =1,2,3,…,k )中,最大元素为3的集合有C 22=1个;最大元素为4的集合有C 23=3个;最大元素为5的集合有C 24=6个;最大元素为6的集合有C 25=10个,所以b 1+b 2+b 3+…+b k =3×1+4×3+5×6+6×10=105.故选B.8.[多选]已知集合M,N都是非空集合U的子集,令集合S={x|x恰好属于M,N中的一个},下列说法正确的是()A.若S=N,则M=∅B.若S=∅,则M=NC.若S⊆M,则M⊆ND.∃M,N,使得S=(∁U M)∪(∁U N)[答案]ABD[解析]本题考查Venn图.用Venn图表示,集合S为如图1中的阴影部分,对于A选项,若S =N,利用S的Venn图观察,则有M∩N=∅,M=∅,故A选项正确;对于B选项,若S=∅,则M=N,故B选项正确;对于C选项,反例:如图集合S为如图2中的阴影部分,N⊆M,故C选项错误;对于D选项,例如U ={1,2,3,4},M={1,2,3},N={4},S={x|x恰好属于M,N中的一个}={1,2,3,4}=U,而(∁U M)∪(∁U N)={4}∪{1,2,3}={1,2,3,4}=S,故D选项正确,故选ABD.图1图2方/法/指/导(来自课堂的最有用的方法)解决集合新定义问题的方法1.紧扣新定义分析新定义的特点,把新定义所叙述的问题的本质弄清楚,并能够应用到具体的解题过程之中,这是解答新定义型集合问题的关键.2.用好集合的性质集合的性质(概念、元素的性质、运算性质等)是解答集合新定义问题的基础,也是突破口,在解答时要善于从试题中发现可以使用集合性质的一些因素,在关键之处用好集合的性质.提醒完成限时跟踪检测(一)第二节充分条件与必要条件,全称量词与存在量词[复习要点] 1.理解充分条件与必要条件的意义.2.理解全称量词与存在量词的含义.3.能正确地对含有一个量词的命题进行否定.知识点一命题的概念概念使用语言、符号或者式子表达的,可以判断______的陈述句特点(1)能判断真假;(2)陈述句分类________命题、________命题答案:真假真假知识点二充分条件、必要条件与充要条件的概念若p⇒q,则p是q的______条件,q是p的______条件p是q的________条件p⇒q且q pp是q的________条件p q且q⇒pp是q的________条件p⇔qp是q的________条件p q且q p 答案:充分必要充分不必要必要不充分充要既不充分也不必要知识点三全称量词和存在量词1.全称量词:所有的,任意一个,任给一个,用符号“________”表示;存在量词:存在一个,至少有一个,有些,用符号“________”表示.2.含有全称量词的命题,叫做全称量词命题.“对M中任意一个x,有p(x)成立”用符号简记为:___________________________________.3.含有存在量词的命题,叫做存在量词命题.“存在M中元素x0,使p(x0)成立”用符号简记为:_________________________________________.答案:1.∀∃ 2.∀x∈M,p(x) 3.∃x0∈M,p(x0)知识点四含有一个量词的命题的否定命题命题的否定∀x∈M,p(x)________________∃x0∈M,p(x0)________________答案:∃x0∈M,綈p(x0)∀x∈M,綈p(x)链/接/教/材1.[选修2-1·P12·A组T3]设a,b∈R且ab≠0,则ab>1是a>1b的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:D2.[选修2-1·P30·A组T6]命题“表面积相等的三棱锥体积也相等”的否定是_____________________________________________.答案:有些表面积相等的三棱锥体积不相等3.[选修2-1·P27·A组T3改编]命题“∀x∈R,x2+x≥0”的否定是()A.∃x0∈R,x20+x0≤0B.∃x0∈R,x20+x0<0C.∀x∈R,x2+x≤0D.∀x∈R,x2+x<0答案:B4.[选修2-1·P24·例3改编]命题:“∃x∈R,x2-ax+1<0”的否定为________.答案:∀x∈R,x2-ax+1≥0易/错/问/题1.命题中的易错点:命题的否定与否命题区分不当.命题“已知a>1,若x>0,则a x>1”的否命题为()A.已知0<a<1,若x>0,则a x>1B.已知a>1,若x≤0,则a x>1C.已知a>1,若x≤0,则a x≤1D.已知0<a<1,若x≤0,则a x≤1答案:C2.充要条件的易混点:混淆条件的充分性和必要性.[多选]设x∈R,则x>2的一个必要不充分条件是()A.x<1 B.x>1C.x>-1 D.x>3答案:BC3.充要条件的易错点:否定形式下充分条件、必要条件判断错误.已知条件p:x+y≠-2,条件q:x,y不都是-1,则p是q的()A.充分不必要条件B.必要不充分条件C .充要条件D .既不充分也不必要条件答案:A 核/心/素/养逻辑推理——充要条件关系中的核心素养充要条件问题中常涉及参数问题,直接解决较为困难,先用等价转化思想,将复杂、生疏的问题转化为简单、熟悉的问题来解决,充分体现“逻辑推理”的核心素养.[2021河北保定模拟]已知条件p :4x -1≤-1,条件q :x 2+x <a 2-a ,且綈q 的一个充分不必要条件是綈p ,则a 的取值范围是( )A .⎣⎢⎡⎦⎥⎤-2,-12B .⎣⎢⎡⎦⎥⎤12,2C .[-1,2]D .⎝ ⎛⎦⎥⎤-2,12∪[2,+∞) 答案:C 解析:由4x -1≤-1,即4x -1+1≤0, 化简,得x +3x -1≤0,解得-3≤x <1;由x 2+x <a 2-a ,得x 2+x -a 2+a <0,由綈q 的一个充分不必要条件是綈p ,可知綈p 是綈q 的充分不必要条件,即p 是q 的必要不充分条件, 即条件q 对应的x 取值集合是条件p 对应的x 取值集合的真子集. 设f (x )=x 2+x -a 2+a ,如图,则⎩⎪⎨⎪⎧f (-3)=-a 2+a +6>0,f (1)=-a 2+a +2≥0,所以⎩⎪⎨⎪⎧-2<a <3,-1≤a ≤2,所以-1≤a ≤2.题型充分条件与必要条件角度Ⅰ.充分条件与必要条件的判断试/题/调/研(题题精选,每题都代表一个方向)1.[2020北京卷]已知α,β∈R ,则“存在k ∈Z 使得α=k π+(-1)k β”是“sin α=sin β”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件[答案] C [解析] 本题考查充分条件、必要条件的判断,以及诱导公式的应用.充分性:若存在k ∈Z 使得α=k π+(-1)k β,当k 为偶数时,设k =2n (n ∈Z ),则α=2n π+β,则sin α=sin(2n π+β)=sin β;当k 为奇数时,设k =2n +1(n ∈Z ),则α=(2n +1)π-β=2n π+(π-β),则sin α=sin(2n π+π-β)=sin(π-β)=sin β,所以充分性成立.必要性:若sin α=sin β,则α=2n π+β或α=2n π+π-β(n ∈Z ),即α=k π+(-1)k β(k ∈Z ),所以必要性成立.故选C.2.[多选][2021海南华侨中学段测]“关于x 的不等式x 2-2ax +a >0对∀x ∈R 恒成立”的一个必要不充分条件是( )A .0<a <1B .0≤a ≤1C .0<a <12D .a ≥0[答案] BD [解析] 本题考查二次不等式恒成立、充分条件和必要条件的判断.关于x 的不等式x 2-2ax +a >0对∀x ∈R 恒成立,则Δ=4a 2-4a <0,解得0<a <1.A 选项,“0<a <1”是“关于x 的不等式x 2-2ax +a >0对∀x ∈R 恒成立”的充要条件;B 选项,“0≤a ≤1”是“关于x 的不等式x 2-2ax +a >0对∀x ∈R 恒成立”的必要不充分条件;C 选项,“0<a <12”是“关于x 的不等式x 2-2ax +a >0对∀x ∈R 恒成立”的充分不必要条件; D 选项,“a ≥0”是“关于x 的不等式x 2-2ax +a >0对 ∀x ∈R 恒成立”的必要不充分条件.故选BD. 3.[2019北京卷]设点A ,B ,C 不共线,则“AB →与AC →的夹角为锐角”是“|AB →+AC →|>|BC →|”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件[答案] C [解析] 因为点A ,B ,C 不共线,由向量加法的三角形法则,可知BC →=AC →-AB →,所以|AB →+AC →|>|BC →|等价于|AB →+AC →|>|AC →-AB →|,因为模为正,故不等号两边平方得AB →2+AC →2+2|AB →|·|AC →|cos θ>AC →2+AB →2-2|AC →|·|AB →|cos θ(θ为AB →与AC →的夹角),整理得4|AB →|·|AC →|cos θ>0,故cos θ>0,即θ为锐角.因为以上推理过程可逆,所以“AB →与AC →的夹角为锐角”是“|AB→+AC →|>|BC →|”的充分必要条件.故选C.方/法/指/导(来自课堂的最有用的方法)充分条件与必要条件的判定方法1.定义法①若p⇒q且q p,则p是q的充分不必要条件;②若q⇒p且p q,则p是q的必要不充分条件;③若p⇒q且q⇒p,则p是q的充要条件;④若p q且q p,则p是q的既不充分也不必要条件.2.等价转化法条件和结论带有否定性词语的命题常转化为其逆否命题来判断.如①命题“綈q⇒綈p”转化为命题“p⇒q”;②命题“綈p⇒綈q”转化为命题“q⇒p”;③命题“綈p⇔綈q”转化为命题“q⇔p”.3.集合法设满足条件p的元素构成集合A,满足条件q的元素构成集合B,则①若A⊆B,则p是q的充分条件;②若A⊇B,则p是q的必要条件;③若A=B,则p是q的充要条件;④若A B,则p是q的充分不必要条件;⑤若A B,则p是q的必要不充分条件;⑥若A B,且A⊉B,则p是q的既不充分也不必要条件.角度Ⅱ.探究充分条件、必要条件及充要条件试/题/调/研(题题精选,每题都代表一个方向)4.[多选]“函数f(x)=-x2+2mx在区间[1,3]上不单调”的一个必要不充分条件是()A.2≤m<3 B.12≤m≤3C.1≤m<3 D.2≤m≤5 2[答案]BC[解析]本题考查必要不充分条件的探求.函数f(x)图象的对称轴是直线x=m,由已知可得充要条件是1<m <3,由选项判断,命题成立的必要不充分条件可以是12≤m ≤3或1≤m <3.故选BC.角度Ⅲ.由充分条件、必要条件求参数试/题/调/研(题题精选,每题都代表一个方向)5.[多选]设f (x )是⎝ ⎛⎭⎪⎫x 2+12x 6展开式的中间项,则f (x )≤mx 在区间⎣⎢⎡⎦⎥⎤22,2上恒成立的必要不充分条件是( )A .m ∈[0,+∞)B .m ∈⎣⎢⎡⎭⎪⎫54,+∞C .m ∈⎣⎢⎡⎦⎥⎤54,5D .m ∈[5,+∞)[答案] AB [解析] 易知f (x )=C 36(x 2)3·⎝ ⎛⎭⎪⎫12x 3=52x 3,故f (x )≤mx ⇔m ≥52x 2,x ∈⎣⎢⎡⎦⎥⎤22,2, ∴m ≥⎝ ⎛⎭⎪⎫52x 2max =5.∴m ∈[5,+∞)满足条件,即所求区间应真包含区间[5,+∞).故选AB.6.已知p :⎝ ⎛⎭⎪⎫1-x 32≤4,q :x 2-2x +1-m 2≤0(m >0),且綈p 是綈q 的必要不充分条件,则实数m 的取值范围为________.[答案] [8,+∞) [解析] 由q :x 2-2x +1-m 2≤0,解得1-m ≤x ≤1+m , 所以綈q :A ={x |x >1+m 或x <1-m ,m >0}, 由p :⎝ ⎛⎭⎪⎫1-x 32≤4,解得-3≤x ≤9,所以綈p :B ={x |x >9或x <-3}. 因为綈p 是綈q 的必要不充分条件, 所以A B . 所以⎩⎪⎨⎪⎧m >0,1-m <-3,1+m ≥9或⎩⎪⎨⎪⎧m >0,1-m ≤-3,1+m >9,即m ≥8或m >8,所以m ≥8.7.[2021湖南浏阳三校联考]设p :实数x 满足x 2-4ax +3a 2<0,a ∈R ;q :实数x 满足x 2-x -6≤0或x 2+2x -8>0.若a <0且綈p 是綈q 的必要不充分条件,求实数a 的取值范围.[解] 由p 得(x -3a )(x -a )<0, 当a <0时,3a <x <a .由q 得(x -3)(x +2)≤0或(x +4)·(x -2)>0, 则-2≤x ≤3或x <-4或x >2, 则x <-4或x ≥-2.∴綈p 是綈q 的必要不充分条件, ∴p 是q 的充分不必要条件. 设A =(3a ,a ),B =(-∞,-4)∪[-2,+∞), 可知A B ,∴a ≤-4或3a ≥-2, 即a ≤-4或a ≥-23.又∵a <0,∴a ≤-4或-23≤a <0,即实数a 的取值范围为(-∞,-4]∪⎣⎢⎡⎭⎪⎫-23,0.方/法/指/导(来自课堂的最有用的方法) 1.根据充分、必要条件求解参数范围的方法解决此类问题一般是把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(组)求解.2.利用充要条件求参数的关注点(1)巧用转化求参数:把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解.(2)端点取值慎取舍:在求参数范围时,要注意边界或区间端点值的检验,从而确定取舍. [提醒] 含有参数的问题,要注意分类讨论.题型全称量词与存在量词角度Ⅰ.全(特)称命题的否定试/题/调/研(题题精选,每题都代表一个方向)1.[2021湖南怀化模拟]命题“∀x ∈N *,x 2∈N *且x 2≥x ”的否定形式是( )A .∀x ∈N *,x 2∉N *且x 2<xB .∀x ∈N *,x 2∉N *或x 2<xC .∃x 0∈N *,x 20∉N *且x 20<x 0 D .∃x 0∈N *,x 20∉N *或x 20<x 0[答案] D [解析] 本题考查存在量词命题的否定.由题意可得命题“∀x ∈N *,x 2∈N *且x 2≥x ”的否定为“∃x 0∈N *,x 20∉N *或x 20<x 0”,故选D.2.命题“∀x ∈R ,∃n ∈N *,使得n ≥x 2”的否定形式是( ) A .∀x ∈R ,∃n ∈N *,使得n <x 2 B .∀x ∈R ,∀n ∈N *,使得n <x 2 C .∃x ∈R ,∃n ∈N *,使得n <x 2 D .∃x ∈R ,∀n ∈N *,使得n <x 2[答案] D [解析] 根据含有量词的命题的否定的概念可知选D.方/法/指/导(来自课堂的最有用的方法)全称命题与特称命题的否定1.改写量词确定命题所含量词的类型,省去量词的要结合命题的含义加上量词,再对量词进行改写. 2.否定结论对原命题的结论进行否定. 3.“双量词”命题的否定叙述“对于∀t ∈D 1,∃x 0∈D 2,满足条件p (t ,x 0)”其否定叙述为“∃t 0∈D 1,对于∀x ∈D 2,满足条件綈p (t 0,x )”,如本例2中出现的形式.角度Ⅱ.全(特)称命题的真假判断试/题/调/研(题题精选,每题都代表一个方向) 3.下列四个命题:p 1:∃x 0∈(0,+∞),⎝ ⎛⎭⎪⎫12x 0<⎝ ⎛⎭⎪⎫13x 0;p 2:∃x 0∈(0,1),log 12x 0>log 13x 0;p 3:∀x ∈(0,+∞),⎝ ⎛⎭⎪⎫12x >log 12x ;p 4:∀x ∈⎝ ⎛⎭⎪⎫0,13,⎝ ⎛⎭⎪⎫12x <log 13x .其中真命题为( ) A .p 1,p 3 B .p 1,p 4 C .p 2,p 3D .p 2,p 4[答案] D [解析] 对于p 1,当x 0∈(0,+∞)时,总有⎝ ⎛⎭⎪⎫12x 0>⎝ ⎛⎭⎪⎫13x 0成立,故p 1是假命题;对于p 2,当x 0=12时,有1=log 1212=log 1313>log 1312成立,即log 1212>log 1312,故p 2是真命题;对于p 3,结合指数函数y =⎝ ⎛⎭⎪⎫12x 与对数函数y =log 12x 在(0,+∞)上的图象(如图1)可以判断p 3是假命题;对于p 4,结合指数函数y =⎝ ⎛⎭⎪⎫12x 与对数函数y =log 13x 在⎝ ⎛⎭⎪⎫0,13上的图象(如图2)可以判断p 4是真命题.综上可知,真命题为p 2,p 4,故选D.4.下列各命题中,真命题是( ) A .∀x ∈R,1-x 2<0 B .∀x ∈N ,x 2≥1 C .∃x 0∈Z ,x 30<1D .∃x 0∈Q ,x 20=2[答案] C [解析] 分别对选项中的不等式求解,依次判断是否正确即可.对于选项A,1-x 2<0,即x >1或 x <-1,故A 不正确;对于选项B ,当x =0时,x 2=0<1,故B 不正确;对于选项D ,x =±2为无理数,故D 不正确;对于选项C ,当x =0时,x 3=0<1,故C 为真命题,故选C.5.[多选]已知直线l :y =k (x -1),圆C :(x -1)2+y 2=r 2(r >0),则下列命题正确的是( ) A .∀k ∈R ,l 与C 相交 B .∃k ∈R ,l 与C 相切 C .∀r >0,l 与C 相交D .∃r >0,l 与C 相切[答案] AC [解析] 直线l :y =k (x -1)经过定点(1,0), 圆C :(x -1)2+y 2=r 2(r >0)的圆心为(1,0),半径为r , ∴直线l 经过圆C 的圆心,∴∀k ∈R ,l 与C 相交,∀r >0,l 与C 相交.∴AC 正确.解/题/感/悟(小提示,大智慧)由于全称命题的否定是特称命题,特称命题的否定是全称命题,原命题与其否定的真假相对,因此涉及特称命题为假命题时,常转化为全称命题为真命题后求解.全称命题为真,常转化为恒成立问题,特称命题为真,常转化为有解问题.角度Ⅲ.根据全(特)称命题的真假求参数试/题/调/研(题题精选,每题都代表一个方向)6.若f (x )=x 2-2x ,g (x )=ax +2(a >0),∀x 1∈[-1,2],∃x 0∈[-1,2],使g (x 1)=f (x 0),则实数a 的取值范围是________.[答案] ⎝ ⎛⎦⎥⎤0,12 [解析] f (x )=x 2-2x ,在x ∈[-1,2]内的值域为[-1,3],g (x )=ax +2(a >0)在x ∈[-1,2]内的值域为[-a +2,2a +2].由条件可知:[-a +2,2a +2]⊆[-1,3].从而:⎩⎪⎨⎪⎧-a +2≥-1,2a +2≤3,∴0<a ≤12. 7.已知f (x )=ln(x 2+1),g (x )=⎝ ⎛⎭⎪⎫12x -m ,若对∀x 1∈[0,3],∃x 2∈[1,2],使得f (x 1)≥g (x 2),则实数m 的取值范围是________.[答案] ⎣⎢⎡⎭⎪⎫14,+∞ [解析] 当x ∈[0,3]时,f (x )min =f (0)=0,当x ∈[1,2]时,g (x )min =g (2)=14-m ,由题意得f (x )min ≥g (x )min ,得0≥14-m ,所以m ≥14.8.[2021河南安阳调研]已知p :∀x ∈[1,2],x 2-a ≥0,q :∃x 0∈R ,使x 20+2ax 0+2-a =0.若命题“p 且q ”是真命题,则实数a 的取值范围是________.[答案] {a |a ≤-2或a =1} [解析] 由x 2-a ≥0,得a ≤x 2.又x ∈[1,2],∴x 2∈[1,4],∴a ≤1,∴若命题p 是真命题,则a ≤1;要使命题q 为真命题,则有Δ=4a 2-4(2-a )≥0,即a 2+a -2≥0,解得a ≥1或a ≤-2.∵命题“p 且q ”是真命题,∴p ,q 同时为真,∴⎩⎪⎨⎪⎧ a ≤1,a ≥1或a ≤-2,解得a ≤-2或a =1,即实数a 的取值范围是{a |a ≤-2或a =1}.解/题/感/悟(小提示,大智慧)根据全(特)称命题真假求参数的取值范围时,常采用分离参数法(1)∀x ∈D ,不等式p (a ,x )≥0恒成立,分离出参数a 后转化为a ≥f (x )[或a ≤f (x )]恒成立,进而转化为a ≥f (x )max [或a ≤f (x )min ].(2)∃x ∈D ,不等式p (a ,x )≥0有解,求参数,也常分离参数后,化为a ≥f (x )[或a ≤f (x )]有解问题,从而转化为a ≥f (x )min [或a ≤f (x )max ].(3)形如:“对∀x 1∈A ,都存在x 2∈B ,使得g (x 2)=f (x 1)成立”,问题转化为两值域间的包含关系:{y |y =f (x )}⊆{y |y =g (x )}.(4)形如:“对∀x 1∈A ,都存在x 2∈B ,使得f (x 1)<g (x 2)成立”,问题转化为两函数最值间的关系:f (x )max <g (x )max . 提醒 完成限时跟踪检测(二)。

2014版《世纪金榜》高考历史专题复习课件:专题五 第3讲 19世纪末20世纪初近代中国的觉醒与探索

2014版《世纪金榜》高考历史专题复习课件:专题五 第3讲   19世纪末20世纪初近代中国的觉醒与探索

转变,在政治文明和精神文明中表现尤为突出。它结束了帝制,
建立了共和国,是具有重要意义的制度创新,是政治文明的重大 成果;民主共和的观念深入人心,社会风俗习惯发生巨大变化, 在精神文明建设方面取得巨大成果;它促进民族资本主义进一 步发展,物质文明也取得重大成果。
5.从社会史观看,以剪发辫、废除跪拜礼和大人老爷等称号的
(3)影响。 封建思想 ①是资产阶级新文化对封建旧文化的斗争,冲击了_________ 的统治地位。 ②宣传了民主与科学,起到了思想启蒙、文化革新的作用。 马克思主义 在中国的传播创造了条件,推动了五四运动 ③为___________ 的发生。 ④推动了自然科学的发展。
【热点考向1】近代社会各阶层对儒家思想的态度及成因 社会 思潮 洋务 思潮 对传统文化的态度 主要原因
黄海大战 中国失去 (2)过程:1894年丰岛海战日本挑起战争,_________ 黄海制海权。 (3)结果:日本强迫清政府签订《马关条约》。 资本输出 、瓜分中国的侵略要求, (4)影响:反映了帝国主义_________ 瓜 外国资本主义对中国的侵略进入一个新阶段。列强掀起了___ 分中国 的狂潮,中国半殖民地半封建化程度大大加深。中国 _______ 国际地位急剧下降,列强在远东争夺更加激烈。
新文化 认为传统文化禁锢人们 运动 思想,应该革新
【典例1】材料
无论何种学派,均不能定为一尊,以阻碍思想
文化之自由发展。况儒术孔道,非无优点,而缺点则正多,尤与
近世文明社会绝不相容者,其一贯伦理政治之纲常阶级(等级)
说也。
——赵清、郑城《吴虞文集,陈独秀复吴虞信》 材料中陈独秀如何评价孔学?归纳陈独秀的反孔理由。
②是资产阶级变革社会制度的初步尝试,他们试图实行资产阶

专题04分类讨论型【讲】【通用版】

专题04分类讨论型【讲】【通用版】

专题04 分类讨论型【讲】【通用版】专题04分类讨论型【讲】【通用版】分类讨论型问题,是指解决此类试题,必须确定好分类标准,并按此标准对问题进行正确分类,使复杂问题简单、清晰起来.先给出近几年高考分类讨论型试题,列举如下:【典例1】已知函数f(x)=x2+|x-a|+1,a∈R.(1)试判断f(x)的奇偶性;(2)若a=0时,求f(x)的最小值.【答案】(1)当a=0时,f(x)为偶函数,当a≠0时,f(x)为非奇非偶函数.(2)1【解析】(1)先确定定义域关于原点对称,再判断f(-x)与f(x)关系,最后根据奇偶性定义确定奇偶性;(2)先研究x≥0时,函数最小值,再根据偶函数性质求最值试题解析:解:(1)当a=0时,f(-x)=(-x)2+|-x|+1=x2+|x|+1=f(x).当a≠0时,f(a)=a2+1,f(-a)=a2+2|a|+1,此时f(a)≠f(-a),f(a)≠-f(a).∴当a=0时,f(x)为偶函数,当a≠0时,f(x)为非奇非偶函数.方法二(分类讨论)由题设知,求OMN 的面积S ,并观察S 最大值时l 的位置特点.类型三 与三角函数、解三角形相结合的分类讨论型【典例3-1】已知方程22sin cos 1x y αα+=,其中[0,α∈曲线?απ类型六 与立体几何相结合的分类讨论型【典例6-1】六盒磁带按“规则方式”打包.所谓“规则方式”,是指每相邻两盒必须是以全等的面积对接,最后得到的包装形状是一个长方体.若磁带盒长、宽、高的尺寸分别为,,a b c ,且a b c >>,请你给出一种使表面积最小的打包方式,予以证明,并画出其示意图.【解析】如果不考虑磁带盒之间的空隙,那么就要考虑长方体表面积可能的值.因为62316=⨯=⨯,所以“规则打包”只有两种类型.设磁带盒过同一顶点的三个面的面积为、、A B C .(1)若“16⨯”类型,表面积21212S A B C =++.要使S 取值最小,由于磁带盒三边长为a b c >>,从而令A a b =⋅,,B a c C b c =⋅=⋅,则121212S ab ac bc =++;(2)若“23⨯”类型,表面积4612S A B C =++.要S 最小,应为24612S ab ac bc =++.比较两种方式,即()126223S S ac ab a c b -=-=-.当3c b >时,2S 小,故采用“23⨯”打包类型;当3c b <时,1S 小,故采用“16⨯”打包类型;当3c b =时,两种类型都可以.示意图如图所示.【举一反三】7.在长方体1111ABCD A B C D -中,()2,0AB BC a a ==>,12AA =.(1)在BC 边上是否存在点Q ,使得1A Q QD ⊥,为什么?(2)当存在点Q ,使1A Q QD ⊥时,求a 的最小值,并求出此时二面角1A A D Q --的正弦值.类型七 与解析几何相结合的分类讨论型证明:(1)当2AB p ≥时,如图,记综上所述,满足条件的正整数(1)求315C -的值.(2)组合数的两个性质:①C C m n m n n -=;②11C C C m m m n n n -++=是否都能推广到C mx (x ∈R ,m 是正整数)的情形?若能推广,则写出推广的形式并给出证明;若不能,则说明理由;(3)已知组合数C m n 是正整数,证明:当x ∈Z ,m 是正整数时,C mx ∈Z .参考答案:)BC 上存在点Q ,且1A Q QD ⊥,且11,A Q A A ⊂平面1A AQ ,∴))知a 的最小值是4;4时,2x =,即Q 是BC 的中点,作作1PF A D ⊥,连结QF .∵QP对上面a 的各种取值范围,作出这两条曲线只有一个公共点的证明如下:上述探究中的方程()214ay a y +-若0a >,则210y a =-<,从而x。

2024年高考计划书汇总(15篇)

2024年高考计划书汇总(15篇)

高考计划书汇总(15篇)第一轮复习要点:研究考纲,回归课本,夯实基础,分点落实第一轮复习必读文献及阅读建议:1.阅读《普通高中语文课程标准(实验)》《普通高中新课程实验·语文学科教学指导意见》,以此为教材复习提纲;2.阅读《某某年普通高考语文科考试说明》以此为考点复习提纲;3.研读《某某年高考语文试卷》,以此为题型复习蓝本,尤其是语言文字运用和古代诗歌、论语选读、默写等考试内容。

第一轮复习时间:某某年8月--某某年2月第一轮复习计划:备注:依据语文学科的特点,将必修和1A选修1B选修融会贯通,相互渗透,组合在一起复习;将背诵默写和古代诗歌欣赏结合起来并贯彻始终;应该是语文学科的他点。

第二轮复习要点:研究新考纲,查缺补漏;专题强化,注重规范,均衡发展第二轮复习必读文献及阅读建议:1.研读《某某年普通高等学校招生全国统一考试大纲·语文》及《某某年普通高考语文学科考试说明》,并与某某年考纲进行比较研究,明确“变”点,以此为复习提纲,对第一轮复习内容进行调整,使复习备考更有针对性;2.以《某某高考18套真题》(特别是全国卷、山东卷、海南卷、广东卷)、省内某某年二模题以及本校月考试卷为蓝本,注重专题,比较研究,规范答题,活学活用地进行高考第二轮复习备考以及ⅠB选修模块的复习。

3.研读《某某年高考考试说明》中的样卷,以此为题型复习蓝本,研究某某年高考题型变化和发展趋势。

以便更好应对高考。

第二轮复习时间:某某年2月--某某年4月日第二轮复习计划:第三轮复习要点:综合训练强化薄弱强化1B全面提高第三轮复习必读文献及阅读建议:1.进入综合训练阶段,在强化薄弱环节的时候不忘记回归课本(必修一至必修五文言文)2.研读历次月考题和周末练习题,将平时的纠错本利用起来,在总结经验的基础上找出改进的措施,寻求提升“点”和提升的空间。

高考备考已经进入最后冲刺阶段,这个阶段的复习重点:解决如何将教师对考试内容的理解有效地转化成应试的能力;如何做好身心的调整,让自己精神饱满,底气十足,信心百倍地迎接高考的到来。

2020年高三一轮复习数学教案第11讲《导数的分类讨论思想与恒成立问题》(学生版)

2020年高三一轮复习数学教案第11讲《导数的分类讨论思想与恒成立问题》(学生版)

个性化教学辅导教案1.(2016·青岛模拟)若函数f(x)=x3+bx2+cx+d的单调减区间为(-1,3),则b+c=________.2.(2016·衡水中学模拟)已知函数f(x)(x∈R)满足f(1)=1,f(x)的导数f′(x)<12,则不等式f(x2)<x22+12的解集为________________.3、已知函数f(x)=x3+ax2+bx+a2在x=1处有极值10,则f(2)等于() A.11或18 B.11C.18 D.17或181、已知函数f (x )=x -alnx ,当x >1时,f (x )>0恒成立,则实数a 的取值范围是( ) A .(1,+∞) B .(-∞,1) C .(e ,+∞) D .(-∞,e )2、已知函数f (x )=(2-a )lnx+x1+2ax(Ⅰ)当a=2时,求函数f (x )的极值; (Ⅱ)当a <0时,讨论f (x )的单调性3、定义在R 上的奇函数y=f (x )满足f (3)=0,且当x >0时,不等式f (x )>﹣xf′(x )恒成立,则函数g (x )=xf (x )+lg|x+1|的零点的个数为( )A .1B .2C .3D .44、已知函数f (x )=x 3+3x 对任意的m∈[-2,2],f (mx -2)+f (x )<0恒成立,则x∈ 。

学科分析:从近五年的考查情况来看,该讲一直是高考的重点和难点.一般以基本初等函数为载体,利用导数研究函数的单调性、极值、最值、零点问题,同时与解不等式关系最为密切,还可能与三角函数、数列等知识综合考查,一般出现在选择题和填空题的后两题中以及解答题的第21题,难度较大,复习备考的过程中应引起重视. 学生分析:1、学习风格(动觉型、视觉型、听觉型)2、知识点分析:(1)导数的分类讨论思想 (2)导数的恒成立问题【精准突破一】学习目标:分类讨论思想在求函数单调区间中的运用 目标分解:分类讨论思想在求函数单调区间中的运用 【目标:分类讨论思想在求函数单调区间中的运用 】利用导数求函数单调区间基本方法是先求导数'()0f x >,再解'()0f x >或'()0f x <得到单调递增或递减区间.纵观近几年的高考题,不难发现求函数单调区间问题是屡屡出现,它以导数为研究工具不断的出现在每年的高考题中,常考常新,试题类型也由最初的直接求单调区间问题逐步发展为要利用分类讨论思想才能完成的问题,也即利用分类讨论思想解决求单调区间问题已成为近几年高考的热点问题,这类试题出现频率高、函数类型变化大,对学生的综合能力要求高,但纵观其解题规律则不难看出其分类讨论的依据主要可分为三类:一、根据最高次项系数来分类:在解'()0f x >或'()0f x <得到单调递增或递减区间时,如果最高次项系数带有参数,且参数的取值不确定,则需要对参数的取值进行分类讨论,以此来确定导数在各区间上的符号,从而确定单调区间。

2015届(文科数学)二轮复习课件大题冲关专题八_自选模块_第3讲_计数原理与概率

2015届(文科数学)二轮复习课件大题冲关专题八_自选模块_第3讲_计数原理与概率

(A)60 个 (B)56 个 (C)52 个 (D)48 个 1 C 解析:(1)从丙、丁、戊中选 1 人站在甲、乙中间有 A 2 · 2 3 种
站法.将 3 人看成一个整体与其余 2 人排队有 A3 3 种站法满足条
1 3 C A 件的站法有 A2 · 2 3 3 =36 种.
故选 C.
(2)依四位数中含 0 的个数分类.①含 3 个 0 有 1 个数. ②含 2 个 0 时,其他数字可能为 3,3;2,4;1,5;
答案:(1)-84 (2)-2 (3)1
方法技巧 (1)运用二项展开式通项公式 Tr+1= Cr n a b 时应注意以下几点:
n-r r
①它表示二项展开式的任意项,只要 n 与 r 确定,该项就 随之确定; ②Tr+1 是展开式中的第 r+1 项,而不是第 r 项; ③公式中 a,b 的指数和为 n 且 a,b 不能随便颠倒位置; ④要将通项中的系数和字母分离开,以便于解决问题; n ⑤对二项式(a-b) 展开式的通项公式要特别注意符号 问题.
方法.其中有一门选修课没有被三位学生选修的情况
1 2 2 1 C C C C 有 3 · 2 · 2 · 2 =6 种,所以符合要求的方法共
有 27-6=21 种.
答案:(ቤተ መጻሕፍቲ ባይዱ)96 (2)21
热点二 二项式定理
【例 2】 (1)(2014 浙江省“六市六校”联考)二项式( x 的展开式中常数项为 A,则 A= 系数和等于 -(a1+a3)2= . . .
9 3r 2
,
9 3r 3 令 =0,得 r=3,得 A=(-1) C3 9 =-84. 2
(2)(x-2)(x-1)5 的展开式中常数项为

(旧教材适用)2023高考数学一轮总复习第十一章计数原理概率随机变量及分布列第3讲二项式定理课件

(旧教材适用)2023高考数学一轮总复习第十一章计数原理概率随机变量及分布列第3讲二项式定理课件

A.-10
B.-5
C.5
D.10
答案 B
解析 (x+y)5 的展开式的通项为 Tr+1=C5rx5-ryr,令 5-r=1,得 r=4, 令 5-r=2,得 r=3,∴(x-y)(x+y)5 的展开式中 x2y4 的系数为 C45×1+(- 1)×C35=-5.故选 B.
4.设(5x- x)n 的展开式的各项系数之和为 M,二项式系数之和为 N,
M-N=240,则展开式中 x3 的系数为( )
A.500
B.-500
C.150
D.-150
答案 C
解析 由题意可得 N=2n,令 x=1,则 M=(5-1)n=4n=(2n)2.∴(2n)2- 2n=240,2n=16(负值舍去),n=4.展开式中第 r+1 项为 Tr+1=Cr4(5x)4-r(-
6.在(1-3
x)7+
x+ ax6的展开式中,若 x2 的系数为 19,则 a=
____2____.
解析
(1-3
x)7+
x+ ax6的展开式中 x2 的系数为 C67(-1)6+C16a1=C67
+aC16,则 aC16+C67=19,解得 a=2.
2
PART TWO
核心考向突破
考向一 求展开式中的特定项或特定项系数
2.若(x-1)4=a0+a1x+a2x2+a3x3+a4x4,则 a0+a2+a4 的值为( )
A.9
B.8
C.7
D.6
答案 B
解析 令 x=1,则 a0+a1+a2+a3+a4=0,令 x=-1,则 a0-a1+a2 -a3+a4=16,两式相加,得 a0+a2+a4=8.
3.(x-y)(x+y)5 的展开式中 x2y4 的系数为( )

2022秋高三文科数学统考试题3 (2)

2022秋高三文科数学统考试题3 (2)

2023届高三年级文科数学第二次联考试卷(八中)(出题人:审题人:)第Ⅰ卷(选择题)一.选择题(共12小题,每小题5分,总分,60分)1.已知集合P={x|x2﹣2x≥0},Q={x|1<x≤2},则(∁R P)∩Q=()A.[0,1)B.(0,2]C.(1,2)D.[1,2]2.设p,q是两个命题,则“p,q均为假命题”是“p∧q为假命题”的()条件.A.充分不必要B.必要不充分C.充分必要D.既不充分也不必要3函数y=log2(2x-4)+1x-3的定义域是()A (2,3) B.(2,3)∪(3,+∞)C.(3,+∞)D.(2,+∞)4.已知函数f(x)=log(x2﹣4x﹣5),则函数f(x)的减区间是()A.(﹣∞,2)B.(2,+∞)C.(5,+∞)D.(﹣∞,﹣1)5.已知定义在[0,+∞)上的单调减函数f(x),若f(2a﹣1)>f(),则a的取值范围是()A.B.C.D.6.幂函数f(x)=(m2﹣6m+9)x在(0,+∞)上单调递增,则m的值为()A.2B.3C.4D.2或47.已知,则f(x)的解析式为()A.,且x≠1)B.,且x≠1)C.,且x≠1)D.,且x≠1)8.函数y=的图象的大致形状是()A.B.C.D.9.已知函数f(x)=,其定义域是[﹣8,﹣4),则下列说法正确的是()A.f(x)有最大值,无最小值B.f(x)有最大值,最小值C.f(x)有最大值,无最小值D.f(x)有最大值2,最小值10.已知函数在(﹣∞,+∞)上单调递减,则a的取值范围是()A.(0,1)B.(0,)C.D.11.已知函数f(x)=,若,b=f(e0.1),,则a,b,c 的大小关系是()A.b<c<a B.a<b<c C.c<b<a D.a<c<b12.已知函数f(x)=ln(﹣3x)+1,则f(lg2)+f(lg)=()A.﹣1B.0C.1D.2第Ⅱ卷(非选择题)二.填空题(共4小题,每小题5分,总分20分)13.已知f(x)是奇函数,当x>0时,f(x)=x(2﹣x),则x<0时,f(x)=.14. 若函数f(x)=x2+mx﹣2在区间(﹣∞,2)上是单调减函数,则实数m的取值范围为.15.已知f(x)是定义在[0,+∞)的函数,满足f(x+1)=﹣f(x),当x∈[0,1)时,f(x)=3x,则f(log330)=.16.已知函数f(x)=log2(x+2)与g(x)=(x﹣a)2+1,若对任意的x1∈[2,6),都存在x2∈[0,2],使得f(x1)=g(x2),则实数a的取值范围是.三.解答题(共6小题,第17题10分,其余每题12分,总分70分)17.已知集合A={x|x≤﹣3或x≥2},B={x|1<x<5},C={x|m﹣1≤x≤2m}.(1)求A∩B,(∁R A)∪B;(2)若B∩C=C,求实数m的取值范围.18.设p:实数x满足x2﹣4ax+3a2<0,q:实数x满足x2﹣6x+8≤0.(1)若a=1,且p和q均为真命题,求实数x的取值范围;(2)若a>0且¬p是¬q的充分不必要条件,求实数a的取值范围.19..已知函数f(x)是定义在R上的偶函数,当x≥0时,f(x)=x2﹣2x.(1)求函数f(x)的解析式,并画出函数f(x)的图象;(2)根据图象写出函数f(x)的单调递减区间和值域;(3)讨论方程f(x)=a(a∈R)解的个数.20.已知函数f (x )=9x ﹣2a •3x +3:(1)若a =1,x ∈[0,1]时,求f (x )的值域;(2)当x ∈[﹣1,1]时,求f (x )的最小值h (a );21.已知函数f (x )=lg (2+x )+lg (2﹣x ).(1)求函数f (x )的定义域并判断函数f (x )的奇偶性;(2)记函数g (x )=10f (x )+3x ,求函数g (x )的值域;(3)若不等式 f (x )>m 有解,求实数m 的取值范围.22.(12分)定义在正实数集上的函数()f x 满足下列条件:①存在常数a )(10<<a ,使得1)(=a f ; ②对任意实数m ,当0x >时,恒有()()m f x mf x =. (1)求证:对于任意正实数x y 、,()()()f xy f x f y =+;(2)证明:()f x 在(0)+∞,上是单调减函数;(3)若不等式()()()28log 42log (4)3a a f x f x -+--≤恒成立,求实数a 的取值范围.2023届高三年级文科数学第一次联考试卷参考答案与试题解析一.选择题(共12小题,每小题5分,总分,60分)1.【解答】解:由P 中不等式变形得:x (x ﹣2)≥0,解得:x ≤0或x ≥2,即P =(﹣∞,0]∪[2,+∞),∴∁R P =(0,2),∵Q =(1,2],∴(∁R P )∩Q =(1,2),故选:C .2【解答】解:若p ∧q 为假命题,则p ,q 至少有一个为假命题,故“p ,q 均为假命题”是“p ∧q 为假命题”的充分不必要条件,故选:A .3 【解答】解:解析 (1)由题意,得⎩⎪⎨⎪⎧2x -4>0,x -3≠0,解得x >2且x ≠3,所以函数y =log 2(2x -4)+1x -3的定义域为(2,3)∪(3,+∞).故选:B4【解答】解:设t =x 2﹣4x ﹣5,由t >0可得x >5或x <﹣1,则y =t 在(0,+∞)递减,由t =x 2﹣4x ﹣5在(5,+∞)递增, 可得函数f (x )的减区间为(5,+∞).故选:C . 5.【解答】解:根据题意,f (x )是定义在[0,+∞)上的单调减函数,若f (2a ﹣1)>f (),则有0≤2a ﹣1<,解可得≤a <,即a 的取值范围为[,),故选:D .6【解答】解:由题意得: ,解得,∴m =4.故选:C .7.【解答】解:设 =t (t ≠0),则x =,∴f (t )==;∴f (x )的解析式为f (x )=(x ≠0且x ≠1);故选:C .8.【解答】解:f (x )是分段函数,根据x 的正负写出分段函数的解析式,f (x )=,∴x >0时,图象与y =a x 在第一象限的图象一样,x <0时,图象与y =a x 的图象关于x 轴对称,故选:C .9.【解答】解:函数f(x)==2+即有f(x)在[﹣8,﹣4)递减,则x=﹣8处取得最大值,且为,由x=﹣4取不到,即最小值取不到.故选:A.10.【解答】解:由已知,f1(x)=(2a﹣1)x+7a﹣2在(﹣∞,1)上单减,∴2a﹣1<0,a<①f2(x)=a x在[1,+∞)上单减,∴0<a<1.②且当x=1时,应有f1(x)≥f2(x).即9a﹣3≥a,∴a≥③由①②③得,a的取值范围是[,)故选:C.11.【解答】解:根据题意,函数f(x)=,其定义域为(0,+∞)其导数f′(x)=﹣﹣=﹣(+)<0,则f(x)在其定义域上为减函数,0<log3<log3=,e0.1>e0=1,=,则有log3<<e0.1,则b<c<a,故选:A.12.【解答】解:函数的定义域为(﹣∞,+∞),∵f(x)=ln(﹣3x)+1,∴f(﹣x)+f(x)=ln(+3x)+1+ln(﹣3x)+1=ln[(+3x)(﹣3x)]+2=ln(1+9x2﹣9x2)+2=ln1+2=2,即f(﹣x)+f(x)=2恒成立,则f(lg2)+f(lg)=f(lg2)+f(﹣lg2)=2,故选:D.二.填空题(共4小题,每小题5分,总分20分)13.【解答】解:当x<0时,﹣x>0,又因为当x>0时,f(x)=x(2﹣x),所以f(﹣x)=﹣x(2+x),因为f(x)为奇函数,所以f(x)=﹣f(﹣x),所以当x<0时,f(x)=﹣[﹣x(2+x)]=x(2+x),故答案为:x(2+x).14.【解答】解:根据条件可知﹣≥2,解得m≤﹣4,故答案为(﹣∞,﹣4].15.【解答】解:由f(x+1)=﹣f(x),可得f(x)=﹣f(x+1)=﹣[﹣f(x+2)]=f(x+2)根据周期定义可知,该函数的周期为2.则函数f(x)是定义在[0,+∞)上周期为2的函数,又:3=log327<log330<log381=4;∴f(log330)=f(log330﹣2)=f(log330﹣3+1)=﹣f(log330﹣3)=﹣=﹣;故答案为:﹣.16.【解答】解:∵x1∈[2,6),∴f(2)≤f(x1)<f(6),即2≤f(x1)<3,∴f(x1)的值域为[2,3).g(x)的图象开口向上,对称轴为x=a,(1)若a≤0,则g(x)在[0,2]上是增函数,∴g(0)≤g(x2)≤g(2),即g(x2)的值域为[a2+1,a2﹣4a+5],∴,解得﹣1≤a≤0.(2)若a≥2,则g(x)在[0,2]上是减函数,∴g(2)≤g(x2)≤g(1),即g(x2)的值域为[a2﹣4a+5,a2+1],∴,解得2≤a≤3.(3)若0<a≤1,则g min(x)=g(a)=1,g max(x)=g(2)=a2﹣4a+5,∴g(x)的值域为[1,a2﹣4a+5],∴,解得0.(4)若1<a<2,则g min(x)=g(a)=1,g max(x)=g(0)=a2+1,∴g(x)的值域为[1,a2+1],∴,解得a<2.综上,a的取值范围是[﹣1,0]∪[2,3]∪(0,2﹣)∪(,2)=[﹣1,2﹣]∪[,3].故答案为[﹣1,2﹣]∪[,3].三.解答题(共6小题,第17题10分,其余每题12分,总分,70分)17.解:(1)由集合A={x|x≤﹣3或x≥2},B={x|1<x<5},得A∩B={x|2≤x<5},。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档