等腰三角形的性质与判定培优提高拓展练习题
等腰三角形练习题(含答案)
等腰三角形练习题(含答案)等腰三角形第1课时:等腰三角形的性质1.已知等腰三角形的一个底角为50°,则其顶角为80°。
2.如图,△ABC中,AB=AC,BC=6cm,AD平分∠BAC,则BD=3cm。
3.如图,△ABC中,AB=AC,D为BC中点,∠BAD=35°,则∠C的度数为45°。
4.已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为80°。
5.如图,在△ABC中,D是BC边上一点,且AB=AD=DC,∠BAD=40°,求∠C的度数为100°。
6.如图,△ABC中,AB=AC,D是BC的中点,E,F分别是AB,AC上的点,且AE=AF。
证明:DE=DF。
第2课时:等腰三角形的判定1.在△ABC中,∠A=40°,∠B=70°,则△ABC为钝角三角形。
2.已知△ABC中,∠B=50°,∠A=80°,AB=5cm,则AC=5cm。
3.如图,在△ABC中,AD⊥BC于点D,且BD=DC,则△ABC为等腰三角形。
4.如图,已知△ABC中,∠A=36°,AB=AC,BD为∠ABC的平分线,则图中共有2个等腰三角形。
5.如图,D是△XXX的BC边上的中点,DE⊥AC,DF⊥AB,垂足分别是E,F,且DE=DF。
证明:AB=AC。
6.如图,AB∥CD,直线l交AB于点E,交CD于点F,FG平分∠EFD交直线AB于点G。
证明:△EFG是等腰三角形。
等边三角形第1课时:等边三角形的性质与判定1.如图,a∥b,等边△ABC的顶点B,C在直线b上,则∠1的度数为60°。
2.在△ABC中,∠A=60°,现有下面三个条件:①AB=AC;②∠B=∠C;③∠A=∠B。
能判定△ABC为等边三角形的有条件①、②、③。
3.如图,在等边△ABC中,BD⊥AC于D,若AB=4,则AD=2.4.如图,△ABC是等边三角形,∠CBD=90°,BD=BC,连接AD交BC于点E,求∠BAD的度数为75°。
等腰三角形的性质练习(含答案)
等腰三角形的性质练习(含答案)等腰三角形的性质1.选择题:1) 等腰三角形的底角与相邻外角的关系是()A。
底角大于相邻外角 B。
底角小于相邻外角C。
底角大于或等于相邻外角 D。
底角小于或等于相邻外角2) 等腰三角形的一个内角等于100°,则另两个内角的度数分别为()A。
40°,40° B。
100°,20°C。
50°,50° D。
40°,40°或100°,20°3) 等腰三角形中的一个外角等于100°,则这个三角形的三个内角分别为()A。
50°,50°,80° B。
80°,80°,20°C。
100°,100°,20° D。
50°,50°,80°或80°,80°,20°4) 如果一个等腰三角形的一个底角比顶角大15°,那么顶角为()A。
45° B。
40° C。
55° D。
50°5) 等腰三角形一腰上的高与底边所成的角等于()A。
顶角 B。
顶角的一半C。
顶角的2倍 D。
底角的一半6) 已知:如图1所示,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A的度数为()A。
30° B。
45° C。
36° D。
72°2.填空题:1) 如图2所示,在△ABC中,①因为AB=AC,所以∠A=∠C;②因为AB=AC,∠1=∠2,所以BD=BC,BD⊥AC.2) 若等腰三角形的顶角与一个底角之和为110°,则顶角的度数为70°.3) 已知等腰三角形的一个角是80°,则顶角为20°.4) 在等腰三角形ABC中,一腰上的高是1cm,这条高与底边的夹角是45°,则△ABC的面积为1/2 cm².5) 如图3所示,O为△ABC内一点,且OA=OB=OC,∠ABO=20°,∠BCO=30°,则∠CAO=30°.3.等腰三角形两个内角的度数比为4:1,求其各个角的度数.设两个内角的度数为4x和x,则三角形的第三个角的度数为180°-5x.因为三角形内角和为180°,所以4x+4x+180°-5x=180°,解得x=36°,因此两个内角的度数分别为144°和36°,第三个角的度数为100°.4.如图,已知线段a和c,用圆规和直尺作等腰三角形ABC,使等腰三角形△ABC以a和c为两边,这样的三角形能作无数个.5.如图,在△ABC中,D是BC边上一点,AD=BD,AB=AC=CD,求∠BAC的度数.连接AD和AC,因为AD=BD,AB=AC,所以△ABD≌△ACD,故∠ABD=∠ACD.又因为AB=CD,所以△ABC为等腰三角形,所以∠BAC=180°-∠ABC=180°-2∠ABD=80°.6.如图所示,AB=AE,∠ABC=∠AED,BC=ED,点F是CD的中点.1) AF与CD不垂直.因为∠ABC=∠AED,所以△ABC≌△AED,故AB=AE,又因为BC=ED,所以AC=AD,所以AF垂直于BC的中点,而CD的中点是F,所以AF与CD不垂直.二、拓展延伸训练右下图是人字型层架的设计图,由AB、AC、BC、AD四根钢条焊接而成,其中A、B、C、D均为焊接点,且AB=AC,D为BC的中点,现在焊接所需的四根钢条已截好,且已标出BC的中点D。
初二等腰三角形性质及判定练习题
初二等腰三角形性质及判定练习题
等腰三角形是初中阶段的重要概念之一。
以下是等腰三角形的
性质及判定方法:
等腰三角形性质
- 定义:有两个角的角度相等的三角形被称为等腰三角形;
- 两边相等的角也是相等的;
- 等腰三角形的两条等边所对应的角被称为基角,另一个角被
称为顶角;
- 基角的角平分线也是等边三角形的高线;
- 等腰三角形的顶角的角平分线与底边垂直,并且将底边平分。
等腰三角形判定方法
- 角角边(AAS):已知等腰三角形两个角相等,且一个角的
对边(边长相等)与已知的一条边相等;
- 边边角(SAS):已知等腰三角形两边相等,且对应的角相等;
- 等边角(SSS):三角形三边相等。
判定题
练题如下:
1. 已知三角形ABC,其中AB = AC,角B = 40度,角A = 100度,求角C的度数;
2. 三角形DEF中,DE = EF,角F = 120度,角D = 30度,求角E的度数;
3. 三角形UVW中,UV = VW,VW = WU,求角U、角V、角W的度数;
4. 已知三角形XYZ,其中XZ = YZ,角X = 角Y = 70度,求角Z的度数。
以上是初二等腰三角形性质及判定练习题,希望对大家有所帮助!。
(完整)等腰三角形性质与判定练习题
等腰三角形性质与判定练习题一、选择题1、等腰三角形一腰上的中线把等腰三角形的周长分成9和12两部分,则腰长为()A、6B、8C、10D、6或82、等腰三角形的周长为19cm,其中一边长为5cm,则该等腰三角形的底边边长为()A、9cmB、5cmC、9cm或5cmD、10cm3、等腰三角形的腰长等于2m,面积等于1m2,则它的顶角等于()A、150°B、30°C、150°或30°D、60°4、若等腰三角形的周长为10,一边长为4,则此等腰三角形的腰长为()A、2B、3C、4D、3或45、下列说法中正确的是()A、等腰三角形的两个底角的角平分线所夹的角是这个等腰三角形顶角的两倍B、在等腰三角形中“三线合一”是指等腰三角形的中线、高线、角平分线重合C、等边对等角D、有一个角等于60°的等腰三角形是等边三角形6、等腰三角形有两条边长为3和5,则它的周长可以是()A、12B、11C、10D、11或137、等腰三角形的对称轴有( )A、一条B、二条C、三条D、一条或三条8、等腰三角形周长为36cm,两边长之比为4:1,则底边长为()A、16cmB、4cmC、20cmD、16cm或4cm9、等腰三角形的周长是18cm,其中一边长为4cm,其它两边长分别为()A、4cm,10cmB、7cm,7cmC、4cm,10cm或7cm,7cmD、无法确定10、一个等腰而非等边的三角形,它的所有的内角平分线、中线和高的条数为()A、9B、6C、7D、311、已知等腰三角形的两边长分别为8与16,则其周长为()A、32B、40C、32或40D、8或1612、一个等腰三角形的周长是16,其中一边长是6,另两边长分别是()A、6和10B、6和4C、5和5D、5和5或4和613、等腰三角形ABC,其中AB=8cm,周长为20cm,则这个等腰三角形的腰长是( )A、8cmB、4cmC、6cmD、6cm或8cm14、等腰三角形的周长为18cm,其中一边长为4cm,则该等腰三角形的腰长为()A、4cm或10cmB、4cm或7cmC、4cmD、7cm15、如右图,在△ABC中,AB=AC,BD=BC,AD=DE=EB,则∠A是( )A、30°B、45°C、60°D、20°16、有下列命题说法:①锐角三角形中任何两个角的和大于90°;②等腰三角形一定是锐角三角形;③等腰三角形有一个外角等于120°,这个三角形一定是等边三角形;④等腰三角形中有一个是40°,那么它的底角是70°;⑤一个三角形中至少有一个角不小于60度.其中正确的有()A、2个B、3个C、4个D、5个17、等腰三角形中一个角是40°,则另外两个角的度数分别是()A、70°,70°B、40°,100°C、40°,40°D、70°,70°或40°,100°18、如右图,一钢架中,∠A=15°,焊上等长的钢条来加固钢架.若A P1=P1P2,则这样的钢条最多只能焊上()条.A、4B、5C、6D、719、若△ABC的三边a,b,c满足(a﹣b)(b﹣c)(c﹣a)=0,那么△ABC的形状是( )A、等腰三角形B、直角三角形C、等边三角形D、锐角三角形20、如果一个三角形的一条角平分线恰好是对边上的高,那么这个三角形一定是( )A、直角三角形B、等边三角形C、等腰三角形D、等腰直角三角形二、填空题1、一个等腰三角形的两边长分别是2cm、5cm,则它的周长为_______2、等腰三角形的两边长分别为4和9,则第三边长为_________ .3、等腰三角形的对称轴最多有_________ 条.4、一个等腰三角形周长为5,它的三边长都是整数,则底边长为_________ .5、若等腰三角形的三条边长分别为a2+1,a+1,4a﹣3,则a可以取的值为_________ .6、等腰三角形一个底角为36°,则此等腰三角形顶角为_________ 度.7、等腰三角形的两边长为5cm,10cm,则它的周长等于_________ cm.8、一个等腰三角形的顶角是底角的2倍,则它的各个内角的度数是_________ .9、在等腰△ABC中,AB=AC,AC腰上的中线BD将三角形周长分为15和21两部分,则这个三角形的底边长为_________ .10、如图,B在AC上,D在CE上,AD=BD=BC,∠ACE=25°,∠ADE=_______度.10题图 11题图 13题图 15题图11、如图,在△ABC中,∠C=25°,AD⊥BC,垂足为D,且AB+BD=CD,则∠BAC的度数是_______ 度.12、一个三角形有两条边相等,周长为18cm,三角形的一边长为4cm,则其他两边长分别为_________ cm.13、如图,△ABC中,∠A=36°,AB=AC,BD平分∠ABC,DE∥BC,则图中等腰三角形有______个.14、在△ABC中,AD⊥BC于D,且BD=CD,若AB=3,则AC= _________ .15、如图,在△ABC中,BC=5cm,BP、CP分别是∠ABC和∠ACB的角平分线,且PD∥AB,PE∥AC,则△PDE的周长是_________ cm.16、如右图,在Rt△ABC中,∠ACB=90°,∠ABC=60°,在直线BC或AC上取一点P,使得△PAB为等腰三角形,则符合条件的点P共有_________个.17、如图,在下列三角形中,若AB=AC,则能被一条直线分成两个小等腰三角形的是(填序号)______三、解答题1、如图,在△ABC和△DCB中,AC与BD相交于点O.AB=DC,AC=BD.试判断△OBC的形状,并证明2、已知:如图,△ABC是等腰三角形,AB=AC,∠1=∠2.求证:OA平分∠BAC.3、已知:点D是△ABC的边BC的中点,DE⊥AC,DF⊥AB,垂足分别为E,F,且BF=CE.求证:△ABC是等腰三角形.4、如图,在△ABC中,点E在AB上,点D在BC上,BD=BE,∠BAD=∠BCE,AD与CE相交于点F,试判断△AFC的形状,并说明理由.5、已知,如图△ABC中,AB=AC,D点在BC上,且BD=AD,DC=AC.求∠B的度数.6、如图,在△ABC中,BO平分∠ABC,CO平分∠ACB,DE过O且平行于BC,已知△ADE的周长为10cm,BC 的长为5cm,求△ABC的周长.7、△ABC中,AB=AC,BD是△ABC的角平分线,E在BC的延长线上,且CE=CD。
等腰三角形的性质与判定综合练习
等腰三角形的性质与判定综合练习1、若等腰三角形的顶角为60°,则它底角的度数为( )A 、40°B 、50°C 、60°D 、70°2、如图,在△ABC 中,点D 在BC 上,AB =AD =DC ,∠B =80°,则C 的度数为( )A 、30°B 、40°C 、45°D 、60°3、如图,在△ABC 中,D 为BC 的中点,AD ⊥BC ,E 为AD 上一点,∠ABC =60°,∠ECD=40°,则∠ABE =( ) A 、10° B 、15° C 、20° D 、25°4、等腰△ABC 中,AB =AC=6cm ,∠A =150°,则△ABC 的面积为( )A 、9cm ²B 、18cm ²C 、6cm ²D 、36cm ²5、如图,在△ABC 中,AB =AC ,∠A =36°,DM 是AB 的垂直平分线,则图中的等腰三角形有( )A 、5个B 、4个C 、3个D 、2个 6、如图,在△ABC 中,∠A =60°,BE ⊥AC ,垂足为E ,CF ⊥AB , 垂足为F ,BE 、CF 交于点M 。
如果CM =4,FM =5,则BE 等于( ) A 、9 B 、12 C 、13 D 、14 7、如图,已知AB =AC ,∠A =36°,AB 的中垂线MD 交AC 于点D ,交AB 于点M 。
下列结论:①BD 是∠ABC 的平分线;②△BCD 是等腰三角形;③DC+BC=AB 。
正确的有( )A 、3个B 、2个C 、1个D 、0个8、如图,△ABC 中,AB =AC ,△DEF 为等边三角形,则γβα、、之间的关系为( )A 、2γαβ+= B 、2γβα+= C 、2γαβ—= D 、2γβα—=二、填空题9、如图,AB//CD ,CD =BD ,∠ABD =68°,则∠C 的度数为 。
2019年中考数学知识点过关培优训练卷:等腰三角形的性质与判定(附解析)
2019年中考数学知识点过关培优训练卷:等腰三角形的性质与判定一.选择题1.如图,在△ABC中,AB=AC,点D在AC上,DE∥AB,若∠CDE=160°,则∠B的度数为()A.80°B.75 C.65°D.60°2.如图,在△ABC中,CE平分∠ACB,点D在BC的延长线上,CF平分∠ACD,且EF∥BC交AC于M,若CM=5,则CE2+CF2等于()A.75 B.100 C.120 D.1253.如图,在△ABC中,AB=6,AC=4,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC 分别交AB、AC于M、N,则△AMN的周长为()A.12 B.10C.8 D.不确定4.如图,△ABC的面积为9cm2,BP平分∠ABC,AP⊥BP于P,连接PC,则△PBC的面积为()A.3cm2B.4cm2C.4.5cm2D.5cm25.在等腰三角形△ABC(AB=AC,∠BAC=120°)所在平面上有一点P,使得△PAB,△PBC,△PAC都是等腰三角形,则满足此条件的点P有()A.1个B.2个C.3个D.4个6.如图,△ABC的面积为10cm2,BP是∠ABC的平分线,AP⊥BP于P,则△PBC的面积为()A.4cm2B.5cm2C.6 cm2D.7 cm27.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过O点作EF∥BC交AB于点E,交AC于点F,过点O作OD⊥AC于D,下列四个结论.①EF=BE+CF②∠BOC=90°+∠A③点O到△ABC各边的距离相等④设OD=m,AE+AF=mn,正确的结论有()个.=n,则S△AEFA.1个B.2个C.3个D.4个8.如图,△ABC中,BO平分∠ABC,CO平分△ABC的外角∠ACD,MN经过点O,与AB,AC 相交于点M,N,且MN∥BC,则BM,CN之间的关系是()A.BM+CN=MN B.BM﹣CN=MN C.CN﹣BM=MN D.BM﹣CN=2MN 9.如图,△ABC中,AC=DC=3,BD垂直∠BAC的角平分线于D,E为AC的中点,则图中两个阴影部分面积之差的最大值为()A.1.5 B.3 C.4.5 D.910.已知点P是△ABC内一点,且它到三角形的三个顶点距离之和最小,则P点叫△ABC的费马点(Fermatpoint).已经证明:在三个内角均小于120°的△ABC中,当∠APB=∠APC=∠BPC=120°时,P就是△ABC的费马点.若点P是腰长为的等腰直角三角形DEF 的费马点,则PD+PE+PF=()A.2B.1+C.6 D.3二.填空题11.如图,在△ABC中,CD是∠ACB的平分线,DE∥BC交AC于点E,若DE=6cm,AE=5cm,则AC=cm.12.如图,△ABC中,BO平分∠ABC,CO平分∠ACB,MN经过点O,与AB,AC相交于点M,N,且MN∥BC.若AB=7,AC=6,那么△AMN的周长是.13.如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为.14.如图,在Rt△ABC中,∠C=90°,D为AB上的点,BD=CD=5,则AD=.15.在一次夏令营活动中,小明同学从营地A出发,要到A地的北偏东 60°方向的C处,他先沿正东方向走了200m到达B地,再沿北偏东30°方向走,恰能到达目的地C(如图),那么,由此可知,B、C两地相距m.16.如图,已知BD⊥AG,CE⊥AF,BD、CE分别是∠ABC和∠ACB的角平分线,若BF=3,ED =2,GC=5,则△ABC的周长为.17.如图,在△ABC中,AB=AC,点E在CA延长线上,EP⊥BC于点P,交AB于点F,若AF =2,BF=3,则CE的长度为.18.如图,△ABC中,∠B=90°.∠BAC的平分线交BC于点E,CD⊥AE于点D,若AC=13,AD=12,则AB=.19.如图,△ABC中,AD是∠BAC的平分线,DE∥AB交AC于点E,若DE=7,CE=6,则AC 的长为.20.如图,在△ABC中,BC=8cm,∠BPC=118°,BP、CP分别是∠ABC和∠ACB的平分线,且PD∥AB,PE∥AC,则△PDE的周长是cm,∠DPE=°.三.解答题21.如图,△ABC是等腰三角形,AB=AC,点D是AB上一点,过点D作DE⊥BC交BC于点E,交CA延长线于点F.(1)证明:△ADF是等腰三角形;(2)若∠B=60°,BD=4,AD=2,求EC的长,22.已知:在△ABC中,∠ACB=90°,点P是线段AC上一点,过点A作AB的垂线,交BP 的延长线于点M,MN⊥AC于点N,PQ⊥AB于点Q,AQ=MN.求证:(1)△APM是等腰三角形;(2)PC=AN.23.如图,已知在四边形ABCD中,AB=10cm,∠A=∠C=90°,点E、点F分别在边AB、CD上,且EF∥BC,∠DEF=∠FBC.(1)求证:∠AED=∠EBF;(2)当∠EBF=∠FBC时,EF=cm.24.如图,在等腰△ABC中,AB=AC,D为底边BC延长线上任意一点,过点D作DE∥AB,与AC延长线交于点E.(1)则△CDE的形状是;(2)若在AC上截取AF=CE,连接FB、FD,判断FB、FD的数量关系,并给出证明.25.如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,若AN=1.(1)求∠B的度数;(2)求CN的长.26.如图1,在四边形ABCD中,DC∥AB,BD平分∠ABC,CD=4.(1)求BC的长;(2)如图2,若∠ABC=60°,过点D作DE⊥AB,过点C作CF⊥BD,垂足分别为E、F,连接EF.请判断△DEF的形状并证明你的结论.27.如图,在△ABC中,AB=AC,∠BAC=36°,BD是∠ABC的平分线,交AC于点D,E是AB的中点,连接ED并延长,交BC的延长线于点F,连接AF,求证:(1)EF⊥AB;(2)△ACF为等腰三角形.28.如图,在△ABC中,BA=BC,D在边CB上,且DB=DA=AC.(1)如图1,填空∠B=°,∠C=°;(2)若M为线段BC上的点,过M作直线MH⊥AD于H,分别交直线AB、AC与点N、E,如图2①求证:△ANE是等腰三角形;②试写出线段BN、CE、CD之间的数量关系,并加以证明.29.如图,已知BD平分∠ABC,AD∥BC,且AC=AD.(1)求证:△ABD为等腰三角形;(2)判断∠C与∠D的数量关系,并说明理由.30.如图,在四边形ABCD中,∠B=90°,DE∥AB交BC于E,交AC于F,∠CDE=∠ACB=30°.(1)求证:△FCD是等腰三角形;(2)若BC=DE,求∠CAD的度数.31.如图1,在等腰Rt△ABC中,∠C=90°,O是AB的中点,AC=6,∠MON=90°,将∠MON绕点O旋转,OM、ON分别交边AC于点D,交边BC于点E(D、E不与A、B、C重合)(1)判断△ODE的形状,并说明理由;(2)在旋转过程中,四边形CDOE的面积是否发生变化?若不改变,直接写出这个值,若改变,请说明理由;(3)如图2,DE的中点为G,CG的延长线交AB于F,请直接写出四边形CDFE的面积S 的取值范围.参考答案一.选择题1.解:∵∠CDE=160°,∴∠ADE=20°,∵DE∥AB,∴∠A=∠ADE=20°,∴∠B=(180°﹣∠A)=(180°﹣20°)=80°.故选:A.2.解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,∴△EFC为直角三角形,又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,∴CM=EM=MF=5,EF=10,由勾股定理可知CE2+CF2=EF2=100.故选:B.3.解:∵∠ABC和∠ACB的平分线交于点E,∴∠ABE=∠CBE,∠ACE=∠BCE,∵MN∥BC,∴∠CBE=∠BEM,∠BCE=∠CEN,∴∠ABE=∠BEM,∠ACE=∠CEN,∴BM=ME,CN=NE,∴△AMN的周长=AM+ME+AN+NE=AB+AC,∵AB=AC=4,∴△AMN的周长=6+4=10.故选:B.4.解:延长AP交BC于E,∵BP平分∠ABC,∴∠ABP=∠EBP,∵AP⊥BP,∴∠APB=∠EPB=90°,在△ABP和△EBP中,,∴△ABP≌△EBP(ASA),∴AP=PE,∴S△ABP =S△EBP,S△ACP=S△ECP,∴S△PBC =S△ABC=×9cm2=4.5cm2,故选:C.5.解:如图,满足条件的所有点P的个数为2,故选:B.6.解:延长AP交BC于E,∵BP平分∠ABC,∴∠ABP=∠EBP,∵AP⊥BP,∴∠APB=∠EPB=90°,在△ABP 和△EBP 中,,∴△ABP ≌△EBP (ASA ),∴AP =PE ,∴S △ABP =S △EBP ,S △ACP =S △ECP ,∴S △PBC =S △ABC =×10=5(cm 2),故选:B .7.解:∵在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,∴∠OBC =∠ABC ,∠OCB =∠ACB ,∠A +∠ABC +∠ACB =180°,∴∠OBC +∠OCB =90°﹣∠A ,∴∠BOC =180°﹣(∠OBC +∠OCB )=90°+∠A ;故②正确;∵在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,∴∠OBC =∠OBE ,∠OCB =∠OCF ,∵EF ∥BC ,∴∠OBC =∠EOB ,∠OCB =∠F OC ,∴∠EOB =∠OBE ,∠FOC =∠OCF ,∴BE =OE ,CF =OF ,∴EF =OE +OF =BE +CF ,故①正确;过点O 作OM ⊥AB 于M ,作ON ⊥BC 于N ,连接OA ,∵在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,∴ON =OD =OM =m ,∴S △AEF =S △AOE +S △AOF =AE •OM +AF •OD =OD •(AE +AF )=mn ;故④正确;∵在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,∴点O到△ABC各边的距离相等,故③正确.故选:D.8.证明:∵ON∥BC,∴∠MO C=∠OCD∵CO平分∠ACD,∴∠ACO=∠DCO,∴∠NOC=∠OCN,∴CN=ON,∵ON∥BC,∴∠MOB=∠OBD∵BO平分∠ABC,∴∠MBO=∠CBO,∴∠MBO=∠MOB,∴OM=BM∵OM=ON+MN,OM=BM,ON=CN,∴BM=CN+MN,∴MN=BM﹣CN.故选:B.9.解:延长BD交AC于点H.设AD交BE于点O.∵AD⊥BH,∴∠ADB=∠ADH=90°,∴∠ABD+∠BAD=90°,∠H+∠HAD=90°,∵∠BAD=∠HAD,∴∠ABD=∠H,∴AB =AH ,∵AD ⊥B H ,∴BD =DH ,∵DC =CA ,∴∠CDA =∠CAD ,∵∠CAD +∠H =90°,∠CDA +∠CDH =90°,∴∠CDH =∠H ,∴CD =CH =AC ,∵AE =EC ,∴S △ABE =S △ABH ,S △CDH =S △ABH ,∵S △OBD ﹣S △AOE =S △ADB ﹣S △ABE =S △ADH ﹣S △CDH =S △ACD ,∵AC =CD =3,∴当DC ⊥AC 时,△ACD 的面积最大,最大面积为×3×3=.故选:C .10.解:如图:过点D 作DM ⊥EF 于点M ,在△BDE 内部过E 、F 分别作∠MEP =∠MFP =30°,则∠EPF =∠FPD =∠EPD =120°,点P 就是费马点,在等腰Rt △DEF 中,DE =DF =,DM ⊥EF ,∴EF =DE =2∴EM =DM =1,故cos30°=,解得:PE =,则PM =,故DP =1﹣,同法可得PF =则PD +PE +PF =2×+1﹣=+1. 故选:B .二.填空题(共10小题)11.解:∵CD平分∠ACB交AB于D,∴∠ACD=∠DCB,∵DE∥BC,∴∠EDC=∠DCB,∴∠EDC=∠ECD,∴DE=EC=4cm,∵AE=5cm,∴AC=AE+EC=5+6=11(cm).故答案为:11.12.解:∵BO平分∠ABC,CO平分∠ACB,∴∠MBO=∠OBC,∠OCN=∠OCB,∵MN∥BC,∴∠MOB=∠OBC,∠NOC=∠OCB,∴∠MBO=∠MOB,∠NOC=∠NCO,∴MO=MB,NO=NC,∵AB=7,AC=6,∴△AMN的周长=AM+MN+AN=AB+AC=6+7=13.故答案为:13.13.解:如图:可以画出7个等腰三角形;故答案为7.14.解:在Rt△ABC中,∠C=90°,∵BD=DC,∴∠B=∠DCB,∵∠B+∠A=90°,∠DCB+∠DCA=90°,∴∠A=∠DCA,∴AD=DC=5,故答案为5.15.解:∵B在A的正东方,C在A地的北偏东 60°方向,∴∠BAC=90°﹣60°=30°,∵C在B地的北偏东30°方向,∴∠ABC=90°+30°=120°,∴∠C=180°﹣∠BAC﹣∠ABC=180°﹣30°﹣120°=30°,∴∠BAC=∠C,∴BC=AB=200m.故答案为:200.16.解:∵AG⊥BD,AF⊥CE,BD,CE分别是∠ABC和∠ACB的角平分线,∴AB=BG,AC=FC.∴AE=EF,AD=GD∴ED是△AFG中位线,∴FG=2ED=4;∴BG=AB=BF+FG=7,CF=AC=CG+FG=9,=3+7+9+9=28.∴C△ABC17.证明:在△ABC中,∵AB=AC,∴∠B=∠C,∵EP⊥BC,∴∠C+∠E=90°,∠B+∠BFP=90°,∴∠E=∠BFP,又∵∠BFP=∠AFE,∴∠E=∠AFE,∴AF=AE,∴△AEF是等腰三角形.又∵AF=2,BF=3,∴CA=AB=5,AE=2,∴CE=7.18.解:∵∠BAC的平分线交BC于点E,∴∠BAE=∠CAD,∵CD⊥AE,∴∠D=∠B=90°,∵AC=13,AD=12,∴CD=5,∵∠AEB=∠CED,∴∠BAE=∠DCE,∴∠DCE=∠DAC,∵∠D=∠D,∴△CDE∽△ADC,∴=,∴=,∴DE=,∴AE=,∵∠BAE=∠DAC,∠B=∠D,∴△ABE∽△ADC,∴,∴=,∴AB=,故答案为:.19.解:∵△ABC中,AD是∠BAC的平分线,∴∠BAD=∠CAD,∵DE∥AB,DE=7,CE=6,∴∠CAD=∠ADE,∴AE=DE=7,∴AC=AE+CE=7+6=13.故答案为:13.20.解:(1)∵BP、CP分别是∠ABC和∠ACB的角平分线,∴∠ABP=∠PBD,∠ACP=∠PCE,∵PD∥AB,PE∥AC,∴∠ABP=∠BPD,∠ACP=∠CPE,∴∠PBD=∠BPD,∠PCE=∠CPE,∴BD=PD,CE=PE,∴△PDE的周长=PD+DE+PE=BD+DE+EC=BC=8cm.故答案为8(2)∵∠PBD=∠BPD,∠PCE=∠CPE,∠BPC=118°,∴∠DPE=118°﹣∠PBC﹣∠PCB∵∠BPC+∠PBC+∠PCB=180°,∴∠PBC+∠PCB=180°﹣118°,∴∠DPE=118°﹣(∠PBC+∠PCB)=118°﹣180°+118°=56°.故答案为56.三.解答题(共11小题)21.解:(1)∵AB=AC,∴∠B=∠C,∵FE⊥BC,∴∠F+∠C=90°,∠BDE+∠B=90°,∴∠F=∠BDE,而∠BDE=∠FDA,∴∠F=∠FDA,∴AF=AD,∴△ADF是等腰三角形;(2)∵DE⊥BC,∴∠DEB=90°,∵∠B=60°,BD=4,∴BE=BD=2,∵AB=AC,∴△ABC是等边三角形,∴BC=AB=AD+BD=6,∴EC=BC﹣BE=4.22.证明:(1)∵BA⊥AM,MN⊥AC,∴∠BAM=∠ANM=90°,∴∠PAQ+∠MAN=∠MAN+∠AMN=90°,∴∠PAQ=∠AMN,∵PQ⊥AB MN⊥AC,∴∠PQA=∠ANM=90°,∴在△PQA与△ANM中,,∴△PQA≌△ANM(ASA)∴AP=AM,∴△APM是等腰三角形;(2)由(1)知,△PQA≌△ANM,∴AN=PQ AM=AP,∴∠AMB=∠APM∵∠APM=∠BPC,∠BPC+∠PBC=90°,∠AMB+∠ABM=90°∴∠ABM=∠PBC∵PQ⊥AB,PC⊥BC∴PQ=PC(角平分线的性质),∴PC=AN.23.解:(1)∵EF∥BC,∴∠EFB=∠FBC,∵∠DEF=∠FBC,∴∠DEF=∠EFB,∴ED∥BF,∴∠AED=∠EBF;(2)∵EF∥BC,∠A=∠C=90°,∴∠DFE=∠C=∠A=90°,∵DE∥BF,∴∠DEF=∠EFB,∵∠DEF=∠FBC,∴∠EFB=∠FBC,∵∠AED=∠FBC,∴∠AED=∠DEF,在△AED与△FED中,,∴△AED≌△FED(AAS),∴AE=EF,∵∠EBF=∠FBC,∴∠EFB=∠EBF,∴BE=EF,∴AE=BE=AB=5,∴EF=5.故答案为:5.24.解:(1)△CDE是等腰三角形,理由:∵AB=AC,∴∠ABC=∠ACB,∵DE∥AB,∴∠ABC=∠CDE,∴∠DCE=∠CDE,∴△CDE是等腰三角形;故答案为:等腰三角形;(2)BF=DF,理由:∵AB∥DE,∴∠A=∠E,∵AF=CE,∴AF=DE,AF+CF=CE+CF,即EF=AC=AB,在△AFB与△EDF中,∴△ABF≌△EDF(SAS),∴BF=DF.25.解:(1)∵CM平分∠ACB,MN平分∠AMC,∴∠ACM=∠BCM,∠AMN=∠CMN,又∵MN∥BC,∴∠AMN=∠B,∠CMN=∠BCM,∴∠B=∠BCM=∠ACM,∵∠A=90°,∴∠B=×90°=30°;(2)由(1)得,∠AMN=∠B=30°,∠MCN=∠CMN,∠A=90°,∴MN=2AN=2,MN=CN,∴CN=2.26.解:(1)∵DC∥AB,∴∠CDB=∠ABD,∵∠ABD=∠CBD,∴BC=CD=4;(2)△DEF是等边三角形,理由:∵BC=CD,CF⊥BD,∴BF=DF,又∵DE⊥AB,∴EF=BD=DF,∵∠BDE=90°﹣∠EBD=90°﹣×60°=60°,∴△DEF是等边三角形.27.证明:(1)∵AB=AC,∠BAC=36°,∴∠ABC=72°,又∵BD是∠ABC的平分线,∴∠ABD=36°,∴∠BAD=∠ABD,∴AD=BD,又∵E是AB的中点,∴DE⊥AB,即FE⊥AB;(2)∵FE⊥AB,AE=BE,∴FE垂直平分AB,∴AF=BF,∴∠BAF=∠ABF,又∵∠ABD=∠BAD,∴∠FAD=∠FBD=36°,又∵∠ACB=72°,∴∠AFC=∠ACB﹣∠CAF=36°,∴∠CAF=∠AFC=36°,∴AC=CF,即△ACF为等腰三角形.28.解:(1)∵BA=BC,∴∠BCA=∠BAC,∵DA=DB,∴∠BAD=∠B,∵AD=AC,∴∠ADC=∠C=∠BAC=2∠B,∴∠DAC=∠B,∵∠DAC+∠ADC+∠C=180°,∴2∠B+2∠B+∠B=180°,∴∠B=36°,∠C=2∠B=72°,故答案为:36;72;(2)①在△ADB中,∵DB=DA,∠B=36°,∴∠BAD=36°,在△ACD中,∵AD=AC,∴∠ACD=∠ADC=72°,∴∠CAD=36°,∴∠BAD=∠CAD=36°,∵MH⊥AD,∴∠AHN=∠AHE=90°,∴∠AEN=∠ANE=54°,即△ANE是等腰三角形;②CD=BN+CE.证明:由①知AN=AE,又∵BA=BC,DB=AC,∴BN=AB﹣AN=BC﹣AE,CE=AE﹣AC=AE﹣BD,∴BN+CE=BC﹣BD=CD,即CD=BN+CE.29.(1)证明:∵BD平分∠ABC,∴∠ABD=∠DBC,∵AD∥BC,∴∠D=∠BDC,∴∠ABD=∠D,∴△ABD为等腰三角形;(2)∠C=2∠D,理由:∵△ABD为等腰三角形;∴AB=AD,∵AD=AC,∴AB=AC,∴∠ABC=∠C,∴∠C=2∠D.30.(1)证明:∵∠B=90°,∠ACB=30°,∴∠BAC=60°∵AB∥DE,∴∠EFC=∠BAC=60°,∵∠CDE=30°,∴∠FCD=∠EFC﹣∠CDE=60°﹣30°=30°,∴∠FCD=∠FDC,∴FD=FC,即△FCD为等腰三角形;(2)解:∵DE∥AB,∴∠DEC=∠B,在△DCE和△CAB中,,∴△DCE≌△CAB,(ASA),∴CA=CD,∴∠CAD=∠ADC==75°.31.解:(1)△ODE是等腰直角三角形,理由:连接OC,在等腰Rt△ABC中,∵O是AB的中点,∴OC⊥AB,OC平分∠ACB,∴∠OCE=45°,OC=OA=OB,∠COA=90°,∵∠DOE=90°,∴∠AOD=∠COE,在△AOD与△COE中,,∴△AOD≌△COE,(ASA),∴OD=OE,∴△ODE是等腰直角三角形;(2)在旋转过程中,四边形CDOE的面积不发生变化,∵△AOD≌△COE,∴四边形CDOE的面积=△AOC的面积,∵AC=6,∴AB=6,∴AO=OC=AB=3,∴四边形CDOE的面积=△AOC的面积=×3×3=9;(3)当四边形CDFE是正方形时,其面积最大,四边形CDFE面积的最大值=9,故四边形CDFE的面积S的取值范围为:0<S≤9.。
2021年九年级数学中考复习分类专题:等腰三角形的判定与性质培优练(一)
2021年九年级数学中考复习分类专题:等腰三角形的判定与性质培优练(一)一.选择题1.如图,在等腰三角形ABC中,顶角∠A=36°.若BD平分∠ABC,则图中等腰三角形有()A.1个B.2个C.3个D.4个2.如图,在△ABC中,AB=7,AC=5,BC=6,∠ABC和∠ACB的平分线相交于点D,过点D作BC的平行线交AB于点E,交AC于点F.则△AEF的周长为()A.9 B.11 C.12 D.133.如图,D为△ABC内一点,CD平分∠ACB,BD⊥CD,∠A=∠ABD,若AC=5,BC =3,则BD的长为()A.1 B.1.5 C.2 D.2.54.如图,△ABC中,∠ABC和∠ACB的平分线交于点F,过点F作DE∥BC交AB于点D,交AC于点E,那么下列结论:①△BDF和△CEF都是等腰三角形;②∠DFB=∠EFC;③△ADE的周长等于AB与AC的和;④BF=CF.其中正确的是()A.①②③B.①②③④C.①③D.①5.在下列命题中,假命题是()A.一个等腰三角形必能分成两个全等的直角三角形B.一个直角三角形必能分成两个等腰三角形C.两个等腰三角形必能拼成一个直角三角形D.两个全等的直角三角形必能拼成一个等腰三角形6.在△ABC中,AB=AC,∠B=60°,点D、E在BC边上,且AD和AE把∠BAC三等分,则图中的等腰三角形的个数是()A.2 B.4 C.6 D.87.如图,已知点O是△ABC的∠ABC和∠ACB平分线的交点,过O作EF平行于BC交AB于E,交AC于F,AB=12,AC=18,则△AEF的周长是()A.15 B.18 C.24 D.308.如图,等腰三角形ABC中,∠BAC=90°,在底边BC上截取BD=AB,过D作DE ⊥BC交AC于E,连接AD,则图中等腰三角形的个数是()A.1 B.2 C.3 D.49.如图,已知D为△ABC内一点,CD平分∠ACB,BD⊥CD,∠A=∠ABD,若AC=9,BC=5,则CD的长为()A.B.4 C.D.510.如图,在△ABC中,ED∥BC,∠ABC和∠ACB的平分线分别交ED于点G、F,若FG=2,ED=6,则EB+DC的值为()A.6 B.7 C.8 D.9二.填空题11.如图,在矩形ABCD中,AB=4,AD=3,在矩形内部有一点P,同时满足PC=BC,∠APB=90°,延长CP交AD于点E,则CE=.12.在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC,分别交AB、AC于点E、F.若AB=5,AC=4,那么△AEF的周长为.13.如图,在△ABC中,AB=AC=8,点D是BC边上一点,且DF∥AB,DE∥AC,则四边形DEAF的周长为.14.如图,在△ABC中,∠ABC与∠ACB的平分线相交于点O,过点O作MN∥BC,分别交AB、AC于点M、N.若△ABC的周长为15,BC=6,则△AMN的周长为.15.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC交AB于E,交AC于F,过点O作OD⊥AC于D,下列四个结论:①EF=BE+CF;②∠BOC=90°+∠A;③点O到△ABC各边的距离相等;④设OD=m,AE+AF=n,则S△AEF=mn.其中正确的结论是.(填序号)三.解答题16.如图,△ABC中,∠A=36°,∠C=72°,∠DBC=36°.(1)求∠ABD的度数.(2)求证:BC=AD.17.如图,在△ABC中,已知∠ABC和△ABC的外角∠ACG的平分线交于点F,过点F 作FD∥BC,FD分别交AB、AC于点D、E.(1)求证:DE=BD﹣CE.(2)若∠ACB=60°,试判断△ECF的形状,并说明理由.18.已知△ABC的两个外角∠CBD和∠BCE的平分线的交于点O.(1)如图1,若BO∥AE,试说明△ABC的等腰三角形;(2)如图2,若∠A=90°,求∠O的度数;(3)如图3,试探索∠O与∠A之间存在的数量关系(直接写出结论,不说明理由).19.已知BD是△ABC的角平分线,DE∥BC,交AB于点E.(1)如图1,求证:BE=DE.(2)如图2,在过点D作DF∥AB,连接EF,过点E作EG⊥BC,若EG=3,BF=5,在不添加任何辅助线的情况下,请直接写出面积等于的所有三角形.20.如图1和2,△ABC中,BE平分∠ABC交AC边于点E,(1)过点E作DE∥BC交AB于点D,求证:△BDE为等腰三角形;(2)若AB=AC,AF⊥BD,∠ACD=∠ABC,判断BF、CD、DF的数量关系,并说明理由.21.(1)如图1,已知:在△ABC中,AB=AC=10,BD平分∠ABC,CD平分∠ACB,过点D作EF∥BC,分别交AB、AC于E、F两点,则图中共有个等腰三角形;EF与BE、CF之间的数量关系是,△AEF的周长是(2)如图2,若将(1)中“△ABC中,AB=AC=10”改为“若△ABC为不等边三角形,AB=8,AC=10”其余条件不变,则图中共有个等腰三角形;EF与BE、CF之间的数量关系是什么?证明你的结论,并求出△AEF的周长(3)已知:如图3,D在△ABC外,AB>AC,且BD平分∠ABC,CD平分△ABC的外角∠ACG,过点D作DE∥BC,分别交AB、AC于E、F两点,则EF与BE、CF之间又有何数量关系呢?直接写出结论不证明.参考答案一.选择题1.解:由图可知,∵AB=BC,∴△ABC为等腰三角形,∵∠A=36°,BD平分∠ABC,∴∠ABD=∠DBC=∠A=36°∴△ABD为等腰三角形,∵∠BDC=∠A+∠ABD=72°=∠C∴△BCD均为等腰三角形,∴题中三角形共有三个.故选:C.2.解:∵BD是∠ABC的平分线,∴∠EBD=∠DBC,∵过点D作BC的平行线交AB于点E,∴∠EDB=∠EBD,∴BE=ED,∴∠EDB=∠EBD,同理可得DF=FC,∴△AEF的周长即为AB+AC=7+5=12.故选:C.3.解:延长BD与AC交于点E,∵∠A=∠ABD,∴BE=AE,∵BD⊥CD,∴BE⊥CD,∵CD平分∠ACB,∴∠BCD=∠ECD,∴∠EBC=∠BEC,∴△BEC为等腰三角形,∴BC=CE,∵BE⊥CD,∴2BD=BE,∵AC=5,BC=3,∴CE=3,∴AE=AC﹣EC=5﹣3=2,∴BE=2,∴BD=1.故选:A.4.解:①∵DE∥BC,∴∠DFB=∠FBC,∠EFC=∠FCB,∵BF是∠ABC的平分线,CF是∠ACB的平分线,∴∠FBC=∠DFB,∠FCE=∠FCB,∵∠DBF=∠DFB,∠EFC=∠ECF,∴△DFB,△FEC都是等腰三角形.∴①正确②∵△ABC不是等腰三角形,∴②∠DFB=∠EFC,是错误的;③∵△DFB,△FEC都是等腰三角形.∴DF=DB,FE=EC,即有DE=DF+FE=DB+EC,∴△ADE的周长AD+AE+DE=AD+AE+DB+EC=AB+AC.∴③正确,共2个正确的.④∵△ABC不是等腰三角形,∴∠ABC≠∠ACB,∴∠FBC≠∠FCB,∴BF=CF是错误的,故选:C.5.解:A、一个等腰三角形底边上的高把等腰三角形分成两个全等的直角三角形,所以A 选项正确;B、一个直角三角形斜边上中线把直角三角形分成两个等腰三角形;所以B选项正确;C、任意两个等腰三角形不一定能拼成一个直角三角形,所以C选项错误;D、两个全等的等腰直角三角形一定能拼成一个等腰三角形,所以D选项正确.故选:C.6.解:∵AB=AC,∠B=60°,∴△ABC是等边三角形,∴∠BAC=60°,∵AD和AE把∠BAC三等分,∴∠BAD=∠DAE=∠EAC=20°,∴∠ADE=∠BAD+∠B=60°+20°=80°,∠AED=∠EAC+∠C=60°+20°=80°,∴∠ADE=∠AED,∴AD=AE,∴△ADE是等腰三角形,∴一共有2个等腰三角形.故选:A.7.解:∵EF∥BC∴∠OCB=∠OCF,∠OBC=∠OBE又BO、CO分别是∠BAC和∠ACB的角平分线∴∠OCF=∠FCO,∠OBC=∠OBE∴OF=CF,OE=BE∴△AEF的周长=AF+OF+OE+AE,=AF+CF+BE+AE=AB+AC=12+18=30.故选:D.8.解:∵三角形ABC是等腰三角形,且∠BAC=90°,∴∠B=∠C=45°,∵DE⊥BC,∴∠EDB=∠EDC=90°∴∠DEC=∠C=45°,∴△EDC是等腰三角形,∵BD=AB,∴△ABD是等腰三角形,∴∠BAD=∠BDA,而∠EAD=90°﹣∠BAD,∠EDA=90°﹣∠BDA,∴∠EAD=∠EDA,∴△EAD是等腰三角形,因此图中等腰三角形共4个.故选:D.9.解:延长BD与AC交于点E,∵∠A=∠ABD,∴BE=AE,∵BD⊥CD,∴BE⊥CD,∵CD平分∠ACB,∴∠BCD=∠ECD,∴∠EBC=∠BEC,∴△BEC为等腰三角形,∴BC=CE,∵BE⊥CD,∴2BD=BE,∵AC=9,BC=5,∴CE=5,∴AE=AC﹣EC=9﹣5=4,∴BE=4,∴BD=2.∴CD===,故选:C.10.解:∵ED∥BC,∴∠EGB=∠GBC,∠DFC=∠FCB,∵∠GBC=∠GBE,∠FCB=∠FCD,∴∠EGB=∠EBG,∠DCF=∠DFC,∴BE=EG,CD=DF,∵FG=2,ED=6,∴EB+CD=EG+DF=EF+FG+FG+DG=ED+FG=8,故选:C.二.填空题(共5小题)11.解:如图,延长AP交CD于F,∵∠APB=90°,∴∠FPB=90°,∴∠CPF+∠CPB=90°,∵四边形ABCD是矩形,∴∠DAB=∠ABC=90°,BC=AD=3,∴∠EAP+∠BAP=∠ABP+∠BAP=90°,∴∠EAP=∠ABP,∵PC=BC=3,∴∠CPB=∠CBP,∴∠CPF=∠ABP=∠EAP,∵∠APE=∠CPF,∴∠EAP=∠APE,∴AE=PE,∴DE=3﹣PE,∵CD2+DE2=CE2,CD=AB=4,CE=3+PE,∴42+(3﹣PE)2=(3+PE)2,解得:PE=,∴CE=3+=,故答案为:.12.解:由∠ABC与∠ACB的平分线相交于点O,得∠EBO=∠OBC,∠FCO=∠OCB.由EF∥BC,得∠EOB=∠BOC,∠FOC=∠OCB,∠EOB=∠EBO,∠FOC=∠FCO,∴EO=BE,OF=FC.C△AEF=AE+EF+AF=AE+BE+AF+CF=AB+AC=9.故答案为:9.13.解:∵AB=AC,∴∠B=∠C,∵DE∥AB,∴∠B=∠CDF,∴∠CDF=∠C,∴DF=CF∴CE=DE,同理可得BE=DE,∴四边形DEAF的周长=AF+DF+DE+AE=AF+BF+CE+AE=AB+AC,∵AB=AC=8,∴四边形DEAF的周长=8+8=16.故答案为:16.14.解:如图,∵OB、OC分别是∠ABC与∠ACB的平分线,∴∠1=∠5,∠3=∠6,又∵MN∥BC,∴∠2=∠5,∠6=∠4,∴BM=MO,NO=CN,∴△AMN的周长=AM+AN+MN=MA+AN+MO+ON=AB+AC,又∵AB+AC+BC=15,BC=6,∴AB+AC=9,∴△AMN的周长=9,故答案为9.15.解:∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=∠ABC,∠OCB=∠ACB,∠A+∠ABC+∠ACB=180°,∴∠OBC+∠OCB=90°﹣∠A,∴∠BOC=180°﹣(∠OBC+∠OCB)=90°+∠A;故②正确;∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=∠OBE,∠OCB=∠OCF,∵EF∥BC,∴∠OBC=∠EOB,∠OCB=∠FOC,∴∠EOB=∠OBE,∠FOC=∠OCF,∴BE=OE,CF=OF,∴EF=OE+OF=BE+CF,故①正确;过点O作OM⊥AB于M,作ON⊥BC于N,连接OA,∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴ON=OD=OM=m,∴S△AEF=S△AOE+S△AOF=AE•OM+AF•OD=OD•(AE+AF)=mn;故④错误;∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴点O到△ABC各边的距离相等,故③正确.故答案是:①②③三.解答题(共6小题)16.(1)解:在△ABC中,∠ABC=180°﹣∠A﹣∠C=72°,∴∠ABD=∠ABC﹣∠DBC=36°;(2)证明:在△BCD中,∠BDC=180°﹣∠DBC﹣∠C=72°,∴BD=BC,又∠ABD=∠A,∴BD=AD,∴BC=BD=AD.17.解:(1)∵∠ABC的平分线和外角∠ACF的平分线交于点F,∴∠DBF=∠CBF,∠ECF=∠GCF;∵FD∥BC,∴∠DFB=∠CBF,∠EFC=∠GCF,∴∠DBF=∠DFB,∠ECF=∠EFC,∴BD=FD,EC=EF;∴DE=BD﹣CE;(2)△ECF是等边三角形,∵∠ACB=60°,∴∠ACG=120°,∵CF平分∠ACG,∴∠ECF=60°,∵EF=CF,∴△ECF是等边三角形.18.解:(1)如图1中,∵OB∥AE,∴∠DBO=∠A,∠CBO=∠ACB,∵OB平分∠CBD,∴∠A=∠ACB,∴BA=BC,∴△ABC是等腰三角形.(2)如图2中,∵∠CBD、∠BCE的平分线相交于点O,∴∠1=(∠A+∠ACB),∠2=(∠A+∠ABC),∴∠1+∠2=(∠A+∠ACB+∠ABC+∠A),∵∠A+∠ACB+∠ABC=180°,∴∠1+∠2=90°+∠A,在△OBC中,∠BOC=180°﹣(∠1+∠2)=180°﹣(90°+∠A)=90°﹣∠A,∵∠A=90°,∴∠BOC=90°﹣×90°=90°﹣45°=45°.(3)由(2)可知:∠BOC=90°﹣∠A.19.(1)证明:∵DE∥BC,∴∠EDB=∠DBC,∵BD是△ABC的角平分线,∴∠EBD=∠DBC,∴∠EBD=∠EDB,(2)∵ED∥BF,DF∥BE,∴四边形EBFD是平行四边形,∵EG⊥BC,且EG=3,∴S=BF•EG=3×5=15,▱EBFD∴S△EFD=S△BEF=S△BED=S△BFD=.20.(1)证明:∵BE平分∠ABC,∴∠ABE=∠EBC,∵DE∥BC,∴∠DEB=∠EBC=∠ABE,∴BD=ED,∴△DBE为等腰三角形;(2)解:在图2中,延长CD到M,使得CM=BD,连接AM,过点A作AN⊥CM 于点N,∵BE平分∠ABC,∠ACD=∠ABC,∴∠ACM=∠ABD.在△ABD和△ACM中,,∴△ABD≌△ACM(SAS),∴AD=AM,∠ADB=∠AMC,∴∠AMD=∠ADM,∴∠ADF=ADN.∵AN⊥DM,∴DN=MN.在△ADF和△ADN中,,∴△ADF≌△ADN(AAS),∴DF=DN=MN.∴BF=BC﹣DF=CM﹣MN=CN=CD+DN=CD+DF.即BF=CD+DF.21.解:(1)BE+CF=EF.理由如下:∵AB=AC,∴∠ABC=∠ACB,∵BD平分∠ABC,CD平分∠ACB,∴∠EBD=∠CBD,∠FCD=∠BCD,∴∠DBC=∠DCB,∴DB=DC∵EF∥BC,∴∠AEF=∠ABC,∠AFE=∠ACB,∠EDB=∠CBD,∠FDC=∠BCD,∴∠EBD=∠EDB,∠FDC=∠BCD,∴BE=DE,CF=DF,AE=AF,∴等腰三角形有△ABC,△AEF,△DEB,△DFC,△BDC共5个,∴BE+CF=DE+DF=EF,即BE+CF=EF,△AEF的周长=AE+EF+AF=AE+BE+AF+FC=AB+AC=20.故答案为:5;BE+CF=EF;20;(2)BE+CF=EF,∵BD平分∠ABC,CD平分∠ACB,∴∠EBD=∠CBD,∠FCD=∠BCD,∵EF∥BC,∴∠EDB=∠CBD,∠FDC=∠BCD,∴∠EBD=∠EDB,∠FDC=∠BCD,∴BE=DE,CF=DF,∴等腰三角形有△BDE,△CFD,∴BE+CF=DE+DF=EF,即BE+CF=EF.可得△AEF的周长为18.(3)BE﹣CF=EF,由(1)知BE=ED,∵EF∥BC,∴∠EDC=∠DCG=∠ACD,∴CF=DF,又∵ED﹣DF=EF,∴BE﹣CF=EF.。
等腰三角形知识要点及培优试题
等腰三角形性质与判定知识点及精选练习题知识梳理知识点1:等腰三角形的性质定理1(1)文字语言:等腰三角形的两个底角相等(简称“等边对等角”)(2)符号语言:如图,在△ABC中,因为AB=AC,所以∠B=∠C(3)证明:取BC的中点D,连接AD在△ABD和△ACD中∴△ABD≌△ACD(SSS)∴∠B=∠C(全等三角形对应角相等)(4)定理的作用:证明同一个三角形中的两个角相等。
知识点2:等腰三角形性质定理2(1)文字语言:等腰三角形的顶角平分线,底边上的中线,底边上的高,互相重合(简称“三线合一”)(2)符号语言:∵AB=AC,BD=DC∴∠1=∠2,AD⊥BC(3)定理的作用:可证明角相等,线段相等或垂直。
说明:在等腰三角形中经常添加辅助线,虽然“顶角的平分线,底边上的高、底边上的中线互相重合,如何添加要根据具体情况来定,作时只作一条,再根据性质得出另两条”。
知识3:等腰三角形的判定定理(1)文字语言:如果一个三角形的两个角相等,那么这两个角所对的边也相等(简写为“等角对等边”)(2)符号语言:在△ABC中,∵∠B=∠C ∴AB=AC(3)证明:过A作AD⊥BC于D,则∠ADB=∠ADC=90°。
在△ABD和△ACD中∴△ABD≌△ACD (AAS)∴AB=AC(4)定理的作用:等腰三角形的判定定理揭示了三角形中角与边的转化关系,它是证明线段相等的重要定理,也是把三角形中角的相等关系转化为边的相等关系的重要依据,是本节的重点。
说明:①本定理的证明用的是作底边上的高,还有其他证明方法(如作顶角的平分线)。
②证明一个三角形是等腰三角形的方法有两种:1、利用定义2、利用定理。
知识点4:等腰三角形的推论1. 推论:推论1:三个角都相等的三角形是等边三角形。
推论2:有一个角等于60°的等腰三角形是等边三角形。
推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
等腰三角形的性质习题附答案
等腰三角形的性质一.判断题 (本大题共 40 分)1. 等腰三角形一点到底边两端点距离相等, 则这点和这个等腰三角形的顶点及底边 中点在同一直线上. ( )2. 已知如图AB =AC, OB =OC, 则∠ABO =∠ACO( )3. 如图已知△ABC 中AB =AC, AD 平分△ABC 的外角∠EAC, 则AD ∥BC. ( )4.( )5. 等腰三角形的底角一定是锐角.( )6. 已知如图, △ABC 是等边三角形, D 是BC 中点 DE ⊥AC 于E, 则 EC =AC( )7. 等腰三角形的底角不一定是锐角. ( )8. 如图△ABC 中AB =AC, D 、E 分别为AC 、BC 上的点, 则DB >DE ( )9. 等腰三角形底边上的高上任意一点到两腰的距离相等 ( ) 10. 等腰三角形两腰上中线的交点到底边的两端点距离相等.( ) 11. 如图, D 是等腰三角形底边BC 上一点. 则 ∠ADC >∠C. ( )12. 等腰三角形一腰上中线把它周长分为15cm 和6cm 两部分,则这个三角形三边长为10cm 、10cm 、1cm( )13. 等腰三角形中, 两个角的比为1:4, 则顶角的度数为20°. ( )14. 等边三角形的边长为a, 则高为 a. ( ) 15. 等腰三角形的顶角可以是直角、锐角或钝角. ( )16. 如图, 已知: △ABC 的AB =AC, D 是AB 上一点, DE ⊥BC, E 是垂足, ED 的延长线交CA 的 延长线于F, 则AD =AF. ( )17. 如图B 、D 、E 、C 在同一直线上, 若AB =AC, ∠1=∠2, 则 ∠3=∠4. ( )18. 等边三角形ABC 中, D 是AC 中点, E 为BC 延长线上一点, 且 DB =DE. 则 CE =CD( )19. 已知, △ABC 中, AB =AC, ∠B =75°, CD ⊥AB 于D, 则CD =AB( )20. 等腰三角形底边上的中点到两腰的距离相等.( )21. 如图, B 、D 、E 、C 在同一直线上, 若AB =AC, ∠3=∠4, 则∠1=∠2.( )22. 因为等腰三角形的底角一定是锐角, 所以等腰三角形是锐角三角形. ( ) 23. 如图, △ABC 和△CDE 都是等边三角形, 则 AD =BE. ( )24. 如图, 已知: 四边形ABCD 中, ∠ABC =∠ADC, AB =AD, 则 CB=CD. ( )25. 如果三角形一边上的中线等于这边的一半, 这个三角形不一定是直角三角形. ( ) 26. 等腰三角形角平分线、高线、中线在同一条直线上 ( ) 27. 已知如图, △ABC 中, ∠B >∠C, 点D 是AC 上的一点, 且AD =AB, 则∠DBC =(∠ABC-∠C)( )28. 如果等腰三角形的顶角为50°, 那么一腰上的高与底边的夹角是40°.( )29. 已知△ABC 中, AB =AC, D 在AB 上且∠DCB =∠A, 则 CD ⊥AB ( )30. 等腰三角形两腰上的中线相等. ( )31. 已知△ABC 中, AB =AC, CD ⊥AB 于D, 则 ∠DCB =∠A( )32. 如图, AB =AE, ∠B =∠E, CB =ED. F 是CD 的中点, 则AF ⊥CD. ( )33. 等腰三角形顶角的顶点到两腰中线的距离相等. ( )34. 已知: 如图在△ABC 中, AB =AC, D 是BC 延长线上一点, E 是AB 上一点, DE 交AC 于点F , 则 AE <AF ( )35. 在△ABC 中, AB ≤AC, 延长CB 到D, 使BD =BA, 连结AD, 则 AD <AC.( )36. 已知: 如图, D 为等腰直角△ABC 的直角边BC 延长线上一点, 且CD =CE, BE 延长线交AD 于F, 则BF ⊥AD( )37.在△ABC 中, ∠A =2∠B, 则BC <2AC. ( )38. 已知, 如图 AD =DC, DE 平分∠ADB, F 是AC 中点, 则DE ⊥DF. ( )39. 已知如图: △ABC 和△ADE 都是等腰三角形且顶角∠BAC =∠DAE, 则BD =CE ( )40. 如图, 已知: △ABC 中, ∠ABC =2∠C, AH ⊥BC, 垂足为H 延长AB 至D, 使 BD =BH,DH 的延长线交AC 于点M, 则MA =MC( )二.单选题 (本大题共 60 分)1.在△ABC中, AB=AC, ∠A=40°, 点O在三角形且∠OBC=∠OCA, 则∠BOC的度数是 [ ]A.110°B.35°C.140°D.55°2.如图在△ABC中, AB=AC, ∠A=40°, P为△ABC的一点, 且∠PBC=∠PCA,则∠BPC的度数是[ ] A.115° B.110° C.120°D.130°3.等腰三角形一边长5cm, 另一边长是3cm, 它的周长是 [ ]A.11cmB.13cmC.11cm或13cmD.以上都不对4.等腰三角形的一个角等于20°, 则它的另外两个角等于 [ ]A.20°、140°B.20°、140°或80°、80°C.80°、80°D.20°、80°5.已知等腰三角形的一边长为4, 另一边长为9, 则它的周长为[ ]A.17B.17或22C.22D.136.一个等腰三角形的一个角为70°, 则它一腰上的高与底边所夹的角的度数为[ ] A.55° B.55°或70° C.20°D.20°或35°7.等腰三角形顶角的度数是底角度数的4倍, 那么,它的底角的度数是[ ]A.120°B.30°C.60°D.90°8.有一个角是50°的等腰三角形其顶角的度数为 [ ] A.80° B.50° C.80°或50° D.65.5°9.等腰三角形周长12厘米,其中一边长2厘米,其他两边分别长 [ ]A.2厘米,8厘米 B.5厘米,5厘米C.5厘米,5厘米或2厘米,8厘米 D.无法确定10.等腰三角形两边分别为35厘米和22厘米, 则它的第三边长为 [ ]A.35cmB.22cmC.35cm或22cmD.15cm11.已知等腰三角形的两个角之比为1∶2, 则顶角的度数是 [ ]A.90°B.36°C.36°或90°D.120°12.等腰三角形两边长是9cm和15cm, 则它的周长是 [ ]A.24cmB.33cmC.39cmD.33cm或39cm13.等边三角形ABC中, CD是∠ACB的平分线, 过D作BC的平行线交AC于E, 若△ABC的边长是a, 则△ADE 的周长是 [ ]A.2aB. aC. aD. a14.如果等腰三角形的周长为21, 其中一边长为5, 那么此等腰三角形底边长是 [ ]A.11B.5C.5或11D.815.已知等腰三角形中一个角为50°, 则这个三角形腰上的高和底边夹角的度数为 [ ]A.25°B.40°C.25°或40°D.以上答案都不对16.在等腰△ABC中, AB的长是AC的二倍, 三角形的周长是40, 则AB的长等于. [ ]A.20B.16C.20或16D.1017.等腰三角形的底边为a, 顶角是底角的4倍. 则腰上的高为 [ ] A.a B. C. a D.2a18.已知等腰三角形的一边长为5, 另一边长为6, 则它的周长为 [ ]A.16B.16或17C.17D.1119.等腰三角形底边长为5厘米,一腰上的中线把三角形分成两部分,其周长之差为3厘米,则它的腰长为[ ]A .8厘米B .5厘米C .2厘米或8厘米D .2厘米20. 等腰三角形有一个角是45°, 那么这个三角形是 [ ] A.锐角三角形 B.直角三角形 C.钝角三角形 D.不唯一确定21. 如图△ABC 中, AB =AC, 且EB =BD =DC =CF, ∠A =40°, 则∠EDF 的度数为[ ]A.70°B.110°C.55°D.60°22. 已知等腰三角形的一个角为20°, 则它的另外两个角分别为[ ]A.20°,140°B.80°,80°C.20°,140°或80°,80°D.20°,80°23. 如果一个等腰三角形的一腰是顶角平分线的2倍, 那么这个三角形必有一个角等于[ ]A.45°B.60°C.90°D.120°24. 如图, 在Rt △ABC 中, ∠C=90°, ∠DBC=26°,且AD=DB,则∠A=[ ]A.26°B.32 °C.64°D.52°25. 一个等腰三角形的角平分线、高线和中线的总数最多有[ ]A .3条B .5条C .7条D .9条26. 至少有两边相等的三角形是 [ ] A .等腰三角形 B .等边三角形 C .等腰直角三角形D .锐角三角形27. 已知:等腰三角形的一边等于4, 一边等于8, 则这个等腰三角形的周长是 [ ] A.20 B.16 C.20或16 D.无法确定28. 如图, AB =AC, FD ⊥BC 于D, DE ⊥AB 于E, 若∠AFD =155°, 那么∠EDF 的度数是[ ]A.45°B.55°C.65°D.75°29. 一条等腰三角形底边上的高等于底边的一半, 那么这个等腰三角形的顶角 [ ] A.小于60° B.等于60° C.等于90° D.大于90°30. 等边三角形的高、中线、角平分线共有________条.[ ] A.9 B.7 C.6 D.3 31. 等腰三角形有一个角是,则它顶角的大小为 [ ]A .B .C .D .32. 等腰三角形的两边长为25cm 和12cm, 那么它的第三条边长为[ ]A.25cmB.12cmC.25cm或12cmD.37cm33.在等腰△ABC 中,AB=AC ,BD平分∠ABC ,并交AC于D .如果∠CDB=,那么∠A等于[ ] A.B.C.D.34.若一个等腰三角形的两边分别是3cm和6cm, 则它的周长为 [ ]A.15cmB.12cmC.12cm或15cmD.18cm35.如果一个三角形的三条高线的交点恰是这个三角形的一个顶点,那么此三角形 [ ]A.是锐角三角形B.是钝角三角形C.是直角三角形D.形状不确定36.等腰三角形两边是9cm和15cm, 则它的周长是 [ ]A.24cmB.33cmC.39cmD.33cm或39cm37.等腰Rt△ABC中, ∠C=90° D是BC上一点, 且AD=2CD 则∠ADB的度数为 [ ]A.30°B.60°C.120°D.150°38.已知等腰三角形的一边等于4, 一边等于8, 则这个等腰三角形的周长是 [ ]A.20B.16C.20或16D.无法确定39.已知:如图, △ABD和△ACE均为等边三角形, 那么△ADC≌△AEB的根据是 [ ]A.边,边,边B.边,角,边C.角,边,角D.角,角,边40.一个等腰三角形底边上的高等于底边的一半, 那么这个等腰三角形的顶角 [ ]A.小于60°B.等于60°C.等于90°D.大于90°41.在△ABC中, AB=AC, ∠A+ ∠B=130°, 则∠A、∠B、∠C的度数是[ ]A.∠A=50°、∠B=80°、∠C=80°B.∠A=50°、∠B=80°、∠C=50°C.∠A=50°、∠B=50°、∠C=80°D.∠A=80°、∠B=50°、∠C=50°42.等腰三角形顶角是84°,则一腰上的高与底边所成角的度数是 [ ]A.42°B.6°C.36°D.46°43.如图: AB=AC, ∠BAD=30°AD⊥BC且AD =AE, 则∠EDC=[ ]A.10°B.12.5°C.15°D.20°44.等腰三角形一腰上的高与底所夹的角等于 [ ]A.顶角B.顶角的C.顶角的2倍D.底角的45.等腰三角形边长分别是3和6,这个三角形的周长是[ ] A.9 B.12C.15 D.12或1546.用一条长为12cm的铁丝做等腰三角形, 底和腰的长必须是正整数, 若底的长为xcm,则腰的长y可为 [ ]A.5cmB.5cm或4cmC.4cmD.-5cm47.一个等腰三角形底边为8cm, 从底边上一个端点引腰的中线, 分三角形周长为两部分,其中一部分比另一部分长2cm, 则腰长为 [ ]A.6cmB.10cmC.6cm或10cmD.以上都不对48. 一个等腰但非等边三角形, 它的角平分线, 中线和高线的条数共为 [ ] A.6 B.7 C.8 D.949. 已知:如图在△ABC 中, AB=AC, CD 为∠ACB 平分线,DE ∥BC,∠A=40°, 则∠EDC 的度数是[ ]A.30°B.36°C.35°D.54°50. 等腰三角形两个角的比为4∶1, 则顶角为 [ ] A.120° B.20° C.120°或20° D.150°51. 如图已知: AB =AC =BD, 那么∠1与∠2之间的关系满足[ ]A.∠1=2∠2B.2∠1+∠2=180°C.∠1+3∠2=180°D.3∠1-∠2=180°52.若等腰三角形的两边a 、b 满足,则此等腰三角形的周长为 [ ]A .7B .5C .8D .7或553.等腰△ABC 中,两腰上的中线BE 、CD 交于O ,则下列判断中错误的是[ ]A .△ADC ≌△AEB B .△DBC ≌△ECB C .△ABE ≌△BCDD . △BOD ≌△COE54.从等腰三角形底边上任一点,分别作两腰的平行线所成的四边形的周长等于此等腰三角形的[ ]A .周长B .周长一半C .一腰长D .两腰长的和 55.等腰三角形一腰上的高与底边所成的角等于 [ ]A .顶角B .顶角的一半C .顶角的2倍D .底角的一半56.如下图,△ABC 中,AB=AC ,点D 、E 、F 分别在BC 、AB 、AC 上,且DE=BE ,DF=DC ,若∠A=,则∠EDF=[ ]A .B .C .D .57. 等腰三角形底边长为5厘米, 一腰上的中线把三角形分成两部分, 其周长之差为3厘米, 则它的腰长为 [ ]A.2厘米B.8厘米C.2厘米或8厘米D.9厘米58. 如图△ABC 中, AB =AC, ∠A =50°, P 是△ABC 的一点, 且∠PBC =∠PCA, 则∠BPC的度数为[ ]A.115°B.100°C.130°D.140°59. 如图, △ABC 中, AB =AC, CD ⊥AB, 则关于∠A 正确的等式是[ ]A.∠A =∠BB.∠A =∠ACBC.∠A =2∠ACBD.∠A =2∠DCB60. 如图在△ABC 中, AB =AC, BC =BD, AD =DE =EB, 则∠A 的度数是[ ]A.30°B.36°C.45°D.54°三.填空题 (本大题共 30 分)1. 周长为20cm 的等腰三角形中, 底边长为acm, 则一腰长为________cm .2. 如图△ABC 中, AB =AC, ∠A =40°, ∠AED =∠F, 则∠F =___________度.3. 已知等腰三角形有两条边的长分别是3cm 和7cm, 那么这个三角形的周长等于__________cm4. 已知如图, A 、D 、C 在一条直线上AB =BD =CD, ∠C =40°, 则∠ABD =______度.5. 等腰三角形的周长为36, 腰比底长3, 则此等腰三角形的腰长为________, 底边长为________.6. 等腰三角形的底边为12cm,且腰是底的, 则三角形的周长是_______cm7. 已知等腰三角形的一个底角等于顶角的4倍, 则这个等腰三角形的顶角为_______度. 8. 等腰三角形底边中线与________和________重合.9. 已知: 如图: △ABC 中, AB =BC, ∠B =90°, AD ∥BC, ∠D =70°, 则∠EFA =____度10. 已知:等腰三角形的一个角为100°, 则另两个角的度数为________.11.△ABC 中,如果AB=AC ,点M 是BC 边中点,那么M 到______两边的距离相等,AM 上的点到_____ _两点的距离相等。
中考数学总复习《等腰三角形》专项提升练习题(附答案)
中考数学总复习《等腰三角形》专项提升练习题(附答案) 学校:___________班级:___________姓名:___________考号:___________一、选择题1.若一个等腰三角形的两边长分别是2和5,则它的周长为( )A.12B.9C.12或9D.9或72.若等腰三角形的顶角为40°,则它的底角度数为( )A.40°B.50°C.60°D.70°3.如图,在等腰三角形ABC中,AB=AC,BD平分∠ABC,∠A=36°,则∠1的度数为( )A.36°B.60°C.72°D.108°4.如图,在△ABC中,D为BC的中点,AD⊥BC,E为AD上一点,∠ABC=60°,∠ECD=40°,则∠ABE=( )A.10°B.15°C.20°D.25°5.如图,在△ABC中,AB=AC,点D、E在BC上,连接AD、AE,如果只添加一个条件使∠DAB=∠EAC,则添加的条件不能为( )A.BD=CEB.AD=AEC.DA=DED.BE=CD6.等腰三角形补充下列条件后,仍不一定成为等边三角形的是( )A.有一个内角是60°B.有一个外角是120°C.有两个角相等D.腰与底边相等7.等边△ABC的两条角平分线BD和CE相交所夹锐角的度数为( )A.60°B.90°C.120°D.150°8.如图,等边△OAB的边长为2,则点B的坐标为( )A.(1,1)B.(3,1)C.(3,3)D.(1,3)9.如图,△ABC中∠A=30°,E是AC边上的点,先将△ABE沿着BE翻折,翻折后△ABE的AB边交AC于点D,又将△BCD沿着BD翻折,C点恰好落在BE上,此时∠CDB=82°,则原三角形的∠B为( )A.75°B.76°C.77°D.78°10.如图,在△ABC中,AB=AC,D、E是△ABC内的两点,AD平分∠BAC,∠EBC=∠E=60°,若BE=6 cm,DE=2 cm,则BC的长为( )A.4 cmB.6 cmC.8 cmD.12 cm二、填空题11.等腰三角形的一个内角为100°,则顶角的度数是________.12.如图,已知△ABC的角平分线CD交AB于D,DE∥BC交AC于E,若DE=3,AE=4,则AC=.13.如图,l∥m,等边△ABC的顶点B在直线m上,∠1=20°,则∠2的度数为.14.如图所示,△ABC为等边三角形,AD⊥BC,AE=AD,则∠ADE=________.15.已知一张三角形纸片ABC(如图甲),其中AB=AC.将纸片沿过点B的直线折叠,使点C落到AB边上的E点处,折痕为BD(如图乙).再将纸片沿过点E的直线折叠,点A恰好与点D重合,折痕为EF(如图丙).原三角形纸片ABC中,∠ABC的大小为.16.《蝶几图》是明朝人戈汕所作的一部组合家具的设计图(蜨,同“蝶”),如图为某蝶几设计图,其中△ABD和△CBD为“大三斜”组件(大三斜组件为两个全等的等腰直角三角形),已知某人位于点P处,点P与点A关于直线DQ对称,连接CP、DP.若∠ADQ=25°,则∠DCP的度数为.三、解答题17.如图,在△ABC中,AC=DC=DB,∠ACD=100°,求∠B的度数.18.如图,△ABC中,AC=BC,点D在BC上,作∠ADF=∠B,DF交外角∠ACE的平分线CF于点F.(1)求证:CF∥AB;(2)若∠CAD=20°,求∠CFD的度数.19.如图,等边△ABC中,AD是∠BAC的角平分线,E为AD上一点,以BE为一边且在BE下方作等边△BEF,连接CF.(1)求证:AE=CF;(2)求∠ACF的度数.20.如图,△ABC是等边三角形,D、E、F分别是AB、BC、AC上一点,且∠DEF=60°.(1)若∠1=50°,求∠2;(2)连接DF,若DF∥BC,求证:∠1=∠3.21.如图,在△ABC中,AB=BC,CD⊥AB于点D,CD=BD,BE平分∠ABC,点H是BC 边的中点,连接DH,交BE于点G,连接CG.(1)求证:△ADC≌△FDB;(2)求证:CE=12BF;(3)判断△ECG的形状,并证明你的结论;22.如图,已知在等边三角形ABC中,点D、E分别在直线AB、直线AC上,且AE=BD.(1)当点D、E分别在边AC、边AB上时,如图1所示,EB与CD相交于点G,求∠CGE 的度数;(2)当点D、E分别在边CA、边AB的延长线上时,如图2所示,∠CGE的度数是否变化?如不变,请说明理由.如变化,请求出∠CGE的度数.答案1.A2.D3.C4.C.5.C6.C7.A8.D9.D10.C.11.答案为:100°.12.答案为:7.13.答案为:40°.14.答案为:75°15.答案为:72°.16.答案为:20°.17.解:∵AC=DC=DB,∠ACD=100°∴∠CAD=(180°﹣100°)÷2=40°∵∠CDB是△ACD的外角∴∠CDB=∠A+∠ACD=100°=40°+100°=140°∵DC=DB∴∠B=(180°﹣140°)÷2=20°.18.(1)证明:∵AC=BC∴∠B=∠BAC∵∠ACE=∠B+∠BAC∴∠BAC=12∠ACE∵CF平分∠ACE∴∠ACF=∠ECF=12∠ACE∴∠BAC =∠ACF∴CF ∥AB ;(2)解:∵∠BAC =∠ACF ,∠B =∠BAC ,∠ADF =∠B ∴∠ACF =∠ADF∵∠ADF+∠CAD+∠AGD =180°,∠ACF+∠F+∠CGF =180° 又∵∠AGD =∠CGF∴∠F =∠CAD =20°.19.证明:(1)∵△ABC 是等边三角形∴AB =BC ,∠ABE +∠EBC =60°.∵△BEF 是等边三角形∴EB =BF ,∠CBF +∠EBC =60°.∴∠ABE =∠CBF.在△ABE 和△CBF 中⎩⎨⎧AB =BC ,∠ABE =∠CBF EB =BF ,∴△ABE ≌△CBF(SAS).∴AE =CF.(2)∵等边△ABC 中,AD 是∠BAC 的角平分线∴∠BAE =30°,∠ACB =60°.∵△ABE ≌△CBF∴∠BCF =∠BAE =30°.∴∠ACF =∠BCF +∠ACB =30°+60°=90°.20.解:(1)∵△ABC 是等边三角形∴∠B =∠A =∠C =60°∵∠B +∠1+∠DEB =180°∠DEB +∠DEF +∠2=180°∵∠DEF =60°∴∠1+∠DEB =∠2+∠DEB∴∠2=∠1=50°;(2)连接DF∵DF∥BC∴∠FDE=∠DEB∵∠B+∠1+∠DEB=180°,∠FDE+∠3+∠DEF=180°∵∠B=60°,∠DEF=60°∴∠1=∠3.21.证明:(1)∵AB=BC,BE平分∠ABC∴BE⊥AC,CE=AE∵CD⊥AB∴∠ACD=∠DBF在△ADC和△FDB中∴△ADC≌△FDB(ASA);(2)∵△ADC≌△FDB∴AC=BF又∵CE=AE∴CE=12BF;(3)△ECG为等腰直角三角形.∵点H是BC边的中点∴GH垂直平分BC∴GC=GB∵∠DBF=∠GBC=∠GCB=∠ECF,得∠ECG=45°又∵BE⊥AC∴△ECG为等腰直角三角形.22.(1)证明:∵△ABC为等边三角形∴AB=BC,∠A=∠ABC=60°在△ABE和△BCD中AE=BD,∠A=∠DBC,AB=BC∴△ABE≌△BCD∴∠ABE=∠BCD∵∠ABE+∠CBG=60°∴∠BDG+∠CBG=60°∵∠CGE=∠BCG+∠CBG∴∠CGE=60°;(2)证明:∵△ABC为等边三角形∴AB=BC,∠CAB=∠ABC=60°∴∠EAB=∠CBD=120°在△ABE和△BCD中AB=BC,∠EAB=∠CBD,AE=BD∴△ABE≌△BCD(SAS)∴∠D=∠E∵∠ABE=∠DBG,∠CAB=∠E+ABE=60°∴∠CGE=∠D+∠DBG=60°.。
专题 等腰三角形的性质与判定的综合运用(6大题型提分练)(原卷版)_1
八年级数学上册《第2章特殊三角形》专题等腰三角形的性质与判定的综合运用◆有两条边相等的三角形叫做等腰三角形.◆等腰三角形的两个底角相等(简写“等边对等角”).◆等腰三角形底边上的高线、中线及顶角平分线重合.★拓展:等腰三角形是轴对称图形,对称轴为顶角平分线(或底边上的高或底边上的中线)所在的直线.◆有两边相等的三角形是等腰三角形.◆有两个角相等的三角形是等腰三角形.(简称“等角对等边”).◆题型一等腰三角形的性质1.(2024春•新城区校级期末)已知一等腰三角形的周长为20,若其中一边长为6,则这个等腰三角形的腰长为()A.6或8B.6或7C.6D.82.(2024春•永寿县校级月考)如图,△ABC的周长是20cm,AB=AC=7cm,AD⊥BC于点D,则BD的长为()A.5cm B.4cm C.3cm D.2cm3.(2023秋•昌黎县期末)如图,在△ABD中,∠D=20°,CE垂直平分AD,交BD于点C,交AD于点E,连接AC,若AB=AC,则∠BAD的度数是()A.100°B.110°C.120°D.150°4.(2024春•永寿县校级月考)如图,在△ABC中,AB=AC,∠A=80°,BD⊥AC于点D,则∠DBC的度数为()A.35°B.40°C.45°D.48°5.(2024春•章丘区期末)如图,△ABC的面积为36,AB=AC=8,点D为BC边上一点,过点D分别作DE⊥AB于E,DF⊥AC于F,若DF=2DE,则DE长为()A.2B.3C.4D.66.(2024春•平陆县期末)如图所示,FB为∠CFD的角平分线,且DF=CF,∠ACB=60°,∠CBF=50°,则∠A的大小是()A.40°B.50°C.60°D.100°7.(2024春•秦都区校级月考)△ABC中,AB=AC,AB边的中垂线与直线AC所成的角为50°,则∠B等于()A.70°B.40°C.40°或70°D.70°或20°8.(2024春•宝丰县期末)如图,在△ABC中,AB=AC,CD是通过如图的作图痕迹作图而得,DE//BC,交AC于点E.(1)求证:DE=CE;(2)若∠CDE=34°,求∠A的度数.9.(2024春•龙华区期末)如图1,在△ABC中,AB=AC,点D,E分别在AB,AC上(不与端点重合),连接BE,CD.(1)在不添加新的点和线的前提下,请增加一个条件:,使得CD=BE,并说明理由;(2)如图2,过点A作AF∥BC交BE的延长线于点F,若∠BAC=40°,BE平分∠ABC,求∠F的度数.题型二等腰三角形的判定1.(2023秋•冠县期中)下列能判定三角形是等腰三角形的是()A.有两个角为30°、60°B.有两个角为40°、80°C.有两个角为50°、80°D.有两个角为100°、120°2.(2023春•文登区期中)如图,AC,BD相交于点O,∠A=∠D,如果请你再补充一个条件,使得∠BOC 是等腰三角形,那么你补充的条件不能是()A.OA=OD B.AB=CD C.∠ABO=∠DCO D.∠ABC=∠DCB3.(2023秋•黄石港区校级月考)下列条件:∠已知两腰;∠已知底边和顶角;∠已知顶角与底角;∠已知底边和底边上的高,能确定一个等腰三角形的是()A.∠和∠B.∠和∠C.∠和∠D.∠和∠4.(2023秋•阳东区期中)如图,在∠ABC中,∠ABC=∠ACB=60°,∠ABC与∠ACB的平分线交于点O,过点O且平行于BC的直线交AB于点M,交AC于N,连接AO,则图中等腰三角形的个数为()A.5B.6C.7D.85.(2023春•南海区校级月考)已知:如图,在∠ABC中,AB=AC,BP,CQ是∠ABC两腰上的高.求证:∠BCO是等腰三角形.6.(2023春•郓城县期中)如图,DE∠BC,CG=GB,∠1=∠2,求证:∠DGE是等腰三角形.7.如图,在∠ABC中,AB=AC,点D是BC边上的中点,G是AC边上一点,过G作EF∠BC,交BC于点E,交BA的延长线于点F.(1)求证:AD∠EF;(2)求证:∠AFG是等腰三角形.题型三等腰三角形的性质与判定的综合1.(2024春•海口期末)如图,O是△ABC内一点,OA=OB=OC.若∠BOC=126°,则∠BAC=度.2.(2024•寻乌县一模)如图,在△ABC中,∠A=76°,D为AC边上一点.若BD将△ABC分成了两个等腰三角形,则∠C的度数为.3.(2024•喀什地区三模)如图,在△ABC中,AB=AC,∠B=30°,D为BC边上一点,∠DAB=45°.(1)求∠DAC的度数;(2)请说明:AB=CD.4.(2024春•大方县校级月考)如图,在△ABC中,AC=BC,点F为AB的中点,边AC的垂直平分线交AC,CF,CB于点D,O,E,连接OA、OB.(1)求证:△OBC为等腰三角形;(2)若∠ACF=25°,求∠BOE的度数.5.(2024春•三水区期中)如图,在△ABC中,AB=AC,D是AB上的一点,过点D作DE⊥BC于点E,延长ED和CA,交于点F.(1)求证:△ADF是等腰三角形;(2)若∠F=30°,EC=3,BD=4,求AC的长.6.(2023秋•绵阳期末)如图,在△ABC中,∠ACB的平分线交AB于点D,∠ADC的平分线交AC于点E,DE∥BC.(1)证明:△DBC是等腰三角形;(2)若BC=2CE,求∠ADE的度数.7.(2023秋•拱墅区校级期末)如图,在锐角△ABC中,点E是AB边上一点,BE=CE,AD⊥BC于点D,AD与EC交于点G.(1)求证:EA=EG;(2)若BE=10,CD=3,G为CE中点,求AG的长.题型四利用等腰三角形的性质解决实际问题1.如图,上午8时,一艘船从A处出发以15海里/小时的速度向正北航行,10时到达B处,从A、B两点望灯塔C,测得∠NAC=42°,∠NBC=84°,则B处到灯塔C的距离为()A.15海里B.20海里C.30海里D.求不出来2.(2023秋•泗阳县期中)如图是跷跷板的示意图,支柱OC与地面垂直,点O是AB的中点,AB绕着点O上下转当A端落地时,∠OAC=25°,跷跷板上下可转动的最大角度(即∠A'OA)是()A.25°B.50°C.60°D.80°3.“三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在O点相连并可绕O转动、C点固定,OC=CD=DE,点D、E可在槽中滑动.若∠BDE=75°,则∠CDE的度数是()A.60°B.65°C.75°D.80°4.(2023春•青岛期末)如图,∠AOB是一钢架,∠AOB=18°,为使钢架更加牢固,需在其内部添加一些钢管EF,FG,GH,…,添加的钢管长度都与OE的长度相等,则最多能添加的钢管根数为()A.4B.5C.6D.无数5.如图,把量角器摆放在△AOC上,点A与点C恰在同一个半圆上,OC与130°的刻度线重合,射线OB与70°的刻度线重合,OB交AC于点D,则∠CDO的度数为()A.90°B.95°C.100°D.120°6.在如图①所示的钢架∠MAN中,需要焊上等长的钢条来加固钢架.若自左至右摆放,只能摆放7根,且AP1=P1P2=P2P3=…=P7P8.为了进一步加固该钢架,自点P8开始自右向左再焊上等长的钢条,如图②,且P8P9=P9P10=…=P13P14=AP14,则∠A的度数是()A.不存在的B.10°C.12°D.15°7.(2023春•富平县期末)如图,大海中有两个岛屿A与B,∠BEQ=30°,在海岸线PQ上的点F处测得∠AFP =60°,∠BFQ=60°.(1)求证:AE=AB;(2)若在海岸线PQ上的点E处测得∠AEP=74°,求∠BAE的度数.题型五等腰三角形与动点运动问题1.如图,在△ABC中,AB=AC=24厘米,BC=16厘米,点D为AB的中点,点P在线段BC上以4厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.当点Q的运动速度为厘米/秒时,能够在某一时刻使△BPD与△CQP全等.2.如图,已知△ABC中,AB=AC=24厘米,BC=18厘米,点D为AB的中点.(1)如果点P在线段BC上以3厘米/秒得速度由B点向C点运动,同时点Q在线段CA上由C点向A点运动,设运动时间为x.①PC=(用含x的代数式表示);②若点Q的运动速度与点P的运动速度相等,当x为何值时,以B,P,D为顶点的三角形与△CQP全等;③若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD≌△CPQ?(2)如果点Q以(1)③中的运动速度从点C出发,点P以3厘米/秒的速度从点B出发,都逆时针沿△ABC三边运动,点P,Q同时出发,运动时间为y.当y取何值时,点P与点Q第二次相遇?3.(2023秋•泰州月考)如图,长方形ABCD中,AB=6cm,BC=8cm,现有一动点P从A出发以2cm/秒的速度,沿矩形的边A﹣B﹣C﹣D﹣A返回到点A停止,设点P运动的时间为t秒.(1)当t=2时,BP=cm;(2)当t为何值时,连接CP,DP,∠CDP是等腰三角形?题型六与等腰三角形相关的探究题1.(2023春•锦江区期末)如图,在∠ABC中,点D,E分别在BC,AB边上,AE=AC,AD∠CE,连接DE.(1)求证:∠DEC=∠DCE;(2)若AC=BC,BE=CE.∠求∠B的度数;∠试探究AB﹣AC与BC﹣DE的数量关系,并说明理由.2.如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDA=115°时,∠EDC=°,∠DEC=°;点D从B向C运动时,∠BDA 逐渐变(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数.若不可以,请说明理由.3.(2023春•峡江县期末)如图,在∠ABC中,AB=AC,AB的垂直平分线交AB于点N,交BC的延长线于点M.(1)若∠A=40°,求∠NMB的度数;(2)如果将(1)中∠A的度数改为70°,其余条件不变,再求∠NMB的度数;(3)你发现∠A与∠NMB之间有什么关系?4.如图,在△ABC中,AB=AC,D在边AC上,且BD=DA=BC.(1)如图1,填空∠A=°,∠C=°.(2)如图2,若M为线段AC上的点,过M作直线MH⊥BD于H,分别交直线AB、BC于点N、E.①求证:△BNE是等腰三角形;②试写出线段AN、CE、CD之间的数量关系,并加以证明.5.(2023春•宝安区校级期中)如图①,∠AFH和∠AHF的平分线交于点O,EG经过点O且平行于FH,分别与AF、AH交于点E、G.(1)若∠AFH=80°,∠AHF=70°,则∠EOF=度,∠GOH=度,∠FOH=度.(2)若∠AFH+∠AHF=130°,则∠FOH=度.(3)如图②,∠AFH和∠AHI的平分线交于点O,EG经过点O,分别与AF、AH交于点E、G.若∠AFH+∠AHF=140°,∠OHI=50°,∠EOF=30°,求证:EG∥FH.。
冀教版八年级上17.1 等腰三角形 能力培优训练(含答案)
17.1 等腰三角形专题一等腰三角形的性质和判定的应用1.已知a,b,c是△ABC的三边,且a2+b2+c2=ab+ac+bc,则△ABC是()A、等腰三角形B、直角三角形C、等边三角形D、等腰直角三角形2.如图,在等边△ABC中,D是边AC上一点,连结BD,将△BCD绕点B逆时针旋转60°,得到△BAE,连结ED、若BC=10,BD=9,则△AED的周长是、3.在等腰△ABC中,AB=AC,MN是AB的垂直平分线,MN与AB相交于D点,与AC所在的直线相交于E点,若∠AED=40°,则∠EBC的度数为______.4如图,在等腰△ABC中,AB=AC,点D在BC上,且AD=AE、(1)若∠BAC=90°,∠BAD=30°,求∠EDC的度数;(2)若∠BAC=a(a>30°),∠BAD=30°,求∠EDC的度数;(3)猜想∠EDC与∠BAD的数量关系?(不必证明)专题二等腰(边)三角形中的动点问题5.已知ΔABC为等边三角形,点M是射线BC上任意一点,点N是射线CA上任意一点,且BM=CN,直线BN与AM相交于Q点.下面给出的三种情况(如图中的①②③),先用量角器分别测量∠BQM 的大小,将结果填写在下面对应的横线上,然后猜测∠BQM在点M,的变化中的取值情况,并利用图③证明你的结论。
测量结果:图①中∠BQM=______;图②中∠BQM=______;图③中∠BQM=______。
6.如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(D不与B,重合),连接AD,作∠ADE=40°,DE交线段AC于E、(1)当∠BDA=115°时,∠BAD=______°;点D从B向C运动时,∠BDA逐渐变_____ (填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由;(3)在点D运动的程中,△ADE的形状也在改变,判断当∠BDA等于多少度时,△ADE是等腰三角形、7、阅读材料:如图,△ABC中,AB=AC,P为底边BC上任意一点,点P到两腰的距离分别为r1,r2,腰上的高为h,连结AP,则S△ABP+S△ACP=S△ABC,即:12AB•r1+12AC•r2=12AB•h,∴r1+r2=h(定值)、(1)类比与推理如果把“等腰三角形”改成“等边三角形”,那么P的位置可以由“在底边上任一点”放宽为“在三角形内任一点”,即:已知等边△ABC内任意一点P到各边的距离分别为r1,r2,r3,等边△ABC的高为h,试证明r1+r2+r3=h(定值)、(2)理解与应用△ABC中,∠C=90°,AB=10,AC=8,BC=6,△ABC内部是否存在一点O,点O到各边的距离相等?_____(填“存在”或“不存在”),若存在,请直接写出这个距离r的值,r= _____、若不存在,请说明理由、【知识要点】1.等腰三角形的定义有两边相等的三角形叫做等腰三角形.2.等腰三角形的性质定理(1)等腰三角形的两个底角相等(简称“等边对等角”).(2)等腰三角形的顶角平分线、底边上的中线、底边上的高重合(简称“三线合一”).3.等边三角形的性质等边三角形的三个角都相等,并且每一个角都等于60°.4.等腰三角形的判定定理如果一个三角形有两个角相等,那么这个三角形是等腰三角形.其中,两个相等的角所对的边相等(简称“等角对等边”).5.等边三角形的判定定理(1)三个角都相等的三角形是等边三角形.(2)有一个角等于60°的等腰三角形是等边三角形.【温馨提示】1.等腰三角形的定义和“等角对等边”都是等腰三角形判定的依据.2. “等边对等角”和“等角对等边”都只限于在同一个三角形中.【方法技巧】1.已知等腰三角形的一个角,求另外两个角,或已知两边求周长时,常用分类讨论的思想.2.等腰三角形的性质是证明同一个三角形中的两角相等的一个重要方法,也是用来证明线段相等或垂直、角相等的常用方法.3.等腰三角形的判定定理是证明线段相等的一个重要方法,当要证明位于同一个三角形的两条线段相等时,可尝试用“等角对等边”.4.在等腰三角形的有关问题中,会遇到一些添加辅助线的问题,其顶角平分线、底边上的高、底边上的中线是常见的辅助线.1.C 解析:根据题意得2a 2+2b 2+2c 2-2ab -2ac -2bc =0,所以222)))0a b c b a c -+--=((+(,所以a =b =c ,所以△ABC 是等边三角形.2. 19 解析:∵△ABC 是等边三角形,∴AC =AB =BC =10. ∵△BAE 由△BCD 逆时针旋旋转 60°得出,∴AE =CD ,BD =BE ,∠EBD =60°,∴AE +AD =AD +CD =AC =10,∵∠EBD =60°,BE =BD ,∴△BDE 是等边三角形,∴DE =BD =9,∴△AED 的周长=AE +AD +DE =AC +BD =19、故答案为19、5.解:60°,60°,60°.证明:BM=CN;∠ABM=∠BCN=60°;BA=BC.则⊿ABM≌ΔBCN(SAS),∠M=∠N; 所以∠BQM=∠N+∠QAN=∠M+∠CAM=∠C =60°.∴当∠ADB =110°或80°时,△ADE 是等腰三角形、7.解:连接AP ,BP ,CP .则=ABC BPC APC APB S S S S ++△△△△,即:12311112222BC h BC r AC r AB r ⋅=⋅+⋅+⋅,∵AB =BC =AC ,所以r 1+r 2+r 3=h (定值)、 (2)存在;2.。
2021年九年级数学中考复习分类专题:等腰三角形的判定与性质培优练(二)
2021年九年级数学中考复习分类专题:等腰三角形的判定与性质培优练(二)一.选择题1.如图,在△ABC中,AB=AC,∠BAC=108°,若AD、AE三等分∠BAC,则图中等腰三角形有()A.3个B.4个C.5个D.6个2.在△ABC中,∠BAC,∠ACB的平分线相交于I,DE过点I且DE∥AC,若AD=3cm,CE=5cm,则DE=()A.8 B.6 C.7 D.53.如图:D为△ABC内一点,CD平分∠ACB,BD⊥CD,∠A=∠ABD,若BD=1,BC=3,则AC的长为()A.5 B.4 C.3 D.24.已知,如图,在△ABC中,OB和OC分别平分∠ABC和∠ACB,过O作DE∥BC,分别交AB、AC于点D、E,若BD+CE=5,则线段DE的长为()A.5 B.6 C.7 D.85.如图,在△ABC中,∠ABC和∠ACB的平分线交于点O,过O点作EF∥BC,交AB于E,交AC于F,若BE=3,CF=2,则线段EF的长为()A.5 B.6 C.7 D.86.如图,∠ABC=50°,BD平分∠ABC,过D作DE∥AB交BC于点E,若点F在AB上,且满足DF=DE,则∠DFB的度数为()A.25°B.130°C.50°或130°D.25°或130°7.△ABC中,∠B=50°,∠A=80°,若AB=6,则AC=()A.6 B.8 C.5 D.138.在△ABC中,已知∠A=∠B,且该三角形的一个内角等于100°.现有下面四个结论:①∠A=100°;②∠C=100°;③AC=BC;④AB=BC.其中正确结论的个数为()A.1个B.2个C.3个D.4个9.如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.AD⊥BC B.AD平分∠BAC C.AB=2BD D.∠B=∠C10.如图,△ABC中,BO平分∠ABC,CO平分∠ACB,M,N经过点O,且MN∥BC,若AB=5,△AMN的周长等于12,则AC的长为()A.7 B.6 C.5 D.4二.填空题11.如图,矩形ABCD中,AB=4,AD=3,点Q在对角线AC上,且AQ=AD,连接DQ并延长,与边BC交于点P,则线段AP=.12.如图,在△ABC中,AB=6,AC=9,BO、CO分别是∠ABC、∠ACB的平分线,MN经过点O,且MN∥BC,MN分别交AB、AC于点M、N,则△AMN的周长是.13.如图,在△ABC中,DB和DC分别平分∠ABC和∠ACB,过D作EF∥BC,分别交AB、AC于点E、F,若EF=5,BE=3,则线段CF的长为.14.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点F,过F作DE∥BC,交AB于点D,交AC于点E.若BD=3,DE=5,则线段EC的长为.15.如图,已知点O为△ABC内角平分线的交点,过点O作MN∥BC,分别交AB于AC点M、N,若AB=12,AC=14,则△AMN的周长是.三.解答题16.如图,在△ABC中,点D,E在边BC上,BD=CE,且AD=AE.求证:AB=AC.17.如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若△ABC、△AMN周长分别为13cm和8cm.(1)求证:△MBE为等腰三角形;(2)线段BC的长.18.如图,∠ABC的平分线BF与∠ACG的平分线CF相交于点F,过点F作DE∥BC交AC于E,若BD=8,DE=3,求CE的长.19.已知:∠ABC,∠ACB的平分线相交于F点,过点F作DE∥BC,交AB于点D,交AC于点E,(1)请你写出图中所有的等腰三角形;(2)请写出BD,CE,DE之间的数量关系;(3)并对第(2)问中BD,CE,DE之间的数量关系给予证明.20.如图,在△ABD中,C为BD上一点,使得CA=CD,过点C作CE∥AD交AB于点E,过点D作DF⊥AD交AC的处长线于点F.(1)若CD=3,求AF的长;(2)若∠B=30°,∠ADC=40°,求证:AC=EC.21.(1)如图1,已知:在△ABC中,AB=AC=10,BD平分∠ABC,CD平分∠ACB,过点D 作EF∥BC,分别交AB、AC于E、F两点,则图中共有个等腰三角形;EF与BE、CF之间的数量关系是,△AEF的周长是(2)如图2,若将(1)中“△ABC中,AB=AC=10”改为“若△ABC为不等边三角形,AB=8,AC=10”其余条件不变,则图中共有个等腰三角形;EF与BE、CF之间的数量关系是什么?证明你的结论,并求出△AEF的周长(3)已知:如图3,D在△ABC外,AB>AC,且BD平分∠ABC,CD平分△ABC的外角∠ACG,过点D作DE∥BC,分别交AB、AC于E、F两点,则EF与BE、CF之间又有何数量关系呢?直接写出结论不证明.参考答案一.选择题1.解:∵AB=AC,∠BAC=108°,∴∠B=∠C=36°,△ABC是等腰三角形,∵∠BAC=108°,AD、AE三等分∠BAC,∴∠BAD=∠DAE=∠EAC=36°,∴∠DAC=∠BAE=72°,∴∠AEB=∠ADC=72°,∴BD=AD=AE=CE,AB=BE=AC=CD,∴△ABE、△ADC、△ABD、△ADE、△AEC是等腰三角形,∴一共有6个等腰三角形.故选:D.2.解:∵DE∥AC,∴∠ACI=∠CIE,∵CI平分∠ACB,∴∠ACI=∠ECI,∴∠ECI=∠CIE,∴EI=CE=5,同理可得:DI=AD=3,∴DE=DI+EI=5+3=8;故选:A.3.解:延长BD交AC于E,如图,∵CD平分∠ACB,BD⊥CD,∴△BCE为等腰三角形,∴DE=BD=1,CE=CB=3,∵∠A=∠ABD,∴EA=EB=2,∴AC=AE+CE=2+3=5.故选:A.4.解:∵OB平分∠ABC,∴∠DBO=∠OBC,∵DE∥BC,∴∠DOB=∠OBC,∴∠DOB=∠DBO,∴BD=OD,同理可得:CE=OE,∴DE=DO+OE=BD+CE=5,故选:A.5.解:∵BO、CO是∠ABC、∠ACB的角平分线,∴∠OBE=∠OBC,∠OCF=∠BCO,又∵EF∥BC,∴∠OBC=∠BOE,∠BCO=∠COF,∴∠OBE=∠BOE,∠COF=∠OCF,∴BE=OE,CF=OF,∴EF=OE+OF=BE+CF=3+2=5,故选:A.6.解:如图,DF=DF′=DE;∵BD平分∠ABC,由图形的对称性可知:△BDE≌△BDF,∴∠DFB=∠DEB;∵DE∥AB,∠ABC=50°,∴∠DEB=180°﹣50°=130°;∴∠DFB=130°;当点F位于点F′处时,∵DF=DF′,∴∠DF′B=∠DFF′=50°,故选:C.7.解:∵△ABC中,∠B=50°,∠A=80°,∴∠C=180°﹣∠A﹣∠B=180°﹣80°﹣50°=50°,∴∠C=∠B,∴AC=AB=6,故选:A.8.解:∠A=∠B=100°时,∠A+∠B+∠C>180°,不符合三角形的内角和定理,∴①错误;∠C=100°时,∠A=∠B=(180°﹣∠C)=40°,∴②正确;∵∠A=∠B,∴AC=BC,③正确;④错误;正确的有②③,2个,故选:B.9.解:∵AB=AC,点D是BC的中点,∴AD⊥BC,AD平分∠BAC,∠B=∠C,故选:C.10.解:∵BO平分∠CBA,CO平分∠ACB,∴∠MBO=∠OBC,∠OCN=∠OCB,∵MN∥BC,∴∠MOB=∠OBC,∠NOC=∠OCB,∴∠MBO=∠MOB,∠NOC=∠NCO,∴MO=MB,NO=NC,∵AB=5,△AMN的周长等于12,∴△AMN的周长=AM+MN+AN=AB+AC=5+AC=12,∴AC=7,故选:A.二.填空题(共5小题)11.解:∵矩形ABCD中,AB=4,AD=3=BC,∴AC=5,又∵AQ=AD=3,AD∥CP,∴CQ=5﹣3=2,∠CQP=∠AQD=∠ADQ=∠CPQ,∴CP=CQ=2,∴BP=3﹣2=1,∴Rt△ABP中,AP===,故答案为:.12.解:∵在△ABC中,∠BAC与∠ACB的平分线相交于点O,∴∠ABO=∠OBC,∠ACO=∠BCO,∵MN∥BC,∴∠MOB=∠OBC,∠NOC=∠OCB,∴∠ABO=∠MOB,∠ACO=∠NOC,∴BM=OM,CN=ON,∴△AMN的周长是:AM+NM+AN=AM+OM+ON+AN=AM+BM+CN+AN=AB+AC=9+6=15.故答案为:15.13.解:∵BD平分∠ABC,∴∠ABD=∠CBD,∵EF∥BC,∴∠EDB=∠DBC,∴∠ABD=∠EDB,∴BE=ED,同理DF=CF,∴EF=3+CF=5,∴CF=2,故答案为:2.14.解:∵∠ABC和∠ACB的平分线相交于点F,∴∠DBF=∠FBC,∠ECF=∠BCF,∵DF∥BC,∴∠DFB=∠FBC,∠CFE=∠BCF,∴∠DFB=∠DBF,∠CFE=∠ECF,∴BD=DF=3,FE=CE,∴CE=DE﹣DF=5﹣3=2.故答案为:2.15.解:∵BO平分∠ABC,∴∠MBO=∠CBO,∵MN∥BC,∴∠MOB=∠CBO,∴∠MOB=∠MBO,∴OM=BM,同理CN=NO,∴BM+CN=MN,∴△AMN的周长是AN+MN+AM=AN+CN+OM+ON=AB+AC=12+14=26.故答案为:26.三.解答题(共6小题)16.证明:作AF⊥BC于点F,∵AD=AE,∴DF=EF,∵BD=CE,∴BD+DF=CE+EF,即BF=CF,∵AF⊥BC,∴AB=AC.17.解:如图所示:(1)∵BE是∠ABC的角平分线,∴∠1=∠2,又∵MN∥BC,∴∠5=∠2,∴∠1=∠5,∴△MBE为等腰三角形;(2)∵△MBE为等腰三角形,∴MB=ME,同理可得:NE=NC,=AM+AN+MN,又∵l△AMNMN=ME+NE,=AM+AN+ME+NE=AM+BM+AN+CN,∴l△AMN∴l=AB+AC=8.△AMN=AB+AC+BC=13,又∵l△ABC∴BC=13﹣8=5cm.18.解:∵BF、CF分别平分∠ABC、∠ACB的外角,∴∠DBF=∠CBF,∠FCE=∠FCG,∵DE∥BC,∴∠DFB=∠CBF,∠EFC=∠FCG,∴∠DBF=∠DFB,∠FCE=∠EFC,∴BD=FD,EF=CE,∴BD﹣CE=FD﹣EF=DE,∴EF=DF﹣DE=BD﹣DE=8﹣3=5,∴EC=5.故答案为5.19.解:(1)等腰三角形有:△BDF和△CEF;(2)BD+CE=DE;(3)∵BF平分∠ABC,∴∠1=∠2,∵DE∥BC,∴∠2=∠3,∴∠1=∠3,∴BD=DF,同理可得CE=EF,∴BD+CE=DF+EF=DE,即BD+CE=DE.20.解:(1)∵CA=CD=3,∴∠CAD=∠CDA,∵AD⊥DF,∴∠ADF=90°,∴∠F+∠FAD=90°,∠ADC+∠CDF=90°,∴∠F=∠CDF,∴CD=CF=3,∴AF=AC+CF=6;(2)∵∠B=30°,∠ADC=∠CAD=40°,∴∠CAB=180°﹣30°﹣40°﹣40°=70°,∵CE∥AD,∴∠BCE=∠ADC=40°,∴∠AEC=∠B+∠BCE=70°,∴∠AEC=∠CAB,∴AC=CE.21.解:(1)BE+CF=EF.理由如下:∵AB=AC,∴∠ABC=∠ACB,∵BD平分∠ABC,CD平分∠ACB,∴∠EBD=∠CBD,∠FCD=∠BCD,∴∠DBC=∠DCB,∴DB=DC∵EF∥BC,∴∠AEF=∠ABC,∠AFE=∠ACB,∠EDB=∠CBD,∠FDC=∠BCD,∴∠EBD=∠EDB,∠FDC=∠BCD,∴BE=DE,CF=DF,AE=AF,∴等腰三角形有△ABC,△AEF,△DEB,△DFC,△BDC共5个,∴BE+CF=DE+DF=EF,即BE+CF=EF,△AEF的周长=AE+EF+AF=AE+BE+AF+FC=AB+AC=20.故答案为:5;BE+CF=EF;20;(2)BE+CF=EF,∵BD平分∠ABC,CD平分∠ACB,∴∠EBD=∠CBD,∠FCD=∠BCD,∵EF∥BC,∴∠EDB=∠CBD,∠FDC=∠BCD,∴∠EBD=∠EDB,∠FDC=∠BCD,∴BE=DE,CF=DF,∴等腰三角形有△BDE,△CFD,∴BE+CF=DE+DF=EF,即BE+CF=EF.可得△AEF的周长为18.(3)BE﹣CF=EF,由(1)知BE=ED,∵EF∥BC,∴∠EDC=∠DCG=∠ACD,∴CF=DF,又∵ED﹣DF=EF,∴BE﹣CF=EF.。
实验班八年级(上)《等腰三角形》提高训练及答案解析
八年级(上)《等腰三角形》提高训练班级:________________姓名:_______________________一、选择题(共10小题)1.如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为()A.15°B.17.5° C.20°D.22.5°第1题第2题2.如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为()A.44°B.66°C.88°D.92°3.如图,已知∠AOB=40°,在∠AOB的两边OA、OB上分别存在点Q、点P,过点Q作直线QR∥OB,当OP=QP时,∠PQR的度数是()A.60°B.80°C.100°D.120°第3题第4题4.如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为()A.50°B.51°C.51.5° D.52.5°5.如图,已知AB=A1B,A1B1=A1A2,A2B2=A2A3,A3B3=A3A4…,若∠A=70°,则∠A n﹣1A n B n 的度数为()﹣1A.B.C.D.第5题第6题6.如图所示,在等边三角形ABC中,O是三个内角平分线的交点,OD∥AB,OE∥AC,则图中等腰三角形的个数是()A.7 B.6 C.5 D.47.如图,在△ABC、△ADE中,C、D两点分别在AE、AB上,BC、DE交于点F,若BD=DC=CE,∠ADC+∠ACD=114°,则∠DFC为()A.114°B.123°C.132°D.147°第7题第8题第9题8.如图,在△ABC中,BD平分∠ABC,ED∥BC,已知AB=3,AD=1,则△AED的周长为()A.2 B.3 C.4 D.59.如图,△ABC中,BA=BC,BD是三角形的角平分线,DE∥BC交AB于E,下列结论:①∠1=∠3;②DE=AB;③S△ADE=S△ABC.正确的有()A.0个B.1个C.2个D.3个10.如图,△PBC的面积为10cm2,AP垂直∠B的平分线BP于P,则△ABC的面积为()A.10cm2B.12cm2C.16cm2D.20cm2第10题第12题二、填空题(共10小题)11.等腰三角形一腰上的高与另一腰的夹角为48°,则该等腰三角形的底角的度数为.12.如图,在△ABC中,ED∥BC,∠ABC和∠ACB的平分线分别交ED于点G、F,若FG=2,ED=6,则EB+DC=.13.如图,在△ABC中,BI、CI分别平分∠ABC、∠ACF,DE过点I,且DE∥BC.BD=8cm,CE=5cm,则DE等于.第13题第14题14.如图,△ABC中,∠B与∠C的平分线交于点O,过O作EF∥BC交AB、AC于E、F,若△ABC的周长比△AEF的周长大12cm,O到AB的距离为3cm,△OBC的面积cm2.15.有一三角形纸片ABC,∠A=80°,点D是AC边上一点,沿BD方向剪开三角形纸片后,发现所得两纸片均为等腰三角形,则∠C的度数可以是.第15题第16题16.如图,在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点C出发,按C→B→A 的路径,以2cm每秒的速度运动,设运动时间为t秒,当t为时,△ACP是等腰三角形.17.如图,△ABC中,∠BAC=90°,AD⊥BC,∠ABC的平分线BE交AD于点F,AG平分∠DAC.给出下列结论:①∠BAD=∠C;②AE=AF;③∠EBC=∠C;④FG∥AC;⑤EF=FG.其中正确的结论是.第17题第18题18.如图,△ABC中,AB=BC=AC=12cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B 点时,M、N同时停止运动.(1)当点M、N运动秒时,M、N两点重合;(2)当点M、N运动秒后,M、N与△ABC中的某个顶点可得到等腰三角形.19.如图,在△ABC中,AC=BC>AB,点P为△ABC所在平面内一点,且点P与△ABC 的任意两个顶点构成的△PAB,△PBC,△PAC均为等腰三角形,则满足上述条件的所有点P有个.(请在图形中表示点P的位置)第19题第20题20.如图,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△DEF与△ABC 重合在一起,△ABC不动,点E在边BC上沿B到C的方向运动,且DE始终经过点A,EF与AC交于M点.若△AEM构成等腰三角形,则BE的长为.三、解答题(共10小题)21.如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数.第21题22.如图,已知点A、C分别在∠GBE的边BG、BE上,且AB=AC,AD∥BE,∠GBE的平分线与AD交于点D,连接CD.(1)求证:①AB=AD;②CD平分∠ACE.(2)猜想∠BDC与∠BAC之间有何数量关系?并对你的猜想加以证明.第22题23.如图,在△ABC中,AB=AC=2,∠B=∠C=50°,点D在线段BC上运动(点D不与B、C重合),连接AD,作∠ADE=50°,DE交线段AC于E.(1)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请求出∠BDA 的度数;若不可以,请说明理由.(2)若DC=2,求证:△ABD≌△DCE.第23题24.如图,在△ABC中,AD平分∠BAC交BC于D,DE∥AC交AB于E,过E作EF⊥AD,垂足为H,并交BC延长线于F.(1)求证:AE=ED;(2)Q请猜想∠B与∠CAF的大小关系,并证明你的结论.第24题25.如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E,EH⊥AB,垂足是H.在AB上取一点M,使BM=2DE,连接ME.求证:ME⊥BC.第25题26.如图,BD和CD分别平分△ABC的内角∠EBA和外角∠ECA,BD交AC于F,连接AD.(1)求证:∠BDC=∠BAC;(2)若AB=AC,请判断△ABD的形状,并证明你的结论;(3)在(2)的条件下,若AF=BF,求∠EBA的大小.第26题27.定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段叫做这个三角形的三分线.(如图1所示)(1)请你在图2中画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(2)△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC 边上,且AD=BD,DE=CE,设∠C=x°,试画出示意图,并求出x所有可能的值.第27题28.如图1,点P、Q分别是等边△ABC边AB、BC上的动点(端点除外),点P从顶点A、点Q从顶点B同时出发,且它们的运动速度相同,连接AQ、CP交于点M.(1)求证:△ABQ≌△CAP;(2)如图1,当点P、Q分别在AB、BC边上运动时,∠QMC变化吗?若变化,请说理由;若不变,求出它的度数.(3)如图2,若点P、Q在分别运动到点B和点C后,继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠QMC=度.(直接填写度数)第28题29.如图,已知△ABC中,AB=AC=12cm,BC=10cm,点D为AB的中点.如果点P在线段BC上以2cm/s的速度由点B向C点运动,同时,点Q在线段AC 上由点A向C点以4cm/s的速度运动.(1)若点P、Q两点分别从B、A 两点同时出发,经过2秒后,△BPD与△CQP是否全等,请说明理由;(2)若点P、Q两点分别从B、A 两点同时出发,△CPQ的周长为18cm,问:经过几秒后,△CPQ是等腰三角形?第29题30.如图1,C是线段BE上一点,以BC、CE为边分别在BE的同侧作等边△ABC 和等边△DCE,连结AE、BD.(1)求证:BD=AE;(2)如图2,若M、N分别是线段AE、BD上的点,且AM=BN,请判断△CMN 的形状,并说明理由.第30题八年级(上)《等腰三角形》提高训练参考答案与试题解析一.选择题(共10小题)1.(2016•枣庄)如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC 与∠ACE的平分线相交于点D,则∠D的度数为()A.15°B.17.5° C.20°D.22.5°【解答】解:∵∠ABC的平分线与∠ACE的平分线交于点D,∴∠1=∠2,∠3=∠4,∵∠ACE=∠A+∠ABC,即∠1+∠2=∠3+∠4+∠A,∴2∠1=2∠3+∠A,∵∠1=∠3+∠D,∴∠D=∠A=×30°=15°.故选A.2.(2016•泰安)如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为()A.44°B.66°C.88°D.92°【解答】解:∵PA=PB,∴∠A=∠B,在△AMK和△BKN中,,∴△AMK≌△BKN,∴∠AMK=∠BKN,∵∠MKB=∠MKN+∠NKB=∠A+∠AMK,∴∠A=∠MKN=44°,∴∠P=180°﹣∠A﹣∠B=92°,故选:D.3.(2016•聊城模拟)如图,已知∠AOB=40°,在∠AOB的两边OA、OB上分别存在点Q、点P,过点Q作直线QR∥OB,当OP=QP时,∠PQR的度数是()A.60°B.80°C.100°D.120°【解答】解:∵QR∥OB,∠AOB=40°,∴∠AQR=∠AOB=40°,∵OP=QP,∴∠PQO=∠AOB=40°,∵∠AQR+∠PQO+∠PQR=180°,∴∠PQR=180°﹣2∠AQR=100°.故选C4.(2016•滨州)如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为()A.50°B.51°C.51.5° D.52.5°【解答】解:∵AC=CD=BD=BE,∠A=50°,∴∠A=∠CDA=50°,∠B=∠DCB,∠BDE=∠BED,∵∠B+∠DCB=∠CDA=50°,∴∠B=25°,∵∠B+∠EDB+∠DEB=180°,∴∠BDE=∠BED=(180°﹣25°)=77.5°,∴∠CDE=180°﹣∠CDA﹣∠EDB=180°﹣50°﹣77.5°=52.5°,故选D.5.(2016•六盘水)如图,已知AB=A1B,A1B1=A1A2,A2B2=A2A3,A3B3=A3A4…,若∠A=70°,则∠A n﹣1A n B n﹣1的度数为()A.B.C.D.【解答】解:∵在△ABA1中,∠A=70°,AB=A1B,∴∠BA1A=70°,∵A1A2=A1B1,∠BA1A是△A1A2B1的外角,∴∠B1A2A1==35°;同理可得,∠B2A3A2=17.5°,∠B3A4A3=×17.5°=,∴∠A n﹣1A n B n﹣1=.故选:C.6.(2016春•蓝田县期末)如图所示,在等边三角形ABC中,O是三个内角平分线的交点,OD∥AB,OE∥AC,则图中等腰三角形的个数是()A.7 B.6 C.5 D.4【解答】解:①∵△ABC为等边三角形,∴AB=AC,∴△ABC为等腰三角形;②∵BO,CO,AO分别是三个角的角平分线,∴∠ABO=∠CBO=∠BAO=∠CAO=∠ACO=∠BCO,∴AO=BO,AO=CO,BO=CO,∴△AOB为等腰三角形;③△AOC为等腰三角形;④△BOC为等腰三角形;⑤∵OD∥AB,OE∥AC,∴∠B=∠ODE,∠C=∠OED,∵∠B=∠C,∴∠ODE=∠OED,∴△DOE为等腰三角形;⑥∵OD∥AB,OE∥AC,∴∠BOD=∠ABO,∠COE=∠ACO,∵∠DBO=∠ABO,∠ECO=∠ACO,∴∠BOD=∠DBO,∠COE=∠ECO,∴△BOD为等腰三角形;⑦△COE为等腰三角形.故答案是:7个.7.(2016•慈溪市一模)如图,在△ABC、△ADE中,C、D两点分别在AE、AB上,BC、DE交于点F,若BD=DC=CE,∠ADC+∠ACD=114°,则∠DFC为()A.114°B.123°C.132°D.147°【解答】解:∵BD=CD=CE,∴∠B=∠DCB,∠E=∠CDE,∵∠ADC+∠ACD=114°,∴∠BDC+∠ECD=360°﹣114°=246°,∴∠B+∠DCB+∠E+∠CDE=360°﹣246°=114°,∴∠DCB+∠CDE=57°,∴∠DFC=180°﹣57°=123°,故选B.8.(2016•阿坝州)如图,在△ABC中,BD平分∠ABC,ED∥BC,已知AB=3,AD=1,则△AED的周长为()A.2 B.3 C.4 D.5【解答】解:∵BD平分∠ABC,∴∠ABD=∠CBD,∵ED∥BC,∴∠CBD=∠BDE,∴∠ABD=∠BDE,∴BE=DE,△AED的周长=AE+DE+AD=AE+BE+AD=AB+AD,∵AB=3,AD=1,∴△AED的周长=3+1=4.故选C.9.(2016•海曙区一模)如图,△ABC中,BA=BC,BD是三角形的角平分线,DE∥BC交AB于E,下列结论:①∠1=∠3;②DE=AB;③S△ADE=S△ABC.正确的有()A.0个B.1个C.2个D.3个【解答】解:∵BA=BC,BD平分∠ABC,∴∠1=∠2,BD⊥AC,且AD=CD,∵DE∥BC,∴∠2=∠3,△ADE∽△ACB,∴∠1=∠3,故①正确;===,即DE=BC,故②正确;由△ADE∽△ACB,且=可得=()2=,即S△ADE=S△ABC,故③正确;故选:D.10.(2016秋•江阴市期中)如图,△PBC的面积为10cm2,AP垂直∠B的平分线BP于P,则△ABC的面积为()A.10cm2B.12cm2C.16cm2D.20cm2【解答】解:如图,延长AP交BC于点Q,∵AP垂直∠ABC的平分线BP于P,∴AP=QP,∴S△ABP=S△BQP,S△APC=S△PQC,∴S△ABC=2S阴影=20cm2,故选D.二.填空题(共10小题)11.(2016•通辽)等腰三角形一腰上的高与另一腰的夹角为48°,则该等腰三角形的底角的度数为69°或21°.【解答】解:分两种情况讨论:①若∠A<90°,如图1所示:∵BD⊥AC,∴∠A+∠ABD=90°,∵∠ABD=48°,∴∠A=90°﹣48°=42°,∵AB=AC,∴∠ABC=∠C=(180°﹣42°)=69°;②若∠A>90°,如图2所示:同①可得:∠DAB=90°﹣48°=42°,∴∠BAC=180°﹣42°=138°,∵AB=AC,∴∠ABC=∠C=(180°﹣138°)=21°;综上所述:等腰三角形底角的度数为69°或21°.故答案为:69°或21°.12.(2016秋•玉环县期中)如图,在△ABC中,ED∥BC,∠ABC和∠ACB的平分线分别交ED于点G、F,若FG=2,ED=6,则EB+DC=8.【解答】解:∵ED∥BC,∴∠EGB=∠GBC,∠DFC=∠FCB,∵∠GBC=∠GBE,∠FCB=∠FCD,∴∠EGB=∠EBG,∠DCF=∠DFC,∴BE=EG,CD=DF,∵FG=2,ED=6,∴EB+CD=EG+DF=EF+FG+FG+DG=ED+FG=8,故答案为8.13.(2016秋•雁塔区校级月考)如图,在△ABC中,BI、CI分别平分∠ABC、∠ACF,DE 过点I,且DE∥BC.BD=8cm,CE=5cm,则DE等于3cm.【解答】解:∵BI、CI分别平分∠ABC、∠ACF,∴∠ABI=∠CBI,∠ECI=∠ICF,∵DE∥BC,∴∠DIB=∠CBI,∠EIC=∠ICF,∴∠ABI=∠DIB,∠ECI=∠EIC,∴DI=BD=8cm,EI=CE=5cm,∴DE=DI﹣EI=3(cm).故答案为:3cm.14.(2016秋•东湖区月考)如图,△ABC中,∠B与∠C的平分线交于点O,过O作EF∥BC 交AB、AC于E、F,若△ABC的周长比△AEF的周长大12cm,O到AB的距离为3cm,△OBC的面积18cm2.【解答】解:∵∠B与∠C的平分线交于点O,∴∠EBO=∠OBC,∠FCO=∠OCB,∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,∴∠EOB=∠EBO,∠FCO=∠FOC,∴OE=BE,OF=FC,∴EF=BE+CF,∴AE+EF+AF=AB+AC,∵△ABC的周长比△AEF的周长大12cm,∴(AC+BC+AC)﹣(AE+EF+AF)=12,∴BC=12cm,∵O到AB的距离为3cm,∴△OBC的面积是cm×3cm=18cm2.,故答案为:18.15.(2016•江西模拟)有一三角形纸片ABC,∠A=80°,点D是AC边上一点,沿BD方向剪开三角形纸片后,发现所得两纸片均为等腰三角形,则∠C的度数可以是25°或40°或10°.【解答】解:由题意知△ABD与△DBC均为等腰三角形,对于△ABD可能有①AB=BD,此时∠ADB=∠A=80°,∴∠BDC=180°﹣∠ADB=180°﹣80°=100°,∠C=(180°﹣100°)=40°,②AB=AD,此时∠ADB=(180°﹣∠A)=(180°﹣80°)=50°,∴∠BDC=180°﹣∠ADB=180°﹣50°=130°,∠C=(180°﹣130°)=25°,③AD=BD,此时,∠ADB=180°﹣2×80°=20°,∴∠BDC=180°﹣∠ADB=180°﹣20°=160°,∠C=(180°﹣160°)=10°,综上所述,∠C度数可以为25°或40°或10°.故答案为:25°或40°或10°.16.(2016•河南模拟)如图,在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点C出发,按C→B→A的路径,以2cm每秒的速度运动,设运动时间为t秒,当t为3,6或6.5或5.4时,△ACP是等腰三角形.【解答】解:由题意可得,第一种情况:当AC=CP时,△ACP是等腰三角形,如右图1所示,∵在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点C出发,按C→B→A的路径,以2cm每秒的速度运动,∴CP=6cm,∴t=6÷2=3秒;第二种情况:当CP=PA时,△ACP是等腰三角形,如右图2所示,∵在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点C出发,按C→B→A的路径,以2cm每秒的速度运动,∴AB=10cm,∠PAC=∠PCA,∴∠PCB=∠PBC,∴PA=PC=PB=5cm,∴t=(CB+BP)÷2=(8+5)÷2=6.5秒;第三种情况:当AC=AP时,△ACP是等腰三角形,如右图3所示,∵在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点C出发,按C→B→A的路径,以2cm每秒的速度运动,∴AP=6cm,AB=10cm,∴t=(CB+BA﹣AP)÷2=(8+10﹣6)÷2=6秒;第四种情况:当AC=CP时,△ACP是等腰三角形,如右图4所示,作CD⊥AB于点D,∵∠ACB=90°,AC=6cm,BC=8cm,tan∠A==,∴,AB=10cm,设CD=4a,则AD=3a,∴(4a)2+(3a)2=62,解得,a=,∴AD=3a=,∴AP=2AD=7.2cm,∴t==5.4s,故答案为:3,6或6.5或5.4.17.(2015春•重庆校级期中)如图,△ABC中,∠BAC=90°,AD⊥BC,∠ABC的平分线BE交AD于点F,AG平分∠DAC.给出下列结论:①∠BAD=∠C;②AE=AF;③∠EBC=∠C;④FG∥AC;⑤EF=FG.其中正确的结论是①②④.【解答】解:①连接EG.∵∠BAC=90°,AD⊥BC.∴∠C+∠ABC=90°,∠C+∠DAC=90°,∠ABC+∠BAD=90°.∴∠ABC=∠DAC,∠BAD=∠C,故①正确;②∵BE、AG分别是∠ABC、∠DAC的平分线.∴∠ABF=∠EBD.∵∠AFE=∠FAB+∠FBA,∠AEB=∠C+∠EBD,∴∠AFE=∠AEF,∴AF=AE,故②正确;③如果∠EBC=∠C,则∠C=∠ABC,∵∠BAC=90°那么∠C=30°,但∠C≠30°,故③错误;④∵AG是∠DAC的平分线,∴AN⊥BE,FN=EN,在△ABN与△GBN中,∵∴△ABN≌△GBN,∴AN=GN,∴四边形AFGE是平行四边形,∴GF∥AE,即GF∥AC.故④正确;⑤∵AE=AF,AE=FG,而△AEF不是等边三角形,∴EF≠AE,∴EF≠FG,故⑤错误.故答案为:①②④.18.(2015秋•江阴市校级期中)如图,△ABC中,AB=BC=AC=12cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M、N同时停止运动.(1)当点M、N运动12秒时,M、N两点重合;(2)当点M、N运动4,8,16秒后,M、N与△ABC中的某个顶点可得到等腰三角形.【解答】解:(1)设点M、N运动x秒后,M、N两点重合,x×1+12=2x,解得:x=12,故当点M、N运动12秒时,M、N两点重合;故答案为:12;(2)①当M在AC上,N在AB上时,有AM=AN,△AMN为等边三角形,符合题意,即t=12﹣2t,解得t=4;②当M、N均在AC上时,有BM=BN,△BMN为等腰三角形,符合题意,则CM=AN,即12﹣t=2t﹣12,解得t=8;③当M、N均在BC上时,N点已经追过M点,有AM=AN,△AMN为等腰三角形,符合题意,则CM=BN,即t﹣12=36﹣2t,解得t=16.故答案为4,8,16.19.(2014春•海盐县校级期末)如图,在△ABC中,AC=BC>AB,点P为△ABC所在平面内一点,且点P与△ABC的任意两个顶点构成的△PAB,△PBC,△PAC均为等腰三角形,则满足上述条件的所有点P有6个.(请在图形中表示点P的位置)【解答】解:如图所示,作AB的垂直平分线,①△ABC的外心P1为满足条件的一个点,②以点C为圆心,以AC长为半径画圆,P2、P3为满足条件的点,③分别以点A、B为圆心,以AC长为半径画圆,P4为满足条件的点,④分别以点A、B为圆心,以AB长为半径画圆,P5、P6为满足条件的点,综上所述,满足条件的所有点P的个数为6.故答案为:6.20.(2014•河南模拟)如图,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△DEF与△ABC重合在一起,△ABC不动,点E在边BC上沿B到C的方向运动,且DE始终经过点A,EF与AC交于M点.若△AEM构成等腰三角形,则BE的长为1或.【解答】解:∵AB=AC,∴∠B=∠C,∵△ABC≌△DEF,∴∠AEF=∠B,∴∠AEF=∠B=∠C,∵∠AME>∠C,∴∠AME>∠AEF,∴AE≠AM;当AE=EM时,则△ABE≌△ECM,∴CE=AB=5,∴BE=BC﹣EC=6﹣5=1,当AM=EM时,则∠MAE=∠MEA,∴∠MAE+∠BAE=∠MEA+∠CEM,即∠CAB=∠CEA,又∵∠C=∠C,∴△CAE∽△CBA,∴=,∴CE==,∴BE=6﹣=;∴BE=1或.三.解答题(共10小题)21.(2016秋•淮安期末)如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC 边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数.【解答】证明:∵AB=AC,∴∠ABC=∠ACB,在△DBE和△CEF中,∴△DBE≌△CEF,∴DE=EF,∴△DEF是等腰三角形;(2)∵△DBE≌△CEF,∴∠1=∠3,∠2=∠4,∵∠A+∠B+∠C=180°,∴∠B=(180°﹣40°)=70°∴∠1+∠2=110°∴∠3+∠2=110°∴∠DEF=70°22.(2016秋•宁城县期末)如图,已知点A、C分别在∠GBE的边BG、BE上,且AB=AC,AD∥BE,∠GBE的平分线与AD交于点D,连接CD.(1)求证:①AB=AD;②CD平分∠ACE.(2)猜想∠BDC与∠BAC之间有何数量关系?并对你的猜想加以证明.【解答】解:(1)①∵AD∥BE,∴∠ADB=∠DBC,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABD=∠ADB,∴AB=AD;②∵AD∥BE,∴∠ADC=∠DCE,由①知AB=AD,又∵AB=AC,∴AC=AD,∴∠ACD=∠ADC,∴∠ACD=∠DCE,∴CD平分∠ACE;(2)∠BDC=∠BAC,∵BD、CD分别平分∠ABE,∠ACE,∴∠DBC=∠ABC,∠DCE=∠ACE,∵∠BDC+∠DBC=∠DCE,∴∠BDC+∠ABC=∠ACE,∵∠BAC+∠ABC=∠ACE,∴∠BDC+∠ABC=∠ABC+∠BAC,∴∠BDC=∠BAC.23.(2016秋•义乌市期末)如图,在△ABC中,AB=AC=2,∠B=∠C=50°,点D在线段BC上运动(点D不与B、C重合),连接AD,作∠ADE=50°,DE交线段AC于E.(1)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请求出∠BDA 的度数;若不可以,请说明理由.(2)若DC=2,求证:△ABD≌△DCE.【解答】解:(1)∵∠B=∠C=50°,∠ADE=50°,∴∠BDA+∠EDC=∠CED+∠EDC=130°,∴∠BDA=∠CED,∵点D在线段BC上运动(点D不与B、C重合),∴AD≠AE,ⅰ)如图所示,当EA=ED时,∠EAD=∠ADE=50°,∴∠BDA=∠CED=50°+50°=100°;ⅱ)如图所示,当DA=DE时,∠EAD=∠AED=65°,∴∠BDA=∠CED=65°+50°=115°;(2)由(1)可得∠BDA=∠CED,又∵∠B=∠C=50°,AB=DC=2,∴在△ABD和△DCE中,,∴△ABD≌△DCE(AAS).24.(2016秋•黄埔区期末)如图,在△ABC中,AD平分∠BAC交BC于D,DE∥AC交AB于E,过E作EF⊥AD,垂足为H,并交BC延长线于F.(1)求证:AE=ED;(2)Q请猜想∠B与∠CAF的大小关系,并证明你的结论.【解答】证明:(1)∵DE∥AC,∴∠EDA=∠DAC,∵AD平分∠BAC,∴∠EAD=∠DAC,∴∠EAD=∠EDA∴AE=ED;(2)∵AE=ED,EF⊥AD,AD平分∠BAC,∴EF是AD的垂直平分线,∴FA=FD,∴∠FAD=∠FDA,∵AD平分∠BAC,∴∠BAD=∠CAD,∵∠FDA=∠B+∠BAD,∠FAD=∠FAC+∠CAD,∴∠B=∠CA.25.(2015春•威海期末)如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E,EH⊥AB,垂足是H.在AB上取一点M,使BM=2DE,连接ME.求证:ME⊥BC.【解答】解:∵∠BAC=90°,AB=AC,∴∠B=∠C=45°,∵EH⊥AB于H,∴△BEH是等腰直角三角形,∴HE=BH,∠BEH=45°,∵AE平分∠BAD,AD⊥BC,∴DE=HE,∴DE=BH=HE,∵BM=2DE,∴HE=HM,∴△HEM是等腰直角三角形,∴∠MEH=45°,∴∠BEM=45°+45°=90°,∴ME⊥BC.26.(2015秋•宜城市期末)如图,BD和CD分别平分△ABC的内角∠EBA和外角∠ECA,BD交AC于F,连接AD.(1)求证:∠BDC=∠BAC;(2)若AB=AC,请判断△ABD的形状,并证明你的结论;(3)在(2)的条件下,若AF=BF,求∠EBA的大小.【解答】解:(1)∵BD、CD分别平分∠EBA、∠ECA,BD交AC于F,∴∠BDC+∠ABC=∠ACE,∠BAC+∠ABC=∠ACE,∴∠BDC+∠ABC=∠BAC+∠ABC,∴∠BDC=∠BAC.(2)△ABD为等腰三角形,证明如下:作DM⊥BG于M,DN⊥AC于N,DH⊥BE于H∵BD、CD分别平分∠EBA、∠ECA,∴DM=DH,DN=DH,∴DM=DN,∴AD平分∠CAG,即∠GAD=∠CAD,∵∠GAD+∠CAD+∠BAC=180°,∠BAC+∠ABC+∠ACB=180°,∴∠GAD+∠CAD=∠ABC+∠ACB,∵AB=AC,∴∠ABC=∠ACB,∴∠GAD=∠ABC,∴AD∥BC,∴∠ADB=∠DBC,又∵∠ABD=∠DBC,∴∠ABD=∠ADB,∴AB=AD,∴△ABD为等腰三角形;(3)∵AF=BF,∴∠BAF=∠ABF=∠ABC,∵∠BAF+∠ABC+∠ACB=180°,∠ABC=∠ACB,∴∠ABC=180°,∴∠ABC=72°.27.(2015秋•台州期中)定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段叫做这个三角形的三分线.(如图1所示)(1)请你在图2中画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(2)△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC 边上,且AD=BD,DE=CE,设∠C=x°,试画出示意图,并求出x所有可能的值.【解答】解:(1)如图2作图,(2)如图3 ①、②作△ABC.①当AD=AE时,∵2x+x=30+30,∴x=20.②当AD=DE时,∵30+30+2x+x=180,∴x=40.所以∠C的度数是20°或40°.28.(2016秋•盂县期末)如图1,点P、Q分别是等边△ABC边AB、BC上的动点(端点除外),点P从顶点A、点Q从顶点B同时出发,且它们的运动速度相同,连接AQ、CP 交于点M.(1)求证:△ABQ≌△CAP;(2)如图1,当点P、Q分别在AB、BC边上运动时,∠QMC变化吗?若变化,请说理由;若不变,求出它的度数.(3)如图2,若点P、Q在分别运动到点B和点C后,继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠QMC=120度.(直接填写度数)【解答】(1)证明:∵△ABC是等边三角形∴∠ABQ=∠CAP,AB=CA,又∵点P、Q运动速度相同,∴AP=BQ,在△ABQ与△CAP中,,∴△ABQ≌△CAP(SAS);(2)解:点P、Q在运动的过程中,∠QMC不变.理由:∵△ABQ≌△CAP,∴∠BAQ=∠ACP,∵∠QMC=∠ACP+∠MAC,∴∠QMC=∠BAQ+∠MAC=∠BAC=60°;(3)解:∵△ABQ≌△CAP,∴∠BAQ=∠ACP,∵∠QMC=∠BAQ+∠APM,∴∠QMC=∠ACP+∠APM=180°﹣∠PAC=180°﹣60°=120°.故答案为:120°.29.(2016秋•天津期末)如图,已知△ABC中,AB=AC=12cm,BC=10cm,点D为AB的中点.如果点P在线段BC上以2cm/s的速度由点B向C点运动,同时,点Q在线段AC 上由点A向C点以4cm/s的速度运动.(1)若点P、Q两点分别从B、A 两点同时出发,经过2秒后,△BPD与△CQP是否全等,请说明理由;(2)若点P、Q两点分别从B、A 两点同时出发,△CPQ的周长为18cm,问:经过几秒后,△CPQ是等腰三角形?【解答】解:(1),△BPD与△CQP是全等.理由如下:当P,Q两点分别从B,A两点同时出发运动2秒时有BP=2×2=4cm,AQ=4×2=8cm则CP=BC﹣BP=10﹣4=6cmCQ=AC﹣AQ=12﹣8=4cm∵D是AB的中点∴BD=AB=×12=6cm∴BP=CQ,BD=CP又∵△ABC中,AB=AC∴∠B=∠C在△BPD和△CQP中BP=CQ∠B=∠CBD=CP∴△BPD≌△CQP(SAS)(2)设当P,Q两点同时出发运动t秒时,有BP=2t,AQ=4t∴t的取值范围为0<t≤3则CP=10﹣2t,CQ=12﹣4t∵△CPQ的周长为18cm,∴PQ=18﹣(10﹣2t)﹣(12﹣4t)=6t﹣4要使△CPQ是等腰三角形,则可分为三种情况讨论:①当CP=CQ时,则有10﹣2t=12﹣4t解得:t=1 …(9分)②当PQ=PC时,则有6t﹣4=10﹣2t解得:t=…(10分)③当QP=QC时,则有6t﹣4=12﹣4t解得:t=…(11分)三种情况均符合t的取值范围.综上所述,经过1秒或秒或秒时,△CPQ是等腰三角形30.(2016秋•顺庆区期末)如图1,C是线段BE上一点,以BC、CE为边分别在BE的同侧作等边△ABC和等边△DCE,连结AE、BD.(1)求证:BD=AE;(2)如图2,若M、N分别是线段AE、BD上的点,且AM=BN,请判断△CMN的形状,并说明理由.【解答】证明:(1)∵△ABC、△DCE均是等边三角形,∴AC=BC,DC=DE,∠ACB=∠DCE=60°,∴∠ACB+∠ACD=∠DCE+∠ACD,即∠BCD=∠ACE,在△DCB和△ACE中,,∴△DCB≌△ACE(SAS),∴BD=AE;(2)△CMN为等边三角形,理由如下:由(1)可知:△ACE≌△DCB,∴∠CAE=∠CDB,即∠CAM=∠CBN,∵AC=BC,AM=BN,在△ACM和△BCN中,,∴△ACM≌△BCN(SAS),∴CM=CN,∠ACM=∠BCN,∵∠ACB=60°即∠BCN+∠ACN=60°,∴∠ACM+∠ACN=60°即∠MCN=60°,∴△CMN为等边三角形.第31页(共8页)。
专项1.1等腰三角形的性质与判定(解析版)
2020—2021八年级下学期专项冲刺卷(北师大版)专项1.1等腰三角形的性质与判定姓名:___________考号:___________分数:___________(考试时间:100分钟满分:120分)一、选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.如果等腰三角形一腰上的高与另一腰的夹角为45,那么这个等腰三角形的底角为()A.22.5B.67.5C.6750 D.22.5或67.5【答案】D解:有两种情况:(1)如图当△ABC是锐角三角形时,BD⊥AC于D,则∠ADB=90°,已知∠ABD=45°,∴∠A=90°-45°=45°,∵AB=AC,∴∠ABC=∠C=12×(180°-45°)=67.5°,(2)如图当△EFG是钝角三角形时,FH⊥EG于H,则∠FHE=90°,已知∠HFE=45°,∴∠HEF=90°-45°=45°,∴∠FEG=180°-45°=135°,∵EF=EG,∴∠EFG=∠G=12×(180°-135°)=22.5°.故选:D.2.如图,纸片△ABC中,AB=AC,∠A=40°,将纸片对折,使点A与点B重合,折痕为DE,连结BE.则∠EBC 的度数为()A.30°B.40°C.60°D.80°【答案】A由题可得,∠ABC=(180°-40°)÷2=70°,由翻折的性质可得:∠A=∠DBE=40°,∴∠EBC=∠ABC-∠DBE=70°-40°=30°,故选:A.3.如图,在△ABC中,∠C=90°,点D在边BC上,AD=BD,DE平分∠ADB交AB于点E.若AC=12,BC=16,则AE的长为()A.6B.8C.10D.12【答案】C解:如图,在△ABC中,∠C=90°,AC=12,BC=16,由勾股定理知:20AB==,∵AD=BD,DE平分∠ADB交AB于点E.∴1102AE BE AB===,故选:C.4.如图,AD是等边ABC∆的中线,E是AC边的中点,F是AD边上的动点,当EF+CF 取得最小值时,则ECF∠的度数为().A.20︒B.30︒C.45︒D.50︒【答案】B解:如图:∵AD是等边ABC∆的中线,∴AD⊥BC,BD=CD,∴BF=CF,∴CF+EF=BF+EF,∴当B、F、E位于同一直线,且BE⊥AC是,EF+CF最小.过点B作BE⊥AC于点E,交AD于点F,连接CF,∵△ABC是等边三角形,∴AE =EC ,AF =FC ,∴∠F AC =∠FCA ,∵AD 是等边△ABC 的BC 边上的中线,∴∠BAD =∠CAD =30°,∴∠ECF =30°.故选:B .5.等腰三角形的一个内角为120°,则底角的度数为( )A .30°B .40°C .60°D .120° 【答案】A解:∵等腰三角形中,一个内角为120°,而三内角的和为180°,∴该内角为顶角,设顶角为∠A ,底角为∠B、∠C,则有∠B=∠C ,∵∠A=120°,∴∠B=∠C=()1180-1202︒︒=30°, 故选:A .6.在△ABC 中,A x ∠=︒,B y ∠=︒,60C ∠≠︒.若1902y x =-,则下列结论正确的是( )A .AB BC =B .AB AC = C .AC BC =D .AB ,AC ,BC 中任意两边都不相等【答案】B【分析】由三角形内角和定理和已知条件得出∠B=∠C ,证出AC=AB .【详解】∵180A B C ∠+∠+∠=︒,A x ∠=︒,B y ∠=︒,∴180C x y ∠=︒-︒-︒, ∵1902y x =-, ∴∠C=11180(90)(90)22x x x y ︒-︒--︒=-︒=︒, ∴∠B=∠C ,∴AC=AB ,故选:B .7.如图,△ABC 是等边三角形,AQ = PQ ,PR ⊥AB 于点R ,PS ⊥AC 于点S ,PR =PS ,则四个结论:①点P 在∠A 的平分线上;②AS=AR ;③QP ∥AR ;④△BRP ≌△QSP ,正确的结论是( ).A .①②③④B .①②③C .②③④D .③④【答案】A 解:∵△ABC 是等边三角形,PR ⊥AB ,PS ⊥AC ,且PR=PS ,∴P 在∠A 的平分线上,∴①正确;由①可知,PB=PC ,∠B=∠C ,PS=PR ,∴△BPR ≌△CPS ,∴CS=BR∴AS=AR ,②正确;∵AQ=PQ ,∴∠PQC=2∠PAC=60°=∠BAC , ∴PQ ∥AR ,③正确;由③得,△PQC 是等边三角形,∴△PQS ≌△PCS ,又由②可知,④△BRP ≌△QSP ,④也正确∵①②③④都正确,故选:A .8.等边三角形的周长为18,则边长为( )A .2B .3C .4D .6 【答案】D解:因为等边三角形的三条边都是相等,所以边长为:18÷3=6 故选:D .9.如图,在ABC 中,AB AC =,D 、E 是ABC 内两点,AD 平分BAC ∠,60EBC E ∠=∠=︒,若7BE =,3DE =,则BC 的长度是( )A .12B .11C .10D .9【答案】C 解:延长DE 交BC 于M,延长AD 交BC 于N,∵AB=AC,AD 平分∠BAC, ∴AN ⊥BC, ∠EBC=∠E=60°,∴△BED 为等边三角形,∴BE=EM∵BE=7,DE=3,∴DM=EM-DE=7-3=4∵△BEM 为等边三角形,∴∠EMB=60°∵AN ⊥BC∴∠DNM=90°∴∠NDM=30°∴NM=2∴BN=5∴BC=2BN=10故答案为:C ..10.如图,已知△ABC 三个内角的平分线交于点O ,点D 在CA 的延长线上,且DC =BC ,AD =AO ,若∠BAC =80°,则∠BCA 的度数为( )A .80°B .60°C .40°D .30°【答案】B 解:∵△ABC 三个内角的平分线交于点O ,∴∠ACO =∠BCO ,在△COD 和△COB 中,CD CB OCD OCB CO CO =⎧⎪∠=∠⎨⎪=⎩,∴△COD ≌△COB ,∴∠D =∠CBO ,∵∠BAC =80°,∴∠BAD =100°,∴∠BAO =40°,∴∠DAO =140°,∵AD =AO ,∴∠D =20°,∴∠CBO =20°,∴∠ABC =40°,∴∠BCA =60°,故选B .11.如图,分别以ABC ∆的边AB ,AC 所在直线为对称轴作ABC 的对称图形ABD △和ACE △,150BAC ∠=︒,线段BD 与CE 相交于点O ,连接BE 、ED 、DC 、OA .有如下结论:①90EAD ∠=︒;②60BOE ∠=︒;③OA 平分BOC ∠;④BP EQ =.其中正确的结论个数是( )A .1B .2C .3D .4【答案】C ∵ABD ∆和ACE ∆是ABC ∆的轴对称图形,∴BAD CAE BAC ∠=∠=∠,AB AE =,AC=AD ,∴3360315036090EAD BAC ∠=∠-︒=⨯︒-︒=︒,故①正确. ∴1(36090150)602BAE CAD ∠=∠=︒-︒-︒=︒, 由翻折的性质得,AEC ABD ABC ∠=∠=∠,∵EPO BPA ∠=∠,∴60BOE BAE ∠=∠=︒,故②正确.∵ACE ADB ∆≅∆,∴ACE ADB S S ∆∆=,BD CE =,∴BD 边上的高与CE 边上的高相等,即点A 到BOC ∠两边的距离相等,∴OA 平分BOC ∠,故③正确.∵∠EAQ=90°,∴AE <EQ∵AB AE =,∠BAE=60°,∴△ABE 是等边三角形,∴BP <AB ,∴BP <EQ ,故④错误;综上所述,结论正确的是①②③共3个.故选:C .12.在ABC 中,90BAC ∠=︒,6AB AC cm ==,D 为BC 中点,E ,F 分别是AB ,AC 两边上的动点,且90EDF ∠=︒,下列结论:①BE AF =;②EF 的长度不变;③BED CFD ∠+∠的度数不变;④四边形AEDF 的面积为29cm .其中正确的结论个数是( )A .1个B .2个C .3个D .4个【答案】C 解:∵AB=AC ,∠BAC=90°,BD=CD ,∴AD ⊥BC ,AD=BD=DC ,∵∠BDA=∠EDF=90°,∴∠BDE=∠ADF ,∵∠B=∠DAF=45°,∴△BDE ≌△ADF (ASA ),∴BE=AF ,DE=DF ,故①正确,∵DE=DF ,∠EDF=90°,∴△DEF 是等腰直角三角形,∵DE 的长度是变化的,∴EF 的长度是变化的.故②不正确.∵△BDE ≌△ADF ,∴∠BED=∠AFD ,∴∠BED+∠CFD=∠AFD+∠CFD=180°,故③正确;∵△BDE ≌△ADF ,∴BDE ADF SS =, ∴21)11669(222ADE ADF ADE BDE ADB ABC S S S S S S cm +=+===⨯⨯⨯=. 故④正确.故选:C .二、 填空题(本大题共6小题,每小题3分,共18分)13.如图,在△ABC 中,AB =AC ,AD ⊥BC 于点D .若BC =28,则BD 的长为____.【答案】14∵AB=AC ,∴△ABC 为等腰三角形,∵AD ⊥BC ,∴根据“三线合一”知,BD=12BC=14, 故答案为:14.14.如图,在Rt △ABC 中,∠A =90°,∠B =30°,CM 平分∠ACB 交AB 于点M ,过点M 作MN ∥BC 交AC 于点N ,且MN 平分∠AMC ,若AN =1,则BC 的长为_____.【答案】6.解:3090B A ∠=︒∠=︒,,60ACB ∴∠=︒,∵CM 平分∠ACB ,30ACM BCM ∴∠=∠=︒,//MN BC ,∴3030AMN B NMC BCM ∠=∠=︒∠=∠=︒,,30NCM NMC ∴∠=∠=︒,,NM NC ∴=∵130AN AMN =∠=︒,, ∴2MN =,2NC ∴=,∴3AC AN NC =+=,∴ 6.BC =故答案为:6.15.如图,在射线OA ,OB 上分别截取11OA OB =,连接11A B ,在11B A ,1BB 上分别截取1212B A B B =,连接22A B ,……按此规律作下去,若11A B O α∠=,则1010A B O ∠=___________.【答案】512α. 解:∵B 1A 2=B 1B 2,∠A 1B 1O =α,∴∠A 2B 2O 12=α, 同理∠A 3B 3O 12=∠A 2B 2O 212=α, ∠A 4B 4O 312=α, ∴∠A n B n O 112n -=α, ∴∠A 10B 10O 95221αα==. 故答案为:512α. 16.如图,是屋架设计图的一部分,点D 是斜梁AB 的中点,立柱BC ,DE 分别垂直于横梁AC ,若DE =1.8m ,∠A =30°,则斜梁AB 的长为_____m .【答案】7.2由题意,DE ⊥AC ,BC ⊥AC ,∠A=30°,∴在Rt △ADE 中,AD=2DE=3.6m ,∵D 为AB 的中点,∴AB=2AD=7.2m ,故答案为:7.2.17.如图,在△ABC 中,AB =BC ,BE 平分∠ABC ,AD 为BC 边上的高,且AD =BD .则∠3=______°.【答案】22.5∵AD 为BC 边上的高,且AD =BD ,∴∠ABD =∠BAD =45°,∵AB =BC ,∴∠BAC =()1180ABC 2-∠=67.5°, ∴∠3=∠BAC -∠BAD =67.5°-45°=22.5°,故填:22.5°.18.如图,已知∠AOB=60°,点P 在边OA 上,OP=24,点M ,N 在边OB 上,PM=PN ,若NM=6,则OM=______________.【答案】9解:过P 作PD ⊥OB ,交OB 于点D ,∵∠AOB=60°,∴∠OPD=30°,∴OD =12OP=12. ∵PM =PN ,PD ⊥MN ,∴MD =ND =12MN =3, ∴OM =OD ﹣MD =12﹣3=9.故答案为:9.三、解答题(本大题共6小题,共66分,解答应写出文字说明、演算步骤或推理过程) 19.如图,在等边三角形ABC 中,D 是AB 上的一点,E 是CB 延长线上一点,连接,CD DE 、已知,6EDB ACD BC ∠=∠=,(1)求证:DEC ∆是等腰三角形(2)当5,8,2BDC EDB EC AD ∠=∠==时,求EDC ∆的面积.【答案】(1)证明见解析;(2)16(1)证明:ABC ∆是等边三角形60ABC ACB ∴∠=∠=,E EDB ACD BCD ∠+∠=∠+∠∴,EDB ACD ∠=∠,E BCD ∴∠=∠,DE DC ∴=,DEC ∴∆是等腰三角形;(2)设EDB ACD x ∠=∠=,则5BDC x ∠=,60ACB ∠=60BCD x ∠=∴-,60E x ∠=∴-,在DEC ∆中,180E EDC DCE ∠+∠+∠=︒,60560180x x x x ∴+︒-++︒-=,解得15x =,690EDC x ∴∠==,DEC ∴∆是等腰直角三角形,过点D 作DF EC ⊥于点F ,如图所示,DF EC ⊥,,DFE DFC ∆∆∴都是等腰直角三角形,12DF EC ∴= 8EC =,∴DF=4,EDC ∴∆的面积为:11841622EC DF ⋅⋅=⨯⨯=20.在四边形ABCD中,∠B+∠D=180°,对角线AC平分∠BAD.(1)如图1,若∠B=90°,则线段AB = ,D C= ;(2)如图1,若∠DAB=120°,且∠B=90°.试探究边AD、AB与对角线AC的数量关系并说明理由.(3)如图2,若将(2)中的条件“∠B=90°”去掉,(2)中的结论是否成立?请说明理由.【答案】(1)AD,B C;(2)AC=AD+AB,理由见解析;(3)AB+ AD = A C,成立;理由见解析.解:(1)∵∠B=90°,∠B+∠D=180°,∴∠D=90°=∠B,∵AC平分∠BAD,∴∠BAC=∠DAC,∵AC=AC,∴△ABC≌△ADC,∴AB = AD,DC= BC;(2)AC=AD+AB,证明:∵对角线AC平分∠BAD.∠DAB=120°,∴∠CAD=∠CAB=60°又∵∠B+∠D=180°,∠B=90°∴∠D=90°,∴∠ACD=∠ACB=30°∴AD=12AC,AB=12AC,∴AC=AD+AB;(3)成立证明:以C为顶点,AC为一边作∠ACE=60°∠ACE的另一边交AB延长线于点E∵∠CAB=60°,∴△ACE为等边三角形∴EC= AC ,∠E=60°又∵∠B+∠D=180°,∠DAB=120°,∴∠B CD=60°.∴∠ACD=∠ECB=60°—∠B CA.又∵∠CAD=∠E=60°∴△ACD≌△ECB∴AD=BE∴AB+ AD =AB+BE= AE又∵△ACE为等边三角形∴AE= AC∴AB+ AD = AC.21.已知长方形纸片ABCD,将长方形纸片按如图所示的方式折叠,使点D与点B重合,折痕为EF.(1)△BEF是等腰三角形吗?若是,请说明理由;(2)若AB =4,AD =8,求BE 的长.【答案】(1)BEF 是等腰三角形,理由见解析;(2)5.(1)BEF 是等腰三角形,理由如下:四边形ABCD 是长方形,//AD BC ∴,DEF BFE ∴∠=∠,由折叠的性质得:DEF BEF ∠=∠,BFE BEF ∴∠=∠,BEF ∴是等腰三角形;(2)四边形ABCD 是长方形,90A ∴∠=︒,由折叠的性质得:BE DE =,设BE DE x ==,则8AE AD DE x =-=-,在Rt ABE △中,222AB AE BE +=,即2224(8)x x +-=,解得5x =,即BE 的长为5.22.图①、图②均是6×6的正方形网格,小正方形的边长为1,每个小正方形的顶点称为格点,点A 、B 均在格点上.只用无刻度的直尺,在给定的网格中按要求画图. (1)在图①中,画一个以AB 为底边的等腰三角形ABC ,点C 在格点上;(2)在图②中,画一个以AB 为腰的等腰三角形ABD ,点D 在格点上.【答案】(1)见解析图;(2)见解析图(1)如图所示,存在C1,C2,C3,三种情况,画出其中一个即可;(2)如图所示,存在D1,D2,两种情况,画出其中一个即可.23.如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN//BC交AB于M,交AC于N,(1)请判断△BME与△ECN的形状,并说明理由?(2)若BM+CN=9,求线段MN的长.【答案】(1)△BME与△ECN都是等腰三角形;理由见解析;(2)9(1)△BME 与△ECN 都是等腰三角形;理由如下:∵∠ABC 、∠ACB 的平分线相交于点E ,∴∠MBE =∠EBC ,∠ECN =∠ECB ,∵MN ∥BC ,∴∠EBC =∠MEB ,∠NEC =∠ECB ,∴∠MBE =∠MEB ,∠NEC =∠ECN ,∴BM =ME ,EN =CN ,∴△BME 与△ECN 都是等腰三角形;(2)解:∵MN =ME +EN ,BM =ME ,EN =CN ,∴MN =BM +CN .∵BM +CN =9,∴MN =9.24.如图,已知ABC 中,BE 平分∠ABC ,且BE =BA ,点F 是BE 延长线上一点,且BF =BC ,过点F 作FD ⊥BC 于点D .(1)求证:∠BEC =∠BAF ;(2)判断AFC △的形状并说明理由.(3)若CD =2,求EF 的长.【答案】(1)证明见解析;(2)AFC 是等腰三角形,理由见解析;(3)4 解:(1)∵BE 平分∠ABC ,∴∠EBC =∠ABF ,在△BEC 和△BAF 中,BE BA EBC ABF BC BF =⎧⎪∠=∠⎨⎪=⎩,∴∠BEC =∠BAF ;(2)△AFC 是等腰三角形.证明:过F 作FG ⊥BA ,与BA 的延长线交于点G ,如图,∵BA =BE ,BC =BF ,∠ABF =∠CBF ,∴∠AEB =∠BCF ,∵∠BEC =∠BAF ,∴∠GAF =∠AEB =∠BCF ,∵BF 平分∠ABC ,FD ⊥BC ,FG ⊥BA ,∴FD =FG ,在△CDF 和△AGF 中,90DCF GAF CDF AGF FD FG ︒∠=∠⎧⎪∠=∠=⎨⎪=⎩,∴△CDF ≌△AGF (AAS ),∴FC =FA ,∴△ACF 是等腰三角形;(3)设AB =BE =x ,∵△CDF ≌△AGF ,CD =2,∴CD =AG =2,∴BG =BA+AG =x+2,在Rt △BFD 和Rt △BFG 中,FD FG BF BF =⎧⎨=⎩,∴BD=BG=x+2,∴BF=BC=BD+CD=x+4,∴EF=BF﹣BE=x+4﹣x=4.。
专题01 等腰三角形的性质与判定(十六大题型+跟踪训练)(原卷版)
专题01等腰三角形的性质与判定(十六大题型+跟踪训练).....在ABC 中,若AB =,则ABC 是(.不等边三角形B .等边三角形C .直角三角形.等腰三角形.以下列线段为边不能组成等腰三角形的是(),4,51,1,1,则周长是()7cm 或8cm .条件不足,无法求出A .5cm B中,AB 15.如图,ABCA.80︒B 16.如图,在△ABC中,A.50︒B60中,17.如图,在ABCA.30︒B.18.如图,70∠=︒,AOBA.20°B.25°题型4:等边对等角的综合应用20.如图所示,在ABC 中,30A ∠=︒,80ACB ∠=︒,DE 垂直平分AC 交AB 于E ,垂足为D ,则BCE ∠=______.21.如图,直线a ∥b ,AB AC =,140 ∠=,则∠BAC 的度数是()A .100B .110C .120D .13022.如图,在∠ECF 的边CE 上有两点A 、B ,边CF 上有一点D ,其中BC =BD =DA 且∠ECF =27°,则∠ADF 的度数为()A .54°B .91°C .81°D .101°23.如图,在ABC 中,DE 垂直平分BC ,若6428CDE A ∠=︒∠=︒,,则ABD ∠的度数为()A .100︒B .128︒C .108︒D .98︒70B ∠=︒,则BDF ∠等于(A .65︒B .26.如图,在ABC 中,AB =27.如图,,∥DE AB AE 平分∠28.如图,在ABC 中,AB (1)求证:ABD △≌△(2)若3BD =,5CD =题型6:等腰三角形的“三线合一”30.等腰三角形的“三线合一”指的是()A .中线,高线,角平分线互相重合B .顶角的平分线,中线,高线三线互相重合C .腰上的中线,腰上的高线,底角的平分线互相重合D .顶角的平分线,底边上的中线及底边上的高线三线互相重合31.如图,在ABC 中,AB AC =,D 是BC 边上的中点,54B ∠=︒,则DAC ∠等于()A .36°B .45°C .54°D .72°32.在ABC 中,AB AC =,AD BC ⊥于点D ,若6BC =,则BD =()A .2B .3C .4D .533.下列说法错误的是()A .等腰三角形两腰上的高相等B .等腰三角形两腰上的中线相等C .等腰三角形两底角的平分线相等D .等腰三角形高、中线和角平分线重合34.已知点P 到ABC 的两边AB ,AC 所在直线的距离相等,且PB PC =,则下列命题为假命题的是()A .若点P 在边BC 上,则AB AC=B .若点P 在ABC 内部,则AB AC=C .若点P 在ABC 外部,则AB AC=D .若AB AC =,则点P 可能在边BC 上,可能在ABC 内部,也可能在ABC 外部题型7:等腰三角形的“三线合一”有关的最值问题35.如图,在ABC 中,AB AC =,=4BC ,面积是10;AB 的垂直平分线ED 分别交AC ,AB 边于E 、D 两点,若点F 为BC 边的中点,点P 为线段ED 上一动点,则PBF △周长的最小值为()A .7B .9C .10D .1436.如图,等腰ABC 中AB AC =,AD BC ⊥,EF 垂直平分AB ,交AB 于点E ,交BC 于点F ,点G 是线段EF 上的一动点,若ABC 的面积是26cm ,6cm BC =,则ADG △的周长最小值是()A .4.5cmB .5cmC .5.5cmD .6cm37.如图ABC 中,5AC BC ==,6AB =,CD 为ABC 的中线,点E 、点F 分别为线段CD 、CA 上的动点,连接AE 、EF ,则AE EF +的最小值为()A .2.4B .4.8C .5D .6题型8:等腰三角形“三线合一”的综合问题38.如图,在ABC 中,AB AC =,AD 是BC 边的中线,DE AB ⊥于点E ,DF AC ⊥于点F ,下列结论:①DE DF =;②BE CF =;③BDE CDF ∠=∠;④BDE DAF ∠=∠.其中正确的是()A .①②③B .①②④C .②③④D .①②③④39.如图,在 ABC 中,AB AC =,AD BC ⊥于点D ,DE AB ⊥于点E ,BF AC ⊥于点F ,5DE =cm ,则BF =()A .8cmB .10cmC .12cmD .14cm40.如图,ACB △和DCE △均为等腰直角三角形,且90ACB DCE ∠=∠=︒,点A 、D 、E 在同一条线上,CM 平分DCE ∠,连接BE ,下列结论:①AD CE =;②CM BE ∥;③2AE BE CM =+;④COE BOE S S = ,其中正确的有()A .1个B .2个C .3个D .4个题型9:等腰三角形“三线合一”的解答证明41.如图,点D ,E 分别在BA ,AC 的延长线上,且AB AC =,AD AE =.求证:DE BC ⊥.42.如图,在ABC 中,AB AC =,40BAC ∠︒=,AD 是BC 边上的高.线段AC 的垂直平分线交AD 于点E ,交AC 于点F ,连接BE .(1)试问:线段AE 与BE 的长相等吗?请说明理由;(2)求EBD ∠的度数.43.如图,在ABC 中,2AC AB =,AD 平分BAC ∠交BC 于点D ,E 是AD 上一点,且EA EC =.求证:EB AB ⊥.题型10:等角对等边证明等腰三角形44.如图,在ABC 中,B C ∠=∠,AD 平分BAC ∠,=5AB ,=6BC ,则=BD ()A .3B .4C .5D .645.已知一个三角形中两个内角分别是50︒和80︒,则这个三角形一定是()A .钝角三角形B .直角三角形C .等腰三角形D .不能确定46.ABC 的三边分别是a ,b ,c ,不能判定是等腰三角形的是()A .::2:2:3ABC ∠∠∠=B .::2:2:3a b c =C .50B ∠=︒,80C ∠=︒D .2A B C∠=∠+∠47.如图,在ABC 中,BD 平分ABC ∠,2C CDB ∠=∠,12AB =,3CD =,则ABC 的周长为()A .2B .24C .27D .3题型11:等角对等边证明等腰三角形的解答证明48.已知:如图,在ABC 中,点D 在CA 边的延长线上,AE 平分DAB ∠,AE BC ∥.求证:ABC 为等腰三角形.49.如图,在ABD △和ACD 中,AB AC =,BD CD =.(1)求证:ABD ACD △≌△;(2)过点D 作∥DE AC 交AB 于点E ,求证:AED △是等腰三角形.50.已知ABC 中,AD 平分BAC ∠交BC 于点D ,且2B C ∠=∠.(1)如图1,求证:AB BD AC +=;(2)如图2,延长CB 至点E ,使BE AB =,连接AE ,若36C ∠=︒,直接写出图中所有的等腰三角形(ABC 和ADE V 除外).题型12:等角对等边证明边长相等、求边长51.如图,已知12∠=∠,B C ∠=∠,不正确的等式是()A .AB AC =B .BAE CAD ∠=∠C .BE DC =D .BD DE=52.如图,ABC 中,BD 平分ABC ∠交AC 于点D ,过点D 作DE BC ∥交AB 于点E ,若12AB =,7DE =,则AE 的长为()A .5B .6C .7D .853.如图,点P 是AOB ∠的角平分线OC 上一点,点Q 是OA 上一点,且PQ OB ∥,若2PQ =,则线段OQ 的长是()A .1.8B .2.5C .3D .254.如图,在ABC 中,BE 平分ABC ∠,DE BC ∥.若8DE =,5AD =,则AB 的长为()A .13B .12C .10D .955.如图,在ABC 中,45AB AC ==,,ABC ∠和ACB ∠的平分线交于点E ,过点E 作MN BC ∥分别交AB AC ,于M ,N ,则AMN 的周长为()A .8B .9C .10D .不确定56.如图,ABC DEF ≌△△,点E 在AC 上,B ,F ,C ,D 四点在同一条直线上.若40,35A CED ∠=︒∠=︒,则下列结论正确的是()A .,EF EC AB FC ==B .,EF EC AE FC≠=C .,EF EC AE FC =≠D .,EF EC AE FC≠≠57.如图,在ABC 中,AB AC =,AD BC ⊥于点D .(1)若37B ∠=︒,求CAD ∠的度数;(2)若点E 在边AC 上,EF AB ∥交AD 的延长线于点F .求证:AE FE =.58.如图,在四边形ABCD 中,AD BC ∥,E 是AB 的中点,连接DE 并延长交CB 的延长线于点F ,点G 在边BC 上,且GDF ADF ∠=∠.连接EG ,判断EG 与DF 的位置关系,并说明理由.题型13:直线上与已知两点组成等腰三角形的点59.如图,ABC ,点P 为直线AC 上的一个动点,若使得ABP 是等腰三角形.则符合条件的点P 有()A .1个B .2个C .3个D .4个60.如图,线段AB 的一个端点B 在直线m 上,直线m 上存在点C ,使ABC 为等腰三角形,这样的点C 有()A .2个B .3个C .4个D .5个61.如图,直线a b ,相交于点O ,150∠=︒,点A 在直线a 上,直线b 上存在点B ,使以点O A B 、、为顶点的三角形是等腰三角形,这样的B 点有()A .1个B .2个C .3个D .4个题型14:等腰三角形有关的尺规作图62.如图,给出了尺规作等腰三角形的三种作法,认真观察作图痕迹,下面的已知分别对应作图顺序正确的是()①已知等腰三角形的底边和底边上的高;②已知等腰三角形的底边和腰;③已知等腰三角形的底边和一底角.A .①②③B .②①③C .③①②D .②③①63.如图(1),锐角ABC 中,AB BC AC >>,要用尺规作图的方法在AB 边上找一点D ,使ACD 为等腰三角形,关于图(2)中的甲、乙、丙三种作图痕迹,下列说法正确的是()A .甲、乙、丙都正确B .甲、丙正确,乙错误C .甲、乙正确,丙错误D .只有甲正确64.已知锐角40AOB ∠=︒,如图,按下列步骤作图:①在OA 边取一点D ,以O 为圆心,OD 长为半径画 MN ,交OB 于点C .②以D 为圆心,DO 长为半径画 GH, GH 与OB 交于点E ,连接DC 并延长,使DC 的延长线交 GH于点P ,连接DE ,则POC ∠的度数为__________.题型15:格点中画等腰三角形(网格问题)65.由24个边长为1的小正方形组成的64⨯的网格中,线段AB 的两个端点都在格点(小正方形的顶点)上.请在所给的网格中各画一个△ABC ,使得△ABC 是轴对称图形,并画出其对称轴.(画出两种情况即可,全等图形视为一种情况)66.图1,图2均是44⨯的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点,点A ,B ,C 均为格点.只用无刻度的直尺,分别在给定的网格中找一格点M ,按下列要求作图:(1)在图1中,连接MA ,MB ,使MA MB =;(2)在图2中,连接MA ,MB ,MC ,使MA MB MC ==.67.如图,在每个小正方形的边长均为1的方格纸中,有线段AB 和线段DE ,点A 、B 、D 、E 均在小正方形的顶点上.(1)在方格纸中画出以AB 为底的等腰ABC (2)在方格纸中画出以DE 为一边的等腰DEF 直接写出DC 的长度.题型16:等腰三角形的性质和判定综合题68.如图,在ABC 中,90BAC ∠=︒,AB 90EDF ∠=︒,下列结论:①BED AFD △≌△积,则1211142S S S ≤≤;④EF AD =;所有正确的结论是(A .①③B .①③④69.如图,在Rt ABC 中,90CAB ∠=︒,AB 于点F ,且AE AF ⊥,AH BF ⊥,下列说法:A FCB S BF AH =⋅四边形⑤.正确的有()个A .2B .370.在Rt ABC △中,AC BC =,点D 为AB 中点,BC 交于E ,F 两点.下列结论:①AE BF +=④2222AE CE DF +=.其中正确的是(A .①②③④B .①②③C .①④D .②③71.在ABC 中,90ACB ∠=︒,AC BC =,点D 在射线BC 上(不与B ,C 重合),连接AD ,过点B 作BF AD ⊥,垂足为F .(1)如图1,点D 在线段BC 上,若AF 恰好平分CAB ∠,求证:AB AC CD =+.(2)如图2,点D 在线段BC 上,点M 是直线BF 上的一点,且AF 平分MAC ∠,探究AC 、CD 、AM 之间的数量关系,并说明理由.(3)如图3,若点D 在线段BC 的延长线上()CD BC <,点M 是直线BF 上的一点,且AF 平分MAC ∠,4AM =,8BD =,求CD 的长度.一、单选题1.等腰三角形的三边均为整数,且周长为13,则底边是()A .1或3B .3或5C .1或5D .1或3或52.如图,ABC 中,AC AD BD ==,80CAD ︒∠=,则B ∠等于()A .25︒B .30︒C .35︒D .40︒3.在等腰△ABC 中,AB=AC ,其周长为16cm ,则AB 边的取值范围是()A .1cm <AB <4cm B .3cm <AB <6cmC .4cm <AB <8cmD .5cm <AB <10cm4.如图,在ABC 中,B C ∠=∠,点,D E 都在边BC 上,且BD CE =,若3AD =,则AE 的长为()A .90αβ+=︒B 6.如图,在ABC 中,心,大于12AD 长为半径作弧,两弧交于点()A .10︒B 7.如图,ABC 中,CAB ∠()A .75︒B 8.如图,在ABC 中,定ADE V 是等腰三角形的是(A .122∠=∠B .1∠+A .7B .810.如图,在等腰ABC 中,BE ,若8BC =,则BCE 的面积为(A .16B .2411.如图,AOB ∠是一角度为且OE EF FG GH ===…,在A .4根B .5根12.在ABC 中,45ACB ∠=︒,过C 交于点F ,过点E 作EH CD ⊥分别交的中点,连接EQ .下面结论:①ABE 2GQPAHP S CQ S PH =△△.其中正确的是(A .①②③④B .①②③⑤二、填空题13.用一条长为20cm 的细绳围成一个边长为20.如图,在ABC 中,点F 是高21.如图,在ABC 中,BAC ∠22.已知()0,2A 、()4,0B ,点C 在x 轴上,若23.如图,在ABC 中,B ∠与C ∠的平分线交于点若5AB =,4AC =,则ADE V 的周长是24.如图,AD 和CD 分别为ABC 的两个外角的平分线,E 和F 给出以下结论:①ED DF =;②确的是.三、解答题25.如图,已知A B ∠=∠,AD BC =,AC 和BD 相交于点E .求证:BDC ACD ∠=∠.26.如图,在ABC 中,AB AC =,CE 平分ACB ∠,EC EA =.(1)求A ∠的度数;(2)若BD AC ⊥,垂足为D ,BD 交EC 于点F ,求1∠的度数.27.在由6个大小相同的小正方形组成的方格中,(1)如图1,A ,B ,C 是三个格点(即小正方形的顶点),判断AB 与BC 的关系,并说明理由;(2)如图2,连接三格和两格的对角线,求αβ∠+∠的度数.28.如图,将ABC 绕点A 逆时针旋转得到AB C ''△.若点B 的对应点B '恰好落在BC 上,84,BAB AB B C '''∠=︒=,(1)求C ∠的度数;(2)求BAC ∠的度数.29.如图,已知在ABC 中,AB AC =,AD BC ⊥,垂足为D .过点C 作CE AB ∥,连接ED 并延长交AB 于点F ,65BCE ∠=︒.(1)求CAD ∠的大小;(2)求证:CDE BDF △△≌;(3)直接写出线段AC ,AF ,CE 之间的数量关系______.30.如图,在AOB 中,90AOB ∠=︒,OA OB =,C 是AB 边上一点(点C 与A ,B 不重合),连结OC ,将线段OC 绕点O 按逆时针方向旋转90︒得到线段OD ,连结CD 交OB 于点E ,连结BD .(1)求证:AOC BOD ≌ .(2)当BE AC =时,求BDE ∠的度数.31.如图,在ABC 中,90C ∠=︒,4cm AC BC ==,点D 是斜边AB 的中点.点E 从点B 出发以1cm /s 的速度向点C 运动,点F 同时从点C 出发以一定的速度沿射线CA 方向运动,规定当点E 到终点C 停止运动,设运动的时间为x 秒,连接DE 、DF .(1)求ABC 的面积;(2)当1x =且点F 运动的速度也是1cm /s 时,求证:DE DF =;(3)若动点F 以3cm /s 的速度沿射线CA 方向运动,在点E 、点F 运动过程中,如果存在某个时间x ,使得ADF 的面积是BDE 面积的两倍,请你求出时间x 的值.32.如图,在ABC 中,90BAC ∠=︒,AB AC =,D E ,是平面内两点,135ADC ∠=︒(1)如图1,若AD BE =,20∠=∠=︒ABE BCD ,求BAE ∠的大小;(2)如图2,若BD CE =,180AEC ADB ∠+∠=︒,BF CD ∥交AD 延长线于F ,求证:+=AD AE DF ;(3)如图3,若BD CE =,180AEC ADB ∠+∠=︒,3CD =,直接写出CED △的面积.。
等腰三角形性质及判定(提高)巩固练习
【巩固练习】一.选择题1.如图,在△ABC 中,若AB =AC ,BC =BD ,AD =DE =EB ,则∠A 等于( ).A .30°B .36°C .45°D .54°2. 等腰三角形两边a 、b 满足|2a b -+|+()22311a b +-=0,则此三角形的周长是( )A .7B .5C .8D .7或53.(2015春•宜阳县期末)如图,△ABC 中,BO 平分∠ABC,CO 平分∠ACB,EF∥BC,EF 经过点O ,若AB=10,AC=15,则△AEF 的周长是( )A .10B . 15C . 20D . 254. 如图,D 为△ABC 内一点,CD 平分∠ACB ,BD ⊥CD ,∠A =∠ABD ,若AC =5,BC =3,则BD 的长为( ).A .1B .1.5C .2D .2.55.如图所示,在长方形ABCD 的对称轴l 上找点P ,使得△PAB 、△PBC 均为等腰三角形,则满足条件的点P 有( )A .1个B .3个C .5个D .无数多个6. 如图所示,矩形ABCD 中,AB =4,BC =E 是折线段A-D-C 上的一个动点(点E 与点A 不重合),点P 是点A 关于BE 的对称点、在点E 运动的过程中,使△PCB 为等腰三角形的点E 的位置共有( )A 、2个B 、3个C 、4个D 、5个二.填空题7.已知一个等腰三角形的顶角为x度,则其一腰上的高线与底边的夹角___________度(用含x的式子表示).8. 已知等腰三角形的两边长分别为2和3,则其周长为________.9. 等腰三角形的周长为22cm,其中一边的长是8cm,则其余两边长分别为________.10. 如图,在ΔABC中,高AD、BE交于H点,若BH=AC,则∠ABC=______°.11.如图,钝角三角形纸片ABC中,∠BAC=110°,D为AC边的中点.现将纸片沿过点D 的直线折叠,折痕与BC交于点E,点C的落点记为F.若点F恰好在BA的延长线上,则∠ADF =_________°.12.(2015•黄岛区校级模拟)如图,已知AB=A1B,在AA1的延长线上依次取A2、A3、A4、…、A n,并依次在三角形的外部作等腰三角形,使A1C1=A1A2,A2C2=A2A3,A3C3=A3A4,…,A n﹣1C n﹣1=A n﹣1A n,若∠B=30°,则∠A n= °.三.解答题13.(2014秋•海陵区期末)如图,点A的坐标为(5,0),试在第一象限内网格的格点(网格线的交点)上找一点B,使其与点O、A构成等腰三角形,请写出图中所有满足条件的点B的坐标.14.已知,如图,△ABC 中,D 是BC 中点,DE⊥DF,试判断BE +CF 与EF 的大小关系,并证明你的结论.15.在ABC △中,AB AC =,点D 是直线BC 上一点(不与B C 、重合),以AD 为一边在AD 的右侧作ADE △,使AD AE DAE BAC =∠=∠,,连接CE .(1)如图1,当点D 在线段BC 上,如果90BAC ∠=°,则BCE ∠=_________;(2)设BAC α∠=,BCE β∠=.①如图2,当点D 在线段BC 上移动,则αβ,之间有怎样的数量关系?请说明理由; ②当点D 在直线BC 上移动,则αβ,之间有怎样的数量关系?请直接写出你的结论.【答案与解析】一.选择题1. 【答案】C ;【解析】设∠A =x ,则由题意∠ADE =180°-2x ,∠EDB =2x ,∠BDC =∠BCD =90°-2x ,因为∠ADE +∠EDB +∠BDC =180°,所以x =45°. 2. 【答案】A ;【解析】a -b +2=0且2a +3b -11=0,解得a =1,b =3,选A ;B 选项不满足两边之和大于第三边,构不成三角形.3. 【答案】D ;【解析】解:∵BO 平分∠CBA,∴∠EBO=∠OBC,∵CO 平分∠ACB,∴∠FCO=∠OCB,∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,∴∠EBO=∠EOB,∠FOC=∠FCO,∴BE=OE,CF=OF ,∴△AEF 的周长AE+OE+OF+AF=AE+BE+CF+AF=AB+AC ,∵AB=10,AC=15,∴C △AEF =25.故选D .4. 【答案】A ;【解析】延长BD 交AC 于E ,由题意,BC =CE =3,AE =BE =5-3=2,且BD =DE =12BE =1. 5. 【答案】C ;【解析】如图所示:A 、B 中垂线与l 的交点为P 点;分别以A 、B 为圆心,AB 长为半径画弧,与l 交于4个P 点;6. 【答案】C ;【解析】P 点在以B 为圆心,AB 为半径的圆上,作BC 的中垂线(绿色),与B 交于两点为1P ,2P 点,以C 为圆心,BC 为半径画圆,与B 交于两点为3P ,4P 点.有4个P 点,则能找到4个E 点.二.填空题7. 【答案】2x ; 【解析】无论等腰三角形的顶角是锐角还是钝角,一腰上的高线与底边的夹角都是2x . 8. 【答案】7或8;【解析】2或3都可能是腰,要分情况讨论.9. 【答案】7cm ,7cm 或8cm ,6cm ;【解析】边长为8cm 的可能是底边,也可能是腰.10.【答案】45;【解析】△ADC ≌△BDH ,AD =BD ,所以∠ABC =45°.11.【答案】40;【解析】AD =FD ,∠FAD =∠AFD =70°,所以∠ADF =40°.12.【答案】;【解析】解:∵在△ABA 1中,∠B=30°,AB=A 1B ,∴∠BA 1A===75°,∵A 1A 2=A 1C ,∠BA 1A 是△A 1A 2C 的外角,∴∠CA 2A 1===37.5°;∴∠C 1A 3A 2=18,75°,∠C 2A 4A 3=9.375°,…,∴∠A n =, 故答案为:.三.解答题13.【解析】解:如图,OA 是腰长时,以O 点为圆心,以OA 的长为半径作圆,交第一象限内网格的格点有2个点(红色的点)分别为:(3,4)、(4,3)、可以作为点B ,以A 点为圆心,以OA 的长为半径作圆,交第一象限内网格的格点有4个点(蓝色的点)分别为:(5,5)、(2,4)、(1,3)、(8,4)可以作为点B ,OA 是底边时,OA 垂直平分线上的点均不在格点上,所以,此时不存在满足条件的点B . 所以,满足条件的B 的个数是2+4=6,分别为:(5,5)、(3,4)、(4,3)、(2,4)、(1,3)、(8,4).14.【解析】BE +CF >EF证明:延长FD 到G ,使DG =DF,连结BG 、EG∵D 是BC 中点∴BD=CD又∵DE⊥DF∴EG=EF在△FDC 与△GDB 中⎪⎩⎪⎨⎧=∠=∠=DG DF BD CD 21∴△FDC≌△GDB(SAS)∴BG=CF∵BG+BE >EG∴BE+CF >EF.15.【解析】(1)90°;(2)①α+β=180°.证明:①∵∠BAC =∠DAE ,∴∠BAC -∠DAC =∠DAE -∠DAC .即∠BAD =∠CAE .在△ABD 与△ACE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△ACE ,∴∠B =∠ACE .∴∠B +∠ACB =∠ACE +∠ACB .∴∠B +∠ACB =β,∵α+∠B +∠ACB =180°,∴α+β=180°;②如图:当点D在射线BC上时,α+β=180°;当点D在射线BC的反向延长线上时,α=β.。
培优专题等腰三角形含答案
BC ,垂足为M 。
求证: M 是BE 的中点。
1•如△ ABC 中,AB = AC ,/ A = 36 BD 、CE 分别为/ ABC 与/ ACB 的角平分线,且相【分类解读】例1.如图,已知在等边三角形 ABC 中,D 是AC 的中点,E 为BC 延长线上一点,且 CE = CD , DM 丄例2.如图,已知: 厶ABC 中,AB =AC , D 是BC 上一点,且 AD = DB , DC =CA ,求.BAC 的度数。
例 3.已知:如图, ABC 中,AB = AC , CD _ AB 于 D 。
求证:.BAC = 2 DCB 。
4、中考题型:交于点F ,则图中的等腰三角形有( )A. 6个B. 7个C. 8个D. 9个9、等腰三角形EDA2I【实战模拟】1.选择题:等腰三角形底边长为5cm,一腰上的中线把其周长分为两部分的差为A. 2cmB. 8cmC. 2cm 或8cm 3cm,则腰长为()D.以上都不对3.求证:等腰三角形两腰中线的交点在底边的垂直平分线上4. ABC 中,AB =AC,- A =120 ,AB 的中垂线交AB 于D,交CA1 DE BC。
2 延长线于E,求证:2.)已知:如图,在△ ABC中,AB = AC, D是BC的中点,DE丄AB , DF丄AC , E、F分别是垂足。
求证:AE = AF。
5、题形展示:例1.如图,. ABC 中,AB=AC, . A =100,BD 平分.ABC。
求证:AD ■ BD = BC。
CB分析:欲证本题结论,实际上就是证明的判定角等,那么问题就转化为证含有【试卷答案】1. B2. 分析:结合三角形内角和定理,计算图形中角的度数是等边三角形性质的重要应用。
解:因为:ABC 是等边三角形所以 AB 二 BC ,ABC 二 60因为BD 二BC ,所以AB 二BD所以.3=/2在 ABD 中,因为.CBD =90,. ABC =60所以.ABD =150,所以.2 =15所以.1 二/2 • • ABC 二 753•分析:首先将文字语言翻译成数学的符号语言和图形语言。