[学习]椭圆型方程的有限差分法
有限差分法的步骤
有限差分法的步骤嘿,朋友们!今天咱来聊聊有限差分法的那些事儿。
有限差分法啊,就像是搭积木一样,一步步地构建出我们想要的结果。
首先呢,要确定问题的定义域,这就好比是给搭积木找个合适的场地。
你得清楚知道在哪个范围里玩这个游戏。
然后就是划分网格啦,这就像是把场地划分成一格一格的,让每个部分都有自己的位置。
网格分得越细,就好像积木的格子越小,能呈现的细节就越多,但也别太细啦,不然可就复杂得让人头疼咯。
接下来,要对微分方程进行离散化。
啥叫离散化呢?就好比把连续的东西切成一段一段的,这样就好处理啦。
把那些复杂的微分方程转化成一个个可以计算的小式子,这可不简单呐!再之后呢,就是建立差分格式啦。
这就像是给每个小格子都定好规则,让它们知道该怎么表现。
不同的差分格式就像是不同的玩法,各有各的特点。
建立好差分格式后,就得开始计算啦!把各种数值代进去,就像摆弄那些积木一样,看看能得出啥结果。
这计算的过程可不能马虎,一个小错误可能就会让整个结果都不对啦。
计算出结果后,还得检查检查呢,看看合不合理,就像检查搭好的积木稳不稳一样。
要是有问题,还得重新调整,重新再来一遍。
你说这有限差分法是不是挺有意思的?虽然过程有点复杂,但只要一步一步慢慢来,总能搞明白的呀。
它就像是一个神秘的魔法,能把那些看似无解的问题给解开。
咱想想啊,要是没有有限差分法,那好多科学问题可咋解决呀?那些复杂的物理现象、工程问题,不都得靠它来帮忙嘛。
所以说呀,学会有限差分法,那可真是太有用啦!咱可得好好研究研究,把这个厉害的工具掌握好,让它为我们服务呀!这有限差分法的步骤,咱可不能小瞧咯,每个步骤都得认真对待,这样才能得出准确的结果呀,你们说是不是呢?。
椭圆型方程
§1
差分逼近的基本概念
考虑二阶微分方程边值问题
d 2u Lu 2 qu f , a x b, dx u (a) , u (b) , (1.1) (1.2)
其中 q,f 为 [ a , b ] 上的连续函数, q 0, , 为给定常数. 将其分成等分,分点为
称
uh 收敛到边值问题的解 u .
对于差分方程
Lhvi fi , i 1, 2,3,L , N 1,
定义1.3
v0 vN 0 , 如果存在与网格 I h 及右端 fh 无关的常数
数 M 和 h0 , 使 || vh || M || f h ||R ,
0 h h0
称差分方程关于右端稳定.
第二章
椭圆形方程的有限差分法
有限差分法和有限元方法是解偏微分方程的两种主要数值
方法.
有限差分法:从定解问题的微分或积分形式出发,用数值 微商或数值积分导出相应的线性代数方程组. 有限元方法:从定解问题的変分形式出发,用RitzGalerkin 方法导出相应的线性代数方程组,但基函数要按
特定方式选取.
取 x(1) x0 a, x(2) x1 , 得
2
(2.9) (2.10)
W (a) W ( x1 ) 2 qudx
d2 du hi 1 hi dx 2 ( p dx ) 12 i
d 3u 2 p O ( h ) dx 3 i
于是得逼近方程 (2.1)~(2.2) 的差分方程:
ui 1 ui ui ui 1 2 p 1 Lhui pi 1 i h h h h i i 1 i 1 i 2 2 i i 1, 2,, N 1 ui 1 ui qiui fi , hi hi 1 u0 , uN
第五章 椭圆型方程的差分方法
数学模型解的存在性解的唯一性解的稳定性解的一些性质解的表达式}适定性数值解存储量计算时间区域方程定解条件回顾:问题的离散第5章椭圆型方程的差分方法§1-3Poisson方程一.区域矩形圆环离散(差分法):网格剖分矩形区域i i i i二.差分格式224412(i,j)(i,j-1)(i,j+1)(i+1,j)(i-1,j)2. 九点差分格式x x2222222h2222121222221212三. 边界条件的处理(矩形区域)xy0(,)i x y I 10(,)x y +J+1(,)i x y )j y(注:四. 差分格式的性质:111 .i i i i i i +-解的存在唯一性与边界条件无关0000002(11002. (,)x y i i i ii ih ji i j h u u x y +→→+−−−→差分方程解的收敛性2||||||2h h hji h h jjji i h i D D D u D D a u u u a D x ∂⋃∂≤+∆插入引理:设是定义在上的函数,那么有max max max 其中为矩形区域的方向的边长.x.3差分格式的稳定性五. 极坐标下的差分格式22+x y注:r∂r(,)i j r θθπR六. 一般区域DDyO x第一类边界条件:T QP δyh第三类边界条件:PQQPnnPQ Q PnnPQR1θu u ux y n u ux y ∂∂∂∂∂∂∂∂∂∂ 2θQRT PS注:没有统一的近似,只要合理就好。
§4变系数方程abxy 矩形区域iP1Q 3Q 2Q 3N4Q 2N4N1N,i jD+-i i i i i i 11。
椭圆型方程
(1.5)
注 此方程组尽管是高阶方程组,但每个方程未知数
最多有3个易于求解.
④ 对方程组 (1.4)~(1.5) 的解分析需要考虑以下几个问题:
(a) 解是否惟一? (b) 当网格无限加密时,即 h 0 时,差分解 ui
是否收敛到真解 u (xi ) ? (c) 在何种度量下收敛? (d) 收敛速度如何? 为了解决如上问题,需要给出如下说明:
于是在 xi 将方程 (1.1) 写成
u (xi1) 2u (xi ) u (xi1) h2
q(xi )
u (xi )
f
(xi )
R
i(u),
(1.3)
其中
R
i(u)
h2 12
d
4u(x) dx4
i
O(h3 ).
舍去 R i(u) 得逼近方程 (1.1) 的差分方程为:
du dx
i
hi1 2
hi
d 2u dx2
i
O(h2
)
(2.3)
p(
x i
1
)
2
u(xi ) u(xi1) hi
p
du dx i1
2
hi2 24
p
d 3u
dx3
i1
2
O(h3)
p
du dx
取 x(1) x0 a, x(2) x1 , 得
2
(2.7) (2.8)
(2.9) (2.10)
W (a) W (x1 ) 2
x1
第二章椭圆型方程的有限差分法
.
差分方程(1.6)当i 1,2, N 1,时成立,加上边值条件 就得到关于的线性代方数程组:
Lhui
ui1
2ui h2
ui1
qiui
fi ,i
1,2,
N 1,(1.8)
u0 , uN . (1.9)
它的解ui是u(x)于x xi的近似。称(1.8),(1.9)为逼近(1.1) (1.2)的差分方程或差分格。式
立 差 分 方 程 的 稳 定检性验。相 容 条 件 并 不。困我难们 曾
用Taylo展 r 式证明它都满足条相件容,并且估计了截
误 差 的 阶 。 因 此 我主们要的任 务 去 建 立 差式分的格稳
定 性 , 即 建 立 形 (1.1如7)的 估 计 式 , 称 之 为差关分于方
程解的先验估计。 .
的解u,由Taylo展 r 式可得
u(xi1)2u(xi )u(xi1) h2
d2u(x) [ dx2 ]i
1h22[h2dux(2x)]o(h3),(1.3)
其中[ ]i表示括号内函xi点 数取值。 于 是 在 可 (1.1)写 将成 方 程
u(xi1)2uh(2xi)u(xi1)q(xi)u(xi)f(xi)Ri(u)(, 其 中 Ri(u)1 h22 [h2du(2 xx)]o(h3), (1.5)
)
u(
xi1
)
q(
xi
)u(
xi
)
f (xi ) Ri (u) fi Ri (u)
与Lhui
ui1
2ui h2
ui1
qiui
fi
相减,得 Lh(u(xi ) ui ). Ri (u)
引进误差
ei u( xi ) ui , 则误差函数 eh( xi ) ei满足下列差分方程;
有限差分法解方程
有限差分法(Finite Difference Method)是一种数值方法,用于求解偏微分方程(PDEs)的近似解。
这种方法通过将连续的微分方程离散化,将其转化为一系列代数方程,从而在计算机上进行求解。
有限差分法特别适用于求解具有固定边界条件和初始条件的偏微分方程。
以下是有限差分法求解偏微分方程的基本步骤:1. 网格划分:首先,将问题的连续域划分为离散的网格点。
对于二维问题,这通常涉及到在空间和时间上进行网格划分,形成网格点的集合。
2. 离散化:使用差分公式将微分方程中的导数替换为差分。
例如,一阶导数可以用前向差分或后向差分近似,而二阶导数可以用中心差分近似。
3. 构建差分方程:在每个网格点上应用差分公式,将微分方程转化为代数方程。
对于边界条件,也需要进行相应的离散化处理。
4. 求解线性方程组:差分方程通常会导致一个线性方程组。
对于大型问题,这可能需要使用迭代方法或直接求解器来找到解。
5. 稳定性分析:在求解过程中,需要确保数值解的稳定性。
这涉及到对时间步长和空间步长的选择,以满足CFL(Courant-Friedrichs-Lewy)条件。
6. 迭代求解:对于时间依赖的问题,如热传导或波传播,可以通过时间步进方法(如显式或隐式方法)来迭代求解。
7. 结果分析:最后,分析数值解以验证其准确性,并与解析解(如果存在)进行比较。
有限差分法在处理规则区域和简单边界条件的问题时非常有效。
然而,对于具有复杂几何形状或边界条件的问题,可能需要更高级的数值方法,如有限元方法(FEM)或边界元方法(BEM)。
在实际应用中,有限差分法通常与计算机软件结合使用,如MATLAB、Python的SciPy库等,以便于高效地处理大规模问题。
椭圆型方程的有限差分法
第4章 椭圆型方程的有限差分法§ 2 一维差分格式1、用积分插值法导出逼近微分方程的差分格式。
, d / du 、 du 上 , Lu=- (p )+r +qu=f,a<x<b, dx dx dxu(a)= a ,u(b)=如果系数p,q,r 以及右端f 光滑,则可用中矩形公式计算得解:考虑在[a,b ]内任一小区间[x ⑴,x (2)],将上式在此区间上积分得 X ⑵d dU曲 d ;(p(x)d ;)dxW(x ⑴)W(x ⑵)x(2)dU(1) r ——dxxdx x ⑵dU 」 xr dxx (2) x (1) qudx X (2)X (1) qudxX (2)x (1)fdXX ⑵X (1) fdX其中,W(x) p吧特别地,取[X ⑴,X ⑵]为对偶单元[x i 1/2 , x i 1/2 ],则W (x i 1/2)W(x i 1/2)x1/2dUr ——dxxi 1/2 qudxxi 1/ 2xi 1/ 2 fdx 。
Xi 1/ 2-J..将(1.2)改写成—dxW(x)再沿[x i 1/2, x i 1/2]积分,得U i U iX iW(x) dx , Xi 1p(x)矩形公式,得W 1/2a iU i U ih i a iNdx x1 p(x)]xi 1/ 2又qUdxXi 1/ 2h ih i2:d i U i , d ixi 1/ 2 x q(x)dxX1/2x1/2dU , r ——dx.U i 1 U i 1bi "T-2 h i h i 1x 1/2 xr(x)dxxi1/22ih i h i 1x1/ 2 f (x)dxxi 1/2(1.1) (1.2)利用中(1.3)(1.4)(1.5)(1.6)将(1.3) ~ (1.5)代入1.1),即得微分方程的差分格式a iU i U i 1h*h i h i 1)d i U b^Ui21-(h i h i 1) i则逼近阶为O(h 2)。
第2章 地球物理中常用数值解法基本原理-有限差分法
等代入
U f x, y ,
2
x, y
Ui , j 1 2Uij Ui , j 1 h
2 2
hUij
Ui 1, j 2Uij Ui 1, j h
2 1
fij
2 截断误差为 O h
第二节 椭圆型偏微分方程的有限差分解法
2.1 差分格式 ——九点差分格式
2 1 U xi , y j 2 U xi 1 , y j U xi , y j h1 h1 2 x 2! x 3 4 5 U x , y U x , y 1 1 1 U xi , y j 5 i j i j 3 4 6 h h h O h 1 1 1 1 3 4 5 3! x 4! x 5! x 2 1 U xi , y j 2 U xi 1 , y j U xi , y j h1 h1 2 x 2! x 3 4 5 1 U xi , y j 3 1 U xi , y j 4 1 U xi , y j 5 6 h h h O h 1 1 1 1 3! x3 4! x 4 5! x 5
如果两个节点满足
i1 i2 j1 j2 1 ,称其为相邻节点。
非正则内点
正则内点——邻点都在区域内;
第二节 椭圆型偏微分方程的有限差分解法
2.1 差分格式 ——九点差分格式 对正则内点,
U xx , U yy
U xi , y j x U xi , y j x
2
特征方程
2 dy a12 a12 a11a22 dx a11
2 a12 a11a22 0
椭圆问题的块中心有限差分多重网格法
椭圆问题的块中心有限差分多重网格法01 有限元法有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。
采用不同的权函数和插值函数形式,便构成不同的有限元方法。
在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。
根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。
从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。
不同的组合同样构成不同的有限元计算格式。
对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计算域内选取N个配置点。
令近似解在选定的N个配置点上严格满足微分方程,即在配置点上令方程余量为0。
插值函数一般由不同次幂的多项式组成,但也有采用三角函数或指数函数组成的乘积表示,但最常用的多项式插值函数。
有限元插值函数分为两大类,一类只要求插值多项式本身在插值点取已知值,称为拉格朗日(Lagrange)多项式插值;另一种不仅要求插值多项式本身,还要求它的导数值在插值点取已知值,称为哈密特(Hermite)多项式插值。
单元坐标有笛卡尔直角坐标系和无因次自然坐标,有对称和不对称等。
常采用的无因次坐标是一种局部坐标系,它的定义取决于单元的几何形状,一维看作长度比,二维看作面积比,三维看作体积比。
偏微分方程答案整理第五章
第三章椭圆形方程的有限差分法3.2两点边值问题的差分格式321L用积分插值法导出!1近徴分方程(21)的差分方程.92页Z —汕計煌2 a♦J川/八C ⑴,可遁接积分在3和內任一小区间[X F ⑺]上积分挣 彳一兰5字)女+J;u dx dx"“好理3dx pG )dx (中矩形公式)Vw (X $ W,吗丽必)】勺坷+1严如普其中s乙_ 2一 J 0(x )dxP % +^+l rqu dx= J 小⑴)i (宀+ 乂空 dx+ J dx 汕qudx= J / dx • d" <4^ r 其中W (X )=P£在3 取[X ⑴,X 門为对偶单元[XIF -1w (X 1) -_ w ( X rf r 色 dx+ f qT = J dx X I(X )=Pdxm=dx\ dxui ps4 i p (x )3.2.3p20D 4*J4.构造il近"{pu)+i^u+ru =/ 于((3 , b )的中-!>差分恪式.A解:取M+1金节点,a = Xo <可< <Xj < <心=趴卩為"厂和"12••••••,K 心豳恥X 1==(X H +兀)j=l,2,……,N2 访2也 _「咚 吗+1-如旳-%-】 紅1 闵切+1 +鸟%+1%.d dL 、 . d d^u.[群苕L 厂乔L 扌JW ------------- -------------- V饥1+闵2AA-d u. - d u Jp 乔kF 乔d^u dx * *4 dx q2ft#{P+】[年如A +如1饥2出+i_旳]"XT-Pi [如旳(^1+2 +力")如紅1%-%丿%一1——___ p.[如H 如]-沟)如 纭】%-务-1"V"2 ["宀・】如i+M 沟 Z 沟如-1 -%-2TT"3.3二阶椭圆型方程的差分格式P210*'1.用积分插值法构造逼近君程初(3. 31)一N m =— [2(疋—)+2(上更)]=了时第一辺值问题的五点差空卽 卽分格式,这里k = k (X' y ) 血刈43.3.1100页i ・l于Q 上积分(3.21)式,4-JJ V y\ dxdy = JJ f dxdy^ J G 科■p 请(碟)+鲁a 詈皿®=n 'T*r由G M M 第—公式得5 ♦■・.综上有S a=叭小其中y dxQy □九广力1力2 ff*T1)非正则内点3解. zTJ 1 •1)正则内点心j+1\/ L4L3J-1duflGfj^+k ds =— — k dn dy^kds = ^k dn BxJ1 -2 +^kds = ^k dn dy ..I 纸= d.\M 尹—22*52+^方2^kds = ^k dfi dx,斗严=%J 纸叫厂吗J 叶讥诂丁 —V —丸Mj *1 — "i 12" 2 2 +上—JJ.・补充题£用积分插值法构造11近方程(久21)冊第二边值间题的五点差分格式.341CL I■"+ ) — k ds Jj f dxdy aA 9冲Axic上一 AB^h 加f 咛L 詈上£ Q (2)上心0拠jt 尹。
椭圆型方程的差分解法
椭圆型方程的差分解法1.引言考虑问题①二维Poisson 方程2222(,)u u f x y x y ⎛⎫∂∂-+= ⎪∂∂⎝⎭, (,)x y ∈Ω 其中Ω为2R 中的一个有界区域,其边界Γ为分段光滑曲线。
在Γ上u 满足下列边界条件之一:⑴(,)u x y αΓ=(第一边值条件), ⑵(,)ux y n βΓ∂=∂(第二边值条件), ⑶(,)uku x y n γΓ∂+=∂(第三边值条件), (,),(,),(,),(,),(,)f x y x y x y x y k x y αβγ都是连续函数,0k ≥.2.差分格式将区间[,]a b 作m 等分,记为11()/,,0i h b a m x a ih i m =-=+≤≤;将区间[,]c d 作n 等分,记为22()/,,0i h d c n y c jh j n =-=+≤≤.称1h 为x 方向的步长,2h 为y 方向的步长。
2.1 Poisson 方程五点差分格式参考单如图所示:以(,)i j x y 为中心沿y 方向Taylor 展开:41)(),j u y o h +①41)(),j u y o h +②41(),u h21(),o h ③22(),o h ④(,),i j ij f x y R -=+(,),i j f x y -=○6 j+1考虑到边值条件(,)(,)u x y x y αΓ=,构成差分格式:11112212(,)2(,)(,)(,)2(,)(,)(,),(,)(,),i j i j i j i j i j i j i j u x y u x y u x y u x y u x y u x y f x y h h u x y x y α+-+-Γ⎧-+-+⎛⎫-+=⎪ ⎪⎨⎝⎭⎪=⎩○72.2 Poisson 方程九点差分格式由上式 ③ + ④ 得:11112212442221244222222122222(,)2(,)(,)(,)2(,)(,)(,)1(,)()12(,)(,)1(,)12i j i j i j i j i j i j h i j i j iji j i j i j u x y u x y u x y u x y u x y u x y u x y h h u u u x y h h o h x y u x y u x y u x y h h x y x y +-+--+-+=+⎡⎤∂∂=∆+++⎢⎥∂∂⎣⎦⎛⎫∂∂⎛⎫∂∂=∆+++- ⎪ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭422212222242222212122222(,)()12(,)(,)(,)1(,)()1212i j i j i j i j i j u x y h h o h x y f x y f x y u x y h h f x y h h o h x y x y ∂++∂∂⎛⎫∂∂∂+=--+-+ ⎪ ⎪∂∂∂∂⎝⎭○8 又()41122222211111112212311111(,)(,)2(,)(,)()1[(,)2(,)(,)2(,)2(,)(,)(,)2(,)(,)]()i j xx i j xx i j xx i j i j i j i j i j i j i j i j i j i j u x y u x y u x y u x y o h x y h u x y u x y u x y u x y u x y u x y h h u x y u x y u x y o h +-+++-++-+----∂-+=+∂∂=-+--++-++ 则得到:222222121121112112222221211212122222221112111211()(,)(210)(,)()(,)(210)(,)20()(,)(210)(,)(210)(,)()(,)()(,)i j i j i j i j i j i j i j i j i j h h u x y h h u x y h h u x y h h u x y h h u x y h h u x y h h u x y h h u x y h h u x y ---+--++-+++-++--++-+++-+--+-+2212222241222,12(,)(,)1(,)()12i j i j i j h hf x y f x y f x y h h o h x y ⎛⎫∂∂=--++ ⎪ ⎪∂∂⎝⎭○9 舍去截断误差得到逼近Poisson 方程的九点差分方程○10:()()2212,11,,11,1,11,11,11,122122212(,)[42]121(,)(,),12i j i j i j i j i j i j i j i j i j i j ij xx i j yy i j h h u x y u u u u u u u u u h h f h f x y h f x y -++-+---++-++-∆--+++++++''''=++考虑到边值条件(,)(,)u x y x y αΓ=,构成差分格式○11:()()2212,11,,11,1,11,11,11,122122212(,)[42]121(,)(,),12(,)(,),i j i j i j i j i j i j i j i j i j i j ijxx i j yy i j h h u x y u u u u u u u u u h h f h f x y h f x y u x y x y α-++-+---++-+Γ⎧+-∆--+++++++⎪⎪⎪''''=++⎨⎪⎪=⎪⎩3.格式求解3.1 Poisson 方程五点差分格式记122,1,j j j m j m j u u u u u --⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,0.j n ≤≤ 矩阵格式改写为:11,11j j j j Du Cu Du f j m -+++=≤≤-,其中2221212222112122221121222112(1)111211112111121112m h h h h h h h C h h h h h h h -⎡⎤⎛⎫+-⎢⎥ ⎪⎝⎭⎢⎥⎢⎥⎛⎫⎢⎥-+- ⎪⎢⎥⎝⎭⎢⎥=⎢⎥⎢⎥⎛⎫⎢⎥-+- ⎪⎢⎥⎝⎭⎢⎥⎛⎫⎢⎥-+ ⎪⎢⎥⎝⎭⎣⎦,22222222(1)1111m h h D h h -⎡⎤-⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦,10212212111(,)(,)(,)(,)1(,)(,)j j j j m j m j m j m f x y x y h f x y f f x y f x y x y h ---⎡⎤+Φ⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥+Φ⎢⎥⎣⎦, 可进一步写为:110222211(1)*(1).n n n n n n m u f Du C D u f D C D u f DC D u f Du D C -------⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦3.2 Poisson 方程九点差分格式记122,1,j j j m j m j u u u u u --⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,0.j n ≤≤ 矩阵格式改写为:11,11j j j j Du Cu Du f j m -+++=≤≤-,其中2222121222222212121222222212121222221212(1)20()(210)(210)20()(210)(210)20()(210)(210)20()m h h h h h h h h h h C h h h h h h h h h h -⎡⎤+-⎢⎥-+-⎢⎥⎢⎥=⎢⎥-+-⎢⎥⎢⎥-+⎣⎦, 2222211222222212211222222212211222221221(1)(210)()()(210)()()(210)()()(210)m h h h h h h h h h h D h h h h h h h h h h -⎡⎤--+⎢⎥-+--+⎢⎥⎢⎥=⎢⎥-+--+⎢⎥⎢⎥-+-⎣⎦,22121022221211(,)(210)(,)(,)(,)(,)(210)(,)j j j j m j m j m j m f x y h h x y f x y f f x y f x y h h x y ---⎡⎤--Φ⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥+-Φ⎣⎦, 可进一步写为:110222211(1)*(1).n n n n n n m u f Du C Du f D C D u f DC D u f Du D C -------⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦4.数值例子4.1 Poisson 方程五点差分格式计算如下问题:22220,01,01,(0,)sin cos ,(2,)(sin cos ),01,(,0),(,1)(sin1cos1),0 1.x x u u x y x y u y y y u y e y y y u x e u x e x ⎛⎫∂∂-+=<<<< ⎪∂∂⎝⎭=+=+≤≤==+<<其精确解为:(,)(sin cos ).x u x y e y y =+,11,1,,1,222222122112112()(,),i j i j i j i j i j i j u u u u u f x y h h h h h h -+-++=++++ 考虑到本例中h1=h2,则有2,11,1,,1,(,),4i j i j i j i j i j i j u u u u h f x y u -+-+++++=利用Gauss-Seidel 迭代方法对k=0,1,2,……,计算112,11,1,,11(,),41,2,....,1;1,2,...., 1.k k k k i j i j i j i j i j k ij u u u u h f x y u i m j n ++--+++++++==-=-表1 部分结点处的精确解和取不同步长时所得的数值解表2 取不同步长时部分结点处数值解的误差绝对值图1 取h=1/4时所得的数值解曲线图2 取h=1/4时所得的误差曲线图3 取h=1/16时所得的数值解曲线图4 取h=1/16时所得的误差曲线图5 取h=1/64时所得的数值解曲线图6 精确解曲线图7 取h=1/64时所得的误差曲线4.2 Poisson 方程九点差分格式计算如下问题:22220,01,01,(0,)sin cos ,(2,)(sin cos ),01,(,0),(,1)(sin1cos1),0 1.x x u u x y x y u y y y u y e y y y u x e u x e x ⎛⎫∂∂-+=<<<< ⎪∂∂⎝⎭=+=+≤≤==+<<其精确解为(,)(sin cos ).x u x y e y y =+222222221212121112122222222121112111211211222211120()(,)12(,)()(,)(102)(,)()(,)()(,)()(,)(102)(,)(102)(,)(10i j i j i j i j i j i j i j i j i j h h u x y h h f x y h h u x y h h u x y h h u x y h h u x y h h u x y h h u x y h h u x y h ----++++--++=+++-+++++++-+-+2212)(,)i j h u x y +-考虑到本例中h1=h2,则有,11,1,,11,11,11,11,1,4(),20i j i j i j i j i j i j i j i j i j u u u u u u u u u -+-+--++-++-+++++++=利用Gauss-Seidel 迭代方法对k=0,1,2,……,计算1111,11,1,,11,11,11,11,11,4(),201,2,....,1;1,2,...., 1.k k k k k k k k i j i j i j i j i j i j i j i j k i j u u u u u u u u u i m j n ++++-+-+--++-++-++++++++==-=-表1 部分结点处的精确解和取不同步长时所得的数值解表2 取不同步长时部分结点处数值解的误差绝对值表3 取不同步长时部分结点处数值解的最大误差图1 取h=1/4时所得的数值解曲线图2 取h=1/16时所得的数值解曲线图3 取h=1/64时所得的数值解曲线图4 取h=1/4时所得的误差曲线图5 取h=1/16时所得的误差曲线图6 取h=1/64时所得的误差曲线5.结论观察Poisson方程五点格式,方程以较快速度迭代收缩。
偏微分课程课件9椭圆型方程的有限差分方法I
uij
=
ij
,
(xi,y j ) Dh
其中uij u(xi , y j ) = (xi , y j )=ij , (x, y) D.
例:五差分格式求解
2u 2u
x
2
y2
0
(x, y) D
u(
x,
y)
log
(1
x2
)
y2
( x, y) D
D {( x, y) | 0 x, y 1}
hd e dx u( x, y)
hn d n n! dxn )u( x, y)
ex 1 x x2 x3 xn
1 2 3!
n!
u1 =e u0 , u2 =e u0 , u3 =e u0 , u4 =e u0 , u5 =e u0等
u1 =e u0 , u2 =e u0 , u3 =e u0 , u4 =e u0 , u5 =e u0
从小到大顺利排列
i 1, , J; j 1, , I;
按自然顺序排列网点(i,j)
j 1, i 1, , I; j 2, i 1, , I;
j J , i 1, , I;
定义向量
uh u1,1, , uI ,1, u1,2 , , uI ,2 ,
1 于是差分方程为: h2 Huh g
j 1时
4 1 0
I个
j 2 ...
1 0 0
I个 ...
(1,1)对应H的第一行 11
分析系数矩阵H i 1, , I; j 1, , J;
1 h2 [ui, j1 ui1, j 4ui, j ui1, j ui, j1 ] fi, j
对于第二个结点(2,1),
1 h2 [u2,0 u1,1 4u2,1 u3,1 u2,2 ] f2,1
椭圆方程差分格式
由Guass公式有
D
D
u u udxdy D n ds ( l l l ) n ds D l1 2 3 4
从上面的公式把边界积 分转化为在四条边上的 积分, 于是积分分成 段进行,也即转化为定 4 积分。
对于在边l1上,因为在矩形边1上的外法向就是 的负 l y 方向,弧长的微分 dx,于是对此定积分用矩 ds 形 公式近似计算,并且用 差商代替微商,得到
u u x (b( x, y) x )dxdy [b( xi , y j 12 ) x ( xi , y j 12 ) Dij u b( xi , y 1 ) ( xi , y 1 )]h j j 2 x 2
c( x, y)udxdy c u hk, f ( x, y)dxdy f
1:直接差分方法
1 1 (aij xuij ) 2 y (aij y uij ) cijuij f ij 2 x h h
2:有限体积法(积分差分方法)
u x (a( x, y) x )dxdy Dij
y
u u [a( x 1 , y ) ( x 1 , y ) a( x 1 , y ) ( x 1 , y )]dy i i x i 2 x i 2 2 2 y 1
j 2
j
1 2
对上面定积分利用梯形 公式有
u u x (a( x, y) x )dxdy [a( xi 12 , y j ) x ( xi 12 , y j ) Dij u a( x 1 , y j ) ( x 1 , y j )]k i x i 2 2
1.1:五点差分格式
对于poisson方程,考虑在内部节点 xi,y j)取值, ( 于是有 2u 2u [ 2 ]ij [ 2 ]ij [ f ( x, y )]ij x y
偏微(13)椭圆型方程的差分方法
S1 e u0 e u0 e u0 e u0
1 4 2 4u0 h u0 h 2 D 4 u0 h6 12
2
1 4 2 S2 4u0 2h u0 h 4 D 4 u0 h6 6
其中D x , y | 0 x , y 1 .
1 取特殊的网格 h k 。 此时网格点分布见图5.3, 3
1.1 五点差分格式
在内点P , P2 , P3和P4 1 上用差分格式( ), 1.6
在其余点,即边界点 取边界条件
1 x 2 y 2 a x, y log
1 u 1 u r u r r r 2 2 f r , r r
2
(1.8)
r
y x y , tan . 域0 r ,0 2 . x
2 2
方程( 8) 1. 的系数当r 0时具有奇异性,因此为了 选出我们感兴趣的解,需补充u在r 0处有界的条 件,可设u满足
1 u xi h, y j 2u xi , y j u xi h, y j (1.2) h2 Nhomakorabea
2u 2u u 2 2 f ( x , y( ) ) 1.1 x y
1 u x i , y j k 2u x i , y j u x i , y j k 2 k (1.3) 2 2 4 4 u k 2 4 u xi ,1 4 u xi ,2 y y ij 24 y
h uij ui 1, j 2uij ui 1, j h2 ui , j 1 2uij ui , j 1 k2 f ij ,
第二章_椭圆型方程的有限差分法(1)
其中 f h R 是右端 f h 的某一范数, 它可以和 相同,也可以不同, vh ( xi ) vi , i 1, 2,, N 1. Remark1.2: 不 等 式 (2.1.7) 表 明 当 右 端数据 fi 有变化时,差分方程解 vi 的变化量 不会超过 fi 变化量的 M 倍。 记误差 ei u( xi ) ui ,则误差满足下列差分 方程:
2
(2.1.1) (2.1.2)
其 中 q, f 为 [a,b] 上 的 连 续 函 数 , q 0 ; , 为给定常数。 (1) 剖分 将区间[a,b]分成 N 等分
xi a ih, i 0,1,, N , h (b a) / N
x0 a
x1
xi
xi 1
xN 1
2
其 中 q, f C 0[a, b], q 0, 0 , 1, 为 给 定 的 常 数 0 。
N { u } (5)编程计算获得数值解 i i 0 。
2、差分逼近的性态研究
收 敛 性 问 题 : 设 当 h0 时 , 那 么 ui u( xi ) ?可借助两个概念相容条件和关
于右端稳定来回答。 截断误差(truncation error):将差分 算子的值 Lhu xi 与微分算子的值 Lu xi 的差称 作差分方程的截断误差
i 1,, N 1.
ui u ( xi )
(3) 差分方程
Lhui
ui1 2ui ui1 h2
qi ui fi ,
qi q( xi ), fi f ( xi ) (2.1.3)
i 1,, N 1
边界条件的处理:
u0 , uN
椭圆型方程差分法
(4)
令
2 1 1 2 1 A 1 1 2 ( N 1)( N 1)
系数矩阵A是不可约对角占优阵 A 0
解存在唯一,或直接求A的特征值。
8
习题:计算矩阵
A=
2 1 1 2 1 1 1 2 ( N 1)( N 1)
x
2. Poisson方程五点差分格式
u f u in
其中
(0, a ) (0, b )
建立目标点: a b y h k x 一方向步长: I 1 ; 一方向步长: J 1
21
得
( xi , y j )
1 i I,1 j J
xi ih, y j jk
返回
2
1) 数值计算是否必要?
T '( x) T '(0) f (u )du
x 0
x
T ( x) T '(0) f ( s )ds du
0
0
u
T '(0) x
T '(0) x
x 0 x
x
x
0
u
0
f ( s)dsdu
s
f ( s )duds
从而得到迭代法:
Mxk 1 Nxk b
xk 1 M 1Nxk M 1b Sxk Tb
(*1)
18
阻尼迭代法 (Damped Iterative Method)
k1 Sxk M1b x k1 (1)xk [M1N(1)I]xk M1b (*2) xk1 x
椭圆型方程的差分解法
椭圆型方程的差分解法1.引言考虑问题①二维Poisson 方程2222(,)u u f x y x y ⎛⎫∂∂-+= ⎪∂∂⎝⎭, (,)x y ∈Ω 其中Ω为2R 中的一个有界区域,其边界Γ为分段光滑曲线。
在Γ上u 满足下列边界条件之一:⑴(,)u x y αΓ=(第一边值条件), ⑵(,)ux y n βΓ∂=∂(第二边值条件), ⑶(,)uku x y n γΓ∂+=∂(第三边值条件), (,),(,),(,),(,),(,)f x y x y x y x y k x y αβγ都是连续函数,0k ≥.2.差分格式将区间[,]a b 作m 等分,记为11()/,,0i h b a m x a ih i m =-=+≤≤;将区间[,]c d 作n 等分,记为22()/,,0i h d c n y c jh j n =-=+≤≤.称1h 为x 方向的步长,2h 为y 方向的步长。
2.1 Poisson 方程五点差分格式参考单如图所示:以(,)i j x y 为中心沿y 方向Taylor 展开:2344111111(,)(,)(,)(,)(,)(,)(),2624i j i j x i j xx i j xxx i j xxxx i j h h h u x y u x y h u x y u x y u x y u x y o h +=+++++①2344111111(,)(,)(,)(,)(,)(,)(),2624i j i j x i j xx i j xxx i j xxxx i j h h h u x y u x y h u x y u x y u x y u x y o h -=-+-++②由① + ② 得:42411111(,)(,)2(,)(,)(,)(),12i j i j i j xx i j xxxx i j h u x y u x y u x y h u x y u x y o h -++=+++整理得到:21121121(,)2(,)(,)(,)(,)(),12i j i j i j xx i j xxxx i j u x y u x y u x y h u x y u x y o h h +--+-=--+③同理,以(,)i j x y 为中心沿y 方向Taylor 展开:21122222(,)2(,)(,)(,)(,)(),12i j i j i j yy i j yyyy i j u x y u x y u x y h u x y u x y o h h +--+-=--+④代入原方程得○5:11112212(,)2(,)(,)(,)2(,)(,)(,),i j i j i j i j i j i j i j ij u x y u x y u x y u x y u x y u x y f x y R h h +-+--+-+⎛⎫-+=+ ⎪⎝⎭得到截断误差:44222212441(,)(,)()(),12ij i j h i j iju u R u x y u x y h h o h o h x y ⎡⎤∂∂=∆-∆=-++=⎢⎥∂∂⎣⎦ 其中u 是原方程光滑解,舍去截断误差得到逼近Poisson 方程的五点差分方程:11112212(,)2(,)(,)(,)2(,)(,)(,),i j i j i j i j i j i j i j u x y u x y u x y u x y u x y u x y f x y h h +-+--+-+⎛⎫-+= ⎪⎝⎭○6 考虑到边值条件(,)(,)u x y x y αΓ=,构成差分格式:11112212(,)2(,)(,)(,)2(,)(,)(,),(,)(,),i j i j i j i j i j i j i j u x y u x y u x y u x y u x y u x y f x y h h u x y x y α+-+-Γ⎧-+-+⎛⎫-+=⎪ ⎪⎨⎝⎭⎪=⎩○72.2 Poisson 方程九点差分格式由上式 ③ + ④ 得:11112212442221244222222122222(,)2(,)(,)(,)2(,)(,)(,)1(,)()12(,)(,)1(,)12i j i j i j i j i j i j h i j i j iji j i j i j u x y u x y u x y u x y u x y u x y u x y h h u u u x y h h o h x y u x y u x y u x y h h x y x y +-+--+-+=+⎡⎤∂∂=∆+++⎢⎥∂∂⎣⎦⎛⎫∂∂⎛⎫∂∂=∆+++- ⎪ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭V 422212222242222212122222(,)()12(,)(,)(,)1(,)()1212i j i j i j i j i j u x y h h o h x y f x y f x y u x y h h f x y h h o h x y x y ∂++∂∂⎛⎫∂∂∂+=--+-+ ⎪ ⎪∂∂∂∂⎝⎭○8 又()41122222211111112212311111(,)(,)2(,)(,)()1[(,)2(,)(,)2(,)2(,)(,)(,)2(,)(,)]()i j xx i j xx i j xx i j i j i j i j i j i j i j i j i j i j u x y u x y u x y u x y o h x y h u x y u x y u x y u x y u x y u x y h h u x y u x y u x y o h +-+++-++-+----∂-+=+∂∂=-+--++-++ 则得到:222222121121112112222221211212122222221112111211()(,)(210)(,)()(,)(210)(,)20()(,)(210)(,)(210)(,)()(,)()(,)i j i j i j i j i j i j i j i j i j h h u x y h h u x y h h u x y h h u x y h h u x y h h u x y h h u x y h h u x y h h u x y ---+--++-+++-++--++-+++-+--+-+2212222241222,12(,)(,)1(,)()12i j i j i j h hf x y f x y f x y h h o h x y ⎛⎫∂∂=--++ ⎪ ⎪∂∂⎝⎭○9 舍去截断误差得到逼近Poisson 方程的九点差分方程○10:()()2212,11,,11,1,11,11,11,122122212(,)[42]121(,)(,),12i j i j i j i j i j i j i j i j i j i j ij xx i j yy i j h h u x y u u u u u u u u u h h f h f x y h f x y -++-+---++-++-∆--+++++++''''=++考虑到边值条件(,)(,)u x y x y αΓ=,构成差分格式○11:()()2212,11,,11,1,11,11,11,122122212(,)[42]121(,)(,),12(,)(,),i j i j i j i j i j i j i j i j i j i j ijxx i j yy i j h h u x y u u u u u u u u u h h f h f x y h f x y u x y x y α-++-+---++-+Γ⎧+-∆--+++++++⎪⎪⎪''''=++⎨⎪⎪=⎪⎩3.格式求解3.1 Poisson 方程五点差分格式记122,1,j j j m j m j u u u u u --⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦M ,0.j n ≤≤矩阵格式改写为:11,11j j j j Du Cu Du f j m -+++=≤≤-,其中2221212222112122221121222112(1)111211112111121112m h h h h h h h C h h h h h h h -⎡⎤⎛⎫+-⎢⎥ ⎪⎝⎭⎢⎥⎢⎥⎛⎫⎢⎥-+- ⎪⎢⎥⎝⎭⎢⎥=⎢⎥⎢⎥⎛⎫⎢⎥-+- ⎪⎢⎥⎝⎭⎢⎥⎛⎫⎢⎥-+ ⎪⎢⎥⎝⎭⎣⎦O OO ,22222222(1)1111m h h D h h -⎡⎤-⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦O,10212212111(,)(,)(,)(,)1(,)(,)j j j j m j m j m j m f x y x y h f x y f f x y f x y x y h ---⎡⎤+Φ⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥+Φ⎢⎥⎣⎦M , 可进一步写为:110222211(1)*(1).n n n n n n m u f Du C D u f D C D u f D C D u f Du D C -------⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦M M O O O3.2 Poisson 方程九点差分格式记122,1,j j j m j m j u u u u u --⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦M ,0.j n ≤≤矩阵格式改写为:11,11j j j j Du Cu Du f j m -+++=≤≤-,其中2222121222222212121222222212121222221212(1)20()(210)(210)20()(210)(210)20()(210)(210)20()m h h h h h h h h h h C h h h h h h h h h h -⎡⎤+-⎢⎥-+-⎢⎥⎢⎥=⎢⎥-+-⎢⎥⎢⎥-+⎣⎦O O O, 2222211222222212211222222212211222221221(1)(210)()()(210)()()(210)()()(210)m h h h h h h h h h h D h h h h h h h h h h -⎡⎤--+⎢⎥-+--+⎢⎥⎢⎥=⎢⎥-+--+⎢⎥⎢⎥-+-⎣⎦O,22121022221211(,)(210)(,)(,)(,)(,)(210)(,)j j j j m j m j m j m f x y h h x y f x y f f x y f x y h h x y ---⎡⎤--Φ⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥+-Φ⎣⎦M, 可进一步写为:110222211(1)*(1).n n n n n n m u f Du C D u f D C D u f D C D u f Du D C -------⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦M M O O O4.数值例子4.1 Poisson 方程五点差分格式计算如下问题:22220,01,01,(0,)sin cos ,(2,)(sin cos ),01,(,0),(,1)(sin1cos1),0 1.x x u u x y x y u y y y u y e y y y u x e u x e x ⎛⎫∂∂-+=<<<< ⎪∂∂⎝⎭=+=+≤≤==+<<其精确解为:(,)(sin cos ).x u x y e y y =+,11,1,,1,222222122112112()(,),i j i j i j i j i j i j u u u u u f x y h h h h h h -+-++=++++ 考虑到本例中h1=h2,则有2,11,1,,1,(,),4i j i j i j i j i j i j u u u u h f x y u -+-+++++=利用Gauss-Seidel 迭代方法对k=0,1,2,……,计算112,11,1,,11(,),41,2,....,1;1,2,...., 1.k k k k i j i j i j i j i j k ij u u u u h f x y u i m j n ++--+++++++==-=-表1 部分结点处的精确解和取不同步长时所得的数值解表2 取不同步长时部分结点处数值解的误差绝对值图1 取h=1/4时所得的数值解曲线图2 取h=1/4时所得的误差曲线图3 取h=1/16时所得的数值解曲线图4 取h=1/16时所得的误差曲线图5 取h=1/64时所得的数值解曲线图6 精确解曲线图7 取h=1/64时所得的误差曲线4.2 Poisson 方程九点差分格式计算如下问题:22220,01,01,(0,)sin cos ,(2,)(sin cos ),01,(,0),(,1)(sin1cos1),0 1.x x u u x y x y u y y y u y e y y y u x e u x e x ⎛⎫∂∂-+=<<<< ⎪∂∂⎝⎭=+=+≤≤==+<<其精确解为(,)(sin cos ).x u x y e y y =+222222221212121112122222222121112111211211222211120()(,)12(,)()(,)(102)(,)()(,)()(,)()(,)(102)(,)(102)(,)(10i j i j i j i j i j i j i j i j i j h h u x y h h f x y h h u x y h h u x y h h u x y h h u x y h h u x y h h u x y h h u x y h ----++++--++=+++-+++++++-+-+2212)(,)i j h u x y +-考虑到本例中h1=h2,则有,11,1,,11,11,11,11,1,4(),20i j i j i j i j i j i j i j i j i j u u u u u u u u u -+-+--++-++-+++++++=利用Gauss-Seidel 迭代方法对k=0,1,2,……,计算1111,11,1,,11,11,11,11,11,4(),201,2,....,1;1,2,...., 1.k k k k k k k k i j i j i j i j i j i j i j i j k i j u u u u u u u u u i m j n ++++-+-+--++-++-++++++++==-=-表1 部分结点处的精确解和取不同步长时所得的数值解表2 取不同步长时部分结点处数值解的误差绝对值表3 取不同步长时部分结点处数值解的最大误差图1 取h=1/4时所得的数值解曲线图2 取h=1/16时所得的数值解曲线图3 取h=1/64时所得的数值解曲线图4 取h=1/4时所得的误差曲线图5 取h=1/16时所得的误差曲线图6 取h=1/64时所得的误差曲线5.结论观察Poisson方程五点格式,方程以较快速度迭代收缩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关
于
右
端
稳
定
,
如
果
存在
与
网
格I
及
h
右
端f h
(
fh
(
xi
)
fi )
无 关 的 正 常 数M和h0, 使
vh
M
fh
,
R
当0 h h0 ,
(1.17)
其中
fh
R
是
右
端f
的
h
某
一
范
数
,
它
可
以
和 相
同
,
也 可 以 不 同 ,vh( xi ) vi , i 1,2, , N 1.
不
等
式(1.17)表
首 先 取N 1个 节 点 :
a x0 x1 xi xN b, 将 区 间I [a, b]分 成N个 小 区 间 :
Ii : xi1 x xi , i 1,2, N .
于 是 得 到 区 间I的 一 个 网 格 剖 分 , 记hi xi xi1 ,
称h
max i
hi为
u( xi1 ) u( xi1 )
hi hi1
du [ dx ]i
hi
hi1 2
d 2u [ dx2 ]i
o(h2
),
(2.3)
其 中[ ]i 表 示 括 号 内 函 数xi点 取 值 。
p(
x
i
1 2
)
u(
xi
)
u( hi
xi
1
)
[p
du
dx
]
i
1 2
hi 2 24
[p
d 3u
dx3
] i
Lhui
ui 1
2ui h2
ui 1
qi ui
fi ,(1.6)
式 中qi q( xi ), fi f ( xi ).称Ri (u)为 差 分 方 程(1.6)的 截
断误差。
截 断 误 差 Ri (u) Lhu( xi ) [Lu]i (1.7) 所 以Ri (u)是 用 差 分 算 子Lh代 替 微 分 算 子L所 引 起 的 截 断 误 差(,1.6)式 关 于h的 阶 为0(h2 ).
数uh ( xi ) ui称 为I(h 相 应 的Ih )上 的 网 函 数.
我
们
对I
上
h
的
网
函
数
引
进
范
数
uh
c
max
1i N 1
ui
,
(1.10)
N 1
uh
2 0
hui2 ,
i 1
(1.11)
uh
2
1
uh
2
0
uh
2 1
,
(1.12)
于 是
uh
2 1
N h( ui
i 1
ui1 ), h
(1.13)
明
,
解v
连
h
续
依
赖
右
端f h,
即
右
端
变 化 小 时 解 的 变 化 也 小。
定理1.1(相容+稳定=收敛)
若 边 值 问 题 的 解u充 分 光 滑 , 差 分 方 程
按 满 足 相 容 条 件 , 且 关 于右 端 稳 定 , R
则 差 分 解uh按 收 敛 到 边 值 问 题 的 解 ,且
化 是 不 合 适 的 。 但 “ 热流 量 ”W ( x)恒 连 续,
故 将(2.15)改 写 成
du W ( x) , dx p( x)
在 沿[ xi1 , xi ]积 分 , 得
ui ui1
xi W ( x) dx, xi1 p( x)
利
用
中
矩
形
公
式
,
得
W
i
1
2
ai
ui
ui1 hi
1 微分方程离散(差分方程)
现 在 将 方 程(1.1)在 节 点xi离 散 化 , 为 此 , 对 充 分光 滑
的 解u, 由Taylor展 式 可 得
u( xi1 ) 2u( xi ) u( xi1 ) h2
[d
2u( x) dx2 ]i
h2 h2u( x)
[ 12
dx2
]
o(h3
),(1.3)
第四章椭圆型方程的有限差分法
§1 差分逼近的基本概念
§2 一维差分格式 §3 矩形网的差分格式 §4 三角网的差分格式 §5 极值原理
§1差分逼近的基本概念
考 虑 二 阶 常 微 分 方 程 的边 值 问 题
Lu
d 2u dx2
qu
f
u(a) , u(b)
a x b, (1.1) (1.2)
)
u(
xi 1
)
q(
xi
)u(
xi
)
f ( xi ) Ri (u) fi Ri (u)
与Lhui
ui 1
2ui h2
ui 1
qi ui
fi
相 减 , 得 Lh (u( xi ) ui ) Ri (u)
引进误差
ei u( xi ) ui , 则 误 差 函 数eh ( xi ) ei满 足 下 列 差 分 方 程 ;
hi
2 hi1
[
p(
x
i
1
)
2
u( xi1 ) u( xi ) hi 1
p(
x
i
1 2
)
u(
xi
)
u( hi
xi
1
)
hi
2 hi1
([ p
du
dx
]
i
1 2
[p
du
dx
]
i
1 2
)
hi1 12
hi
[p
d 3u dx3 ]i
o(h2 ),
[d dx
(
p
du dx )]i
hi1 4
hi
d2 [ dx 2
(
p
du dx )]i
hi1 12
hi
[
p
d 3u dx3 )]i
o(h2 ),
(2.6)
令p
i
1
p(
x
i
1
),
ri
r( xi ),qi
q( xi ),
fi
f (xi ),
2
2
则 由(2.3),(2.6)知,边 值 问 题 的 解u( x)满 足 方 程 :
Lhu( xi
)
hi
2 hi1
u(a) , u(b)
(2.2)
其 中p C 1[a, b], p( x) pmin 0, r, q, f C[a, b],
, 为 给 定 常 数 。
我 们 将 介 绍 差 分 格 式 的三 种 方 法 : 直 接 差 分 法 、 积 分 插 值法 和 变 分 差 分 法 。
2.1直接差分化
此 格 式 称 为 中 心 差 分 格式 。
注意:
方 程(1.8)的 个 数 等 于 网 格 内 点x1 ,
x2 ,
,
x
N
的
1
个数,因此它是N 1阶方程组.
以I
表
示
网
格
内
点x1
,
x2 ,
,
x
N
的
1
集
合
,I表
示
网
格
内
点
和 界 点x0 a, xN b的 集 合 。 定 义 在I(h 相 应 的Ih )上 的 函
hi
ri hi1
[ui 1
ui1 ]
qi ui
fi
i 1, , N 1,
u0 , uN ,
(2.10)
(2.9)
2.2 积分插值法
考虑守恒型微分方程:
Lu d ( p du) q( x)u f ( x). dx dx
(2.13)
如 果 把 它 看 作 是 分 布 在一 根 杆 上 的 稳 定 温 度 场方
)]i
1 [
12
p
d 3u dx3 ]i
1 2
[r
d 2u dx2 ]i
o(h2
),
(2.8)
为 差 分 算 子Lh的 截 断 误 差 , 舍 去Ri (u)便 得 逼 近 边 值 问
题(2.1),(2.2)的 差 分方 程 。
Lhui
hi
2
hi 1
[
p
i
1 2
ui1 ui hi 1
p
i
1
2
ui
ui1 ] hi
[
p( xi 1 2
)
u( xi1 ) u( xi hi 1
)
p(
x
i
1
)
2
u( xi ) u( xi1 )] hi
hi
ri hi1
[u( xi1 )
u( xi1 )]
qi u( xi
)
fi Ri (u)
(2.7)
其中
1 d 2 du
Ri
(u)
( hi 1
hi
)( 4
[ dx 2
(
p
dx
定义1.2
称 差 分 解uh收 敛 到 边 值 问 题 的 解u, 如 果 当h充 分 时 , (1.8), (1.9)的 解uh存 在 , 且 按 某 一 范 数 有
lim
h0
uh