近世代数(吴品三)习题解答第三章 环与域
近世代数课后习题答案
近世代数课后习题答案近世代数课后习题答案近世代数是数学中的一个重要分支,研究的是抽象代数结构及其性质。
在学习近世代数的过程中,课后习题是巩固知识、加深理解的重要途径。
本文将为大家提供一些近世代数课后习题的答案,希望对大家的学习有所帮助。
一、群论1. 设G是一个群,证明恒等元素是唯一的。
答案:假设G中有两个恒等元素e和e',则有e * e' = e'和e' * e = e。
由于e是恒等元素,所以e * e' = e' = e' * e。
再由于e'是恒等元素,所以e * e' = e =e' * e。
因此,e = e',即恒等元素是唯一的。
2. 设G是一个群,证明每个元素在G中的逆元素是唯一的。
答案:假设G中的元素a有两个逆元素b和c,即a * b = e,a * c = e。
则有a * b = a * c。
两边同时左乘a的逆元素a',得到a' * (a * b) = a' * (a * c)。
根据结合律和逆元素的定义,等式右边可以化简为b = c。
因此,元素a的逆元素是唯一的。
二、环论1. 设R是一个环,证明零元素是唯一的。
答案:假设R中有两个零元素0和0',则有0 + 0' = 0'和0' + 0 = 0。
由于0是零元素,所以0 + 0' = 0' = 0' + 0。
再由于0'是零元素,所以0 + 0' = 0 = 0' + 0。
因此,0 = 0',即零元素是唯一的。
2. 设R是一个环,证明每个非零元素在R中的乘法逆元素是唯一的。
答案:假设R中的非零元素a有两个乘法逆元素b和c,即a * b = 1,a * c = 1。
则有a * b = a * c。
两边同时左乘a的乘法逆元素a',得到(a * b) * a' = (a * c) *a'。
近世代数课件(全)--3-5 环的同态、极大理想
运算
2012-9-19
2012-9-19
( 2) ( a b ) ( a ) ( b )
定理1 若 R 与 R 是各有两个代数运算的系统, 且 : R ~ R ,则当 R 是环时,R 也是环. 定理2 若 R 与 R 是环,且
(1) (0 R ) 0 R
( 3) ( a ) ( ( a ))
x y (
1
( x )
1
1
( y '))
x y (
1
( x )
( y '))
例4 设环 R {( a , b ) | a , b Z }, ( a1 , b1 ) ( a 2 , b2 ) ( a1 a 2 , b1 b2 ),
Z /( p ) 是域 p 是素数. 定理9:
2012-9-19
练习: 求Z12的全部最大理想.
2012-9-19
n n
:R~ R
,则
( 2) ( a ) ( a )
(4)当 R 是交换环时,R 也是交换环; (5)当 R 是有单位元环时,R 也是有 单位元环时,且 1 R (1 R ).
2012-9-19
问:同态环有无零因子传递吗? 例1 R 为4阶循环环,即 R {0, a , 2 a , 3 a } ,且 a 2 a . : n na , ( n Z ) Z ~ R
近世代数习题解答
近世代数题解第一章基本概念§1. 11.4.5.近世代数题解§1. 2 2.3.近世代数题解§1. 31. 解1)与3)是代数运算,2)不是代数运算.2. 解这实际上就是M中n个元素可重复的全排列数n n.3. 解例如A B=E与A B=AB—A—B.4.5.近世代数题解§1. 41.2.3.解1)略2)例如规定4.5.略近世代数题解§1. 51. 解1)是自同态映射,但非满射和单射;2)是双射,但不是自同构映射3)是自同态映射,但非满射和单射.4)是双射,但非自同构映射.2.略3.4.5.§1. 61.2. 解1)不是.因为不满足对称性;2)不是.因为不满足传递性;3)是等价关系;4)是等价关系.3. 解3)每个元素是一个类,4)整个实数集作成一个类.4.则易知此关系不满足反身性,但是却满足对称性和传递性(若把Q换成实数域的任一子域均可;实际上这个例子只有数0和0符合关系,此外任何二有理数都不符合关系).5.6.证1)略2)7.8.9.10.11.12.第二章群§2. 1 群的定义和初步性质一、主要内容1.群和半群的定义和例子特别是一船线性群、n次单位根群和四元数群等例子.2.群的初步性质1)群中左单位元也是右单位元且惟一;2)群中每个元素的左逆元也是右逆元且惟一:3)半群G是群⇔方程a x=b与y a=b在G中有解(∀a ,b∈G).4)有限半群作成群⇔两个消去律成立.二、释疑解难有资料指出,群有50多种不同的定义方法.但最常用的有以下四种:1)教材中的定义方法.简称为“左左定义法”;2)把左单位元换成有单位元,把左逆元换成右逆元(其余不动〕.简称为“右右定义法”;3)不分左右,把单位元和逆元都规定成双边的,此简称为“双边定义法”;4)半群G再加上方程a x=b与y a=b在G中有解(∀a ,b∈G).此简称为“方程定义法”.“左左定义法”与“右右定义法”无甚差异,不再多说.“双边定\义法”缺点是定义中条件不完全独立,而且在验算一个群的实例时必须验证单位元和逆元都是双边的,多了一层手续(虽然这层手续一般是比较容易的);优点是:①不用再去证明左单位元也是右单位元,左逆元也是右逆元;②从群定义本身的条件直接体现了左与右的对称性.以施行“除法运算”,即“乘法”的逆运算.因此,群的‘方程定义法”直接体现了在群中可以施行“乘法与除法”运算.于是简言之,可以施行乘法与除法运算的半群就是群.为了开阔视野,再给出以下群的另一定义.定义一个半群G如果满足以下条件则称为一个群:对G中任意元素a,在G中都存在元素1-a,对G中任意元素b都有1-a(ab)=(ba)1-a=b.这个定义与前面4种定义的等价性留给读者作为练习.2.在群的“方程定义法”中,要求方程a x=b与y a=b都有解缺一不可.即其中一个方程有解并不能保证另一个方程也有解.4.关于结合律若代数运算不是普通的运算(例如,数的普通加法与乘法,多项式的普通加法与乘法以及矩阵、变换和线性变换的普通加法或乘法),则在一般情况下,验算结合律是否成立比较麻烦.因此在代数系统有限的情况下,有不少根据乘法表来研究检验结合律是否成立的方法.但无论哪种方法,一般都不是太简单.5.关于消去律.根据教材推论2,对有限半群是否作成群只用看消去律是否成立.而消去律是否成立,从乘法表很容易看出,因为只要乘法表中每行和每列中的元素互异即可.6.在群定义中是否可要求有“左”单位元而每个元素有“右”逆元呢?答不可以,例如上面例2就可以说明这个问题,因为e1是左单位元,而e1与e2都有右逆元且均为e1.但G并不是群.7.群与对称的关系.1)世界万物,形态各异.但其中有无数大量事物部具有这样或那样的对称性.而在这些具有对称性的万事万物中,左右对称又是最为常见的.由群的定义本身可知,从代数运算到结合律,特别是左、右单位元和左、右逆元,均体现出左右对称的本质属性.2)几何对称.设有某一几何图形,如果我们已经找到了它的全部对称变换(即平常的反射、旋转、反演和平移变换的统称),则此对称变换的全体关于变换的乘法作成一个群,称为该图形的完全对称群.这个图形的对称性和它的完全对称群是密切相关的.凡对称图形(即经过对称变换保持不变的图形、亦即完成这种变换前后的图形重合),总存在若干个非恒等对称变换和恒等变换一起构成该图形的完全对称群.反之,如果一个图形存在着非平凡的对称变换,则该图形就是对称图形.不是对称的图形,就不能有非恒等的对称变换.显然,一个图形的对称程度越高,则该图形的对称变换就越多.也就是说它的完全对称群的阶数就越高,即图形对称程度的高低与其对称群的阶数密切相关.因此;这就启发人们用群去刽面对称图形及其性质,用群的理论去研究对称.所以人们就把群论说成是研究对称的数学理论.显然,每个n元多项式都有一个确定的n次置换群:例如n元多项式例6 任何n元对称多项式的置换群都是n次对称群.很显然,一个多元多项式的置换群的阶数越高,这个多元多项式的对称性越强.反之亦然.因此,我们通常所熟知的多元对称多项式是对称性最强的多项式.三、习题2.1解答1.略2.3.4.5.6.§2. 2 群中元素的阶一、主要内容1.群中元素的阶的定义及例子.周期群、无扭群与混合群的定义及例子.特别,有限群必为周期群,但反之不成立.2.在群中若a=n,则4.若G是交换群,又G中元素有最大阶m,则G中每个元素的阶都是m的因子.二、释疑解难在群中,由元素a与b的阶一般决定不了乘积ab的阶,这由教材中所举的各种例子已经说明了这一点.对此应十分注意.但是,在一定条件下可以由阶a与b决定阶ab,这就是教材中朗定理4:4.一个群中是否有最大阶元?有限群中元素的阶均有限,当然有最大阶元.无限群中若元素的阶有无限的(如正有理数乘群或整数加群),则当然无最大阶元,若无限群中所有元素的阶均有限(即无限周期群),则可能无最大阶元,如教材中的例4:下面再举两个(一个可换,另一个不可换)无限群有最大阶元的例子.5.利用元素的阶对群进行分类,是研究群的重要方法之一.例如,利用元素的阶我们可以把群分成三类,即周期群、无扭群与混合群.而在周期群中又可分出p—群p是素数),从而有2—群、3—群、5—群等等.再由教材§3. 9知,每个有限交换群(一种特殊的周期群)都可惟一地分解为素幂阶循环p—群的直积,从而也可见研究p—群的重要意义.三、习题2.2解答1.2.3.4.5.推回去即得.6.§2. 3 子群一、主要内容1.子群的定义和例子.特别是,特殊线性群(行列式等于l的方阵)是一般线性群(行列式不等于零的方阵)的子群.4.群的中心元和中心的定义.二、释疑解难1.关于真子群的定义.教材把非平凡的子群叫做真子群.也有的书把非G的于群叫做群G的真子群.不同的定义在讨论子群时各有利弊.好在差异不大,看参考书时应予留意.2.如果H与G是两个群,且H⊆G,那么能不能说H就是G的子群?答:不能.因为子群必须是对原群的代数运算作成的群.例如,设G是有理数加群,而H 是正有理数乘群,二者都是群,且H⊆G但是不能说H是G的子群.答:不能这样认为.举例如下.例2设G是四元数群.则显然是G的两个子群且易知反之亦然.三、习题2.3解答1.证赂.2.证必要性显然,下证充分性.设子集H对群G的乘法封闭,则对H中任意元素a和任意正整数m都有a m∈H.由于H 中每个元素的阶都有限,设a =n ,则3.对非交换群一放不成立.例如,有理数域Q 上全体2阶可逆方阵作成的乘群中,易知⎪⎪⎭⎫ ⎝⎛-=1021a , ⎪⎪⎭⎫⎝⎛-=1031b的阶有限,都是2,但易知其乘积⎪⎪⎭⎫⎝⎛=1011ab的阶却无限.即其全体有限阶元素对乘法不封闭,故不能作成子群.4.证 由高等代数知,与所有n 阶可逆方阵可换的方阵为全体纯量方阵,由此即得证. 5.证 因为(m ,n )=1,故存在整数s ,t 使 ms 十n t =1. 由此可得6.7.§2. 4 循 环 群一、主要内容1.生成系和循环群的定义.2.循环群中元素的表示方法和生成元的状况.3.循环群在同构意义下只有两类:整数加群和n 次单位根乘群,其中n =1,2,3,…. 4.循环群的子群的状况.无限循环群有无限多个子群.n 阶循环群a 有T (n )(n 的正出数个数)个子群,且对n 的每个正因数k ,a 有且仅有一个k 阶子群kn a.二、释疑解难1.我们说循环群是一类完全弄清楚了的群,主要是指以下三个方面:1)循环群的元素表示形式和运算方法完全确定.其生成元的状况也完全清楚(无限循环群有ϕ个生成元而且a k是生成元⇔(k n)=1);两个生成元,n阶循环群a有)(n2)循环群的子群的状况完全清楚;3)在同构意义下循环群只有两类:一类是无限循环群,都与整数加群同构;另一类是n(n =1,2,…)阶循环群,都与n次单位根乘群同构.2.循环群不仅是一类完全弄清楚了的群,而且是一类比较简单又与其他一些群类有广泛联系的群类.例如由下一章§9可知,有限交换群可分解为一些素幂阶循环群的直积.更一般地,任何一个具有有限生成系的交换群都可分解成循环群的直积.由于循环群已完全在我们掌握之中,所以这种群(具有有限生成系的交换群)也是一类研究清楚了的群类.它在各种应用中有着非常重要的作用.例如在组合拓扑学中它就是一个主要的工具.三、习题§2. 4解答1.2.3.4.5.6.7.§2. 5 变换群一、主要内容1.变换群、双射变换群(特别是集合M上的对称群和n次对称群)和非双射变换群的定义及例子.2.变换群是双射变换群的充要条件;双射变换群与抽象群的关系.1)集合M上的变换群G是双射变换群 G含有M的单或满)射变换;2)任何一个群都同一个(双射)变换群同构.3.有限集及无限集上非双射变换群的例子(例2和例3).二、释疑解难1.一般近世代数书中所说的“变换群”,都是由双射变换(关于变换乘法)所作成的群,即本教材所说的“双射变换群”.而本教材所说的“变换群”则是由一个集合上的一些变换(不一定是双射变换)作成的群.通过教材§5定理2和推论1可知,实际上变换群可分成两类:一类是双射变换群(全由双射变换作成的群,即通常近世代数书中所说的“变换群”),另一类是非双射变换群(全由非双射变换作成的群).在学习本书时应留意这种差异.2.本节教材定理2(若集合M上的变换群G含有M的单射或满射变换.则G必为M上的一个双射变换群,即G中的变换必全是双射变换)比有些书上相应的定理(若集合M上由变换作成的群G含有M的恒等变换,则G中的变换必全为双射变换)大为推广.因为后者要求G包含恒等变换(一个特殊的双射变换),而前者仅要求G包含一个单(或满)射变换即可.因此,后音只是前者(本节教材定理2)的一个推论,一种很特殊的情况.两相比较,差异较大.这种差异也说明,M上的任何一个非双射变换群不仅不能包含恒等变换,而且连M的任何单射或满射变换也不能包含.另外,在这里顺便指出,集合M上的任何双射变换群G的单位元必是M的恒等变换.3.集合M 上的全体变换作成的集合T (M ),对于变换的乘法作成一个有单位元的半群.在半群的讨论中,这是一类重要的半群.并且本节习题中第4题还指出,当M >1时T (M )只能作成半群,而不能作成群.三、习题§2. 5解答1. 解 作成有单位元半群,τ是单位元.但不作成群,因为σ无逆元.2.3. 解 G 作成群:因为易知4.5.§2. 6 置 换 群一、主要内容1.任何(非循环)置换都可表为不相连循环之积,任何置换都可表为若干个对换之积,且对换个数的奇阴偶性不变.从而有奇、偶置换的概念,且全体n 次置换中奇、偶置换个数相等,各为2!n 个(n >1).2.k —循环的奇偶性、阶和逆元的确定方法,以及不相连循环乘积的奇偶性、阶和逆元的确定方法.1)k—循环与A有相反奇偶性.2)k—循环的阶为k.又(i1,i2…i k)-1=(i k,…,i2,i1 ).3)若σ分解为不相连循环之积.则其分解中奇循环个数为奇时σ为奇置换,否则σ为偶置换.σ的阶为各因子的阶的最小公倍.其逆元可由k—循环的逆元来确定.3.由置换σ,τ求置换στσ-1的方法.n次对称群s n的中心.4.传递群的定义、例子和简单性质.二、释疑解难1.研究置换群的重要意义和作用.除了教材中已经指出的(置换群是最早研究的一类群,而且每个有限的抽象群都同一个置换群同构)以外,研究置换群的重要意义和作用至少还有以下几方面:1) 置换群是一种具体的群,从置换乘法到判断置换的奇偶性以及求置换的阶和逆置换,都很具体和简单.同时它也是元素不是数的一种非交换群.在群的讨论中举例时也经常用到这种群.2) 在置换群的研究中,有一些特殊的研究对象是别的群所没有的.如置换中的不动点理论以及传递性和本原性理论等等.3) 置换群中有一些特殊的子群也是一般抽象群所没有的.例如,交代群、传递群、稳定子群和本原群等等.就教材所讲过的交代群和传递群的重要性便可以知道,介绍置换群是多么的重要.2.用循环与对换之积来表出置换的优越性.首先,书写大为简化,便于运算。
近世代数课后题答案修改版
(2)在乘法表中任取一个 1,在同一列中必有一个 x,在同一行 中必有一个 y,设第四个顶点的元素为 z,见下图,
�
..........a-1.........................c...................
......
...........................................................
......
Removed_近世代数课后习题参考答案(张禾瑞)-3
近世代数课后习题参考答案第三章 环与域1 加群、环的定义1. 证明,本节内所给的加群的一个子集作成一个子群的条件是充分而且必要的.证 (ⅰ)若S 是一个子群则Sb a S b a ∈+⇒∈,是S 的零元,即'0aa =+'0对的零元,G 000'=∴=+a a 即 .00S a a s ∈-=-∴∈ (ⅱ)若Sb a S b a ∈+⇒∈,Sa S a ∈-⇒∈今证是子群S 由对加法是闭的,适合结合律,S S b a S b a ,,∈+⇒∈由,而且得S a S a ∈-⇒∈S a a ∈=-0再证另一个充要条件:若是子群,S S b a S b a S b a ∈-⇒∈-⇒∈,,反之Sa a S a a S a ∈-=-⇒∈=-⇒∈00 故Sb a b a S b a ∈+=--⇒∈)(,2. ,加法和乘法由以下两个表给定:},,,0{c b a R =+0 a b c ⨯0 a b c 00 a b c 00 0 0 0a a 0 c b a 0 0 0 0b b c 0 a b 0 a b c c c b a 0c0 a b c证明,作成一个环R 证 对加法和乘法的闭的.R 对加法来说,由习题6,和阶是4的非循环群同构,且为交换群..9.2R乘法适合结合律Z xy yz x )()(=事实上.当或,的两端显然均为.0=x a x =)(A 0当或x=c,的两端显然均为.b x =)(A yz这已讨论了所有的可能性,故乘法适合结合律.两个分配律都成立xzxy z y x +=+)(zxyx x z y +=+)(事实上,第一个分配律的成立和适合律的讨论完全一样,只看或以及或就可以了.0=x a x =b x =c x =至于第二个分配律的成立的验证,由于加法适合交换律,故可看或 (可省略的情形)的情形,此时两端均为0=y a y =a z z ==,0zx剩下的情形就只有0,0)(=+=+=+x x bx bx x b b 0,0)(=+=+=+x x cx cx x c c 0,0)(=+=+==+x x cx bx ax x c b R 作成一个环.∴ 2 交换律、单位元、零因子、整环1. 证明二项式定理nn nn n b b a a b a +++=+- 11)()(在交换环中成立.证 用数学归纳法证明.当时,显然成立.1=n 假定时是成立的:k n =ki i k k i k k k k b b a b a a b a +++++=+-- )()()(11看 的情形1+=k n )()(b a b a k++ ))()()((11b a b b a b a a k i i k k i k k k ++++++=--1111111)]()[()()(++--+++++++++=+k i i k k i k i k k k k b b a b a a b a 111111)()(+-+++++++++=k i i k k i k k k b b a b a a (因为))()()(11kr k r k r -++=即二项式定理在交换环中成立.2. 假定一个环对于加法来说作成一个循环群,证明是交换环.R R 证 设是生成元a 则的元可以写成R (整数)na n2)]([)]([))((nma aa m n ma a n ma na ===2))((mna na ma =3.证明,对于有单位元的环来说,加法适合交换律是环定义里其他条件的结果 (利用))11)((++b a 证 单位元是, 是环的任意二元,1b a ,1)11(1)()11)((⋅++⋅+=++b a b a ba b a +++= )11()11(+++=b abb a a +++=b b a a b a b a +++=+++∴ba ab +=+4.找一个我们还没有提到过的有零因子的环.证 令是阶为的循环加群R 2规定乘法:而R b a ∈,0=ab 则显然为环.R 阶为2 有 而 ∴R a ∈0≠a 但 即为零因子0=aa a 或者为矩阵环.R n n ⨯5.证明由所有实数 (整数)作成的集合对于普通加法和乘法来说2b a +b a ,是一个整环.证 令整数2{b a R +=b a ,()}(ⅰ) 是加群R 2)()()2()2(d b c a d c b a +++=+++适合结合律,交换律自不待言.零元 200+的负元2b a +2b a --(ⅱ)2)()2()2)(2(bc ad bd ac d c b a +++=++乘法适合结合律,交换律,并满足分配律.(ⅲ)单位元 201+(ⅲ) R 没有零因子,任二实数或00=⇒=a ab 0=b3 除、环、域1. {所有复数 是有理数}=F bi a +b a ,证明 对于普通加法和乘法来说是一个域.=F证 和上节习题5同样方法可证得F 是一个整环.并且 (ⅰ)有F 01≠+i(ⅱ)即 中至少一个0≠+bi a b a ,0≠因而有,022≠+∴b a 使i b a b b a a 2222+-++)((bi a +i b a bb a a 2222+-++1)= 故为域F 2. {所有实数是有理数}=F ,3b a +b a ,() 证明 对于普通加法和乘法来说是一个域.F 证 只证明 有逆元存在.则中至少有一个 ,03≠+b a b a ,0≠ 我们说0322≠-b a 不然的话,223ba = 若 则 矛盾),0(≠b 0=b 0=a 但 不是有理数223b a =3 既然0322≠-b a则 的逆为3b a +3332222ba bb a a -+-4.证明 例3的乘法适合结合律.证),)](,)(,[(332211βαβαβα =),)(,(331212121βααββαββαα--+- ---+--=,)()[(3212132121βαββααββαα ---+--])()(3212132121ααββαβββαα 又 )],)(,)[(,(332211βαβαβα ],)[,(3232323211--+-=αββαββααβα ,-----------------+--=)()([3232132321αββαβββααα )]()(3232132321----------------++ββααβαββαα ),([32321321321----------+--=βββαβββαααα )](32321321321----------++αββαβαβαβαα ,[321321321321αβββαβββαααα-------= ]321321321321βββααβαβαβαα-----++ ,)()[(3212132121βαββααββαα--+--= 3212132121)()(---++-ααββαβββαα)])()[(())]()([(332211333211βαβαβαβαβαβα=∴5. 验证,四元数除环的任意元 ,这里是实数,可以写成)(),(di c bi a ++d c b a ,,,的形式.),0)(0,()1,0)(0,()0,)(0,()0,(i d c i b a +++ 证 ),(),(),(di bi c a di c bi a +=++ ),0()0,(),0()0,(di bi c a +++=),0)(0,()0,)(0,()1,0)(0,()0,(i d i b c a +++= 4 无零因子环的特征1. 假定是一个有四个元的域,证明.F ()的特征是2;a ()的 或1的两个元都适合方程b F 0≠1证 () 设的特征为a F P 则的(加)群的非零元的阶P F 所 (是群的阶)4P 4F 但要求是素数, P .2=∴P() 设b },,1,0{b a F = 由于,所以加法必然是2=P ,而,0=+x x ba a a =+⇒≠+11故有1ab00 1 a b 1 1 0 b a a a b 0 1bba1又构成乘群,所以乘法必然是},,1{b a 1,=⇒≠≠ab b ab a ab(否则 )1,22≠≠a a a b a =ba =⇒2故有. 1 a b1 1 a ba ab 1bba1这样, 显然适合 b a ,12+=x x2. 假定 是模 的一个剩余类.证明,若 同 互素,][a a n 那么所有的书都同 互素(这时我们说同 互素).][a n ][a n 证 设 且][a x ∈d n x =),(则11,dn n dx x ==由于)(1111q n x d q dn dx nq x a nq a x -=-=-=⇒=-故有,且有 ,a d nd 因为所以1),(=n a 1=d 3. 证明, 所有同 互素的模 的剩余类对于剩余类的乘法来说n n 作成一个群(同 互素的剩余类的个数普通用符号来表示,并且把它叫做由)(n φ拉函数)φ证而 同 互素}]{[a G =][a n 显然非空,因为G )1),1((]1[=∈n G(ⅰ)G b a ∈][],[则][]][[ab b a =又有1),(,1),(==n b n a 1),(=n ab Gab ∈∴][(ⅱ)显然适合结合律.(ⅲ)因为有限,所以的阶有限.n G 若]][[]][['x a x a =即][]['ax ax =由此可得)(''x x a ax ax n -=-',1),(x x n n a -∴= 即有][]['x x =另一个消去律同样可证成立.作成一个群G4. 证明,若是, 那么(费马定理)1),(=n a )(1)(n an ≡φ证则),(n a Ga ∈][而 的阶是的阶 的一个因子][a G )(n φ因此]1[][)(=n a φ即]1[][)(=n aφ)(1)(n a n ≡∴φ5 子环、环的同态1. 证明,一个环的中心是一个交换子环.证 设是环的中心.N 显然 ,是环的任意元N O ∈N b a ∈,x N b a b a x xb x bx ax x b a ∈-⇒-=-=-=-)()(Nab ab x b xa b ax xb a bx a x ab ∈⇒=====)()()()()()(是子环,至于是交换环那是明显的.2. 证明, 一个除环的中心是个域.证 设!是除环!是中心由上题知是的交换子环N R 显然,即包含非零元,同时这个非零元是的单位元.,1R ∈N ∈1N 1 即R x N a ∈∈,xaax =Na x a xa x axa xaa axa ∈⇒=⇒=⇒=------111111!是一个域N ∴3. 证明, 有理数域是所有复数是有理数)作成的域的唯一的真子域.b a bi a ,(+)(i R证 有理数域是的真子域.R )(i R 设!是的一个子域,则(因为是最小数域)F )(i R R F ⊇R若 而,F bi a ∈+0≠b 则)(i F F F i =⇒∈这就是说,是的唯一真子域.R )(i R 4. 证明, 有且只有两自同构映射.)(i R 证 有理数显然变为其自己.假定α→i 则由或i i =⇒-=⇒-=αα1122i -=α这就证明完毕.当然还可以详细一些:bia bi a +→+:1φbia bi a -→+:2φ确是的两个自同构映射.21,φφ)(i R 现在证明只有这两个.若bi a i +=→αφ:(有理数变为其自己)则由12)(12222-=+-=+⇒-=abi b a bi a i1,0222-=-=b a ab 若 是有理数,在就出现矛盾,所以有 因而102-=⇒=a b 0=a .1±=b 在就是说, 只能i i →或ii i -→5. 表示模3的剩余类所作成的集合.找出加群的所有自同构映射,这找出域!的3J 3J 3J 所有自同构映射.证 1)对加群的自同构映射3J 自同构映射必须保持!00←→故有 i i →:1φ2)对域的自同构映射.3J 自同构映射必须保持,00←→11←→所有只有ii →:φ6. 令是四元数除环, 是子集{一切这里阿是实数,显然与实数域同R R =S )}0,(a a -S 构.令是把中换成后所得集合;替规定代数运算.使,分别用表示的-R R S -S R -≅R R k j i ,,R 元,那么的元可以写成是实数)的形式),,0(),1,0(),0,(i i -R d c b a dk cj bi a ,,,(+++(参看 习题). 验证.,.3.351222-===k j i .,,j ik ki i kj jk k ji ij =-==-==-=证 1)对来说显然a a →)0,(:φ-≅S S 2){一切 实数=S )}0,(a a {一切(实数=-S )0,a a 一切 βα,{(=R )}0,(a 复数对是不属于的的元.)(αβS R一切=-R βα,{(}a 规定aa →→)0,(),,(),(:βαβαψ由于与的补足集合没有共同元,容易验证是与间的一一映射.S -S ψR -R 规定的两个唤的和等于它们的逆象的和的象.-R 的两个元的积等于它们的逆象的积的象.-R 首先,这样规定法则确是的两个代数运算.-R其次,对于这两个代数运算以及的两个代数运算来说在之下R ψ-≅R R (3)由习题5知.3.3 ),0)(0,()1,0)(0,()0,)(0,()0,(),(i d c i b a di c bi a +++=++这里实数d c b a ,,,这是因为令),0(),1,0(),0,(i k j i i ===(4)1)0,1()0,)(0,(2-=-==i i i 1)0,1()1,0)(1,0(2-=-==j 1)0,1()1,0)(1,0(2-=-==k k i ij -===)1,0()1,0)(0,(ki i ji -=-==),0()0,)(1,0(同样jik ki i kj jk =-==-=,6 多项式环1. 证明, 假定是一个整环,那么上的一个多项式环也是一个整环.R R ][x R 证 !是交换环交换环,R ][x R ⇒ 有单位元是的单位元,R 11⇒][x R没有零因子没有零因子R ][x R ⇒事实上,0,)(10≠++=a x a x a a x f nn,)(10≠++=m m m b x b x b b x g 则mn m n x b a b a x g x f +++= 00)()(因为没有零因子,所以R 0≠m n b a 因而0)()(≠x g x f 这样是整环][x R 2. 假定是模7的剩余类环,在里把乘积R ][x R ])3[]4])([4[]5[]3([23+--+x x x x 计算出来解 原式=]2[]5[]4[]5[]5[]5[]3[]5[345345++++=-++-x x x x x x x x 3. 证明:(ⅰ) ],[],[1221ααααR R =(ⅱ) 若是上的无关未定元,那么每一个都是上的未定元.n x x x ,,,21 R i x R 证 (ⅰ){一切=],[21ααR }211221i i i i a αα∑一切{],[12=ααR }112212j j j j a αα∑由于=∑211221i i i i a αα112212j j j j a αα∑因而=],[21ααR ],[12ααR (ⅱ)设00=∑=nk ki k x a 即∑=+-nk n i h i i k x x x x x a 0010101因为是上的无关未定元,所以n x x x ,,21R 即是上的未定元i x R 4. 证明:(ⅰ) 若是和上的两组无关未定元,那么n x x x ,,21n y y y ,,21],,[],,[2121n n y y y R x x x R ≅(ⅱ) !上的一元多项式环能与它的一个真子环同构.R ][x R 证 (ⅰ)),,(),,(:2121n n y y y f x x x f →φ根据本节定理3],,[~],,[2121n n y y y R x x x R 容易验证),,(),,(212211n n x x x f x x x f ≠),,(),,(212211n n y y y f y y y f ≠⇒这样],,[],,[2121n n y y y R x x x R ≅(ⅱ)令一切{][=x R }2210nn x a x a a +++ 显然][][2x R x R ⊂但不然的话][2x R x ∉mm m m x b x b x b x b x b b x 22102210 ++-⇒++=这与是上未定元矛盾.x R 所以是上未定元显然][2x R ][x R 故有(ⅰ)}[][2x R x R ≅这就是说,是的真子环,且此真子环与同构.][2x R ][x R ][x R 7 理想1. 假定是偶数环,证明,所有整数是的一个理想,等式!对不对?R r 4ϑ 证 Rr r r r ∈∈2121,,4,4ϑ ϑ∈-=-)(4442121r r r r Rr r ∈-21 ϑ∈=∈)(4)4(,'1'1'r r r r R r Rr r ∈'1 是的一个理想.ϑ∴R等式不对)4(=ϑ这是因为没有单位元,具体的说但R )4(4∈ϑ∉4 2. 假定是整数环,证明R .1)7,3(=证 是整数环,显然R )1(=R .1)7,3(=又 )7,3()7(13)2(1∈+-=1)7,3(=∴3. 假定例3的是有理数域,证明,这时是一个主理想.R ),2(x 证 因为2与互素,所以存在使x )(),(21x P x P),2(11)()(221x x xP x P ∈⇒=+ 。
近世代数习题答案
近世代数习题答案近世代数习题答案近世代数是数学中的一个重要分支,研究的是代数结构及其性质。
在学习近世代数的过程中,习题是不可或缺的一部分。
通过解答习题,我们可以加深对概念和定理的理解,提高解决问题的能力。
本文将给出一些近世代数习题的答案,并对其中的一些重要思想进行解析。
1. 习题:证明群的单位元是唯一的。
解答:设G是一个群,e和e'都是G的单位元。
根据单位元的定义,对于任意的元素g∈G,有eg=g=ge'。
将e'代入上式,得到e=ge'。
同理,将e代入上式,得到e'=ge。
由此可知,e=e',即群的单位元是唯一的。
思考:这个习题通过对单位元的性质进行推理,展示了群的基本概念和性质。
在解答过程中,我们需要运用代数运算的基本法则,如等式的传递性和对称性等。
2. 习题:证明群的逆元是唯一的。
解答:设G是一个群,g∈G,且g有两个逆元g'和g''。
根据逆元的定义,有gg'=e和gg''=e。
将第一个等式两边都乘以g'',得到gg'g''=eg''=g''。
将第二个等式两边都乘以g',得到gg'g''=g'。
由此可知,g''=g'。
即群的逆元是唯一的。
思考:这个习题通过对逆元的性质进行推理,进一步巩固了群的基本概念和性质。
在解答过程中,我们需要灵活运用等式的乘法和消去律,以及群运算的定义。
3. 习题:证明交换群的幂运算满足指数相加的性质。
解答:设G是一个交换群,a∈G,m和n是任意的整数。
我们要证明a^m * a^n = a^(m+n)。
当m和n都是非负整数时,根据幂运算的定义,这个等式成立。
当m和n都是负整数时,设-m=k,-n=l,其中k和l都是非负整数。
根据幂运算的定义,有a^m * a^n = a^(-k) * a^(-l) = (a^k)^(-1) * (a^l)^(-1) = (a^k * a^l)^(-1) = a^(-k-l) = a^(m+n)。
近世代数第三章
R [ 3 ]中, 14 2 (2 3)(2 3) 是 14 的唯一因子分解式。证明留作练习。
定理 3.1.3. 在唯一分解环 R 中,每个既约元均为素元。 证明. 设 p R 为 R 的既约元。设 p | ab ,则存在 c R 使 pc ab 。 (1)如果 a, b, c 中有一个为单位,则结论显然成立。 (2)如果 a, b, c 均不是为单位,则 a, b, c 分别有分解式:
N ( ) 2或 N ( ) 4 ,N ( ) 1 。因为对任意 [ 3] ,N ( ) 2 ,故 N () 4 , N ( ) 1 。从而易知 为单位。即 2 ~ ,因而 2 是既约元。
(2) 断言: 2 不是素元。 因为 2 | 4 ,而 4 (1 3)(1 3) ,所以, 2 | (1 3)(1 3)。但
第一节
唯一分解环
要想在一个整环里讨论因子分解,首先需要把整数环的整除、素数、因数与倍数等概念 推广到一般的整环上去。 1. 素元与既约元 定义 3.1.1. 设 R 是交换环,非零元 a R 称为整除元素 b R ,记为 a | b ,如果存在 x R 使得 b ax 。这时也称 a 是 b 的因子(Divisor) 。如果 a 不是 b 的因子,则称 b 不能被 a 整 除,或 a 不整除 b ,记为 a b 。元素 a, b 称为相伴的,记为 a ~ b ,如果 a | b 且 b | a 。 注.1. 如果 a 是环 R 的元素,u 为 R 的单位,则 u 与 au 均是 a 的因子。这两类因子统称为 a 的平凡因子 (Trivial divisor) 。a 的非平凡因子 (如果存在的话) 称为 a 的真因子 (Proper divisor) 。 2. R 中元素的相伴关系是等价关系。 例 1. R 为整数环,则 1 与 1 均是单位, 5 只有平凡因子 1 与 5 , 12 有真因子 2 , 3 , 4 , 6 。 例 2. 在 高 斯 环
代数第三章习题解答
习题三习题解答 (A)1.用消元法解以下线性方程组.(1)⎪⎪⎩⎪⎪⎨⎧-=-+=+-=+--=-+3102332362382321321321321x x x x x x x x x x x x .(2)⎪⎩⎪⎨⎧=+-+-=--++=+---84342222222543215432154321x x x x x x x x x x x x x x x .(3)⎪⎩⎪⎨⎧-=--+=-+=--+55631236232343213214321x x x x x x x x x x x . (4)⎪⎪⎩⎪⎪⎨⎧-=-+-+=+-+-=+-+-=+-+-137824633422322254321543215432154321x x x x x x x x x x x x x x x x x x x x .(5)⎪⎪⎩⎪⎪⎨⎧=-+-+=-++-=-+-=--+0744420436240203543215432143215421x x x x x x x x x x x x x x x x x x .(6)⎪⎪⎩⎪⎪⎨⎧=--=+-=--=+-05220430320321321321321x x x x x x x x x x x x .解:(1) ⎪⎪⎪⎪⎪⎭⎫⎝⎛----→⎪⎪⎪⎪⎪⎭⎫⎝⎛----=614409175061440382131023311236213821A⎪⎪⎪⎪⎪⎭⎫⎝⎛---→⎪⎪⎪⎪⎪⎭⎫⎝⎛---→00003100120103001000031001201027021, 所以原方程组的解为31-=x ,122-=x 33-=x .(2) ⎪⎪⎪⎭⎫⎝⎛-----→⎪⎪⎪⎭⎫ ⎝⎛-------=252450052450222121814113412212222121A ⎪⎪⎪⎭⎫ ⎝⎛----→200000052450222121, 所以原方程组无解.(3) ⎪⎪⎪⎭⎫ ⎝⎛-----→⎪⎪⎪⎭⎫ ⎝⎛------=8440062100312315563112036231231A ⎪⎪⎪⎭⎫ ⎝⎛-→410002010030031, 所以原方程组的全部解为⎪⎪⎩⎪⎪⎨⎧=-==-=42334321x x c x cx 〔c 为任意常数〕.(4)⎪⎪⎪⎪⎪⎭⎫⎝⎛---------→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------=131111782463211122342231131111782463342231211122A⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------→000000457100226010102001000000457100231110342231, 所以原方程组的全部解为⎪⎪⎪⎩⎪⎪⎪⎨⎧==--=--=-=25142132121157426221c x c x c c x c c x c x (21,c c 为任意常数)..(5) ⎪⎪⎪⎪⎪⎭⎫⎝⎛------→⎪⎪⎪⎪⎪⎭⎫⎝⎛--------=05102200015660012220013011074242043624001211013011A ⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----→00000003110000650110067011, 所以原方程组的全部解为⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧===+=+-=252413212211316567c x c x c x c c x c c x (21,c c 为任意常数).(6) ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------=700120310111522413132111A ⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛-→000100010001000100310111, 所以原方程组的解为⎪⎩⎪⎨⎧===000321x x x .2.当k 为何值时,齐次线性方程组 有非零解,并求出非零解.解:⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛--=0120253012101202530374k k A⎪⎪⎪⎭⎫ ⎝⎛+---→023*********k ⎪⎪⎪⎭⎫ ⎝⎛---→010*********k , 当01=-k ,即1=k 时,原方程组有非零解,当1=k 时,继续对上述行阶梯形矩阵施以初等行变换⎪⎪⎪⎭⎫ ⎝⎛-→000001100101,由此得⎩⎨⎧=-=3231x x x x ,令自由未知量c x =3,那么原方程组的非零解为⎪⎩⎪⎨⎧===c x c x c x 321〔c 为任意常数〕.3.当k 为何值时,线性方程组有唯一解?无解?有无穷多解?并在有无穷多解的情况下,求出它的解.解:)1(3)1(3112132-=++-+k k k kk k kk ,(1)当0≠k 且1≠k 时,所以原方程组有唯一解; (2)当0=k 时,⎪⎪⎪⎭⎫ ⎝⎛-→300001100213, 所以原方程组有无解;当1=k 时,⎪⎪⎪⎭⎫ ⎝⎛----→321032101101⎪⎪⎪⎭⎫ ⎝⎛--→000032101101, 由此得⎩⎨⎧+-=-=3231231x x x x ,令自由未知量c x =3,那么原方程组的全部解为⎪⎩⎪⎨⎧=+-=-=c x c x c x 321231〔c 为任意常数〕. 4.向量)2,0,2,3(1-=α,)2,2,1,6(2--=α,)2,3,4,1(3-=α,且向量β满足βααβαβ-=+--321)(4)(2,求向量β.解:由题有32142αααβ---=,所以 )2,3,4,1()2,2,1,6(4)2,0,2,3(2-------=β )10,5,12,17(--=.5.把β表示为其余向量的线性组合.(1))7,4,3(-=β,)1,0,1(1-=α,)1,1,1(2=α,)2,1,0(3-=α. (2))2,1,1(--=β,)1,1,1(1=α,)4,3,1(2---=α,)2,1,1(3-=α.解:(1)对矩阵),,,(321TT T T βααα施以初等行变换⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛→310010102001310041103011, 所以32132αααβ++=.(2)对矩阵),,,(321TT T T βααα施以所以,对应的线性方程组有无穷解,令 0,1,2321===k k k ,β表示向量321,,ααα的线性组合为32102αααβ++=.6.设有向量⎪⎪⎪⎭⎫ ⎝⎛+=1111λα,⎪⎪⎪⎭⎫ ⎝⎛+=1112λα,⎪⎪⎪⎭⎫ ⎝⎛+=λα1113,⎪⎪⎪⎭⎫ ⎝⎛=20λλβ.试问当λ为何值时,(1) β可由321,,ααα线性表示,且表达式唯一. (2) β可由321,,ααα线性表示,但表达式不唯一.(3) β不能由321,,ααα线性表示. 解:设βααα=++332211k k k ,因此有 其系数行列式=321,,ααα)3(1111111112+=+++λλλλλ,(1) 当30-≠λ≠λ且时,方程组有唯一解,此时,β可由321,,ααα唯一地线性表示.(2) 当0=λ时,方程组有无穷多个解,此时,β可由321,,ααα线性表示 ,但表达式不唯一.(3) 当3-=λ.时,上述方程组的增广阵⎪⎪⎪⎭⎫ ⎝⎛---→⎪⎪⎪⎭⎫ ⎝⎛---=6000123309211921131210112A ,由于3)(,2)(==A r A r ,因此,上述方程组无解,故β不能由321,,ααα线性表示 .7.判断以下向量组是线性相关,还是线性无关?(1) )3,2,1(1-=α,)5,0,2(2=α,)5,4,2(3---=α. (2) )1,3,2,1(1-=α,)2,3,1,1(2--=α,)1,0,1,2(3=α.解:(1) ⎪⎪⎪⎭⎫ ⎝⎛---→⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎪⎪⎭⎫ ⎝⎛=180140321542502321321αααA ⎪⎪⎪⎭⎫⎝⎛---→100140321, 于是3)(=A r ,所以向量组321,,ααα线性无关.(2) ⎪⎪⎪⎭⎫ ⎝⎛-----→⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛=363036301321101223111321321αααA⎪⎪⎪⎭⎫ ⎝⎛---→000036301321, 于是32)(<=A r ,所以向量组321,,ααα线性相关.8.设21,αα线性无关,βαβα++21,线性相关,试将β由21,αα线 性表示.解:因为βαβα++21,线性相关,所以存在不全为零的数21,k k ,使0)()(2211=+++βαβαk k ,即221121)(ααβk k k k --=+,因为21,αα线性无关,21k k +不为零,否那么,假设021=+k k ,必有02211=+ααk k ,于是021==k k ,这与21,k k 不全为零矛盾,所以 22121211ααβk k k k k k +-+-=,)0(21≠+k k9.设21,αα线性相关,21,ββ也线性相关,问2211,βαβα++是否一定线性相关?举例说明.解:否.例如⎪⎪⎭⎫ ⎝⎛=011α,⎪⎪⎭⎫ ⎝⎛=022α,⎪⎪⎭⎫ ⎝⎛=201β,⎪⎪⎭⎫⎝⎛=302β,于是⎪⎪⎭⎫ ⎝⎛=+2111βα,⎪⎪⎭⎫⎝⎛=+3222βα,而21,αα线性相关,21,ββ也线性相关,但2211,βαβα++线性无关.10.向量组)1,2,(1-=k α,)0,,2(2k -=α,)1,1,1(3-=α,求k 为何值时,向量组321,,ααα线性相关?线性无关?解:由题有)2)(1(1110212321k k k k +-=---=ααα,当2-≠k 且1≠k 时, 线性无关;当2-=k 或1=k 时, 线性相关.11.向量组s ααα,,,21 线性无关,试证:向量组1α,s ααααα++++ 2121,,也线性无关.证明:设有数s k k k ,,,21 ,使得0)()(232121=++++++++s s s s k k k k k k k ααα ,即 0)()(2121211=+++++++s s k k k αααααα , 由于向量组s ααα,,,21 线性无关,所以⎪⎪⎩⎪⎪⎨⎧==++=+++0003221s ss k k k k k k k ,解这个方程组得021====s k k k ,由此可知,向量组1α,s ααααα++++ 2121,,也线性无关.12.向量组321,,βββ由321,,ααα线性表示为3211αααβ+-=,3212αααβ-+=,3213αααβ++-=,(1)试把向量组321,,ααα由321,,βββ线性表示; (2)这两个向量组是否等价?解:(1)将向量组321,,ααα由321,,βββ线性表示的关系式写成矩阵形式为⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛321321111111111αααβββ, 于是⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛-3213211321210212121002121111111111ββββββααα, 所以向量组321,,ααα由321,,βββ线性表示的关系是为2112121ββα+=,3222121ββα+=,3132121ββα+=. (2)由(1)知,向量组321,,ααα与321,,βββ能相互线性表示,所以这两个向量组等价.13.设n 维向量组),0,,0,0,1(1 =α,),0,,0,1,1(2 =α1,1,1(=n α)1,, ,证明:n ααα,,,21 与n 维根本单位向量组n εεε,,,21 等价.证明:向量组n ααα,,,21 可由n 维根本单位向量组n εεε,,,21 线性表示,即11εα=,,,212 εεα+=,n n εεεα+++= 21.n 维根本单位向量组n εεε,,,21 可由向量组n ααα,,,21 线性表示,即11αε=,,,122 ααε-=1--=n n n ααε.向量组n ααα,,,21 与n 维根本单位向量组n εεε,,,21 能相互线性表示,所以这两个向量组等价.14.设向量组)1(,,,21>s s ααα 中,O ≠1α,并且i α不能由121,,,-i ααα 线性表示),,3,2(s i =,证明:s ααα,,,21 线性无关.证明:设存在数s k k k ,,,21 ,使得02211=+++s s k k k ααα .对于s k k k ,,,21 ,从右往左考虑,设i k 是第一个不为零的数,即0≠i k ,0,,01==+s i k k ,而O ≠1α,所以1≠i ,从而02211=+++i i k k k ααα ,即)(1112211--+++-=i i ii k k k k αααα , i α能由121,,,-i ααα 线性表示,与题设矛盾,因此,021====s k k k ,因此s ααα,,,21 线性无关.15.设向量组)2(,,,21≥r r ααα 线性无关,作以下线性组合 r k ααβ111+=,,,222 r k ααβ+=r r r r k ααβ111---+=,证明:121,,,-r βββ 也线性无关.证明:设存在数s t t t ,,,21 ,使得0112211=+++--r r t t t βββ ,即0)()()(111222111=++++++---r r r r r r k t k t k t αααααα ,于是0)(112211112211=+++++++----r r r r r k t k t k t t t t αααα ,由题设,向量组)2(,,,21≥r r ααα 线性无关,所以0112211121=+++====---r r r k t k t k t t t t ,121,,,-r βββ 也线性无关.16.证明:n 维向量组n ααα,,,21 线性无关的充分必要条件是任一n 维向量都可由n ααα,,,21 线性表示.证明:必要性 对于任一n 维向量β,向量组βααα,,,,21n 线性相关,从而存在不全为零的数k k k k n ,,,,21 使得02211=++++βαααk k k k n n ,其中0≠k ,那么n k k k ,,,21 不全为零,且02211=+++n n k k k ααα ,这与n ααα,,,21 线性无关矛盾.因为0≠k ,所以β可被n ααα,,,21 线性表示.充分性 因为任一n 维向量均可被n ααα,,,21 线性表示,所以n 维根本单位向量组n εεε,,,21 可由n ααα,,,21 线性表示,而,,,21 ααn α又可由n εεε,,,21 线性表示,所以n r r n n ==),,,(),,,(2121εεεααα ,从而n ααα,,,21 线性无关.17.设向量组s ααα,,,21 的秩为r )(s r <,求证:s ααα,,,21 中任意r 个线性无关的向量都是该向量组的一个极大线性无关组.证明:设向量组r i i i ααα,,,21 是向量组s ααα,,,21 中的线性无关的局部组,因为r r s =),,,(21ααα ,所以对于任一向量)1(s i i ≤≤α,向量组i i i i r αααα,,,,21 必线性相关。
近史代数课后习题答案
近史代数课后习题答案近史代数课后习题答案近史代数是一门重要的数学学科,它不仅具有理论性,还有广泛的应用价值。
在学习近史代数的过程中,课后习题是巩固知识、提高能力的重要环节。
然而,习题的解答并不总是那么容易,有时会让人感到困惑。
在本文中,我将为大家提供一些近史代数课后习题的参考答案,希望能够帮助大家更好地理解和掌握这门学科。
一、多项式运算1. 计算多项式 P(x) = 2x^3 - 5x^2 + 3x - 7 在 x = 2 时的值。
解答:将 x = 2 代入多项式 P(x) 中,得到 P(2) = 2(2)^3 - 5(2)^2 + 3(2) - 7 = 16 - 20 + 6 - 7 = -5。
2. 将多项式 P(x) = 3x^4 - 2x^3 + 5x^2 - 4x + 1 与多项式 Q(x) = x^2 - 3x + 2相加,求和后的多项式。
解答:将 P(x) 与 Q(x) 相加,得到 P(x) + Q(x) = (3x^4 - 2x^3 + 5x^2 - 4x + 1) + (x^2 - 3x + 2) = 3x^4 - 2x^3 + 6x^2 - 7x + 3。
二、方程与不等式1. 解方程 2x - 5 = 3x + 1。
解答:将方程化简,得到 2x - 3x = 1 + 5,即 -x = 6,再将方程两边乘以 -1,得到 x = -6。
2. 解不等式 2x + 1 < 5x - 3。
解答:将不等式化简,得到 2x - 5x < -3 - 1,即 -3x < -4,再将不等式两边乘以 -1,注意不等号反向,得到 3x > 4,最后除以 3,得到 x > 4/3。
三、函数与图像1. 给定函数 f(x) = x^2 - 3x + 2,求函数的对称轴和顶点。
解答:对称轴的横坐标可以通过公式 x = -b/2a 求得,其中 a、b 分别是二次项系数和一次项系数。
近世代数 吴品三 习题解答 基本概念
第一章 基本概念练习§1. 集合 子集 集合的运算1.设A ={x |x ∈R ,|x |≥5},B ={x |x ∈R ,-6≤x <0},求B A ,B A ,B A \,A B \,并用图形表示出来.[解] (图形略.)B A ={x |x ∈R ,x <0或x ≥5},B A ={x |x ∈R ,-6≤x ≤-5}, B A \={x |x ∈R ,x <-6或x ≥5}, A B \={x |x ∈R ,-5<x <0}.2. 证明:(B A ⊂)⇔(B B A = )⇔(A B A = ).[证] 先证(B A ⊂)⇔(B B A = ).若B A ⊂,则B A x ∈∀,B x ∈.所以B B A ⊂)( ;显然B B A ⊃)( ,故B B A = .反之,若B B A = ,则A x ∈∀,B B A x =∈)( ,故B A ⊂.所以(B A ⊂)⇔(B B A = ).次证(B A ⊂)⇔(A B A = ).若B A ⊂,则A x ∈∀,B x ∈,于是A x ∈∀,有B A x ∈,所以)(B A A ⊂,显然A B A ⊂)( ,所以A B A = .反之,若A B A = ,则A x ∈∀,B A x ∈,于是A x ∈∀,有B x ∈,故B A ⊂.所以(B A ⊂)⇔(A B A = ).综上所述得:(B A ⊂)⇔(B B A = )⇔(A B A = ).3. 证明:B A =⇔B A B A =.[证] 若B A =,则A B A = ,A B A = ,所以B A B A =.反之,若B A B A =,则A x ∈∀,有x ∈B A =B A ,从而B x ∈,所以B A ⊂;同理可证A B ⊂,故B A =所以B A =⇔B A B A =.4. 设n A =(n ,∞),(n ,∞)表示实数轴上的开区间,即(n ,∞)={x |x ∈R , ∞<<x n },n =0,1,2,….求 ∞=0i i A 与 ∞=0i i A[解] 因为 ⊃⊃⊃210A A A ,所以 ∞=0i i A =0A =(0,∞).因为∈∀x R ,存在非负整数n ,使n x ≤.于是n A x ∉, ∞∉i A x ,所以φ=∞= 0i i A .5. 设A ={x |x ∈Z ,x x 32-+2=0},写出A 2. [解] A ={1,2},故A 2={φ,{1},{2},{1,2}}.6. 设A ,B 是U 的子集,规定)\()\(A B B A B A =+,证明:(ⅰ)A B B A +=+; (ⅱ)A A =+φ; (ⅲ)φ=+A A .[证] (ⅰ)因为集合的并适合交换律,故)\()\(A B B A =)\()\(B A A B ,即A B B A +=+.(ⅱ)因为A A =φ\,φφ=A \,所以)\()\(A A φφ =φ A =A ,即A A =+φ.(ⅲ)因为φ=A A \,所以φ=)\()\(A A A A ,即φ=+A A .§2. 映射 映射的合成1. 对于下面给出的Z 到Z 的映射f ,g ,h ,f :x x 3 ,g :13+x x ,h :23+x x计算g f ,f g ,h g ,g h ,h g f .[解] g f :39+x x , f g :19+x x , h g :79+x x ,g h :59+x x , h g f :2127+x x .2.对于上题的f ,g ,h 分别求它们的左逆映射.[解] f 的一个左逆映射为1-L f :⎪⎩⎪⎨⎧≠=.3,3,3n x x n x x x 当当 .g 的一个左逆映射为1-L g :⎪⎩⎪⎨⎧+=-+≠.13,31,13,n x x n x x x 当当 .h 的一个左逆映射为1-L h :⎪⎩⎪⎨⎧+=-+≠.23,32,23,n x x n x x x 当当 . 其中n 为任意整数. 3.对于上题的f ,g ,h ,找出f ,g ,h 的共同的左逆映射,即找出Z 到Z 的映射k ,使f k =g k =h k =Z I .[解] 令k :Z →Z ,⎪⎪⎪⎩⎪⎪⎪⎨⎧+=-+=-=.23,32,13,31,3,3n x x n x x n x x x 当当当 ,其中n 为任意整数.容易验证,k 是f ,g ,h 的一个共同的左逆映射.4. 对于上题的f ,g ,h ,找出Z 到Z 的一个映射,使其为f ,g 的共同的左逆映射,但不是k 的左逆映射.[解] 令k :Z →Z ,⎪⎪⎪⎩⎪⎪⎪⎨⎧+=+=-=.23,,13,31,3,3n x x n x x n x x x 当当当 ,其中n 为任意整数.容易验证,k 为满足题中要求的映射.5. 设f 是A 到B 映射,g 是B 到C 的映射,f g 有左逆映射,能否证明f ,g 都有左逆映射?[解] 当f ,g 为题设,且f g 有左逆映射,可以证明f 有左逆映射,但g 未必有左逆映射.下面分别加以证明:(ⅰ)f 有左逆映射.设f g 有一个左逆映射k ,于是对于任一A a ∈,有A 到C 的映射)))(((a f g k =a =)(a I .根据映射合成满足结合律得:a a f g k =))()(( ,对A a ∈∀都成立.故g k 为f 的一个左逆映射.(ⅱ)g 未必有左逆映射.例如:A ={1,2},B ={1,2,3},C ={1,2},令f :B A →,x x ;g :C B →,⎩⎨⎧==.313.2,1,i i i i .容易验证,f g 存在左逆映射,但g 不存在左逆映射.6*. 设f 是A 到B 的单射(满射),g 是B 到C 的单射(满射),则f g 是A 到C 的单射(满射).[解] (ⅰ)设f 是A 到B 的单射,g 是B 到C 的单射,则对A a a ∈∀21,,且21a a ≠,有)()(21a f a f ≠,从而))((1a f g ≠))((2a f g ,于是f g 是A 到C 的单射.(ⅱ)设f 是A 到B 的满射,则B A f =)(;g 是B 到C 的满射,则C B g =)(.于是))((A f g =)(B g =C ,所以f g 是A 到C 的满射.7. 设A 表示某四年制大学数学系全体学生所成的集合,B ={1,2,3,4}.对A a ∈∀,规定)(a f 表示a 所在年级,这个f 是不是A 到B 映射?单射?满射?A a ∈∀,))((1a f f -=?设B b b ∈21,,21b b ≠,问)(11b f -∩)(21b f -=? B b b f ∈-)(1=?[解] 根据题意,A a ∈∀是且仅是某一个年级的学生,故)(a f 是B 中唯一确定的元素,所以f 是A 到B 的映射;f 未必是满射,因为未必每个年级都有学生;一般说f 不是单射,因为某年级如有学生,一般不会只有一人.A a ∈∀,))((1a f f -={a 所在年级的全体学生}.当B b b ∈21,,21b b ≠时,)(11b f -∩)(21b f -=φ, B b b f∈-)(1=A .8. 设A =B =Z ,m 是取定的正整数,A a ∈∀,规定r a f =)(,此处r 是a 被m 除所得非负余数:r qm a +=,0≤r <m .f 是不是A 到B 的映射?单射?满射?若取B ={0,1,2,…,m -1},问)0(1-f ,)1(1-f ,…,)1(1--m f 分别由哪些数组成?设B j i ∈,,j i ≠,问)()(11j f i f -- =? B b b f∈-)(1=?[解] 依题意且根据整数的带余除法知,f 是A 到B 的映射,但f 不是单射,也不是满射.设B ={0,1,2,…,m -1},则依题意有:)0(1-f ={x |km x =,k =0,±1,±2,…},)1(1-f ={x |km x =+1,k =0,±1,±2,…},…………………………………………,)1(1--m f ={x |km x =+(m -1),k =0,±1,±2,…}.当B j i ∈,,j i ≠时,)()(11j f i f -- =φ, B b b f∈-)(1=Z .9. 设A 是坐标平面上所有点的集合,B 是x 轴上所有点的集合,A a ∈∀,规定)(a f 表示a 向x 轴作垂线的垂足,这个f 是不是A 到B 的映射?单射?满 射?设B b b ∈21,,21b b ≠,问)(11b f -∩)(21b f -=? ))((1a f f -=? B b b f∈-)(1=?[解] 依题意,f 是A 到B 的映射,显然f 是满射,但f 不是单射.设B b b ∈21,,21b b ≠,则:)(11b f -∩)(21b f -=φ,))((1a f f -={)(a f ,y }, Bb b f∈-)(1=A . 10. 设f :B A →,A S ⊆,证明S S f f⊇-))((1,举例说明“=”不一定成立. [解] 设f :B A →,A S ⊆,则S s ∈∀,有)()(S f s f ∈,所以))((1S f f s -∈,S S f f ⊇-))((1.例如:A =B ={0,1,2,…},S ={0}A ⊆,作A 到B 的映射f :A a ∈∀,)(a f =0,显然))((1S f f-=)0(1-f =A ≠S .§3 有限集与可数集1.证明,有限集的任一子集都是有限集;无限集的任一扩集都是无限集.[证] 设A 为有限集,若φ=A ,则结论显然成立.现在设A 非空,则A 的元素可以如下列举出来:1a ,2a ,…,n a .A 的空子集显然是有限集,若B 是A 的非空子集,则B 的元素可以如下列举出来:1i a ,2i a ,…,m i a , m i i i <<< 21.于是B 与自然数的一个断片|1,m |={1,2,…,m }等浓,从而B 是有限集.设A 为无限集,B 是A 的任一扩集.若B 不是无限集,则B 为有限集,从而由前半部证明知,B 的任一子集,特别地,B 的子集A 为有限集,此与假设矛盾.所以B 是无限集.2. 证明,一个有限集与一个可数集的并是一个可数集.[证] 设A ={1a ,2a ,…,n a }为有限集,B ={1b ,2b ,…,n b ,…}为可数集,则A ∪B ={1a ,2a ,…,n a ,1b ,2b ,…,n b ,…}.作f :(A ∪B )→+Z ,⎩⎨⎧=+≤≤.,2,1,,1, j j n b n i i a j i .显然f 是B A 到+Z 上的一一映射,所以B A 与+Z 等浓,从而B A 为可数集.3. 找出自然数集P 的三个与P 等浓的真子集1A ,2A ,3A .[解] 设P ={1,2,3,…},令1A ={全体正奇数},2A ={全体正偶数},}1{\3P A =.1A ,2A ,3A 为P 的真子集,容易看出存在i A (i =1,2,3)到P 上的一一映射,所以i A (i =1,2,3)与P 等浓.4. 证明,坐标平面上所有格子点(即坐标均为整数的点)的集合是可数集.[证] 记所有格子点的集合为A ,即:A ={(a ,b )|a ,b ∈Z}.可将A 的元素排成一个方阵,再按右图所示箭头方向给A 中的元素按自然数顺序编号:这样,A 的元素可利用自然数排列出来,故A 是可数集.5. 证明:开区间(a ,b )与闭区间[a ,b ]等浓.[证] 映射f :a x a b x +-)( 显然是(0,1)到(a ,b ),[0,1]到[a ,b ]的双射.由P.18例4知,(0,1)与[0,1]等浓.设ϕ是(0,1)到[0,1]的双射,则1-f f ϕ是(a ,b )到[a ,b ]的双射,所以(a ,b )与[a ,b ]等浓.注:此题也可以用类似P.18例4的方法,直接作(a ,b )到[a ,b ]的双射.6. 利用例3的方法,证明全体“自然数的无限序列”作成的集合是不可数集.[证] 设A ={X |X =(1a ,2a ,…,n a ,…),i a ∈+Z },显然A 为无限集.假定A 为可数集,则A 的元素可用自然数予以编号,于是A ={1X ,2X ,…,n X ,…},其中1X =(11a ,12a ,…,n a 1,…)2X =(21a ,22a ,…,n a 2,…)…………………………n X =(1n a ,2n a ,…,nn a ,…)…………………………作自然数的无限序列X =(1a ,2a ,…,n a ,…),其中ii i a a =(i =1,2,…,n ,…).显然A X ∈,但X 与1X ,2X ,…,n X ,…中的任一个都不相同,从而产生矛盾.故A 为不可数集.§4 加氏积 二元关系与等价关系1. 设*R 表示一切非零实数作成的集合,数目的+、-、×、÷是不是*R 的代数运算?为什么?n 次方幂,n 次方根是不是*R 的一元运算?为什么?x log 是不是一元运算?为什么?构造*R 的两个三元运算.[解] (ⅰ)数目的×、÷是*R 的代数运算.因为∈∀b a ,*R ,b a ⨯,b a ÷是*R中唯一确定的元素.(ⅱ)数目的+、-不是*R 的代数运算.因为∈∀a *R ,∈-a *R ,但)(a a -+=0*R ∉,a a -=0*R ∉.(ⅲ)n 次方幂是*R 的一元运算.因为∈∀a *R ,n a 是*R 中唯一确定的元素. (ⅳ)当n 是奇数时,n 次方根是*R 的一元运算;当n 是偶数时,n 次方根不是*R 的一元运算,因为负数在实数范围内不能开偶次方.(ⅴ)x log 不是*R 的一元运算.因为1∈*R ,而*01log R ∉=.(ⅵ)构造*R 的两个三元运算1f ,2f 如下: x z y x f =),,(1,2222),,(z y x z y x f ++=,∀x ,y ,z ∈*R .2. 设A ={a ,b },R ={(a ,a )},R 是否具有反身性?对称性?传递性?反对称性?[解] R 不具有反身性,因为b R b '.但R 具有对称性,传递性,反对称性.3. 设A ={平面上所有直线},规定A 中的二元关系~为:1l ,2l ∈A ,1l ~2l ⇔1l ∥2l 或21l l =.证明,~是A 的一个等价关系,决定相应的等价类.[证] (ⅰ)依题意,A l ∈∀,有l l =,故l ~l .A l l ∈∀21,,由1l ~2l ⇒1l ∥2l 或21l l =⇒2l ∥1l 或12l l =⇒2l ~1l .A l l l ∈∀321,,,由⎭⎬⎫⎩⎨⎧=⇒=⇒323232212121//~//~l l l l l l l l l l l l 或或⇒3131//l l l l =或⇒1l ~3l . 可见~具有反身性、对称性、传递性,所以~是A 的一个等价关系. (ⅱ)当A l ∈时,由l 决定的等价类为:直线y =kx ={l |A l ∈,l ∥直线kx y =,或l 就是直线kx y =},k 为任意实数; 直线x =0={l |A l ∈,l ∥直线x =0,或l 就是直线x =0}.4. 在复数集C 中,规定二元关系~为:a ~b ⇔a 的幅角=b 的幅角.证明,~是C 的一个等价关系,决定相应的等价类.[证] (ⅰ)∈∀a C ,有a a arg arg =,故a ~a .∈∀b a ,C ,由a ~b ⇒b a arg arg =⇒a b arg arg =⇒b ~a .∈∀c b a ,,C ,由⎭⎬⎫⎩⎨⎧=⇒=⇒c b c b b a b a arg arg ~arg arg ~⇒c a arg arg =⇒a ~c . 可见~是C 的一个等价关系.(ⅱ)其决定的等价类为:ϕa ={z |∈z C ,πϕk z 2arg +=,k ∈Z },0≤ϕ<2π;与0={0}.5. 设A ={1,2,3,4},在A 2中规定二元关系~为:S ~T ⇔S ,T 含有元素个数相同,证明,这是一个等价关系,写出商集A2/~.[证] 记A 2的元素S 所含元素个数为|S |.A S 2∈∀,则|S |=|S |,故S ~S . A T S 2,∈∀,由S ~T ⇒|S |=|T |⇒|T |=|S |⇒T ~S .AV T S 2,,∈∀,由⎭⎬⎫⎩⎨⎧=⇒=⇒||||~||||~V T V T T S T S ⇒|S |=|V |⇒S ~V . 可见~是A2的一个等价关系.商集A 2/~={φ,1A ,2A ,3A ,4A },其中 1A ={{1},{2},{3},{4}},2A ={{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}},3A ={{1,2,3},{1,2,4},{1,3,4},{2,3,4}},4A =A .6. n F )(表示数域F 上全部n 阶方阵的集合,f 是n F )(到{0,1,2,…,n }上的满射f :(ij a ) (ij a ).求f 决定的等价关系,决定的等价类.[解] 由f 确定的n F )(中的等价关系为:(ij a )~(ij b )⇔))(())((ij ij b f a f =,即秩(a )=秩(b ).决定的等价类为:r A ={X |n ij F x X )()(∈=,秩X =r },r =0,1,2,…,n .7. 设1R ,2R 是A 的两个等价关系,21R R 是不是A 的二元关系?是不是等价关系?为什么?21R R 是不是A 的二元关系?[解] 集A 的二元关系实际上是A A ⨯的子集,而A A ⨯的两个子集之交、之并仍然是A A ⨯的子集,故21R R 、21R R 都是A 的二元关系.若1R ,2R 都是A 的等价关系,则21R R 仍是A 的等价关系.事实上A a ∈∀,由⎭⎬⎫∈∈21),(),(R a a R a a ⇒21),(R R a a ∈. 对A b a ∈∀,,由21),(R R b a ∈⇒⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧∈⇒∈∈⇒∈2211),(),(),(),(21R a b R b a R a b R b a R R 为等价关系为等价关系⇒ 21),(R R a b ∈.同样可证,21R R 具有传递性,所以21R R 是A 的一个等价关系.8. 设1R ,2R 是A 的两个二元关系,规定:21R R ={),(b a |A x ∈∃:1),(R x a ∈,2),(R b x ∈}}.证明,“ ”是A 的一切二元关系所成的集合B 的一个二元关系.[证] 因为21R R 是A A ⨯的一个子集,即21R R 确定了A 的一个二元关系,所以“ ”:2121),(R R R R 是B B ⨯到B 的一个映射,故它是B 的一个二元关系.9. 设n R )(表示实数域R 上一切n 阶方阵的集合.(ⅰ)对于∈B A ,n R )(,规定:∈∃⇔Q P B AR ,1n R )(,|P |≠0,|Q |≠0:B PAQ =.证明,R 是R )(的一个等价关系.等价元素类取怎样的方阵作为代表元,形式最简单?(ⅱ)对于∈B A ,n R )(,规定:∈∃⇔P B AR 2n R )(,|P |≠0:B PAP =-1.证明,2R 是n R )(的一个等价关系.等价元素类取怎样的方阵作为代表元,形式最简单?(ⅲ)对于∈B A ,n R )(,规定:∈∃⇔P B AR 3n R )(,|P |≠0:B P PA ='.证明,3R 是n R )(的一个等价关系.等价元素类取怎样的方阵作为代表元,形式最简单?(ⅳ)对于∈B A ,n R )(,规定:∈∃⇔P B AR 4n R )(,I P P ='(单位方阵):B P PA ='.证明,4R 是n R )(的一个等价关系.等价元素类可以取怎样的代表元?[证] 由线性代数知识可知,实数域上n 阶方阵的等价、相似以及实对称矩阵的合同、正交合同皆具有反身性、对称性、传递性,故本题中的1R ,2R ,3R ,4R 都是等价关系.(ⅰ)关于1R ,等价元素类的代表元取如下方阵,形式最简单:r E =diag (rn r -0,,0,0,1,,1,1),(0≤r ≤n ). (ⅱ)由等价关系2R 所划分的等价类,其代表元可取矩阵的有理标准形(详见张远达,熊全淹的《线性代数》第五章).关于3R ,等价元素类的代表元取如下方阵,形式最简单:st E =diag ()(0,,0,0,1,1,1,1,,1,1t s n t s +----),s ,t 为非负整数,且n t s ≤+. 关于4R ,等价元素类的代表元可取如下方阵:n E λλ,,1 =diag (1λ,2λ,…,n λ),R i ∈λR ,1λ≤2λ≤…≤n λ.§5. 有序集 Zorn 引理1. 写出右边图形表示的偏序关系,指出其极大元,极小元,最大元,最小元.[解] 上图表示的偏序关系为:“≤”={),(a a ,),(b b ,),(c c ,),(d d ,),(b d ,),(c d ,),(a b ,),(a c ,),(a d }.a 为极大元同时亦为最大元,d 为极小元同时亦为最小元.下图表示的偏序关系为:“≤”={),(a a ,),(b b ,),(c c ,),(d d ,),(e e ,),(c d ,),(c e ,),(a c ,),(b c ,),(b d ,),(a d ,),(b e ,),(a e }.a ,b 为极大元,d ,e 为极小元,此偏序关系中无最大元,也无最小元.2. 举一个偏序集(S ,≤)但不是有序集的例子.[解] 令S ={数域P 上的首项系数为1的多项式},规定:对于任意S x g x f ∈)(),(,)(x f ≤)(x g ⇔)(|)(x g x f .显然可知,依规定“≤”具有反身性、对称性、传递性,故(S ,≤)是一个偏序集.但(S ,≤)不是有序集,因为存在S x g x f ∈)(),(,)(|)(x g x f /,且)(|)(x f x g /,从而既无)(x f ≤)(x g ,又无)(x g ≤)(x f .故“≤”不是顺序关系.3. 举一个有序集(S ,≤)但不是良序集的例子,并对S 规定另一偏序关系,使之成为良序集.[解] 取S =Z ,“≤”表示数目的大小关系,显然(S ,≤)是有序集,但不是良序集,因为(S ,≤)中无最小元.现在规定Z 的二元关系“≤'”:b a ≤',如果|a |<|b |;或b a =;或b a -=,且a 为负数.显然(Z ,≤')是有序集,下面证明它是良序集:设N 是Z 的任一非空子集,记N '={|a |N a ∈},因为以数目大小为二元关系的非负整数集是良序集,所以(N ',≤')有最小元|0a |,如果N a ∈∀,且0a a ≠,有|a |≠|0a |,即|a |>|0a |,则0a 是(N ,≤')中最小元;如果N a ∈∃1,且01a a ≠,但|1a |=|0a |,则1a ,0a 中是负数的那一个为(N ,≤')的最小元.总之,(N ,≤')有最小元.所以(Z ,≤')是良序集.4. 证明,一个偏序集(S ,≤)若有最大元,则只存在一个.[证] 设(S ,≤)为偏序集,m ,n 皆为其最大元,则依定义有m ≤n 和n ≤m ,由反对称性得n m =,所以(S ,≤)若有最大元,则只存在一个.5. 证明,有限偏序集的每一个非空子集均含有极小元.[证] 设S 是有限偏序集,T 是S 的任一非空子集,“≤”为偏序关系.取定T x ∈0,考虑0Tx ={x |T x ∈,x ≤0x },显然00Tx x ∈,若0Tx ={0x },则0x 为T 的一个极小元,否则01Tx x ∈∃,1x <0x .继续考虑1Tx ={x |T x ∈,x ≤1x },若1Tx ={1x },则1x 为T 的一个极小元,否则12Tx x ∈∃,2x <1x .如此继续,我们得到一个链: …<n x <…<2x <1x <0x .由于T 为有限集,此链不可能无限下去,必在有限步后中止,即存在m x ,使m Tx ={x |T x ∈,x ≤m x }={m x },从而T x ∈∀,x ≤m x ,m x 为T 的极小元.6. 举一个含有n +1个元的偏序集,使其含有n 个极大元,1个极小元.[解] 令S ={1,1p ,2p ,…,n p ,i p 为互不相同的素数}.定义S 中的二元关系“≤”为数的整除关系,显然(S ,≤)成为一个偏序集.1是S 的一个极小元,其余n 个元皆为极大元.7. 设(Z ,≤)是整数集关于整除关系作成的偏序集,T ={1,2,…,10},求T 的上界,下界,有没有最小上界?最大下界?与例6的区别何在?[解] 依题意,T 的上界和下界分别是1,2,…,10的公倍数和公约数,而最小上界和最大下界则分别是的它们的最小公倍数和最大公约数,所以T 的最小上界为:5·7·9·8=2520,T 的上界为:2520k ,k ∈+Z ;T 的最大下界为1,且是T 仅有的下界.与例6的区别在于:例6讨论的是T 的最小元,极小元,最大元,极大元,这与上,下界,最大下界,最小上界是不同的概念.对一个偏序集的子集来说,如有最小元,则最小元必是最大下界.如有最大元,由最大元必是最小上界.反之未必.例如本题中的T ,1是最小元,也是最大下界;2520是最小上界,但不是T 的最大元.8. 设A 是任意集合,在偏序集(A 2,⊆)中取其子集的序列{1a },{1a ,2a },…,{1a ,2a ,…,n a },…,它们的并集是不是A 2的一个极大元?为什么?[解] 题中所取子集序列之并未必是A 2的一个极大元.因为该子集序列的并集可能是A 的真子集,例如当A 是不可数集时.事实上,(A 2,⊆)中仅有一个极大元,也是最大元A .9. 证明,偏序集(A 2,⊆)既有最大元,也有最小元.(φ\2A ,⊆)有没有最小元?找出它的极小元.[证] 因为A A 2∈,且对A x 2∈∀,总有A x ⊆,故A 是(A 2,⊆)的最大元; 同样,由于A 2∈φ,且对A x 2∈∀,总有x ⊆φ,故φ是(A2,⊆)的最小元. (φ\2A ,⊆)没有最小元,其极小元为所有{a },A a ∈.10. 设S =Z ,“m ≤n ”表示mn 是非负整数,且n m |,证明(S ,≤)是一个偏序集.S 有没有最大元?最小元?极大元?极小元?[证] 对S x ∈∀,恒有x x ⋅为非负整数,且x |x ,故x ≤x .对S y x ∈∀,,若x ≤y 且y ≤x ,则依题意可知x ,y 或同时为0,或为同号的互相整除的整数,故y x =.对S z y x ∈∀,,,若x ≤y 且y ≤z ,则由y x |且z y |,推得z x |,再由xy ,yz 非负,可知xz 非负.所以x ≤y .可见“≤”具有反身性,对称性,传递性.所以(S ,≤)是一个偏序集.显然0为S 的一个最大元,也是S 的唯一极大元.S 没有最小元,S 有极小元1和-1.11. 设偏序集(S ,≤)有最小元,则S 有且只有唯一的极小元.[证] 首先可知(S ,≤)的最小元,也是S 的一个极小元.所以,当(S ,≤)有最小元m 时,S 至少有一个极小元.设m '是(S ,≤)的任一极小元,因为m 是最小元,所以m ≤m '.又因为m '是极小元,所以由m ≤m '⇒m m '=.12. 设A 是一个非空集合,B 是A 上一切二元关系所组成的集合,对于B 中元素1R ,2R ,如果对于x ,y ∈A ,y xR 1⇒y xR 2,那么,就规定1R ≤2R ,则(B ,≤)作成一个偏序集.[证] 依题意,对B R ∈∀,总有R ≤R .设1R ,2R ∈B ,且1R ≤2R 及2R ≤1R ,则对于x ,y ∈A ,y xR 1⇒y xR 2及y xR 2⇒y xR 1,这就是说,由(x ,y )∈1R ⇒(x ,y )∈2R 及(x ,y )∈2R ⇒(x ,y )∈1R .所以1R ,2R 表示A A ⨯的同一子集合,21R R =.设1R ,2R ,3R ∈B ,满足1R ≤2R 且2R ≤3R ,则对于x ,y ∈A ,y xR 1⇒y xR 2及y xR 2⇒y xR 3,从而y xR 1⇒y xR 3,所以1R ≤3R .可见B 中的二元关系“≤”具有反身性,对称性,传递性,所以(B ,≤)作成一个偏序集.此外,我们也可以直接由(B ,≤)=(A A ⨯2,⊆)得(B ,≤)是一个偏序集.习题1. 设n A ={a |a ∈Z ,(n 2|a )∧(a n |21/+)},求A = ∞=1n n A . [解] A = ∞=1n n A={2k |k ∈Z }.2. 设x A ={y |y ∈R ,0≤y <x },求A =1>∈x R x x A 且.[解] A = 1>∈x R x x A 且={y |y ∈R ,0≤y ≤1}.3. 设1A ,2A ,…,是集合E 的可数个子集,令A =∞=∞=1m m i i A ,A = ∞=∞=1m m i i A .证明: (ⅰ)A 由一切属于无限多个i A 的元所组成; (ⅱ)A 由一切属于“几乎所有i A ”的元所组成.(“几乎所有i A ”指除有限个外的全部i A ,也说“差不多所有i A ”.)[证] (ⅰ)若x 属于无限多个i A ,则m ∀≥1,1A ,2A ,…,1-m A 是有限个,所以E m '≥m ,使m A x '∈,于是 ∞=∈m i i A x .故A x ∈= ∞=∞=1m m i i A .若x 属于有限个i A ,不妨设x 属于1i A ,2i A ,…,k i A ,1i <2i <…<k i ,m >k i ,取m '∀≥m ,m A x '∉,于是 ∞=∉m i i A x ,故A x ∉.综上所述,A 由一切属于无限多个i A 的元组成.(ⅱ)若 ∞=∞=∈1m m i i A x ,则至少0m ∃,使 ∞=∈0m i i A x ,于是,x 至多不属于1A ,2A ,…,1-m A ,即x 属于“几乎所有的i A ”.若x 属于“几乎所有的i A ”,不妨设x 属于除了1i A ,2i A ,…,k i A 以外的所有i A ,取0m >k i ,则 ∞=∈0m i i A x .故A x ∈= ∞=∞=1m mi i A .综上所述,A 由一切属于“几乎所有的i A ”的元所组成.4. 设{i A |I i ∈}是集合E 的子集族,f 是E 到B 的映射,证明:(ⅰ) I i i I i i A f A f ∈∈=)()(;(ⅱ) Ii i I i i A f A f ∈∈⊆)()(.并举例说明,(ⅱ)中的“⊂”可能发生.[证] (ⅰ)设)( I i i A f x ∈∈',则 Ii i A x ∈∈∃,使)(x f x =',于是x 属于某一个i A ,从而x '=)(x f ∈)(i A f ⊆ I i i A f ∈)(,所以)( I i i A f ∈⊆ I i i A f ∈)(.同样可证, I i i A f ∈)(⊆)( I i i A f ∈.所以)( I i i A f ∈= Ii i A f ∈)(.(ⅱ)任取)( I i i A f x ∈∈',则 Ii i A x ∈∈∃,使)(x f x =',因为i A x ∈,I i ∈∀,所以)()(i A f x f ∈,I i ∈∀,即)(i A f x ∈',I i ∈∀.故 I i i A f x ∈∈')(,从而)( I i i A f ∈⊆ Ii i A f ∈)(.例:取E =Q ,1A ={非负有理数},2A ={非正有理数},B ={0,1}.定义f :E →B ,⎩⎨⎧≠=.0,1,0,0时当时当x x x x . 因为)(21A A f ={0},)()(21A f A f ={0,1},所以)(21A A f ⊂[)()(21A f A f ].5. 设f :A →A 且f f =f ,则f =A I .[证] 由题设,f 是A 到A 的满射,故对于A a ∈∀,A a ∈'∃,使a a f =')(.又因为f f =f ,所以有)(a f =)(a f f ' =)(a f '=a ,A a ∈∀.所以f =A I .6. 找出Z 到Z 的n +1个映射i f ,i =1,2,…,n ,n +1,使1f ,2f ,…,n f 有共同的左逆映射g ,但g 不是1+n f 的左逆映射.[解] 作Z 到Z 的n +1映射如下i f :)1(-+i nx x ,∈∀x Z ,i =1,2,…,n ,n +1.再令g :Z →Z ,⎥⎦⎤⎢⎣⎡n x x ,∈∀x Z ,符号[a ]表示不超过a 的最大整数. 容易看出,∈∀x Z ,))((x f g i =x ,i =1,2,…,n .而))((1x f g n + =x +1≠x . 所以g 是1f ,2f ,…,n f 的共同左逆映射,但不是1+n f 的左逆映射.7. 设A ,B C 是集合E 的三个子集,且C B A =,φ=C B ,找出A 2到加氏积C B 22⨯的一个双射.[解] 作映射f :A 2→C B 22⨯,),(C A B A A i i i ,Ai A 2∈∀.由)()(C A B A i i =)(C B A i =A A i =i A ,可知f 是单射. B B i ∈∀,C C i ∈,记i i i C B A =,A i A 2∈.因为φ=C B ,所以φ=i C B ,故B A i =B C B i i )(=)()(B C B B i i =B B i =i B ;同理可证C A i =i C .于是i A 在映射f 下的象是(i B ,i C ),故f 是满射,从而f 是双射.8. 设f 是A 到B 的映射,g 是B 到C 的映射,*f 是A 2到B 2的映射,*f :)(S f S ,A S ⊆∀.*g 是B 2到C 2的映射,*g :)(T g T ,B T ⊆∀,证明下面图形交换:即*)(gf =**f g .[证] 显然*)(gf ,**f g 都是A 2到C2的映射.对A S ⊆∀,有:)()(*S gf =))((S gf =))((S f g =))((*S f g=))((**S f g =))((**S f g ,所以*)(gf =**f g .9. 设+Z ={1,2,…},证明:存在++⨯Z Z 到+Z 的双射φ. [证] ∈∀q p ,+Z ,p q p q p +-+-+)1)(2(21∈+Z . 令φ:++⨯Z Z →+Z ,p q p q p q p +-+-+)1)(2(21),( ,∈∀q p ,+Z . 则φ是映射为显然.下面首先证明它是一个满射:∈∀n +Z ,∈∃k +Z ,使得)1(21+k k ≤n <)2)(1(21++k k . 若n =)1(21+k k ,则取p =k ,q =1,有),(q p φ=n . 若)1(21+k k <n <)2)(1(21++k k ,则取p =)1(21+-k k n ,q =)1(21+k · )2(+k -n +1,有),(q p φ=n .可见对于∈∀n +Z ,∈∃),(q p ++⨯Z Z ,使),(q p φ=n .再证φ是单射:设),(q p ,),(n m ∈++⨯Z Z ,且),(q p ≠),(n m ,则p ≠m 或q ≠n .若p +q =m +n ,则p +q -2=m +n -2,p +q -1=m +n -1,且p ≠m ,于是,),(q p φ=)1)(2(21-+-+q p q p +p =)1)(2(21-+-+n m n m +p ≠)1)(2(21-+-+n m n m +m =),(n m φ. 若p +q ≠m +n ,不妨设p +q >m +n ,于是,)1)(2(21-+-+q p q p -)1)(2(21-+-+n m n m =)1)(2(21-+-+q p q p -)1)(2(21-+-+n m q p +)1)(2(21-+-+n m q p -)1)(2(21-+-+n m n m ≥)2(21-+q p +)1(21-+n m >m -1≥m -p . 所以,)1)(2(21-+-+q p q p +p >)1)(2(21-+-+n m n m +m ,即),(q p φ≠),(n m φ.故φ是单射.从而证得,φ是++⨯Z Z 到+Z 的一个双射.注:本题也可用练习三第4题的方法证明++⨯Z Z 是可数无限集,从而存在++⨯Z Z 到+Z 的双射.10. 证明,不存在A 到A2的双射,此处A ≠φ.[证] 如果存在A 到A 2的双射ϕ,则对A a ∈∀,或者)(a a ϕ∈,或者)(a a ϕ∉.令S ={a |A a ∈,)(a a ϕ∉},S '={a |A a ∈,)(a a ϕ∈}.于是A =S S ' ,且S S ' =φ.因为A S 2∈,所以A a ∈∃0,使S a =)(0ϕ.若S a ∈0,则由S a =)(0ϕ,有)(00a a ϕ∈,这与S 的定义矛盾.若S a ∉0,则S a '∈0,于是根据S '的定义,又得到S a a =∈)(00ϕ,产生矛盾. 从而,不存在A 到A 2的双射.11. 设A ={1,2,3},f 是A 到A 的满射,具有性质)1(f =3,求f 的个数.[解] 由题设,f 是A 到A 的一一变换,且限定f (1)=3,于是f 的个数为2:1f :⎪⎪⎭⎫ ⎝⎛123321, 2f :⎪⎪⎭⎫ ⎝⎛21332112. 设A ={1,2,…,n },f 是A 到A 的满射,具有性质i i y x f =)(,i =1,2,…, k ,k <n ,i x ,i y ∈A ,求f 的个数.[解] 由题设,f 是A 到A 的一一变换,今限定i i y x f =)(,i =1,2,…,k ,k <n ,则f 的个数应为(n -k )个元素的全排列数)!(k n -.13. 设A 有k 个元素,B 有n 个元素,且k ≤n ,求A 到B 的单射的个数.[解] 若f 是A 到B 的单射,则)(A f 是由B 中k 个不同元素所组成,于是f 的个数为从B 中每次取k 个不同元素进行排列所得到的排列数.因而,A 到B 的单射的个数为:k n A =)!(!k n n -. 14. Z [x ]表示一切整数的一元多项式的集合,证明,Z [x ]是可数集.[证] 显然Z 是可数集.由§3练习第4题知Z Z ⨯是可数集,因此Z Z ⨯与Z 等势,于是利用归纳法可证,有限个Z 的加氏积Z Z Z ⨯⨯⨯ 是可数集.下面证明Z [x ]是可数集.)(x f ∀=n n x a +11--n n x a +…+x a 1+0a ∈Z [x ],可由系数的有序数组(n a ,1-n a ,…,1a ,0a )∈1+⨯⨯⨯n Z Z Z 唯一确定. 记n Z ={)(x f =∑=ni i i x a 0|i a ∈Z }.因为Z Z Z ⨯⨯⨯ 是可数集,所以n Z 也是可数集,而Z [x ]=+∈Z n n Z .用类似的证明方法,可以证明可数个可数集的并集是可数集.于是得到Z [x ]是可数集.15. 证明Q [x ]是可数集.[证] 由P.40例4知,全体正有理数是可数集,于是存在+Z 到+Q 的双射ϕ.作Z 到Q 的映射f :⎪⎩⎪⎨⎧=-.0,00,),(,),(时当为负整数时当为正整数时当a a a a a a a ϕϕ容易看出,f 是Z 到Q 的双射,而Z 是可数集,所以Q 也是可数集.以下仿14题的方法,可证得Q [x ]是可数集.16. 证明,+Z 2是不可数集. [证] 假设+Z 2是可数集,则+Z 2与+Z 等浓,从而存在+Z 到+Z 2的一个双射,这与习题10已得结论“不存在A 到A 2的双射”矛盾.所以+Z 2是不可数集.17. 举一个集合的例子,在它上定义一个二元关系,分别适合反身性、对称性、传递性中两个且仅适合两个.[解] 设A =Z .(ⅰ)在A 上定义二元关系1R 为通常数的整除,即A b a ∈∀,,b aR 1⇔a |b .显然,R 适合且仅适合反身性、传递性,而不适合对称性.(ⅱ)在A 上定义2R 为:A b a ∈∀,,b aR 2⇔a =b ,a ≠0.显然2R 适合传递性、对称性,但2R 不适合反身性,因为02R '0. (ⅲ)在A 上定义3R 为:A b a ∈∀,,b aR 3⇔(a ,b )≠1(即a 与b 不互素),或者a =b =±1.显然3R 适合反身性、对称性,但3R 不适合传递性.例如,取a =2,b =6,c =9,则b aR 3,c bR 3,c R a 3'. 18. 设A =++⨯Z Z ,规定(m ,n )≤(m ',n ')⇔m ≤m ',n ≤n ',证明,(A ,≤)是偏序集,并且A 有最小元.是否A 的每一个非空子集要都有最小元?极小元?[证] 对A n m ∈∀),(=++⨯Z Z ,总有⎩⎨⎧≤≤nn m m ,故(m ,n )≤(m ,n );),(11n m ∀,),(22n m ∈A ,由⎩⎨⎧≤≤),(),(),(),(11222211n m n m n m n m ,显然可得⎩⎨⎧==2121n n m m ,所以),(11n m =),(22n m .),(n m ∀,),(k l ,),(t s ∈A ,由⎩⎨⎧⎭⎬⎫≤≤⇒≤≤≤⇒≤t k s l t s k l k n l m k l n m ,),(),(,),(),(⇒⎩⎨⎧≤≤t n s m ,所以),(n m ≤),(t s .综上可见“≤”满足反身性、反对称性及传递性,所以(A ,≤)是偏序集. 由于(1,1)∈A ,且A n m ∈∀),(,均有(1,1)≤),(n m ,故(1,1)是A 的最小元. A 的每一个非空子集未必有最小元,例如A 的子集{(1,2),(2,1)}.但A 的每一个非空子集都有极小元.19. 设(A ,≤),(B ,≤)是两个偏序集,规定B A ⨯的字典排法偏序关系为:),(11b a ≤),(22b a ⇔1a ≤2a 1a =2a ,1b ≤2b ,证明,(B A ⨯,≤)是偏序集.若(A ,≤),(B ,≤)均为有序集,是否有(B A ⨯,≤)是有序集?[证] (ⅰ)由于A ,B 皆为偏序集,故B A b a ⨯∈∀),(,总有a =a ,b ≤b ,所以),(b a ≤),(b a .),(b a ∀,),(d c ,),(f e ∈B A ⨯,由⎩⎨⎧≤=≤⇒≤≤=≤⇒≤fd e c e c f e d c d b c a c a d c b a ,),(),(,),(),(或或⇒a ≤e 或a =e ,b ≤f ,所以),(b a ≤),(f e .),(b a ∀,),(d c ∈B A ⨯,由⎩⎨⎧≤⇒≤≤⇒≤a c b a d c c a d c b a ),(),(),(),(⇒a =c , 又由⎪⎪⎩⎪⎪⎨⎧⎪⎪⎭⎪⎪⎬⎫≤⇒⎭⎬⎫≤=≤⇒⎭⎬⎫=≤b d b a d c a c d b c a d c b a ),(),(),(),(⇒b =d ,所以(a ,b )=(c ,d ). 综上可见(B A ⨯,≤)是一个偏序集.(ⅱ)若(A ,≤),(B ,≤)是有序集,则(B A ⨯,≤)亦是有序集.事实上,),(b a ∀,∈),(d c (B A ⨯,≤),因为(A ,≤)是有序集,所以a <c ;c <a ;a =c 中有且仅有一种情况出现.若a <c ,则),(b a ≤),(d c ;若c <a ,则),(d c ≤),(b a ;若a =c ,因为(B ,≤)是有序集,所以必有b ≤d 或d ≤b .当b ≤d 时,有),(b a ≤),(d c ;当d ≤b 时,有),(d c ≤),(b a .总之),(b a ∀,∈),(d c (B A ⨯,≤),均有),(b a ≤),(d c 或),(d c ≤),(b a .故(B A ⨯,≤)是一个有序集.20. 给出复数集C 的两种顺序关系,使之成为有序集.与“复数无大小”的概念是否矛盾?[解] 任一复数bi a y +=决定一对有序实数),(b a ,)(bi a +∀,∈+)(di c C ,定义:bi a +1≤di c +⇔a <c 或a =c ,b ≤d ,其中“≤”为通常数目的大小关系.由于(R ,≤)是有序集,故由前题证明知“1≤”成为C 上的一个顺序关系,故使(C ,1≤)成为有序集.又任一复数都可以唯一地表示成一个三角函数式:z =)sin (cos ααi r +, 0≤α<2π.定义:)sin (cos 1ααi r +2≤)sin (cos 2ββi r +⇔α<β或α=β,1r ≤2r ,其中“≤”为通常数目的大小关系.)sin (cos 1ααi r +∀,∈+)sin (cos 2ββi r C ,同样地可知,“2≤”是C 上的一个顺序关系,故(C ,2≤)成为有序集.我们这里给出的C 上的两种顺序关系与“复数无大小”是不矛盾的.通常的数的大小关系,不仅是一种顺序关系,而且还要满足阿基米公理,乘法单调性.但我们在这里给出的两种顺序关系是不具有这些性质的:不能用来比较复数的大小.21. 设(A ,≤)是偏序集,对A a ∈∀,令)(a f ={x |A x ∈,x ≤a },证明,f 是A 到A 2的一个单射,并且,f 保持(A ,≤),(A 2,⊆)的偏序关系,即当a ≤b 时,有)(a f ⊆)(b f .[证] (ⅰ)显然f 为映射,下面仅证f 是单射.设S a f =)(,T b f =)(,且T S =.由于A 是偏序集,故a ≤a ,所以S a ∈,但T S =,所以T a ∈,于是a ≤b .同样可证,b ≤a .所以a =b ,从而f 是A 到A 2的一个单射.(ⅱ)若a ≤b ,则)(a f x ∈∀,x ≤a .于是,x ≤b ,所以)(b f x ∈,即)(a f ⊆)(b f .可见f 保持(A ,≤),(A 2,⊆)的偏序关系.22. 设(A ,≤)是偏序集,T 是(A 2,⊆)的一个子集,令T ={y |A y 2∈,t y ⊆,T t ∈},则T 与T 有相同的极大元.[证] 根据T 与T 的定义,显然有T T ⊆.若x 是T 的一个极大元,下证x 是T 的一个极大元.如若不然,则T y ∈∃,使y x ⊂.由于T y ∈,所以T t ∈∃,满足t y ⊆,从而t x ⊂,这与x 是T 的极大元矛盾.这就证明了凡T 的极大元,必是T 的极大元.反之,若y 是T 的一个极大元,则由于T y ∈,知T t ∈∃,使t y ⊆,但T T ⊆,所以T t ∈,从而T t y ∈=,即y 是T 的极大元.这就证明了凡T 的极大元必是T 的极大元.23. 设(S ,≤)是有序集,则(S ,≤)是良序集的充要条件是:对S a ∈∀,a S ={x |S x ∈,x <a }是良序集.[证] 若(S ,≤)是良序集,则对S a ∈∀,a S 必是良序集.这是因为a S 的任一非空子集必是S 的非空子集,从而有最小元.反之,若对S a ∈∀,a S 是良序集,下证(S ,≤)是良序集.设M 是S 的一个非空子集,M m ∈∀0,记M '={m |M m ∈,m <0m }.如果0m 不是M 的最小元,则M '非空.因为M '是0m S 的子集,所以M '有最小元m ',易知m '也是M 的最小元.从而(S ,≤)是一个良序集.24. 设(S ,≤)是偏序集,如果S 中每一非空子集M 均有极大元,那么S 中任意递增序列1a <2a <…<n a <…必终止于有限项.并且,反之亦然.[证] 设1a <2a <…<n a <…是S 中任一无限递增序列,则S 的非空子集{1a ,2a ,…,n a ,…}没有极大元,与题设矛盾,故递增序列1a <2a <…<n a <…必终止于有限项.反之,设S 中任意递增序列终止于有限项,下证S 的每一个非空子集皆有极大元.设M 是S 的任一非空子集,如果M 无极大元,则M a ∈∀1,M a ∈∃2,使1a <2a ;同样M a ∈∃3,使2a <3a .如此类推,取定M a n ∈后,因为n a 不是M 的极大元,所以M a n ∈∃+1,使n a <1+n a ,这样就得到S 中的一个无限递增序列1a <2a <…<n a <1+n a <…,与S 中任意递增序列必终止于有限项矛盾.此矛盾表明M 有极大元.25. 设(+Z ,≤)是整数集关于整除关系作成的偏序集,证明,(+Z ,≤)中存在无穷递增序列1a <2a <…<n a <….(+Z ,≤)中是否存在无穷递降序列?[证] 对∈∀a +Z ,且a ≠1,有a |2a ,2a |3a ,…,n a |1+n a ,…故有a <2a <3a <…<n a <1+n a <…,即(+Z ,≤)中存在无穷递增序列.在(+Z ,≤)中,不存在无穷递降序列.这是因为对∈∀a +Z ,a 的约数只有有限多个.26. 有人说,U A i i =∈ φ(见§1末)不应该规定,而是可以证明,即:假定U A i i ≠∈ φ,则U A i i ⊂∈ φ.于是,U x ∈∃,但 φ∈∉i i A x .从而,φ∈∃j ,但j A x ∉,与φ是空集矛盾.此矛盾表明U A i i =∈ φ.你以为如何?[解] 上面证明过程是错误的.“ φ∈∉i i A x ,从而存在φ∈j ,j A x ∉”,这是根据 Ii i A ∈={x |U x ∈,I i ∈∀,j A x ∈}得到的,而后者作为定义,其前提条件要求I 非空,故当φ=I 时,不能应用该定义.。
近世代数习题答案
绪论部分:7.由1))((11111111121112121==----------a a a a a a a a a a a a a a m m m m m m m ,故11121121)(----=a a a a a a m m .对第2个问题,上面一段正是证明了它的充分性,再证必要性.设121=⋅u a a a m ,则任意i ,1)(111=--u a a a a a m i i i ,故每个i a 有逆元素.注:直接根据逆元的定义和广义结合律证明.8.11)1(11)1)(1()1(=+-=-+-=-+-=+-=-ba ba ca ab b ba babca bca ba bca ba d babcababca ba ba bca ba d -+-=-+=-1)1)(1()1(.11)1(1=+-=-+-=ba ba a ab bc ba即1-ba 在R 内也可逆又由c abc cab c ab ab c =+=+=-=-11,1)1()1(得.故cab)ab(11abcab ab 1bca)b a(11adb 1++=++=++=+c abc =+=1.注:直接根据结合律和环中乘法对加法的分配律验证. 第一章: 第一节:5.设⎪⎪⎭⎫ ⎝⎛=a b a A 0,⎪⎪⎭⎫ ⎝⎛=c d c B 0,其中a,b,c,d 都是复数,a ≠0且c ≠0,则 ⎪⎪⎭⎫⎝⎛+=ac bc ad ac AB 0也和A,B 具有相同的形式. 显然, ⎪⎪⎭⎫ ⎝⎛=1001I 是单位元且⎪⎪⎪⎪⎭⎫⎝⎛-=a a b ab a C 1012是A 的逆矩阵.又矩阵乘法满足结合律,故结论得证.注:根据群的定义直接验证,需要说明AB 也和A,B 具有相同的形式.7.对,G a ∈a 有右逆b.b 又有右逆a ',这时a 为b 的左逆.由ab e a b ==',得到()()a a ab a b a a '='='=,可知a a '=.这样e ab ba ==,即b 是a 的逆.12.设{}s g g G ,,1 =.由性质(2),G ag ag G a s ⊆∈∀},{,1 ,且是s 个不同的元,故G ag ag s =}{1 .同样由性质(3)可得,G a g a g s =},{1 。
近世代数第三章小结复习课程
近世代数第三章小结复习课程近世代数第三章小结第三章环与域总结第一节加群、环的定义定义:一个交换群叫做一个加群。
⑴一个加群的唯一的单位元叫做零元,记作0。
⑵元a 的唯一的逆元叫做a 的负元,记作-a ,简称负a 。
环的定义:(?+,,R )①(R +)是交换群(R 对+封闭);②· :R R R →?满足结合律,即()()bc a c ab R c b a =∈?,,,③+和·都满足分配律:即对R c b a ∈?,,满足()ac ab c b a +=+()ca ba a c b +=+称R 在+和·运算下是环。
①.R 是一个加群;②.R 对于另一个叫做乘法的代数运算来说是闭的;③.这个乘法适合结合律:()()c ab bc a =,不管c b a ,,是R 的哪三个元;④.两个分配律都成立:()()bc ba a c b ac ab c b a +=++=+,,不管c b a ,,是R 的哪三个元。
环满足如下运算:①00a a =,对R a ∈?②()ac ab c b a -=-()bc ac c b a -=-③()()()()ac c a ac c a c a =--=-=-,④()()∑∑∑∑=====???? ????? ??=++++++m i n j j i n j j m i i n n b a b a b b b a a a 11112121ΛΛ定义:(?+,,R ),若对R b a ∈?,,有ba ab =,即满足交换律的环是交换环。
(?+,,R ),若R e ∈?,对a ae ea R a ==∈?,则称e 为R 的一个单位元。
一般地,一个环不一定有单位元。
(?+,,R ),含有单位元e ,,R a ∈若R b ∈?,使得e ba ab ==,则称b 是a 的逆元。
(?+,,R ),0,≠≠b b a ,若0=ab ,则称a 为左零因子,b 为右零因子。
近世代数(3-1)
环同态(续)
定理3.8.3 设φ:R~R*是环同态,则 (1)R的子环S在φ下的象S*也是R*的子环. (2)R的理想A在φ下的象A*也是R*的理想. (3)反之,R*的子环S*在φ之下的逆象S={xR| φ(x)S*}是R的子环. (4)R*的理想A*在φ下的逆象A={xR| φ(x)A*}是R的理想. 证 简单地验证.
6
多项式3.6.3 设R是一个有单位元的交换环, x1,…,xn是R上的无关未定元α1…,αn是R上的 任意元,则有环同态R[x1…,xn]~R[α1…αn]. 特别地,R[x] ~R[α]. 注 无关未定元含义: ax2+bx+c=0a、b、c=0 例 Z[x] ~Z(i), Q(x) ~Q[ 2 ]
7
理想
重点 注意理想是一个子环,但子环不一定是 理想,熟悉主理想的结构。 定义1 环R的子集A 满足下列二条件: (1)每a,bA有a-bA (2)每rR,a A有raA,则A称为R的理想. 定义2 设R是一个环,a1,a2,…,anR,将R的包含 元素a1,a2,…,an的最小理想 ,称为由a1,a2,…,an生 成的理想,记为(a1,a2,…,an)由一个元a生成的理 想称为主理想,记为(a).
4
子环(续)
定理3.5.4(扩补定理)设R是一个环,S是R的 子环,环S1 S且S1∩(R-S)=,则存在另一个 环R1R使S1 是R1的子环. 图示
S R
S1 R1
5
多项式环
要点 与《高等代数》中域上的多项式环不同 点是:本节从一个一般的交换环R出发构造多 项式环R[x]。 定义1 设R0是一个有单位元的交换环,R是R0 的子环且含 R0的单位元,α∈R0 ,把R0的元 n i a i 称为α在R上的多项式,全体多项式组成 i 0 R0的子环,称为多项式环,记为R[x]。 同样可定义多元多项式环R[x,y]=R[x]([y]), R[x1,…xn]等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
k1 k2 ,b = m , m1 2 2 2
k1 2 m2 k 2 2 m1 .显然,经过约分之后, a ± b 仍是分母为 2 的非负整 2 m1 m2
k1 k 2 ∈ A. 2 m1 m2
数次方幂的既约分数,从而 a ± b ∈ A .同理, ab =
按环的定义,容易证得, A 关于数目加法、乘法作成一个环. 10. 设 S 表示 A 的一切不是(左零因子,也不是右)零因子的元的集合,证明, S 是( A ,·)的子半群. [证] a, b S ,今用反证法证明 ab 不是 A 的左零因子. 如 若 ab 为 A 的 左 零 因 子 , 则 有 c A , c ≠0, 使 得 ( ab)c =0. 所 以
(ab) 1 = b 1a 1 .
[ 证 ] 因 为 a , b 是 A 的 正 则 元 , 所 以 a , b
1 1
A , 使 得
aa 1 = a 1a =1, bb(bb1 )a 1 = aa 1 =1; 且
因为 E 是环,所以( f 1 - f 2 )∈ E ,( f 1 · f 2 )∈ E . 又因为 H 是 G 的子群 , f 1 ( x H ) f 1 ( x ) H , f 2 ( x H ) f 2 ( x ) H . 所以对 x G , h H ,有: ( f 1 ( x + h )- f 2 ( x + h ))∈( f 1 ( x ) - f 2 ( x ) + H ); ( f 1 ( x + h )· f 2 ( x + h ))∈( f 1 ( x ) · f 2 ( x ) + H ). 所以 x G , h H , ( f 1 - f 2 )( x + h )= f 1 ( x + h )- f 2 ( x + h ) f 1 ( x ) - f 2 ( x ) + H =( f 1 - f 2 )( x )+ H ; ( f 1 · f 2 )( x + h )= f 1 ( x + h )· f 2 ( x + h ) f 1 ( x ) f 2 ( x ) + H =( f 1 f 2 )( x )+ H . 从而( f 1 - f 2 )∈ B H ,( f 1 · f 2 )∈ B H ,故 B H 是 E 的一个子环. 14*. 设( A ,+,·)是一个环,对 A 规定加法与乘法: f , g A A , x A ,命
A A
个子环. [ 证 ] (1) 容 易 验 证 ,( A ,+) 是 可 换 加 群 ,( A ,·) 是 乘 法 半 群 , 且 对 于
A A
f , g , h A A 和 x A ,有:
·75·
第三章
环与域
[ f ( g + h )]( x )= f ( x ) [( g + h )( x )]= f ( x ) [ g ( x ) + h ( x ) ] = f ( x ) g ( x ) + f ( x ) h ( x ) =( fg )( x )+( fh )( x )=( fg + fh )( x ). 所以 f ( g + h )= fg + fh .同样,有( g + h ) f = gf + hf .所以乘法对加法适合分配律, 故( A ,+,·)作成一个环. (2)显然 ,零同态(即把 A 中的任意元素都映射为 0 的同态)∈ BS , 所以 BS 非 空 . f , g BS , 则 f , g A A , f ( S ) S , g ( S ) S , 而 S 是 A 的 子 环 , 所 以 ( f - g )( s )= f ( s ) - g ( s ) ∈ S ;( f g )( s )= f ( s ) g ( s ) ∈ S , s S . 所 以 ( f - g )( S ) S ,( f g )( S ) S ,故 BS 是( A ,+,·)的一个子环.
的子半群. 11. 证明 , B1 ={3 x | x Z }, B2 ={5 x | x Z } 是整数环 Z 的两个子环 . 求
B1 B2 =?
[ 证 ] ① a , b B1 , 则 必 x1 , x 2 Z , 使 得 a =3 x1 , b =3 x 2 , 所 以
·74·
第三章
环与域
所以( f 1 - f 2 )( H ) H ,( f 1 · f 2 )( H ) H . 从而( f 1 - f 2 )∈ E H ,( f 1 · f 2 )∈ E H ,故 E H 是 E 的一个子环. 13. 设 E 是 加 群 ( G ,+) 的 自 同 态 环 , H 是 G 的 一 个 子 群 , 证 明
A
( f + g )( x )= f ( x ) + g ( x ) ,( f · g )( x )= f ( x ) · g ( x ) . 证明,( A ,+,·)是一个环.
A 命 S 是 A 的一个子环 ,证明 BS ={ f | f A , f ( S ) S } 是( A ,+,·)的一
B H ={ f | f E , x G : f ( x H ) f ( x ) H }是 E 的一个子环.
[ 证 ] 因为单位映射 1∈ B H , 所以 B H 非空 . f 1 , f 2 BH , 则 f 1 , f 2 ∈ E , 且
x G , f1 ( x H ) f1 ( x ) H , f 2 ( x H ) f 2 ( x ) H .
1 1 1
A , 使 得 aa 1 = a 1a =1. 所 以
1
1
(- a )(- a )=(- a )(- a )=1.从而- a 也是正则元,且 ( a ) =- a .
·72·
第三章
环与域
7. 设 a , b 是 有 单 位 元 的 环 A 的 两 个 正 则 元 , 证 明 ab 是 A 的 正 则 元 , 且
a - b =3 x1 -3 x 2 =3( x1 - x 2 )∈ B1 ;且 a · b =3 x1 ·3 x 2 =3(3 x1 x2 )∈ B1 ,所以 B1 是
Z 的子环.同理可证, B2 是 Z 的子环.
② y B1 B2 ,则 y B1 , y B2 .由 y B1 ,知 3| y ;由 y B2 ,知 5| y ,而 (3,5)=1, 所 以 (3×5)| y , 即 15| y , 从 而 y =15 x ∈{15 x | x ∈ Z }, 故
E H ={ f | f E , f ( H ) H }是 E 的一个子环.
[ 证 ] 因为单位映射 1∈ E H , 所以 E H 非空 . f1 , f 2 E H , 则 f 1 , f 2 ∈ E , 且
f1 ( H ) H , f 2 ( H ) H .
因为 E 是环,所以( f 1 - f 2 )∈ E ,( f 1 · f 2 )∈ E ,且 ( f 1 - f 2 )( h )=( f 1 ( h ) - f 2 ( h ) )∈ H ; ( f 1 · f 2 )( h )=( f 1 ( h ) · f 2 ( h ) )∈ H · H = H (因为 H 是子群), h H .
B1 B2 {15 x | x ∈ Z }.
但 是 , 显 然 B1 {15 x | x ∈ Z }, B2 {15 x | x ∈ Z }, 所 以
B1 B2 {15 x | x ∈ Z }.故 B1 B2 ={15 x | x ∈ Z }.
12. 设 E 是 加 群 ( G ,+) 的 自 同 态 环 , H 是 G 的 一 个 子 群 , 证 明
·73·
第三章
环与域
0 1 0 0 1 1 0 a = , b = , 1 其中 1 是 F 中单位.由 ab 是 A 的单位元,易证 a, b S ,但 ba S .故 S 不是( A ,·)
第三章
环与域
第三章
练习 §1.
1. 在环 A 中,计算 (a b) 3 =?
环与域
定义及基本性质
[ 解 ] (a b) 3 = (a b) 2 (a b) = (a 2 ab ba b 2 ) ( a b) = a + aba
3
+ ba + b a + a b + ab + bab + b . 2. 证明 Z [ i ]={ a + bi | a, b Z , i 是虚数单位}关于数目加法、乘法作成一个 环. [证] 分别验证环的定义中所须条件成立即可. 3. 证明,任意一个不仅含有一个数的有限数集关于数目的加法和乘法不能作成 一个环. [证] 用反证法.设 R 是一个有限数集, R 中不只有一个元素,但 R 作成环.因为 R 不只含一个元素,所以必 a R , a ≠0.作 S ={ na | n 为整数},则 S R .显然, 在数集中,由于 a ≠0,所以当 m ≠ n 时,有 ma ≠ na ,所以 S 为无限集.这与已知 R 是有限集且 S R 矛盾.故 R 不能作成环. 4. 在 Z 5 中,找出每一个非零元的逆元. [解] 1 的逆元是 1 本身; 2 和 3 互为逆元; 4 的逆元是 4 本身. 5. 在 Z15 中,找出方程 x -1=0 的全部根. [ 解 ] 设 y ∈ Z15 , y -1=0, 则 y =0,1,…,14, y 2 ≡1( mod15 ). 易求得 , 只有