高中数学课件-数列求和

合集下载

高考数学一轮复习 第五章 数列 5.4 数列求和课件.pptx

高考数学一轮复习 第五章 数列 5.4 数列求和课件.pptx
分组转化法求和的常见类型 1.若 an=bn±cn,且{bn},{cn}为等差或等比数列,可采用分组求和法求
{an}的前 n 项和. 2.通项公式为 an=cbnn,,nn为为偶奇数数, 的数列,其中数列{bn},{cn}是等比 数列或等差数列,可采用分组求和法求和. 提醒:某些数列的求和是将数列转化为若干个可求和的新数列的和或差,
Sn=na12+an=_n_a_1_+__n_n_-2__1__d___.
(2)等比数列的前 n 项和公式: Sn=naa11-1-,aqqnq==1_a,_11_1-_-_q_q_n_,__q_≠__1_._ 2.倒序相加法 如果一个数列{an}的前 n 项中首末两端等“距离”的两项的和相等或等于同 一个常数,那么求这个数列的前 n 项和即可用倒序相加法,如等差数列的前 n 项 和公式即是用此法推导的.
1.必会结论 常用求和公式
前 n 个正整数之和 前 n 个正奇数之和
前 n 个正整数的平方和
前 n 个正整数的立方和
1+2+…+n=nn2+1 1+3+5+…+(2n-1)=n2
nn+12n+1 12+22+…+n2=________6_______
13+23+…+n3=nn+2 12
2.必知联系 (1)直接应用公式求和时,要注意公式的应用范围,如当等比数列公比为参数 (字母)时,应对其公比是否为 1 进行讨论. (2)在应用错位相减法时,注意观察未合并项的正负号;结论中形如 an,an+1 的式子应进行合并. (3)在应用裂项相消法时,要注意消项的规律具有对称性,即前剩多少项则后 剩多少项.
(2)由(1)可得 bn=2n+n, 所以 b1+b2+b3+…+b10 =(2+1)+(22+2)+(23+3)+…+(210+10) =(2+22+23+…+210)+(1+2+3+…+10) =211--2210+1+102×10 =(211-2)+55=211+53=2 101.

人教高中数学必修五 第二章 2.2 等差数列求和公式(共55张PPT)

人教高中数学必修五 第二章 2.2   等差数列求和公式(共55张PPT)


跟踪练习
1. 在等差数列{an}中; (1)已知a6=10,S5=5,求a8和S10; (2)已知a3+a15=40,求S17.

5×4 S5=5a1+ d=5, 2 (1) a6=a1+5d=10,
解得 a1=-5,d=3. ∴a8=a6+2d=10+2×3=16. 10×9 S10=10a1+ d=10×(-5)+5×9×3=85. 2 17×a1+a17 17×a3+a15 17×40 (2)S17= = = =340. 2 2 2
又当 n=1 时,a1=21 1=1≠5,

5 ∴an= n-1 2
n=1, n≥2.
(2)法一
an+12 (消 Sn);由 Sn= (n∈N*),得 4an+1=4(Sn+ 4
2
1-Sn)=(an+1+1)
-(an+1)2
化简得(an+1+an)(an+1-an-2)=0, 因为an>0,∴an+1-an=2, 又4S1=4a1=(a1+1)2得a1=1, 故{an}是以1为首项,2为公差的等差数列,所以an=2n-1.
法二
(消 an):由上可知
2 Sn=an+1,∴2 Sn=Sn-Sn-1+1(n≥2), 化简可得( Sn-1)2=Sn-1, ( Sn+ Sn-1-1)( Sn- Sn-1-1)=0, 又 S1=1,{an}的各项都为正数, 所以 Sn- Sn-1=1. 所以 Sn=n,从而 Sn=n2, 所以 an=Sn-Sn-1=2n-1(n≥2),a1=1 也适合,故 an =2n-1.
4S n 4S1 4S 2 ... Sn 3. 已知数列{an}中, a1=2,a1 2 a2 2 an 2
,
求 an.

高中数学必修5《数列求和-裂项相消法》PPT

高中数学必修5《数列求和-裂项相消法》PPT
常见的裂项公式:
(二)、典例:
谢谢大家!
二、教学重点和难点: 重点:裂项相消的方法和形式。能将一些特殊数
列的求和问题转化为裂项相消求和问题。 难点:用裂项相消的思维过程,不同的数列采用
不同的方法,运用转化与化归思想分析问题和解决问 题。
பைடு நூலகம்
三、教学过程: (一)复习:
常用求和方法: 1.错位相减法:
适用于一个等差数列和一个等比数列(公比不等于1)对应项相乘构成的数列求和. 2.分组求和法:
把一个数列分成几个可以直接求和的数列的和(差)的形式. 3.倒序相加法:
如果一个数列中,与首尾两端“距离”相等两项的和等于同一个常数,那么可用倒序相加求 和.
4.裂项相消法:
把一个数列的通项公式分成两项差的形式, 相加过程中消去中间项,只剩有限项再求和.注意: 在抵消过程中,有的是依次抵消,有的是间隔抵 消。
适用范围。进一步熟悉数列求和的不同呈现形式及解决策略。 2 过程与方法目标 经历数列裂项相消法求和的探究过程、深化过程和推广
过程。培养学生发现问题、分析问题和解决问题的能力。体会 知识的发生、发展过程,培养学生的学习能力。
3 情感与价值观目标 通过数列裂项相消求和法的推广应用,使学生认识到在
学习过程中的一切发现、发明,一切好的想法和念头都可以发 扬光大。激发学生的学习热情和创新意识,形成锲而不舍的钻 研精神和合作交流的科学态度。感悟数学的简洁美﹑对称美。
高中数学必修五 数列求和之裂项相消法
考纲要求
考纲研读
1.掌握等差数列、等比数列的 对等差、等比数列的求和以考
求和公式.
查公式为主,对非等差、非等
比数列的求和,主要考查分组
2.了解一般数列求和的几种方 求和、裂项相消、错位相减等

2020版高考数学复习第31讲数列求和课件文新人教A版

2020版高考数学复习第31讲数列求和课件文新人教A版

[答案] [(3n-1)22n+1+2]
[解析] 由 bn=nan=n· 22n-1 知 Sn=1×2+2×23+3×25+…+n×22n-1①, 则 22 · Sn=1×23+2×25+3×27+…+n×22n+1②,
1 9
①-②得
(1-22)· Sn=2+23+25+…+22n-1-n×22n+1,即 Sn= [(3n-1)22n+1+2].
1 ������ ;(2)由(1) 2
(1)求数列{bn}的通项公式; (2)若数列{cn}满足 cn=anbn,求数列{cn}的前 n 项和 Sn.
可求得 an=3n-1(n∈N*),代入 an+1+3log2bn=0,可得 bn=
1 2
可知 cn=anbn=(3n-1)× ������ ,所以由错位 相减法可求得数列{cn}的前 n 项和 Sn.
=
na1+
������ (������ -1) d 2
. (其中 a1 为首项,d 为公差)
②等比数列{an}的前 n 项和公式:
当 q=1 时,Sn= na1 (2)分组求和法 ;
������ 当 q≠1 时,Sn= ������1 (1-������ )
1-������
������1 -������������ ������ = 1-������
.
课堂考点探究
探究点一 分组转化法求和
例 1[2018· 湖南益阳 4 月调研] 已知 等差数列{an}的公差为 d,且方程 a1x -dx-3=0 的两个根分别为-1,3.

高中数学课件-第一部分 专题二 第二讲 递推公式、数列求和及综合应用

高中数学课件-第一部分  专题二  第二讲 递推公式、数列求和及综合应用

专题二
第二讲 递推公式、数列求和及综合应用
活用•经典结论 主观题•专项练 客观题·专项练
题型·综合练
专题•限时训练-13-
类型一
类型二
类型三
[感悟方法]
1.已知 Sn 求 an 的步骤 (1)求出 a1. (2)利用 an=Sn-Sn-1(n≥2)便可求出当 n≥2 时 an 的表达式. (3)对 n=1 时的结果进行检验,看是否符合 n≥2 时 an 的表达 式,如果符合,则可以把数列的通项公式整合;如果不符合,
专题二
第二讲 递推公式、数列求和及综合应用
活用•经典结论
主观题•专项练 客观题·专项练
题型·综合练
专题•限时训练-3-
4.常用的拆项公式(其中 n∈N*) (1)nn1+1=n1-n+1 1; (2)nn1+k= 1kn1-n+1 k; (3)2n-112n+1=122n1-1-2n1+1;
专题二
专题二
类型一
第二讲 递推公式、数列求和及综合应用
活用•经典结论 主观题•专项练 客观题·专项练
题型·综合练
专题•限时训练-9-
类型二
类型三
正确写出通项公式(用 n≥2,要验证 n=1)得 1 分
写出 bn 并正确裂项得 2 分 若 bn 正确,裂项不正确扣 1 分
正确写出求和公式得 2 分
正确写出结论(无论是否合并)得 2 分
所以 an=2n2-1(n≥2).(4 分)
又由题设可得 a1=2,符合上式,
从而{an}的通项公式为 an=2n2-1.(6 分)
专题二
类型一
第二讲 递推公式、数列求和及综合应用
活用•经典结论 主观题•专项练 客观题·专项练

人教A版高中数学必修五 .2数列求和(一)教学PPT全文课件

人教A版高中数学必修五 .2数列求和(一)教学PPT全文课件

人教A版高中数学必修五 .2数列求和(一)教学PPT全文课件【完 美课件 】
变式训练1
1
1
1
1
求数列 1 3 ,2 4 ,3 5 , … , n n 2 , … 的前n项和.
解: an
1
nn
2
1 2
1 n
n
1
2
sn
a1
a2
an
1 1 3
1 2
4
1 35
1
nn
2
1 2
1
1 3
1 2
谢谢!
人教A版高中数学必修五 .2数列求和(一)教学PPT全文课件【完 美课件 】
数列求和(一)
最新考纲: 1.熟练掌握等差、等比数列的前n项和公式; 2.掌握非等差数列、非等比数列求和的几种常见方法.
复习
(一)公式法
1.等差数列前n项和:
Sn
பைடு நூலகம்
na1 an
2
na1
nn 1 d
2
2.等比数列前n项和:
当q 1时 Sn na1
当q
1时
Sn
a1 1 qn 1 q
a1 anq 1 q
1 4
1 3
1 5
1 4
1 6
1 n 1
1 n 1
1 n
n
1
2
1 2
1
1 2
1 n 1
n
1
2
3 4
2n
2n 3
1n
2
人教A版高中数学必修五 .2数列求和(一)教学PPT全文课件【完 美课件 】
消项的规律具有对称性
人教A版高中数学必修五 .2数列求和(一)教学PPT全文课件【完 美课件 】

高中数学人教版必修5_2.3数列求和之分组求和 课件(共11张PPT)

高中数学人教版必修5_2.3数列求和之分组求和 课件(共11张PPT)

Sn
n a首项1 末a项n
2
na1
ቤተ መጻሕፍቲ ባይዱ
nn 1 d
2
等差数列前n项和公式:
Sn
na1
2
an
等比数列前n项和公式:
Sn
a1 anq(q 1 q
1)
2. 等比数列求和公式:
Sn
na1 a1 1
qn
1 q
q 1
首项a1 末a项nq 1 q
q 1
二 、问题引入
等差数列前n项和公式:
2 2n 2 2n1 2 1 2
.
思考:已知数列cn满足cn n 2n,则其前n项和Gn ?
解:Gn c1 c2 c3 cn
(1 2)(2 22)(3 23) (n 2n)
(1 2 3 n) (2 22 23 2n )
猜想: Gn=Sn+Tn
Sn
Tn
分组求和
(1)1,2,3,4,… …
等差数列,公差d=1
n1 n
Sn
na1
2
an
等比数列前n项和公式:
通项公式:
; . 前n项和:Sn 1 2 3 n 2
Sn
a1 anq(q 1 q
1)
(2)2,22,23,24,… …
等比数列,公比q=2
通项公式:

前n项和:Tn
2 22 23
2n
D.2n n 2
五、课堂小结
等差数列、等比数列求和是基础,公式要牢记!
先分析通项公式、再选择适当的求和方法!
已知数列an 、bn 是等差数列或等比数列
cn an bn
求数列cn 的前n项和时一般用分组求和.
——莫言

高中数学课件-第5讲 数列求和

高中数学课件-第5讲 数列求和

第5讲 数列求和1.熟练掌握等差、等比数列的前n项和公式.2.掌握非等差考试要求数列、非等比数列求和的几种常见方法.01聚焦必备知识知识梳理1.公式法(1)等差数列{a n}的前n项和S n=_____________=________________.(2)等比数列{a n}的前n 项和S n =_____________________.2.几种数列求和的常用方法(1)分组转化求和法:一个数列的通项公式是由若干个等差或等比或其他可求和的数列组成的,则求和时可用分组求和法,分别求和后相加减.(2)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前n项和.(3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n项和即可用错位相减法求解.(4)倒序相加法:如果一个数列{a n}与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n项和即可用倒序相加法求解.常用结论夯基诊断√√×√B(2)已知a n=2n+n,则数列{a n}的前n项和S n=____________.(3)数列{(n+3)·2n-1}前20项的和为____________.答案:22·220-202突破核心命题考 点 一分组(并项)法求和反思感悟训练1 已知等差数列{a n}的前n项和为S n,且a1=1,S3+S4=S5.(1)求数列{a n}的通项公式;(2)令b n=(-1)n-1a n,求数列{b n}的前n项和T n.解:(1)设等差数列{a n}的公差为d,由S3+S4=S5可得a1+a2+a3=a5,即3a2=a5,∴3(1+d)=1+4d,解得d=2.∴a n=1+(n-1)×2=2n-1.(2)由(1)可得b n=(-1)n-1·(2n-1).当n为偶数时,T n=1-3+5-7+…+(2n-3)-(2n-1)=-n.当n为奇数时,T n=T n-1+b n=-(n-1)+(-1)n-1(2n-1)=-(n-1)+(2n-1)=n.综上,T n=(-1)n+1n.考 点 二 裂项相消法求和解:(1)当n≥2时,S n+1+2S n-1=3S n⇒S n+1-S n=2S n-2S n-1即a n+1=2a n,∵{a n}是等比数列,∴q=2,又a1=1,∴数列{a n}的通项公式为a n=2n-1,n∈N*.1.裂项相消法求和的基本步骤反思感悟2.裂项相消法的原则及规律(1)裂项原则一般是前面裂几项,后面就裂几项,直到发现被消去项的规律为止.(2)消项规律消项后前面剩几项,后面就剩几项,前面剩第几项,后面就剩倒数第几项.考 点 三错位相减法求和1.如果数列{a n }是等差数列,{b n }是等比数列,求数列{a n ·b n }的前n 项和时,常采用错位相减法.2.错位相减法求和时,应注意:(1)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”,以便于下一步准确地写出“S n -qS n ”的表达式.(2)应用等比数列求和公式时必须注意公比q 是否等于1,如果q =1,应用公式S n =na 1.反思感悟训练3 已知等比数列{a n}的前n项和为S n,且a1=2,S3=a3+6.(1)求数列{a n}的通项公式;(2)设b n=log2a n,求数列{a n b n}的前n项和T n.解:(1)设等比数列{a n}的公比为q.由a1=2,S3=a3+6,得a1(1+q+q2)=6+a1q2,解得q=2,所以a n=2n.03限时规范训练(四十四)1.(2023·全国乙卷)记S n为等差数列{a n}的前n项和,已知a2=11,S10=40.(1)求{a n}的通项公式;(2)求数列{|a n|}的前n项和T n.2.已知单调递增的等差数列{a n}的前n项和为S n,且S4=20,a2,a4,a8成等比数列.(1)求数列{a n}的通项公式;(2)若b n=2a n+1-3n+2,求数列{b n}的前n项和T n.入上式,解得a2=3,同理可求得a3=5.猜想a n=2n-1.(2)记数列{a n b n}的前n项和为C n,当n=1时,a1=2,b1=1,所以C1=a1b1=2.当n≥2时,C n=2×1+3×2+5×22+…+(2n-1)·2n-1,①①×2,得2C n=2×2+3×22+5×23+…+(2n-1)·2n,②①-②,得-C n=4+8(2n-2-1)-(2n-1)·2n,化简得C n=(2n-3)·2n+4.综上,数列{a n b n}的前n项和C n=(2n-3)·2n+4.限时规范训练(四十四)点击进入WORD文档。

人教A版高中数学选择性必修第二册4.3.2第二课时数列求和课件

人教A版高中数学选择性必修第二册4.3.2第二课时数列求和课件

①-②,得(1-q)Sn=a1b1+d
-anbn+1,化简求出 Sn 即可.
[典例 3] 已知数列{an}的前 n 项和 Sn=3n2+8n,{bn}是等差数列,且 an= bn+bn+1.
(1)求数列{bn}的通项公式; (2)令 cn=abn+n+12n+n1,求数列{cn}的前 n 项和 Tn.
当 n 为偶数时,Tn=(-1+14)+(3+22)+(7+30)+…+[(2n-5)+(4n+6)] =[-1+3+7+…+(2n-5)]+[14+22+30+…+(4n+6)]=n2-1+22n-5+ n214+24n+6=3n2+2 7n.
当 n>5 时,Tn-Sn=3n2+2 7n-(n2+4n)=n2-2 n=nn2-1>0,所以 Tn>Sn. 综上可知,当 n>5 时,Tn>Sn.
(2)证明:由(1)知 an=2n+3, 所以 Sn=n[5+22n+3]=n2+4n. 当 n 为奇数时,Tn=(-1+14)+(3+22)+(7+30)+…+[(2n-7)+(4n+2)] +2n-3=[-1+3+7+…+(2n-7)+(2n-3)]+[14+22+30+…+(4n+2)]= n+2 1-12+2n-3+n-2 1142+4n+2=3n2+52n-10. 当 n>5 时,Tn-Sn=3n2+52n-10-(n2+4n)=n2-32n-10=n-52n+2> 0,所以 Tn>Sn.
[方法技巧] 分组转化法求和的常见类型
[提醒] 某些数列的求和是将数列转化为若干个可求和的新数列的和或差, 从而求得原数列的和,注意在含有字母的数列中对字母的讨论.
[对点练清] 已知数列{an}的前 n 项和 Sn=n2+2 n,n∈N *.
(1)求数列{an}的通项公式; (2)设 bn=2an+(-1)nan,求数列{bn}的前 2n 项和. 解:(1)当 n=1 时,a1=S1=1; 当 n≥2 时,an=Sn-Sn-1=n2+2 n-n-12+2 n-1=n. a1=1 也满足 an=n,故数列{an}的通项公式为 an=n.

等差数列求和课件

等差数列求和课件

②应用求和公式时一定弄清项数n.
③当已知条件不足以求出a1和d时,要认真观察, 灵活应用等差数列的性质,看能否用整体思想求 a1+an的值.
1.将等差数列前n项和公式
看作是一个关于n的函数,这个函数 有什么特点?
n(n 1)d S n na1 2

d d 令 A ,B a 1 2 2
高中数学
欢迎指导
等差数列求和
复习
1.等差数列的定义:
一般地,如果一个数列从第2项起,每一项与它的前 一项的差等于同一个常数,那么这个数列就叫做等差数列
an 是等差数列 an an1 d(n 2)
2.通项公式:
an a1 (n 1)d .
Байду номын сангаас
3.重要性质:
⑵m n p q am an a p aq .
a4+a5+a6+……+a11=0 而 a4+a11=a5+a10=a6+a9=a7+a8
∴a7+a8=0 又d=-2<0,a1=13>0 ∴a7>0,a8<0 ∴当n=7时,Sn取最大值49.
求等差数列前n项的最大(小)的方法
d d 2 方法1:由 S n (a )n n 1 2 2 利用二次函数的对称轴求得最值及取得最值时
1 Sn 13n n( n 1) ( 2) 2 2 2 n 14n (n 7) 49
∴当n=7时,Sn取最大值49.
等差数列的前n项的最值问题 例1.已知等差数列{an}中,a1=13且S3=S11,求n 取何值时,Sn取最大值. 解法2 由S3=S11得

人教A版高中数学选择性必修第二册精品课件 第4章 数列 习题课——数列求和

人教A版高中数学选择性必修第二册精品课件 第4章 数列 习题课——数列求和
n
[nx
-(n+1)x
+1],
2
(1-)
(+1)
,
2
= 1,
∴Sn= 0, = 0,

+1

[
-(
+
1)
+ 1], ≠ 0, ≠ 1.
2
(1-)
若若已知数列{(2n-1)an-1}(a≠0,n∈N*),求它的前n项和Sn.
解:当 a=1 时,数列变成 1,3,5,7,…,(2n-1),…,则
2.什么情况下可以用错位相减法求和?
提示:当一个数列的各项是由一个等差数列和一个等比数列的对应项之
积构成时可以用错位相减法求和.
3.已知数列{an}的前n项和为Sn,且an=n·2n,则Sn=
解析:∵an=n·2n,
∴Sn=1×21+2×22+3×23+…+n×2n,①
∴2Sn=1×22+2×23+…+(n-1)×2n+n×2n+1.②
( 1 + )
(-1)
Sn=
=na1+
d
2
2
等比数列{an}的前 n 项和公式是 Sn=
;
1 , = 1,
1 (1- )
,
1-
.
≠1
2.是不是所有的数列求和都可以直接用这两个公式求解?
提示:不是.
3.将数列中的每项分解,然后重新组合,使之能消去一些项,最终达到求和
的目的的方法叫做裂项相消法.
解:设数列的第 n 项为 an,则 an=1+2+2 +…+2
2
1-2

高中数学第二章数列第5节等比数列的前n项和第2课时数列求和(习题课)课件新人教A版3必修5

高中数学第二章数列第5节等比数列的前n项和第2课时数列求和(习题课)课件新人教A版3必修5

(2)cn=(3n-2)·2n-1, Tn=1·20+4·21+…+(3n-2)·2n-1, 2Tn=1·21+4·22+…+(3n-2)·2n, ∴-Tn=1+3×(21+22+…+2n-1)-(3n-2)·2n =1+6(2n-1-1)-(3n-2)·2n =(5-3n)·2n-5, Tn=(3n-5)·2n+5.
4n,
(x()x(2-x21n)+2+1)+2n. (x≠±1)
当一个数列本身既不是等差数列也不是等比数 列,但如果它的通项公式可以拆分为几项的和,而这 些项又构成等差数列或等比数列,那么就可以用分组 求和法,即原数列的前 n 项和等于拆分成的每个数列 前 n 项和的和.
讲一讲 3.等差数列an的前 n 项和为 Sn,已知 a1=10,a2 为整 数,且 Sn≤S4. (1)求an的通项公式; (2)设 bn=ana1n+1,求数列bn的前 n 项和 Tn.
[尝试解答] (1)由 a1=10,a2 为整数知:等差数列an 的公差 d 为整数.又 Sn≤S4,故 a4≥0,a5≤0;
和.形如 an=(-1)nf(n)类型,可采用两项合并求解.
2.本节课的难点和易错点是“错位相减法”和 “奇偶并项求和法”.如讲 2 和讲 4.
第 2 课时 数列求和(习题课)
[思考]
若数列 c 是公差为 n
d
的等差数列,数列bn
是公比为 q(q≠1)的等比数列,且 an=cn+bn,如何求数
列 a 的前 n 项和? n
名师指津:数列 a 的前 n 项和等于数列 c 和 b n
n
n
的前 n 项和的和.

1 3
+3×31211--313n1-1

(3n

等差数列的求和PPT优秀课件

等差数列的求和PPT优秀课件
设等差数列{an}的前n项和为Sn,即: Sn=a1+a2+…+an
Sn = a1+a2 + a3 +…+ an-2 + an-1 +an Sn = an+an-1+an-2+…+ a3+ a2 +a1 2Sn = (a1+an )×n Sn = (a1+an ) n/2
Sn=(a1+an)n/2
S100=(1+100)×100/2=5050
等差数列求和公式
等差数列{an}首项为a1,第n项为an.
Sn=
n(a1+an) 2
Sn
=na1+
n(n-1) 2
d
练一练
Sn==nn(aa112++na(nn)2-1) d
自己动手编一道有关等差 数列求和的练习题. 要求:
1. 已知……,求Sn ; 2. 已知……,求a1 ; 3. 已知……,求dan ; 4. 已知……,求n ;
94.对一个适度工作的人而言,快乐来自于工作,有如花朵结果前拥有彩色的花瓣。――[约翰·拉斯金] 95.没有比时间更容易浪费的,同时没有比时间更珍贵的了,因为没有时间我们几乎无法做任何事。――[威廉·班] 96.人生真正的欢欣,就是在于你自认正在为一个伟大目标运用自己;而不是源于独自发光.自私渺小的忧烦躯壳,只知抱怨世界无法带给你快乐。――[萧伯纳]
97.有三个人是我的朋友爱我的人.恨我的人.以及对我冷漠的人。 爱我的人教我温柔;恨我的人教我谨慎;对我冷漠的人教我自立。――[J·E·丁格] 98.过去的事已经一去不复返。聪明的人是考虑现在和未来,根本无暇去想过去的事。――[英国哲学家培根] 99.真正的发现之旅不只是为了寻找全新的景色,也为了拥有全新的眼光。――[马塞尔·普劳斯特] 100.这个世界总是充满美好的事物,然而能看到这些美好事物的人,事实上是少之又少。――[罗丹] 101.称赞不但对人的感情,而且对人的理智也发生巨大的作用,在这种令人愉快的影响之下,我觉得更加聪明了,各种想法,以异常的速度接连涌入我的脑际。――[托尔斯泰] 102.人生过程的景观一直在变化,向前跨进,就看到与初始不同的景观,再上前去,又是另一番新的气候――。[叔本华] 103.为何我们如此汲汲于名利,如果一个人和他的同伴保持不一样的速度,或许他耳中听到的是不同的旋律,让他随他所听到的旋律走,无论快慢或远近。――[梭罗] 104.我们最容易不吝惜的是时间,而我们应该最担心的也是时间;因为没有时间的话,我们在世界上什么也不能做。――[威廉·彭] 105.人类的悲剧,就是想延长自己的寿命。我们往往只憧憬地平线那端的神奇【违禁词,被屏蔽】,而忘了去欣赏今天窗外正在盛开的玫瑰花。――[戴尔·卡内基] 106.休息并非无所事事,夏日炎炎时躺在树底下的草地,听着潺潺的水声,看着飘过的白云,亦非浪费时间。――[约翰·罗伯克] 107.没有人会只因年龄而衰老,我们是因放弃我们的理想而衰老。年龄会使皮肤老化,而放弃热情却会使灵魂老化。――[撒母耳·厄尔曼] 108.快乐和智能的区别在于:自认最快乐的人实际上就是最快乐的,但自认为最明智的人一般而言却是最愚蠢的。――[卡雷贝·C·科尔顿] 109.每个人皆有连自己都不清楚的潜在能力。无论是谁,在千钧一发之际,往往能轻易解决从前认为极不可能解决的事。――[戴尔·卡内基] 110.每天安静地坐十五分钟·倾听你的气息,感觉它,感觉你自己,并且试着什么都不想。――[艾瑞克·佛洛姆] 111.你知道何谓沮丧---就是你用一辈子工夫,在公司或任何领域里往上攀爬,却在抵达最高处的同时,发现自己爬错了墙头。--[坎伯] 112.「伟大」这个名词未必非出现在规模很大的事情不可;生活中微小之处,照样可以伟大。――[布鲁克斯] 113.人生的目的有二:先是获得你想要的;然后是享受你所获得的。只有最明智的人类做到第二点。――[罗根·皮沙尔·史密斯] 114.要经常听.时常想.时时学习,才是真正的生活方式。对任何事既不抱希望,也不肯学习的人,没有生存的资格。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(合并求和)
(log 3 a1 a10 ) (log 3 a2 a9 ) (log 3 a5 a6 )
log3 9 log3 9 log3 9 10
七、利用数列的通项求和
• 先根据数列的结构及特征进行分析,找出 数列的通项及其特征,然后再利用数列的 通项揭示的规律来求数列的前n项和,是一 个重要的方法.
[例14] 求 111111 11 1 1 之和.
n个1
解:由于 111 1
k个1
1 9
999 9
k个1
1 (10 k 9
1) (找通项及特征)
∴ 111111 11 1= 1 n个1
1 (101 1) 1 (102 1) 1 (103 1) 1 (10n 1)
9
9
9
9
1 9
(101
f
2 2008
f 2007 的值 2008
四、分组法求和
• 有一类数列,既不是等差数列,也不是等 比数列,若将这类数列适当拆开,可分为 几个等差、等比或常见的数列,然后分别 求和,再将其合并即可.
[例7] 求数列的前n项和:1 1, 1 4, 1 7, , 1 3n 2,…
3. 1
1( 1 1 )
(2n 1)(2n 1) 2 2n 1 2n 1
4.
1
1[ 1
1
]
n(n 1)(n 2) 2 n(n 1) (n 1)(n 2)
5. 1 1 ( a b ) a b ab
[例9]]
在数列{an}中,an源自1 n 12 n 1
n n 1
[例3] 求和

Sn
1 3x
5x2
7x3
(2n
1)x n1
[例4] 求数列
2 2
,
4 22
,
6 23
, ,
2n 2n
,
前n项的和
[例4] 求数列
2 2
,
4 22
,
6 23
, ,
2n 2n
,
前n项的和
解:由题可知,{
2n 2n
}的通项是等差数列{2n}的通项与等比数列{
1 2n }的通项之积
一、利用常用求和公式求和
利用下列常用求和公式求和是数列求和的
最基本最重要的方法.
1、等差数列求和公式:
Sn
n(a1 2
an
)
na1
n(n 1) 2
d
2、等比数列求和公式:Sn
na1 a1 (1
q
n
)
1 q
a1 anq 1 q
(q 1) (q 1)
3、Sn
n k 1
k
1n(n 2
1)
2
例 1.设数列{an}的前 n 项和为 Sn,数列{Sn}的前 n 项和为 Tn,满足 Tn=2Sn-n2,n∈N*. (1)求 a1的值;(2)求数列{an}的通项公式.
二、错位相减法求和
• 这种方法是在推导等比数列的前n项和公式 时所用的方法,这种方法主要用于求数列 {an· bn}的前n项和,其中{ an }、{ bn }分 别是等差数列和等比数列.
三、倒序相加法求和
• 这是推导等差数列的前n项和公式时所用的 方法,就是将一个数列倒过来排列(反 序),再把它与原数列相加,就可以得到n 个.
[例6] 求 sin2 1 sin2 2 sin2 3 sin2 88 sin2 89 的值
例1.设f x
4x 4x 2
,求f 1 2008
• 针对一些特殊的数列,将某些项合并在一 起就具有某种特殊的性质,因此,在求数 列的和时,可将这些项放在一起先求和, 然后再求Sn.
[例11]] 求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值
解:设Sn= cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°
设 Sn
2 4 2 22
6 2n
23
2n
…………………………………①
1 2
S
n
2 22
4 23
6 24
2n 2 n1
………………………………②
(设制错位)
①-②得(1
1 2
)S
n
2 2 2 22
2 23
2 24
2 2n
2n 2 n 1
2 1 2n 2n1 2n1

Sn
4
n2 2 n 1
k 1
k 1
将其每一项拆开再重新组合得
n
n
n
S = 2 k 3 3 k 2 k
n
k 1
k 1
k 1
(分组)
2(13 23 n3) 3(12 22 n2 ) (1 2 n)
n2 (n 1)2 n(n 1)(2n 1) n(n 1) n(n 1)2 (n 2)
2
2
2
2
五、裂项法求和
• 这是分解与组合思想在数列求和中的具体 应用. 裂项法的实质是将数列中的每项(通 项)分解,然后重新组合,使之能消去一
些项,最终达到求和的目的. 通项分解(裂 项)如:
常见的拆项公式 [z x x k 学科网]
1. 1 1 1 n(n 1) n n 1
2. 1 1 ( 1 1 ) n(n k ) k n n k
10 2
10 3
10
n
)
1 9
(11 1 1)
n个1
1 10(10 n 1) n 1 (10 n1 10 9n) 9 10 1 9 81
a a2
a n1
解:设
Sn
(11) ( 1 a
4) ( 1 a2
7) ( 1 a n1
3n 2)
将其每一项拆开再重新组合得
Sn
(1
1 a
1 a2
1 ) (1 4 7 3n 2) a n1
(分组)
当a=1时,S n
n (3n 1)n 2
= (3n 1)n 2
(分组求和)

a 1
时,Sn
1
1 an
1 1
(3n 1)n 2
a
a a1n (3n 1)n

a 1
2
[例8] 求数列{n(n+1)(2n+1)}的前n项和.
解:设 ak k(k 1)(2k 1) 2k 3 3k 2 k
n
n
∴ Sn k(k 1)(2k 1) = (2k 3 3k 2 k)
解:设 Sn log 3 a1 log 3 a2 log 3 a10
由等比数列的性质 m n p q aman apa(q 找特殊性质项)
和对数的运算性质log a M log a N log a M N 得
Sn (log 3 a1 log 3 a10 ) (log 3 a2 log 3 a9 ) (log 3 a5 log 3 a6 )
4、Sn
n k 1
k2
1n(n 6
1)( 2n
1)
5、Sn
n k 1
k3
[1n(n 1)]2 2
• [例1] 已知
log 3
x
1 log 2 3

求 x x2 x3 xn 的前n项和
由等比数列求和公式得
Sn
x
x2
x3
xn
x(1 xn ) 1 x
1 2
(1
1 2n
1 1
)
1
1 2n
,又
bn
2 an an1
求数列{bn}的前n项的和
解:∵
12
nn
an
n 1
n 1
n 1
2

bn
n
2 n
1
8( 1 n
1) n 1
(裂项)
22
∴ 数列{bn}的前n项和
Sn
8[(1
1) (1 22
1) (1 33
1) (1
4
n
n
1
1)]=
8(1
1) n 1

8n n 1
六、合并法求和
∵ cos n cos(180 n ) (找特殊性质项)
∴Sn= (cos1°+ cos179°)+( cos2°+ cos178°) + (cos3°+ cos177°)+···+(cos89°+ cos91°) + cos90°= 0
[例13] 在各项均为正数的等比数列中,若 a5a6 9, 求 log 3 a1 log 3 a2 log 3 a10 的值.
相关文档
最新文档