高中数学椭圆与双曲线的性质

合集下载

椭圆与双曲线的性质对比

椭圆与双曲线的性质对比

椭圆与双曲线的性质对比椭圆和双曲线是二次曲线的两种重要形式。

它们在数学和其他学科中都有广泛的应用。

本文将对椭圆和双曲线的性质进行比较分析。

一、定义与基本方程1. 椭圆椭圆可以由平面上到两个给定点的距离之和恒定于常数的点构成。

这两个点称为椭圆的焦点。

椭圆的基本方程为:(x - h)² / a² + (y - k)² / b² = 1 (a > b > 0)其中,(h, k)为椭圆的中心坐标,a为长半轴长度,b为短半轴长度。

2. 双曲线双曲线可以由平面上到两个给定点的距离之差恒定于常数的点构成。

这两个点也称为双曲线的焦点。

双曲线的基本方程为:(x - h)² / a² - (y - k)² / b² = 1 (a > b > 0)其中,(h, k)为双曲线的中心坐标,a为长半轴长度,b为短半轴长度。

二、形状与图像椭圆和双曲线在几何形状上有明显的差异。

1. 椭圆椭圆是一个封闭的曲线,其形状类似于椭圆形。

所有椭圆上的点到椭圆的两个焦点的距离之和始终等于常数。

因此,椭圆的图像是有界的。

2. 双曲线双曲线是一个开放的曲线,其形状类似于双曲线形。

所有双曲线上的点到双曲线的两个焦点的距离之差始终等于常数。

因此,双曲线的图像是无界的。

三、焦点与离心率1. 焦点椭圆和双曲线都有焦点,但它们在位置上有一定的差异。

对于椭圆而言,焦点位于椭圆的中心轴上。

而对于双曲线而言,焦点位于双曲线的中心轴之外。

2. 离心率离心率是衡量椭圆或双曲线扁平程度的指标。

离心率的计算公式为:e = √(a² - b²) / a在椭圆中,离心率的值介于0和1之间(0≤ e < 1)。

离心率越接近0,椭圆的扁平程度越高。

而在双曲线中,离心率的值大于1(e > 1)。

离心率越大,双曲线的扁平程度越高。

四、对称性与渐近线1. 对称性椭圆和双曲线都具有对称性。

高中椭圆双曲线抛物线知识点汇总

高中椭圆双曲线抛物线知识点汇总

高中椭圆双曲线抛物线知识点汇总一、椭圆的定义和基本特性1. 椭圆的定义:椭圆是平面上到两定点F1和F2的距离之和为常数2a (a>0)的点P的轨迹。

2. 椭圆的基本特性:椭圆有两条对称轴,长轴和短轴,焦点到中心的距离为c,满足c²=a²-b²,离心率e的定义为e=c/a。

3. 椭圆的标准方程:椭圆的标准方程为x²/a²+y²/b²=1(a>b>0),中心在原点,长轴与x轴平行。

二、双曲线的定义和基本特性1. 双曲线的定义:双曲线是平面上到两定点F1和F2的距离之差为常数2a的点P的轨迹。

2. 双曲线的基本特性:双曲线有两条对称轴,两个顶点,离心率e的定义为e=c/a。

3. 双曲线的标准方程:双曲线的标准方程为x²/a²-y²/b²=1(a>0,b>0),中心在原点,x²项系数为正。

三、抛物线的定义和基本特性1. 抛物线的定义:抛物线是平面上到定点F与直线l的距离相等的点P 的轨迹。

2. 抛物线的基本特性:抛物线有焦点F和直线l两个重要元素,焦点到顶点的距离为p,离心率e的定义为e=1。

3. 抛物线的标准方程:抛物线的标准方程为y²=2px(p>0),焦点在y轴上。

四、椭圆双曲线抛物线的性质比较1. 焦点、离心率和轴与方程的关系:椭圆的焦点在轴上,双曲线的焦点在中心轴的延长线上,抛物线的焦点在轴上。

2. 直线与曲线的关系:椭圆是对称轴与任意直线的交点个数有限,双曲线是对称轴与任意直线的交点有两个,抛物线是对称轴与任意直线的交点有且仅有一个。

3. 其他性质:椭圆和双曲线是封闭曲线,抛物线是开口向上或者向下的曲线。

五、高中数学中的应用1. 物理中的应用:椭圆、双曲线和抛物线在经典力学、电磁学等物理学科中有着重要的应用,比如行星轨道、抛物线运动等。

双曲线和椭圆的知识点

双曲线和椭圆的知识点

双曲线和椭圆的知识点一、双曲线的定义和基本性质双曲线是平面上的一种曲线,由两个相交的直线割成两个分支。

它的定义式为x^2/a^2-y^2/b^2=1或y^2/b^2-x^2/a^2=1,其中a和b为正实数。

双曲线有以下基本性质:1. 双曲线关于x轴、y轴对称;2. 双曲线有两条渐近线,即与x轴和y轴夹角趋近于0或π/2的直线;3. 双曲线在两条渐近线处无界;4. 双曲线分为左右两个分支,左分支开口向左,右分支开口向右;5. 双曲线在x=a和x=-a处有垂直渐近线。

二、椭圆的定义和基本性质椭圆是平面上一条封闭弧形,其所有点到两个定点之距离之和等于定长(即椭圆长轴),定义式为(x-h)^2/a^2+(y-k)^2/b^2=1或(x-h)^2/b^2+(y-k)^2/a^2=1,其中(h,k)为椭圆中心坐标,a和b为长短半轴长度。

椭圆有以下基本性质:1. 椭圆关于x轴、y轴对称;2. 椭圆有两条主轴,即长轴和短轴,交于椭圆中心;3. 椭圆的离心率为e=c/a,其中c为焦点到中心的距离;4. 椭圆上任意一点P(x,y)到焦点F1和F2的距离之和等于椭圆长轴长度;5. 椭圆在x=h处有垂直渐近线。

三、双曲线和椭圆的参数方程双曲线的参数方程为x=acosht,y=bsinht或x=asect,y=btant,其中t为参数。

这两种参数方程对应左右两个分支。

椭圆的参数方程为x=h+acosθ,y=k+bsinθ或x=h+bsinθ,y=k+acosθ,其中θ为参数。

四、双曲线和椭圆的焦点双曲线有两个焦点F1(ae,0)和F2(-ae,0),其中e为离心率。

椭圆也有两个焦点F1(h+ae,k)和F2(h-ae,k),其中a、b、h、k、e均已定义。

五、双曲线和椭圆的面积双曲线面积公式为S=abπ,其中a和b分别为左右两个分支的半轴长度。

椭圆面积公式为S=abπ,其中a和b分别为长轴和短轴长度。

六、双曲线和椭圆的应用1. 双曲线在物理学中有许多应用,如描述电磁波传播、天体运动等。

椭圆与双曲线的基本性质

椭圆与双曲线的基本性质

椭圆与双曲线的基本性质椭圆和双曲线是二维平面上的两种常见曲线类型,它们在数学和其他领域中具有广泛的应用。

本文将介绍椭圆和双曲线的基本性质,并探讨它们在几何学和物理学中的重要作用。

一、椭圆的性质椭圆由平面上到两个给定点的距离之和等于常数的点构成。

这两个给定点称为焦点,它们之间的距离称为焦距。

椭圆的性质如下:1. 中心与焦点:椭圆的中心即为焦点的平分线上的点,记为O。

椭圆的两个焦点分别为F1和F2。

2. 长轴与短轴:直线F1OF2称为椭圆的主轴,长度为2a;主轴的中点称为椭圆的中心。

主轴上的两个点分别称为顶点,距离中心的距离为a。

垂直于主轴并过中心的直线称为次轴,长度为2b。

3. 半焦距:半焦距为c,满足c² = a² - b²。

4. 离心率:椭圆的离心率定义为e = c/a。

离心率描述了椭圆形状的独特特征,范围在0到1之间。

5. 焦点到任意点的距离和:对于椭圆上的任意一点P(x, y),有FP1 + FP2 = 2a,其中FP1和FP2表示点P到两个焦点的距离。

二、双曲线的性质双曲线由平面上到两个给定点的距离之差等于常数的点构成。

这两个给定点称为焦点,它们之间的距离称为焦距。

双曲线的性质如下:1. 中心与焦点:双曲线的中心即为焦点的平分线上的点,记为O。

双曲线的两个焦点分别为F1和F2。

2. 长轴与短轴:直线F1OF2称为双曲线的主轴,长度为2a;主轴的中点称为双曲线的中心。

主轴上的两个点分别称为顶点,距离中心的距离为a。

垂直于主轴并过中心的直线称为次轴,长度为2b。

3. 半焦距:半焦距为c,满足c² = a² + b²。

4. 离心率:双曲线的离心率定义为e = c/a。

离心率也描述了双曲线形状的特征,但范围大于1。

5. 焦点到任意点的距离差:对于双曲线上的任意一点P(x, y),有|FP1 - FP2| = 2a,其中FP1和FP2表示点P到两个焦点的距离。

椭圆与双曲线的基本概念与性质

椭圆与双曲线的基本概念与性质

椭圆与双曲线的基本概念与性质椭圆和双曲线是数学中重要的曲线类型,它们具有不同的特点和性质。

在本文中,我们将介绍椭圆和双曲线的基本概念以及它们的性质。

一、椭圆的基本概念与性质椭圆是平面上的一条曲线,定义为到两个定点 F1 和 F2 的距离之和等于常数 2a 的点的集合。

这两个定点称为焦点,而常数 2a 称为椭圆的长轴长度。

椭圆的性质如下:1. 椭圆的离心率是一个小于1的正数,可以表示为 e = c/a,其中 c是焦点之间的距离。

2. 椭圆的中心在原点(0,0) 处,长轴与x 轴平行,短轴与y 轴平行。

3. 椭圆关于 x 轴和 y 轴对称,且关于原点对称。

4. 椭圆上的每个点到两个焦点的距离之和等于常数 2a。

5. 椭圆的周长可以通过长度公式C = 2πa(1 - e^2) 计算。

二、双曲线的基本概念与性质双曲线是平面上的一条曲线,定义为到两个定点 F1 和 F2 的距离之差的绝对值等于常数 2a 的点的集合。

这两个定点也称为焦点,常数 2a 称为双曲线的距离。

双曲线的性质如下:1. 双曲线的离心率是大于1的正数,可以表示为 e = c/a,其中 c 是焦点之间的距离。

2. 双曲线的中心在原点 (0,0) 处,与椭圆不同,双曲线的两个分支分布在 x 轴的两侧。

3. 双曲线关于原点对称。

4. 双曲线上的每个点到两个焦点的距离之差的绝对值等于常数 2a。

5. 双曲线的周长可以通过长度公式C = 2πa(1 + e^2) 计算。

三、椭圆与双曲线在实际中的应用椭圆和双曲线在实际中具有广泛的应用。

下面是两个常见的例子:1. 卫星轨道:卫星在地球上空的轨道通常是椭圆或双曲线,这是因为椭圆和双曲线都能够提供稳定的轨道。

2. 反射面:抛物线是由椭圆和双曲线扩展而来的,抛物面具有反射的特性,因此经常被用于望远镜、碟形天线等设备的设计中。

总结:椭圆和双曲线是数学中重要的曲线类型,通过定义、性质以及实际应用来理解它们。

椭圆和双曲线具有不同的形态特点,对应不同的数学模型以及实际应用场景。

高中数学备课教案椭圆与双曲线的方程与性质

高中数学备课教案椭圆与双曲线的方程与性质

高中数学备课教案椭圆与双曲线的方程与性质高中数学备课教案:椭圆与双曲线的方程与性质椭圆与双曲线是高中数学中重要的曲线,对于学生的数学素养和应试能力都有一定的影响。

本教案将介绍椭圆与双曲线的方程与性质,帮助学生更好地理解和掌握这两种曲线。

一、椭圆的方程与性质1. 椭圆的定义椭圆是平面上到两个定点的距离之和等于常数的点的集合。

2. 椭圆的方程椭圆的一般方程为:$$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$$其中,a和b分别为椭圆的长半轴和短半轴。

3. 椭圆的性质- 椭圆的焦点:椭圆的焦点是定义椭圆的两个定点。

- 椭圆的顶点:椭圆的顶点是距离椭圆中心最远的点。

- 椭圆的直径:椭圆的直径是穿过椭圆中心并且两端点都在椭圆上的线段。

二、双曲线的方程与性质1. 双曲线的定义双曲线是平面上到两个定点的距离之差等于常数的点的集合。

2. 双曲线的方程双曲线的一般方程为:$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$其中,a和b分别为双曲线的长半轴和短半轴。

3. 双曲线的性质- 双曲线的焦点:双曲线的焦点是定义双曲线的两个定点。

- 双曲线的顶点:双曲线的顶点是距离双曲线中心最远的点。

- 双曲线的渐近线:双曲线有两条渐近线,与双曲线无交点,但无限延伸。

三、椭圆与双曲线的比较在椭圆和双曲线的定义、方程和性质中,我们可以看到它们的一些不同之处。

1. 定义的不同- 椭圆:到两个定点的距离之和等于常数。

- 双曲线:到两个定点的距离之差等于常数。

2. 方程的不同- 椭圆:方程形式为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$。

- 双曲线:方程形式为$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$。

3. 性质的不同- 椭圆:有两个焦点和两条对称轴。

- 双曲线:有两个焦点、两条渐近线和两条对称轴。

四、实例分析接下来,我们通过两个实例来进一步理解椭圆与双曲线的方程与性质。

椭圆与双曲线性质

椭圆与双曲线性质

椭圆与双曲线性质椭圆和双曲线是解析几何中重要的曲线类型,它们具有各自独特的几何性质和特点。

在本文中,我们将探讨椭圆和双曲线的性质及其在数学和实际应用中的重要性。

椭圆椭圆是一个平面上的几何图形,其定义基于两个焦点和一条连接两个焦点的线段的长度之和等于常数的特定条件。

以下是椭圆的一些重要性质:1. 主轴和副轴:椭圆的两个焦点之间的距离是椭圆的主轴的长度。

主轴的中点是椭圆的中心点。

与主轴垂直且通过中心的线段称为副轴。

2. 离心率:椭圆的离心率定义为焦点与中心之间的距离与主轴长度之比。

离心率介于0和1之间,其中0表示圆形,1表示无限大的线段。

3. 焦距定理:椭圆上的任意一点到两个焦点的距离之和等于椭圆的主轴的长度。

4. 方程:椭圆的标准方程是(x-h)²/a² + (y-k)²/b² = 1,其中(h,k)是椭圆的中心坐标,a和b是主轴和副轴的长度。

双曲线双曲线也是平面上的几何图形,其定义基于两个焦点和一条连接两个焦点的线段的长度之差等于常数的特定条件。

以下是双曲线的一些重要性质:1. 主轴和副轴:双曲线的两个焦点之间的距离是双曲线的主轴的长度。

主轴的中点是双曲线的中心点。

与主轴垂直且通过中心的线段称为副轴。

2. 离心率:双曲线的离心率定义为焦点与中心之间的距离与主轴长度之比。

离心率大于1。

3. 焦距定理:双曲线上的任意一点到两个焦点的距离之差等于双曲线的主轴的长度。

4. 方程:双曲线的标准方程是(x-h)²/a² - (y-k)²/b² = 1,其中(h,k)是双曲线的中心坐标,a和b是主轴和副轴的长度。

椭圆与双曲线的数学性质椭圆和双曲线在数学中具有广泛的应用和研究价值。

它们是椭圆函数和双曲函数的基础,这些函数在数学物理学、工程学和其他领域中起着重要作用。

椭圆和双曲线的形状和属性使它们适用于模拟、图像处理、信号处理和通信等领域。

椭圆和双曲线的性质

椭圆和双曲线的性质

椭圆和双曲线的性质椭圆和双曲线是数学中常见的曲线形状,它们具有一些独特的性质和特点。

本文将介绍椭圆和双曲线的定义、方程、焦点、直径、离心率等基本概念,并探讨它们的性质和应用。

一、椭圆的性质椭圆是平面上一点到两个固定点的距离之和等于常数的轨迹。

这两个固定点称为椭圆的焦点,常数称为椭圆的离心率。

椭圆的方程一般形式为:(x/a)^2 + (y/b)^2 = 1其中a和b分别是椭圆的半长轴和半短轴的长度。

椭圆的中心位于原点(0,0)处。

椭圆的性质有以下几点:1. 椭圆是对称图形,关于x轴和y轴都具有对称性。

2. 椭圆的长轴和短轴分别是直径,且长轴和短轴的长度之比等于椭圆的离心率。

3. 椭圆的焦点到椭圆上任意一点的距离之和等于椭圆的长轴长度。

4. 椭圆的离心率小于1,且越接近于1,椭圆越扁平。

椭圆的应用广泛,例如在天文学中,行星的轨道可以近似看作椭圆;在工程中,椭圆的形状常用于设计汽车、船舶等物体的外形。

二、双曲线的性质双曲线是平面上一点到两个固定点的距离之差等于常数的轨迹。

这两个固定点称为双曲线的焦点,常数称为双曲线的离心率。

双曲线的方程一般形式为:(x/a)^2 - (y/b)^2 = 1其中a和b分别是双曲线的半长轴和半短轴的长度。

双曲线的中心位于原点(0,0)处。

双曲线的性质有以下几点:1. 双曲线是对称图形,关于x轴和y轴都具有对称性。

2. 双曲线的长轴和短轴分别是直径,且长轴和短轴的长度之比等于双曲线的离心率。

3. 双曲线的焦点到双曲线上任意一点的距离之差等于双曲线的长轴长度。

4. 双曲线的离心率大于1,且越接近于1,双曲线越扁平。

双曲线的应用也非常广泛,例如在物理学中,双曲线常用于描述光的折射和反射现象;在经济学中,双曲线常用于描述供需关系和市场变化。

总结:椭圆和双曲线是两种常见的曲线形状,它们具有一些共同的性质,如对称性和焦点到曲线上任意一点的距离关系。

同时,它们也有一些不同的特点,如离心率的大小和形状的扁平程度。

椭圆和双曲线的性质

椭圆和双曲线的性质

椭圆和双曲线的性质椭圆和双曲线都是二次曲线,它们有着许多独特的性质和应用。

在本文中,我们将讨论椭圆和双曲线的性质和应用。

一、椭圆的定义和性质椭圆可以定义为平面上一个点到两个定点距离之和为常数的所有点的集合。

这两个定点称为“焦点”,常数称为“离心率”,椭圆的中心称为“中心点”。

椭圆有许多独特的性质。

例如,椭圆的长轴是两个焦点之间的距离,短轴是离焦点最远的点的距离的两倍。

此外,椭圆也具有对称性,其对称轴被称为“主轴”。

椭圆的周长和面积都可以通过一系列公式计算得到。

椭圆在几何图形和工程领域都有很重要的用途。

例如,在制造传动轴时,椭圆轴可以提高传动系统的效率,因为它可以减少磨损和摩擦力。

此外,椭圆在航空和航天领域也有广泛的应用,例如在卫星上制造太阳追踪系统。

二、双曲线的定义和性质双曲线可以定义为相互关联的两个焦点和一个距离差为定值的所有点的集合。

双曲线的中心称为“中心点”,其两个焦点沿一个称为“主轴”的对称轴排列。

双曲线也有许多独特的性质。

例如,它有无数的渐近线,渐近线是一种切向与曲线无限逼近的直线,其方程式与曲线本身的方程式共享同样的性质。

双曲线还有一个重要的性质是它的离心率大于1,这意味着它的形状更加长而窄。

双曲线也有广泛的应用。

在物理学中,双曲线用于描述相对论效应。

此外,双曲线也在工程领域中有广泛的应用,例如在空气动力学中进行翼型优化,以获得最大的升力和最小的阻力。

三、结论椭圆和双曲线是重要的几何图形,它们在数学、物理学和工程学中都有广泛的应用。

了解椭圆和双曲线的性质和应用可以帮助我们更好地理解它们在现实世界中的应用,并帮助我们在工程设计和科学研究中做出更好的决策。

椭圆与双曲线知识点总结

椭圆与双曲线知识点总结

椭圆与双曲线知识点总结椭圆和双曲线都是曲线,是数学上的重要概念。

它们在很多地方都有着广泛的应用,特别是在几何学中,它们被广泛使用。

椭圆和双曲线都有一些比较共同的性质,也有一些明显的不同之处。

本文将从一般的基本性质、定义、方程式、参数方程式以及其他应用等方面,总结椭圆与双曲线知识点。

一、椭圆和双曲线的概念椭圆是一种椭圆形状的曲线,它是由两条对称的抛物线连接而成,抛物线的焦点位于椭圆的两个端点上。

椭圆曲线的弦长度相等,它的两个焦点到椭圆上任一点的距离之和是一定值,而两个焦点之间的距离是一定的。

双曲线是一种双曲线形状的曲线,它是由两条相交的抛物线连接而成的,抛物线的焦点位于双曲线的两个端点上。

双曲线的弦长度不相等,它的两个焦点到双曲线上任一点的距离之和是一定值,而两个焦点之间的距离也是一定的。

二、椭圆和双曲线的定义根据椭圆的性质,一般定义椭圆为:椭圆是一种椭圆形状的曲线,它是由两条对称的抛物线连接而成,抛物线的焦点位于椭圆的两个端点上,它的两个焦点到椭圆上任一点的距离之和是一定值,而两个焦点之间的距离是一定的。

双曲线的定义是:双曲线是一种双曲线形状的曲线,它是由两条相交的抛物线连接而成的,抛物线的焦点位于双曲线的两个端点上,它的两个焦点到双曲线上任一点的距离之和是一定值,而两个焦点之间的距离也是一定的。

三、椭圆和双曲线的方程式椭圆的方程式一般可以表示为:$$x=a\cos t,y=b\sin t$$其中,a和b分别为椭圆的长短轴,t为参数。

双曲线的方程式一般可以表示为:$$x=a\cosht,y=b\sinh t$$其中,a和b分别为双曲线的长短轴,t为参数。

四、椭圆和双曲线的参数方程式椭圆的参数方程式可以表示为:$$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$$双曲线的参数方程式可以表示为:$$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$$五、椭圆和双曲线的性质1.椭圆的长短轴之和是一定值,即$a+b=C$;2.椭圆的长短轴之积也是一定值,即$ab=A$;3.椭圆的弦长度是一定值,即$2\pi a=L$;4.双曲线的长短轴之和是一定值,即$a+b=D$;5.双曲线的长短轴之积也是一定值,即$ab=B$;6.双曲线的弦长度是一定值,即$2\pi a\cosh t=M$;7.椭圆和双曲线都具有对称性,可以通过旋转或对称变换来实现。

椭圆与双曲线的性质

椭圆与双曲线的性质

椭圆与双曲线的性质椭圆和双曲线是二次曲线的两种重要形式,它们在数学与几何学中具有广泛的应用。

本文将介绍和探讨椭圆和双曲线的性质,包括定义、方程、焦点、直径、渐近线等内容。

一、椭圆的性质1. 定义与方程椭圆是指平面上到两个固定点距离之和等于常数的点的轨迹。

它可以通过以下方程表示:(x-a)²/a²+ (y-b)²/b²= 1,其中a、b分别是椭圆的长半轴和短半轴。

2. 焦点与直径椭圆上有两个特殊的点,称为焦点。

椭圆的焦点位于其长轴上,与圆心连线的长度等于半长轴的长度。

直径是椭圆上任意两个焦点的连线。

3. 重要性质椭圆具有以下重要性质:- 椭圆的对称轴是其长轴和短轴所在的直线。

- 椭圆上任意一点到焦点和到圆心的距离之和等于椭圆的长半轴长度。

- 椭圆上不同方向的直径长度之积相等。

- 椭圆上的切线与直径垂直。

二、双曲线的性质1. 定义与方程双曲线是指平面上到两个固定点距离之差等于常数的点的轨迹。

它可以通过以下方程表示:(x-a)²/a² - (y-b)²/b² = 1,其中a、b分别是双曲线的长半轴和短半轴。

2. 焦点与直径双曲线上有两个特殊的点,称为焦点。

双曲线的焦点位于其长轴上,与圆心连线的长度等于半长轴的长度。

直径是双曲线上任意两个焦点的连线。

3. 重要性质双曲线具有以下重要性质:- 双曲线的对称轴是其长轴所在的直线。

- 双曲线上任意一点到焦点和到圆心的距离之差等于双曲线的长半轴长度。

- 双曲线的渐近线是通过焦点并与双曲线相切的直线。

- 双曲线上不同方向的直径长度之积为负数。

三、椭圆与双曲线的比较1. 方程形式椭圆的方程中加号前面是x的平方项,而双曲线的方程中加号前面是y的平方项。

2. 轨迹形状椭圆是一个封闭的曲线,而双曲线是开口的曲线。

3. 焦点与直径椭圆上的焦点位于长轴上,而双曲线的焦点位于长轴外。

椭圆的直径是通过圆心的长轴,而双曲线的直径是通过焦点的长轴。

高三数学知识点双曲线椭圆

高三数学知识点双曲线椭圆

高三数学知识点双曲线椭圆高三数学知识点:双曲线和椭圆双曲线和椭圆是高中数学中重要的曲线类别,它们在数学和实际应用中具有广泛的应用。

本文将详细介绍双曲线和椭圆的定义、性质、方程及其应用。

一、双曲线1. 定义及性质双曲线是由平面上满足一定条件的点构成的曲线。

它的定义是:平面内到两个给定点的距离之差的绝对值等于常数的点的轨迹。

两个给定点叫做焦点,常数叫做离心率。

双曲线的形状与焦点和离心率有关。

2. 方程双曲线的标准方程有两种形式:独立变量在分子和分母上的方程和独立变量在一项上的方程。

常见的双曲线方程有:横轴双曲线方程、纵轴双曲线方程、一般方程等。

3. 性质和参数双曲线具有许多重要的性质和参数,如焦点、离心率、短轴、长轴、渐进线等,这些性质和参数在解决具体问题和计算曲线方程时非常重要。

4. 应用双曲线在物理学、工程学、天文学等领域中有广泛的应用。

例如,双曲线可以描述天体的轨迹、椭圆轨道上的行星运动等。

二、椭圆1. 定义及性质椭圆是平面上到两个定点的距离之和等于常数的点的轨迹。

两个定点称为焦点,常数称为离心率。

椭圆的形状与焦点和离心率有关。

2. 方程椭圆的标准方程也有两种形式:横轴椭圆方程和纵轴椭圆方程。

椭圆方程可以用于描述椭圆的形状和位置。

3. 性质和参数椭圆也具有一些重要的性质和参数,如焦点、离心率、长轴、短轴、焦距、半焦距等。

这些性质和参数对于解决问题和计算曲线方程非常有帮助。

4. 应用椭圆在物理学、天文学、力学、电磁学等领域中有广泛的应用。

例如,椭圆可以用于描述行星轨道、天体运动、电子轨道等。

三、双曲线与椭圆的区别与联系1. 区别双曲线和椭圆的最大区别在于它们到焦点的距离之和是否等于常数。

双曲线是距离之差的绝对值等于常数,而椭圆是距离之和等于常数。

2. 联系双曲线和椭圆具有一定的联系和相似之处。

它们都是由到焦点的距离之和或之差等于常数的点构成的曲线,因此它们在数学中有类似的性质和参数。

四、总结双曲线和椭圆是高三数学中重要的知识点,它们的定义、性质、方程和应用都需要我们深入理解。

椭圆、抛物线、双曲线的定义及性质

椭圆、抛物线、双曲线的定义及性质

椭圆、抛物线、双曲线的定义及性质椭圆、抛物线、双曲线是高中数学中常见的三种二次曲线,它们的定义和性质对于我们理解数学和应用数学起着非常重要的作用。

本文将详细介绍这三种曲线的定义以及它们的一些重要性质。

一、椭圆的定义及性质椭圆是平面上到两个定点F1、F2距离之和为常数2a的所有点P的轨迹,这两个定点称为椭圆的焦点,椭圆的长轴为2a,短轴为2b,半径为c,满足 $a^2=b^2+c^2$。

椭圆的离心率$e=\frac{c}{a}$,离心率是描述椭圆扁平程度的一个参数,$0<e<1$,当离心率为0时,椭圆就退化成为一个圆。

椭圆具有如下性质:1.椭圆的中心在两个焦点的中垂线上;2.椭圆的两个焦点到圆心连线的夹角等于圆心到椭圆上任意一点P的切线与椭圆长轴之间的夹角;3.椭圆的周长和面积分别为 $C=4aE(e)$,$S=\pi a b$;其中$E(e)$为第二类完全椭圆积分。

二、抛物线的定义及性质抛物线是平面上到一个定点F到直线l距离等于点P到定点F 距离的所有点P的轨迹,这个定点F称为抛物线的焦点,直线l称为抛物线的准线。

抛物线具有如下性质:1.抛物线的焦点到抛物线顶点的距离等于抛物线定点F到准线距离的一半,称为抛物线的焦距;2.抛物线的汇聚点为无穷远处;3.对于平面上任意的一点P,直线FP与准线l的夹角等于点P 到抛物线顶点的切线与抛物线轴线的夹角相等。

三、双曲线的定义及性质双曲线是平面上到两个定点F1、F2距离之差为常数2a的所有点P的轨迹,这两个定点称为双曲线的焦点,而常数2a为双曲线的距离。

双曲线具有如下性质:1.双曲线的两个分支之间存在一对渐近线,渐近线与双曲线的距离趋近于无穷;2.双曲线的离心率$e=\frac{c}{a}>1$;3.双曲线没有汇聚点,但是有两个分支的顶点。

总之,椭圆、抛物线、双曲线是研究二次曲线非常重要的三种类型,它们都具有自己独特的定义及性质。

理解这些性质不仅有助于我们提高抽象思维和数学运用能力,还有助于我们在物理、工程、计算机等领域的具体应用中理解和解决实际问题。

椭圆与双曲线知识点总结

椭圆与双曲线知识点总结

椭圆与双曲线知识点总结椭圆和双曲线是高中数学中重要的曲线类型,它们在几何、物理、工程等领域都有广泛的应用。

本文将对椭圆与双曲线的基本概念、性质以及相关公式进行总结。

一、椭圆1. 椭圆的定义:椭圆是平面上到两个定点F1、F2距离之和恒为常数2a的点P所构成的图形轨迹。

2. 椭圆的性质:- 两个焦点F1、F2与椭圆的中心O满足关系:OF1 + OF2 = 2a。

- 椭圆的半长轴为a,半短轴为b,有关系式a > b。

- 椭圆的离心率e满足关系e = c/a,其中c为焦点到中心的距离。

- 椭圆的离心率介于0到1之间,当离心率为0时,椭圆退化成一个圆。

3. 椭圆的方程:椭圆的标准方程为(x - h)²/a² + (y - k)²/b² = 1,其中(h, k)为中心坐标。

4. 椭圆的重要公式:- 椭圆的周长C = 4a(E(e)),其中E(e)为第二类椭圆积分。

- 椭圆的面积S = πab。

二、双曲线1. 双曲线的定义:双曲线是平面上到两个定点F1、F2距离之差恒为常数2a的点P所构成的图形轨迹。

2. 双曲线的性质:- 两个焦点F1、F2与双曲线的中心O满足关系:|OF1 - OF2| = 2a。

- 双曲线的半长轴为a,半短轴为b,有关系式a > b。

- 双曲线的离心率e满足关系e = c/a,其中c为焦点到中心的距离。

- 双曲线的离心率大于1。

- 对于双曲线的每个点P,其到焦点的距离之差等于常数。

3. 双曲线的方程:双曲线的标准方程为(x - h)²/a² - (y - k)²/b² = 1,其中(h, k)为中心坐标。

4. 双曲线的重要公式:- 双曲线的渐近线方程为y = ±b/a * x。

- 双曲线的面积S = πab。

总结:椭圆和双曲线是两种常见的曲线类型,具有各自的定义、性质和方程。

掌握椭圆和双曲线的知识,有助于我们理解和解决与这两类曲线相关的问题。

椭圆和双曲线知识点

椭圆和双曲线知识点

椭圆和双曲线知识点椭圆和双曲线是数学中的两种重要曲线,它们在几何学、物理学以及工程学等领域有广泛的应用。

本文将介绍椭圆和双曲线的定义、性质以及一些实际应用。

一、椭圆的定义与性质椭圆是平面上到两个给定点的距离之和等于常数的所有点的轨迹。

这两个点被称为焦点,而这个常数称为椭圆的离心率。

椭圆的形状与焦点之间的距离和离心率有关,当离心率为0时,椭圆退化为一个点,当离心率为1时,椭圆退化为一条线段。

椭圆的性质有很多,其中一些最重要的性质如下:1. 椭圆的长轴和短轴:椭圆的长轴是通过椭圆两个焦点的直线段,短轴是通过椭圆中心且垂直于长轴的直线段。

2. 椭圆的焦距:椭圆的焦距是两个焦点之间的距离。

3. 椭圆的离心率:椭圆的离心率是焦距与长轴的比值,它决定了椭圆的形状。

4. 椭圆的焦点定理:椭圆上的任意一点到两个焦点的距离之和等于椭圆的长轴长度。

除了这些基本性质,椭圆还有很多其他的性质和定理,如椭圆的切线定理、椭圆的对称性等,它们在几何学中起着重要的作用。

二、双曲线的定义与性质双曲线是平面上满足到两个给定点的距离之差等于常数的所有点的轨迹。

与椭圆不同,双曲线有两个焦点和一个常数,这个常数称为双曲线的离心率。

双曲线的形状与焦点之间的距离和离心率有关。

双曲线也有一些重要的性质:1. 双曲线的渐近线:双曲线有两条渐近线,它们是双曲线的特殊直线。

2. 双曲线的极限点:双曲线的极限点是离焦点最近的点,它们与焦点之间的距离等于双曲线的离心率。

3. 双曲线的对称性:双曲线关于两个焦点和中心都有对称性。

双曲线也有很多其他的性质和定理,如双曲线的切线定理、双曲线的拐点等。

三、椭圆和双曲线的应用椭圆和双曲线在实际应用中有广泛的应用。

在天体力学中,行星的轨道通常是椭圆或近似椭圆的;在电磁波传播中,天线的辐射范围可以用双曲线来描述;在光学中,镜面反射和折射也与椭圆和双曲线有关。

此外,椭圆和双曲线还可以用于数据拟合、信号处理、图像处理等领域。

高三数学椭圆双曲线知识点

高三数学椭圆双曲线知识点

高三数学椭圆双曲线知识点椭圆和双曲线是高中数学中重要的曲线类型,对于高三学生来说,掌握椭圆和双曲线的基本知识点是必不可少的。

本文将详细介绍椭圆和双曲线的定义、性质和相关的解题方法。

一、椭圆的定义与性质椭圆是平面上一点到两个定点的距离之和与两个定点到一条定直线的距离之差的绝对值等于常数的轨迹。

可以用以下方程表示:$\frac{{x^2}}{{a^2}}+\frac{{y^2}}{{b^2}}=1$(a>b>0)其中,a为椭圆的长半轴,b为短半轴。

椭圆有以下性质:1. 椭圆的离心率e满足0<e<1,且e的取值越小,椭圆越扁平。

2. 椭圆的焦点到准线的距离等于短半轴的长度。

3. 椭圆的长轴与短轴之间的关系为2a=2b。

二、椭圆的方程与基本图形1. 标准方程当椭圆的中心为原点(0,0)时,椭圆的方程为$\frac{{x^2}}{{a^2}}+\frac{{y^2}}{{b^2}}=1$。

2. 图形特征椭圆是一个封闭曲线,具有关于x轴和y轴对称的性质。

它在x轴和y轴上都有两个顶点,分别是(±a,0)和(0,±b),其中a为长半轴的长度,b为短半轴的长度。

三、双曲线的定义与性质双曲线是平面上一点到两个定点的距离之差与两个定点到一条定直线的距离之和的绝对值等于常数的轨迹。

可以用以下方程表示:$\frac{{x^2}}{{a^2}}-\frac{{y^2}}{{b^2}}=1$(a>0,b>0)其中,a为双曲线的长半轴,b为短半轴。

双曲线有以下性质:1. 双曲线的离心率e满足e>1,且e的取值越大,双曲线越扁平。

2. 双曲线的焦点到准线的距离等于短半轴的长度。

3. 双曲线的渐近线方程为y=±(b/a)x。

四、双曲线的方程与基本图形1. 标准方程当双曲线的中心为原点(0,0)时,双曲线的方程为$\frac{{x^2}}{{a^2}}-\frac{{y^2}}{{b^2}}=1$。

高中数学中的椭圆与双曲线知识点总结

高中数学中的椭圆与双曲线知识点总结

高中数学中的椭圆与双曲线知识点总结椭圆与双曲线是高中数学中的重要知识点,它们在几何和代数中有广泛的应用。

掌握了椭圆与双曲线的基本概念、性质和公式,不仅可以解决各种数学问题,还能帮助我们更好地理解数学的本质和应用。

本文将对高中数学中的椭圆与双曲线知识点进行总结。

一、椭圆的基本概念与性质椭圆是平面上到两个定点的距离之和等于常数的点的集合。

这两个定点称为椭圆的焦点,而常数称为椭圆的焦距。

椭圆还有一个重要的参数称为长轴,它是椭圆的两个焦点之间的距离。

椭圆具有以下性质:1. 椭圆的离心率小于1,且越接近0,椭圆越扁平;2. 椭圆的长轴与短轴之间的比值称为椭圆的离心率,离心率等于1的椭圆称为圆;3. 椭圆的对称轴与长短轴相交的点称为椭圆的顶点;4. 椭圆的周长公式为C = 4aE(e),其中a为长轴的一半,E(e)为离心率e的椭圆的第一类椭圆积分;5. 椭圆的面积公式为S = πab,其中a和b分别为长轴和短轴的一半。

二、双曲线的基本概念与性质双曲线是平面上到两个定点的距离之差的绝对值等于常数的点的集合。

这两个定点称为双曲线的焦点,常数称为双曲线的差距。

双曲线还有一个重要的参数称为长轴,它是双曲线的两个焦点之间的距离。

双曲线具有以下性质:1. 双曲线的离心率大于1,离心率越大,双曲线越扁平;2. 双曲线的离心率等于1的时候,双曲线为抛物线;3. 双曲线的对称轴与长轴、短轴相交的点称为双曲线的顶点;4. 双曲线的渐近线是与双曲线无交点的直线,斜率大小由离心率决定;5. 双曲线的面积公式为S = πab,其中a和b分别为长轴和短轴的一半。

三、椭圆与双曲线的方程与图像1. 椭圆的方程形式为(x-h)²/a² + (y-k)²/b² = 1,其中(h,k)为椭圆的中心;2. 双曲线的方程形式为(x-h)²/a² - (y-k)²/b² = 1(双曲线的开口朝向x 轴)或者(x-h)²/b² - (y-k)²/a² = 1(双曲线的开口朝向y轴),其中(h,k)为双曲线的中心。

高二数学(椭圆及双曲线)

高二数学(椭圆及双曲线)

图形
标准方程 第一定义
x2 a2

y2 b2
1 a
0,b
0
y2 a2

x2 b2
1 a
0,b
0
到两定点 F1 、F2 的距离之差的绝对值等于常数 2a ,即 | MF1 | | MF2 | 2a
9
第二定义 范围
( 0 2a | F1F2 | )
与一定点的距离和到一定直线的距离之比为常数 e ,即 MF e (e 1)
圆与圆 C 关于直线 x+y﹣2=0 对称. (l)求圆 C 的方程; (2)过点 P(m,0)作圆 C 的切线,求切线长的最小值以及相应的点 P 的坐标.
4
14.(2015 秋•城厢区校级期中)已知 F1(﹣1,0)、F2(1,0)为椭圆 C 的左、右焦点,且 点 P(1, )在椭圆 C 上.
(1)求椭圆 C 的方程; (2)若直线 y=x+1 与椭圆 C 交于 A、B 两点,求弦长|AB|.
=1(a>b>0)上的点 P 到左、右两焦点 F1,F2 的距
离之和为 2 ,离心率为 .
(Ⅰ)求椭圆的方程;
(Ⅱ)过右焦点 F2 的直线 l 交椭圆于 A、B 两点.
(1)若 y 轴上一点
满足|MA|=|MB|,求直线 l 斜率 k 的值;
(2)是否存在这样的直线 l,使 S△ABO 的最大值为 (其中 O 为坐标原点)?若存在, 求直线 l 方程;若不存在,说明理由.
7.(2015•上海模拟)已知 F1,F2 是椭圆
|PF1|•|PF2|的最大值是( )
A.9
B.16
的两个焦点,P 是椭圆上的任意一点,则
C.25

数学中的椭圆与双曲线方程

数学中的椭圆与双曲线方程

数学中的椭圆与双曲线方程椭圆与双曲线方程在数学中具有重要的地位和应用。

它们在几何图形的研究、物理学和工程学等领域都有广泛的应用。

本文将介绍椭圆与双曲线方程的概念、性质以及解法。

一、椭圆方程椭圆是平面上一组点,到两个给定点的距离之和等于常数的点的集合。

这两个给定点称为焦点,而常数称为椭圆的离心率。

椭圆的方程可以用坐标系表示为:(x - h)²/a² + (y - k)²/b² = 1其中,(h, k)为椭圆的中心点坐标;a和b分别表示椭圆在x轴和y 轴上的半长轴。

根据椭圆的离心率可将方程进行相应的变换。

二、双曲线方程双曲线也是平面上一组点的集合,其定义与椭圆类似。

双曲线的方程可以表示为:(x - h)²/a² - (y - k)²/b² = 1或(x - h)²/a² - (y - k)²/b² = -1其中,(h, k)为双曲线的中心点坐标;a和b分别表示双曲线在x轴和y轴上的半长轴,且a² > b²。

三、椭圆与双曲线方程的解析法1. 根据方程的形式来判断:椭圆方程左侧和右侧系数都为正数;双曲线方程左侧系数为正数,右侧系数为负数。

2. 将方程转化为标准形式,即将中心移到坐标原点,确保(x - h)²和(y - k)²的系数为1。

3. 使用平移、旋转等变换将方程变为标准形式。

4. 掌握常见的椭圆与双曲线的形状和特点,根据方程参数的取值可以判断椭圆或双曲线的长短轴、中心、焦点等属性。

四、椭圆与双曲线方程的应用椭圆和双曲线在几何学中具有重要的应用,例如描述行星的轨道、椭圆拟合等。

此外,在物理学和工程学中,椭圆和双曲线也有广泛的应用。

1. 光学:椭圆的反射性质被应用于卫星天线的设计、太阳能聚光器等领域。

2. 工程学:双曲线被应用于设计抛物线形的桥梁、抛物面天花板等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

椭圆与双曲线的对偶性质--(必背的经典结论)椭 圆1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6.若000(,)P x y 在椭圆22221x y a b+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b+=. 7.椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2F PF S b γ∆=.8.椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F的椭圆准线于M 、N 两点,则MF ⊥NF.10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q交于点N ,则MF ⊥NF.11. AB 是椭圆22221x y a b+=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ⋅=-,即0202y a xb K AB -=。

12. 若000(,)P x y 在椭圆22221x y a b +=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b +=+. 13. 若000(,)P x y 在椭圆22221x y a b+=内,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b +=+. 双曲线1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角.2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相交.4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支)5. 若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)上,则过0P 的双曲线的切线方程是00221x x y y a b -=. 6.若000(,)P x y 在双曲线22221x y a b -=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b-=.7.双曲线22221x y a b-=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=,则双曲线的焦点角形的面积为122t 2F PF S b co γ∆=.8.双曲线22221x y a b-=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-. 当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a =--9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF.10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. AB 是双曲线22221x y a b -=(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则0202y a x b K K AB OM =⋅,即0202y a x b K AB =。

12. 若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b -=-. 13. 若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)内,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b -=-. 椭圆与双曲线的对偶性质--(会推导的经典结论)椭 圆1. 椭圆22221x y a b+=(a >b >o )的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线交椭圆于P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是22221x y a b-=.2. 过椭圆22221x y a b+= (a >0, b >0)上任一点00(,)A x y 任意作两条倾斜角互补的直线交椭圆于B,C 两点,则直线BC 有定向且2020BC b x k a y =(常数).3. 若P 为椭圆22221x y a b+=(a >b >0)上异于长轴端点的任一点,F 1, F 2是焦点, 12PF F α∠=, 21PF F β∠=,则tan t 22a c co a c αβ-=+.4. 设椭圆22221x y a b+=(a >b >0)的两个焦点为F 1、F 2,P (异于长轴端点)为椭圆上任意一点,在△PF 1F 2中,记12F PF α∠=, 12PF F β∠=,12FF P γ∠=,则有sin sin sin ce aαβγ==+.5. 若椭圆22221x y a b+=(a >b >0)的左、右焦点分别为F 1、F 2,左准线为L ,则当0<e ≤1时,可在椭圆上求一点P ,使得PF 1是P 到对应准线距离d 与PF 2的比例中项.6. P 为椭圆22221x y a b+=(a >b >0)上任一点,F 1,F 2为二焦点,A 为椭圆内一定点,则2112||||||2||a AF PA PF a AF -≤+≤+,当且仅当2,,A F P 三点共线时,等号成立. 7. 椭圆220022()()1x x y y a b --+=与直线0A xB y C++=有公共点的充要条件是2222200()A a B b Ax By C +≥++.8. 已知椭圆22221x y a b+=(a >b >0),O 为坐标原点,P 、Q 为椭圆上两动点,且OP OQ ⊥.(1)22221111||||OP OQ a b+=+;(2)|OP|2+|OQ|2的最大值为22224a b a b +;(3)OPQ S ∆的最小值是2222a b a b +. 9. 过椭圆22221x y a b +=(a >b >0)的右焦点F 作直线交该椭圆右支于M,N 两点,弦MN 的垂直平分线交x 轴于P ,则||||2PF e MN =.10. 已知椭圆22221x y a b +=( a >b >0) ,A 、B 、是椭圆上的两点,线段AB 的垂直平分线与x 轴相交于点0(,0)P x ,则22220a b a b x a a ---<<. 11. 设P 点是椭圆22221x y a b+=( a >b >0)上异于长轴端点的任一点,F 1、F 2为其焦点记12F PF θ∠=,则(1)2122||||1cos b PF PF θ=+.(2) 122tan 2PF F S b γ∆=.12. 设A 、B 是椭圆22221x y a b+=( a >b >0)的长轴两端点,P 是椭圆上的一点,PAB α∠=,PBA β∠=,BPA γ∠=,c 、e 分别是椭圆的半焦距离心率,则有(1)22222|cos |||s ab PA a c co αγ=-.(2)2tan tan 1e αβ=-.(3) 22222cot PABa b S b aγ∆=-. 13. 已知椭圆22221x y a b+=( a >b >0)的右准线l 与x 轴相交于点E ,过椭圆右焦点F 的直线与椭圆相交于A 、B 两点,点C 在右准线l 上,且BC x ⊥轴,则直线AC 经过线段EF 的中点.14. 过椭圆焦半径的端点作椭圆的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直. 15. 过椭圆焦半径的端点作椭圆的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直. 16. 椭圆焦三角形中,内点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率). (注:在椭圆焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点.) 17. 椭圆焦三角形中,内心将内点与非焦顶点连线段分成定比e. 18. 椭圆焦三角形中,半焦距必为内、外点到椭圆中心的比例中项.椭圆与双曲线的对偶性质--(会推导的经典结论)双曲线1. 双曲线22221x y a b-=(a >0,b >0)的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线交双曲线于P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是22221x y a b+=.2. 过双曲线22221x y a b-=(a >0,b >o )上任一点00(,)A x y 任意作两条倾斜角互补的直线交双曲线于B,C 两点,则直线BC 有定向且2020BC b x k a y =-(常数).3. 若P 为双曲线22221x y a b-=(a >0,b >0)右(或左)支上除顶点外的任一点,F 1, F 2是焦点, 12PF F α∠=,21PF F β∠=,则tan t 22c a co c a αβ-=+(或tan t 22c a co c a βα-=+). 4. 设双曲线22221x y a b-=(a >0,b >0)的两个焦点为F 1、F 2,P (异于长轴端点)为双曲线上任意一点,在△PF 1F 2中,记12F PF α∠=, 12PF F β∠=,12FF P γ∠=,则有sin (sin sin )ce aαγβ==±-.5. 若双曲线22221x y a b-=(a >0,b >0)的左、右焦点分别为F 1、F 2,左准线为L ,则当1<e 1时,可在双曲线上求一点P ,使得PF 1是P 到对应准线距离d 与PF 2的比例中项.6. P 为双曲线22221x y a b-=(a >0,b >0)上任一点,F 1,F 2为二焦点,A 为双曲线内一定点,则21||2||||AF a PA PF -≤+,当且仅当2,,A F P 三点共线且P 和2,A F 在y 轴同侧时,等号成立.7. 双曲线22221x y a b-=(a >0,b >0)与直线0Ax By C ++=有公共点的充要条件是22222A a B b C -≤.8. 已知双曲线22221x y a b-=(b >a >0),O 为坐标原点,P 、Q 为双曲线上两动点,且OP OQ ⊥.(1)22221111||||OP OQ a b +=-;(2)|OP|2+|OQ|2的最小值为22224a b b a -;(3)OPQ S ∆的最小值是2222a b b a -. 9. 过双曲线22221x y a b-=(a >0,b >0)的右焦点F 作直线交该双曲线的右支于M,N 两点,弦MN 的垂直平分线交x 轴于P ,则||||2PF eMN =.10. 已知双曲线22221x y a b-=(a >0,b >0),A 、B 是双曲线上的两点,线段AB 的垂直平分线与x 轴相交于点0(,0)P x , 则220a b x a+≥或220a b x a +≤-. 11. 设P 点是双曲线22221x y a b -=(a >0,b >0)上异于实轴端点的任一点,F 1、F 2为其焦点记12F PF θ∠=,则(1)2122||||1cos b PF PF θ=-.(2) 122cot 2PF F S b γ∆=.12. 设A 、B 是双曲线22221x y a b-=(a >0,b >0)的长轴两端点,P 是双曲线上的一点,PAB α∠=,PBA β∠=,BPA γ∠=,c 、e 分别是双曲线的半焦距离心率,则有(1)22222|cos ||||s |ab PA a c co αγ=-. (2) 2tan tan 1e αβ=-.(3) 22222cot PABa b S b a γ∆=+. 13. 已知双曲线22221x y a b-=(a >0,b >0)的右准线l 与x 轴相交于点E ,过双曲线右焦点F 的直线与双曲线相交于A 、B 两点,点C 在右准线l 上,且BC x ⊥轴,则直线AC 经过线段EF 的中点.14. 过双曲线焦半径的端点作双曲线的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.15. 过双曲线焦半径的端点作双曲线的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直. 16. 双曲线焦三角形中,外点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率). (注:在双曲线焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点). 17. 双曲线焦三角形中,其焦点所对的旁心将外点与非焦顶点连线段分成定比e. 18. 双曲线焦三角形中,半焦距必为内、外点到双曲线中心的比例中项.。

相关文档
最新文档