《图形的相似》重点知识归纳
北师大版数学九年级上册第四章 《图形的相似》重点题型归纳
阶段强化专题训练专题一:平行线分线段成比例常见应用技巧 类型一 证比例式技巧1 中间比代换法证比例式1.如图,已知在△ABC 中,点D ,E ,F 分别是边AB ,AC ,BC 上的点,DE ∥BC ,EF ∥AB. (1)求证:BCDEAB AD =; (2)若AD:DB=3:5,求CF:CB 的值.技巧2 等积代换法证比例式2.如图,在△ABC 中,D 是AB 上一点,E 是△ABC 内一点,DE ∥BC ,过D 作AC 的平行线交CE 的延长线于F ,CF 与AB 交于P.求证:PBPAPF PE =.技巧3 等比代换法证比例式3.如图,在△ABC 中,DE ∥BC ,EF ∥CD ,求证:ADAFAB AD =.类型2 证线段相等技巧 4 等比过渡证线段相等(等比例过渡法)4.如图,在△ABC 中,∠ACB=90°,∠B >∠A ,点D 为边AB 的中点,DE ∥BC 交AC 于点E ,CF ∥BA 交DE 的延长线于点F.(1)求证:DE=EF ;(2)连结CD ,过点D 作DC 的垂线交CF 的延长线于点G ,求证:∠B=∠A+∠DGC .类型3 证比例和为1技巧5 同分母的中间比代换法5.如图,已知AC ∥FE ∥BD.求证:1=+BCBEAD AE专题二:证明相似三角形的方法名师点金要找三角形相似的条件,关键抓住以下几点:(1)已知角相等时,找两对对应角相等,若只能找到一对对应角相等,判断夹相等的角的两边是否对应成比例;(2)无法找到角相等时,判断三边是否对应成比例;(3)除此之外,也可考虑平行线分线段成比例定理及相似三角形的“传递性...”.方法1 利用边或角的关系判定两直角三角形相似1.下面关于直角三角形相似叙述错误的是( )A.有一锐角对应相等的两个直角三角形相似B.两直角边对应成比例的两个直角三角形相似C.有一条直角边相等的两个直角三角形相似D.两个等腰直角三角形相似2.如图,BC⊥AD,垂足为C,AD=6.4,CD=1.6,BC=9.3,CE=3.1.求证:△ABC∽△DEC.方法2 利用角判定两三角形相似3.如图,△ABC是等边三角形,CE是外角平分线,点D在AC上,连接BD并延长,与CE 交于点 E. (1)求证:△ABD∽△CED; (2)若AB=6,AD=2CD,求BE的长.方法3 利用边角判定两三角形相似4.如图,AB=3AC,BD=3AE,又BD∥AC,点B,A,E在同一条直线上.求证:△ABD∽△CAE. 方法4 利用三边判定两三角形相似5.如图,AD是△ABC的高,E,F分别是AB,AC的中点.求证:△DEF∽△ABC.专训三巧作平行线构造相似三角形名师点金:解题时,往往会遇到要证的问题与相似三角形联系不上或者说图中根本不存在相似三角形的情况,添加辅助线构造相似三角形是这类几何证明题的一种重要方法.常作的辅助线有以下几种:(1)由比例式作平行线;(2)有中点时,作中位线;(3)根据比例式,构造相似三角形.训练角度1 巧连线段的中点构造相似三角形1.如图,在△ABC中,E,F是边BC上的两个三等分点,D是AC的中点,BD分别交AE,AF于点P,Q,求BP:PQ:QD.训练角度 2 过顶点作平行线构造相似三角形2.如图,在△ABC中,AC=BC,F为底边AB 上一点,BF:AF=3:2,取CF的中点D,连接AD并延长交BC于点E,求BE:EC的值.3.如图,过△ABC的顶点C任作一直线,与边AB及中线AD分别交于点F和点E.求证:AE:ED=2AF:FB.训练角度 3 过一边上的点作平行线构造相似三角形4.如图,在△ABC中,AB>AC,在边AB上取一点D,在AC上取一点E,使AD=AE,直线DE和BC的延长线交于点P.求证: BP:CP=BD:EC.训练角度 4 过一点作平行线构造相似三角形5.如图,在△ABC中,点M为AC边的中点,点E为AB上一点,且AE=41AB,连接EM并延长交BC的延长线于点D.求证:BC=2CD. 作辅助线的方法一:作辅助线的方法二:作辅助线的方法三:作辅助线的方法四:全章整合提升密码专训一:证比例式或等积式的技巧 名师点金证比例式或等积式,若遇问题中无平行线或相似三角形时,则需构造平行线或相似三角形,得到等比例线段;若比例式或等积式中的线段分布在两个三角形或不在两个三角形中,可尝试证这两个三角形相似或先将它们转化到两个三角形中再证两三角形相似,若在两个明显不相似的三角形中,可运用中间比代换.技巧1 构造平行线法1.如图,在△ABC 中,D 为AB 的中点,DF 交AC 于点E ,交BC 的延长线于点F , 求证:AE ·CF =BF ·EC.2.如图,已知△ABC 的边AB 上有一点D ,边BC 的延长线上有一点E ,且AD =CE ,DE 交AC 于点F ,试证明:AB ·DF =BC ·EF.技巧2 三点找三角形相似法3.如图,在▱ABCD 中,E 是AB 延长线上的一点,DE 交BC 于F. 求证:DC AE =CF AD.4.如图,在△ABC 中,∠BAC =90°,M 为BC 的中点,DM ⊥BC 交CA 的延长线于D ,交AB于E.求证:AM 2=MD ·ME.技巧3 构造相似三角形法5.如图,在等边三角形ABC 中,点P 是BC 边上任意一点,AP 的垂直平分线分别交AB ,AC 于点M ,N. 求证:BP ·CP =BM ·CN.技巧4 等比过渡法6.如图,在△ABC 中,AB =AC ,DE ∥BC ,点F 在边AC 上,DF 与BE 相交于点G ,且∠EDF =∠ABE. 求证:(1)△DEF ∽△BDE ;(2)DG ·DF =DB ·EF.7.如图,CE 是Rt △ABC 斜边上的高,在EC 的延长线上任取一点P ,连接AP ,作BG ⊥AP于点G ,交CE 于点D. 求证:CE 2=DE ·PE.技巧5 两次相似法8.如图,在Rt △ABC 中,AD 是斜边BC 上的高,∠ABC 的平分线BE 交AC 于E ,交AD 于F. 求证:BF BE =ABBC.9.如图,在▱ABCD 中,AM ⊥BC ,AN ⊥CD ,垂足分别为M ,N.求证:(1)△AMB ∽△AND ;(2)AM AB =MNAC.技巧6 等积代换法10.如图,在△ABC 中,AD ⊥BC 于D ,DE ⊥AB 于E ,DF ⊥AC 于F.求证:AE AF =ACAB.技巧7 等线段代换法11.如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于点D ,点P 是AD 上一点,CF ∥AB ,延长BP 交AC 于点E ,交CF 于点F ,求证:BP 2=PE ·PF.12.已知:如图,AD 平分∠BAC ,AD 的垂直平分线EP 交BC 的延长线于点P.求证:PD 2=PB ·PC.专训二 巧用“基本图形”探索相似条件 名师点金:几何图形大多数由基本图形复合而成,因此熟悉三角形相似的基本图形,有助于快速、准确地识别相似三角形,从而顺利找到解题思路和方法.相似三角形的四类结构图: 1.平行线型2.相交线型3.子母型4.旋转型训练角度1 平行线型1.如图,在△ABC 中,BE 平分∠ABC 交AC 于点E ,过点E 作ED ∥BC 交AB 于点D.(1)求证:AE ·BC =BD ·AC ; (2)如果S △ADE =3,S △BDE =2,DE =6,求BC 的长.训练角度2 相交线型2.如图,点D ,E 分别为△ABC 的边AC ,AB 上的点,BD ,CE 交于点O ,且EO BO =DOCO ,试问△ADE 与△ABC 相似吗?请说明理由.训练角度3 子母型3.如图,在△ABC 中,∠BAC =90°,AD ⊥BC 于点D ,E 为AC 的中点,ED 的延长线交AB 的延长线于点F.求证:AB AC =DFAF.训练角度4 旋转型 4.如图,已知∠DAB =∠EAC ,∠ADE =∠ABC.求证:(1)△ADE ∽△ABC ;(2)AD AE =BD CE.专训三 利用相似三角形巧证线段的数量和位置关系 名师点金:判断两线段之间的数量和位置关系是几何中的基本题型之一.由角的关系推出“平行或垂直”是判断位置关系的常用方法,由相似三角形推出“相等”是判断数量关系的常用方法.训练角度1 证明两线段的数量关系 类型1: 证明两线段的相等关系1.如图,已知在△ABC 中,DE ∥BC ,BE 与CD 交于点O ,直线AO 与BC 边交于点M ,与DE 交于点N. 求证:BM =MC.2.如图,一直线和△ABC 的边AB ,AC 分别交于点D ,E ,和BC 的延长线交于点F ,且AE:CE =BF:CF. 求证:AD =DB.类型2 证明两线段的倍分关系3.如图,在△ABC 中,BD ⊥AC 于点D ,CE ⊥AB 于点E ,∠A =60°,求证:DE =12BC.4.如图,AM 为△ABC 的角平分线,D 为AB 的中点,CE ∥AB ,CE 交DM 的延长线于E. 求证:AC =2CE.训练角度2 证明两线段的位置关系 类型1:证明两线段平行 5.如图,已知点D 为等腰直角三角形ABC 的斜边AB 上一点,连接CD ,DE ⊥CD ,DE =CD ,连接CE ,AE.求证:AE ∥BC.6.在△ABC 中,D ,E ,F 分别为BC ,AB ,AC 上的点,EF ∥BC ,DF ∥AB ,连接CE 和AD ,分别交DF ,EF 于点N ,M.(1)如图①,若E 为AB 的中点,图中与MN 平行的直线有哪几条?请证明你的结论; (2)如图②,若E 不为AB 的中点,写出与MN 平行的直线,并证明.类型2 证明两线垂直7.如图,在△ABC 中,D 是AB 上一点,且AC2=AB ·AD ,BC 2=BA ·BD ,求证:CD ⊥AB.8.如图,已知矩形ABCD ,AD =13AB ,点E ,F把AB 三等分,DF 交AC 于点G ,求证:EG ⊥DF.专训四巧用位似解三角形中的内接多边形问题名师点金位似图形是特殊位置的相似图形,它具有相似图形的所有性质,位似图形必须具备三个条件:(1)两个图形相似;(2)对应点的连线相交于一点;(3)对应边互相平行或在同一直线上.类型1 三角形的内接正三角形问题1.如图,用下面的方法可以画△AOB的内接等边三角形,阅读后证明相应问题.画法:①在△AOB内画等边三角形CDE,使点C在OA上,点D在OB上;②连接OE并延长,交AB于点E′,过点E′作E′C′∥EC,交OA于点C′,作E′D′∥ED,交OB于点D′;③连接C′D′,则△C′D′E′是△AOB的内接等边三角形.求证:△C′D′E′是等边三角形.类型2 三角形的内接矩形问题2.求作:内接于已知△ABC的矩形DEFG,使它的边EF在BC上,顶点D,G分别在AB,AC上,并且有DE∶EF=1∶2.类型 3 三角形的内接正形问题(方程思想)3.如图,△ABC 是一块锐角三角形余料,边BC=120mm ,高AD=80mm ,要把它加工成正方形零件,使正方形的一边QM 在BC上,其余两个顶点P ,N 分别在AB,AC上,则这个正方形零件的边长是多少?4.(1)如图①,在△ABC 中,点D ,E ,Q 分别在AB ,AC ,BC 上,且DE ∥BC ,AQ交DE 于点P.求证:DP:BQ=PE:QC.(2)在△ABC 中,∠BAC =90°,正方形DEFG 的四个顶点在△ABC 的边上,连接AG ,AF ,分别交DE 于M ,N 两点.①如图②,若AB=AC=1,直接写出MN的长;②如图③,求证:MN²=DM·EN.专训五: 图形的相似中的五种热门考点 名师点金:相似是初中数学的重要内容,也是中考重点考查内容之一,而对于成比例线段、相似三角形的判定与性质、位似图形等都是命题的热点.考点一: 比例线段及性质1.下列各组长度的线段,成比例线段的是( )A. 2 cm ,4 cm ,4 cm ,8 cmB. 2 cm ,4 cm ,6 cm ,8 cmC. 1 cm ,2 cm ,3 cm ,4 cmD. 2.1 cm ,3.1 cm ,4.3 cm ,5.2 cm2.若a 2=b 3=c 4=d 7≠0,则a +b +c +d c =________.3.如图,乐器上的一根弦AB =80 cm ,两个端点A ,B 固定在乐器板面上,支撑点C 是靠近点B 的黄金分割点,则支撑点C 到端点A 的距离约为________.(5≈2.236,结果精确到0.01)考点二: 平行线分线段成比例4.如图,若AB ∥CD ∥EF ,则下列结论中,与AD AF 相等的是( ) A.AB EF B.CD EF C.BO OE D.BC BE5.如图,在Rt △ABC 中,∠ACB =90°,∠ABC =60°,以AC 为边向三角形外作正方形ACDE ,连接BE 交AC 于F ,若BF = 3 cm ,则EF =________.6.如图,在△ABC 中,AM ∶MD =4∶1,BD ∶DC =2∶3,求AE ∶EC 的值.考点三 相似三角形的性质与判定7.已知△ABC ∽△DEF ,若△ABC 与△DEF 的相似比为3∶4,则△ABC 与△DEF 的面积之比为( ) A.4:3 B.3:4 C.16:9 D.9:168.在平行四边形ABCD 中,点E 在AD 上,且AE ∶ED =3∶1,CE 的延长线与BA 的延长线交于点F ,则S △AEF ∶S 四边形ABCE 为( ) A.3∶4 B.4∶3 C.7∶9 D.9∶79.若两个相似多边形的面积之比为1∶4,周长之差为6,则这两个相似多边形的周长分别是________.10.如图,△ABC 是直角三角形,∠ACB =90°,CD ⊥AB 于D ,E 是AC 的中点,ED 的延长线与CB 的延长线交于点F.(1)求证:FD 2=FB ·FC ; (2)若FB =5,BC =4,求FD 的长.11.如图,四边形ABCD 是正方形,BD 是对角线,BE 平分∠DBC 交DC 于点E ,点F 是BC 的延长线上一点,且CE =CF ,BE 的延长线交DF 于点M.(1)求证:BM ⊥DF ; (2)若正方形ABCD 的边长为2,求ME ·MB.考点四相似三角形的应用12.一天晚上,李明和张龙利用灯光下的影子长来测量一路灯的高度CD.如图,当李明走到点A处时,张龙测得李明直立时身高AM 与影子长AE正好相等;接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25 m,已知李明直立时的身高为1.75 m,求路灯的高度CD.(结果精确到0.1 m)13.某高中学校为高一新生设计的学生板凳的正面视图如图所示,其中BA=CD,BC=20 cm,BC,EF平行于地面AD且到地面AD的距离分别为40 cm,8 cm.为使板凳两腿底端A,D之间的距离为50 cm,那么横梁EF的长应为多少?(材质及其厚度等暂忽略不计)考点五图形的位似14.如图,已知正方形ABCD,以点A为位似中心,把正方形ABCD的各边缩小为原来的一半,得正方形A′B′C′D′,则点C′的坐标为________.15.如图,在6×8的网格图中,每个小正方形的边长均为1,点O和△ABC的顶点均在小正方形的顶点上.(1)以O为位似中心,在网格图中作△A′B′C′和△ABC位似,且相似比为1∶2;(2)连接(1)中的AA′,求四边形AA′C′C 的周长.(结果保留根号)专训六全章热门考点整合应用名师点金:本章主要内容为:平行线分线段成比例,相似三角形的判定及性质,位似图形及其画法等,涉及考点、考法较多,是中考的高频考点.其主要考点可概括为:3个概念、2个性质、1个判定、2个应用、1个作图、1个技巧.考点一:3个概念概念1:成比例线段1.下列各组线段,是成比例线段的是( )A.3cm,6cm,7cm,9cmB.2cm,5cm,0.6dm,8cmC.3cm,9cm,1.8dm,6cmD.1cm,2cm,3cm,4cm2.有一块三角形的草地,它的一条边长为25m,在图纸上,这条边的长为5cm,其他两条边的长都为4cm,则其他两边的实际长度都是________m.概念2:相似多边形3.如图,已知∠1′=∠1,∠2′=∠2,∠3′=∠3,∠4′=∠4,∠D′=∠D,试判断四边形A′B′C′D′与四边形ABCD是否相似,并说明理由.概念3:位似图形4.如图,在△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(-1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形,并把△ABC的边放大到原来的2倍,记所得的像是△A′B′C.设点B的对应点B′的坐标是(a,b),求点B的坐标.考点二: 2个性质性质1:平行线分线段成比例的性质5.如图,在Rt△ABC中,∠A=90°,AB=8,AC=6.若动点D从点B出发,沿线段BA运动到点A为止,运动速度为每秒2个单位长度.过点D作DE∥BC交AC于点E,设动点D运动的时间为x秒,AE的长为y.(1)求出y关于x的函数解析式,并写出自变量x的取值范围;(2)当x为何值时,△BDE的面积有最大值,最大值为多少?性质2:相似三角形的性质6.如图,已知D是BC边上的中点,且AD=AC,DE⊥BC,DE与BA相交于点E,EC 与AD相交于点F.(1)求证:△ABC∽△FCD;(2)若S△FCD=5,BC=10,求DE的长.考点三: 1个判定——相似三角形的判定7.如图,△ACB为等腰直角三角形,点D为斜边AB上一点,连接CD,DE⊥CD,DE=CD,连接AE,过C作CO⊥AB于O.求证:△ACE ∽△OCD.8.如图,在⊙O的内接△ABC中,∠ACB=90°,AC=2BC,过点C作AB的垂线l交⊙O 于另一点D,垂足为点E.设P是上异于点A,C的一个动点,射线AP交l于点F,连接PC 与PD,PD交AB于点G. (1)求证:△PAC∽△PDF; (2)若AB=5,弧AP=弧BP,求PD 的长.考点四: 2个应用应用1:测高的应用9.如图,在离某建筑物CE 4 m处有一棵树AB,在某时刻,1.2 m的竹竿FG垂直地面放置,影子GH长为2 m,此时树的影子有一部分落在地面上,还有一部分落在建筑物的墙上,墙上的影子CD高为2 m,那么这棵树的高度是多少?应用2:测宽的应用10.如图,一条小河的两岸有一段是平行的,在河的一岸每隔6 m有一棵树,在河的对岸每隔60 m有一根电线杆,在有树的一岸离岸边30 m处可看到对岸相邻的两根电线杆恰好被这岸的两棵树遮住,并且在这两棵树之间还有三棵树,求河的宽度.考点五: 1个作图——作一个图形的位似图形11.如图,在方格纸中(每个小方格的边长都是1个单位长度)有一点O和△ABC.请以点O 为位似中心,把△ABC缩小为原来的一半(不改变方向),画出△ABC的位似图形.考点六: 1个技巧——证明四条线段成比例的技巧12.如图,已知△ABC,∠BAC的平分线与∠DAC的平分线分别交BC及BC的延长线于点P,Q. (1)求∠PAQ的度数; (2)若点M为PQ的中点,求证:PM2=CM·BM.。
图形的相似和比例线段--知识讲解(基础)
【总结升华】本题考查了比例的性质.解题的关键是先假设 = = =k,得出 a=2k,b=3k, c=5k,降低计算难度. 举一反三: 【变式】(2020•兰州一模)若 3a=2b,则 的值为( )
A.
B.
C.
D.
【答案】A 【解析】解:∵3a=2b,
∴=,
设 a=2k,则 b=3k,
则=
=﹣ .
故选 A. 类型二、相似图形
要点二、相似图形 在数学上,我们把形状相同的图形称为相似图形(similar figures). 要点诠释:
(1) 相似图形就是指形状相同,但大小不一定相同的图形; (2) “全等”是“相似”的一种特殊情况,即当“形状相同”且“大小相同”时,两 个图形是全等; 要点三、相似多边形 相似多边形的概念:如果两个多边形的对应角相等,对应边的比相等,我们就说它们是相
是
a:b=m:n
a
,或写成Biblioteka m.bn2.成比例线段:对于四条线段 a、b、c、d,如果其中两条线段的比与另两条线段的比相 等,如 a:b=c:d,我们就说这四条线段是成比例线段,简称比例线段. 3.比例的基本性质: (1)若 a:b=c:d ,则 ad=bc;
(2)若 a:b=b:c ,则 b2 =ac(b 称为 a、c 的比例中项).
最全中学生学习资料整理 图形的相似和比例线段--知识讲解(基础)
【学习目标】 1、能通过生活中的实例认识图形的相似,能通过观察直观地判断两个图形是否相似; 2、了解比例线段的概念及有关性质,探索相似图形的性质,知道两相似多边形的主要特 征:对应角相等,对应边的比相等.明确相似比的含义; 3、知道两个相似的平面图形之间的关系,会根据相似多边形的特征识别两个多边形是否 相似,并会运用性质进行相关的计算,提高推理能力. 【要点梳理】 要点一、比例线段 1.线段的比: 如果选用同一长度单位量得两条线段 a、b 长度分别是 m、n,那么就说这两条线段的比
苏科版九年级数学下册第六章《图形的相似》知识点总结+易错点汇总
第六章《图形的相似》知识点一:比例线段1.比例线段:在四条线段a ,b ,c ,d 中,如果a 与b 的比等于c 与d 的比,即a cb d=,那么这四条线段a ,b ,c ,d 叫做成比例线段,简称比例线段. 2.比例的基本性质:(1)基本性质:a cb d =⇔ ad =bc ;(b 、d ≠0)(2)合比性质:a c b d =⇔a b b ±=c dd±;(b 、d ≠0) (3)等比性质:a cb d ==…=m n =k (b +d +…+n ≠0)⇔......a c mb d n++++++=k .(b+d …+n ≠0) 3.平行线分线段成比例定理:(1)两条直线被一组平行线所截,所得的对应线段成比例.即如图所示,若l 3∥l 4∥l 5,则AB DEBC EF=.(2)平行于三角形一边的直线截其他两边(或两边的延长 线),所得的对应线段成比例.即如图所示,若AB ∥CD ,则OA OBOD OC=. (3)平行于三角形一边的直线和其他两边相交,所构成的三角形和原三角形相似. 如图所示,若DE ∥BC ,则△ADE ∽△ABC.4. 黄金分割:点C 把线段AB 分成两条线段AC 和BC ,如果AC AB ==5-12≈0.618,那么线段AB 被点C 黄金分割.其中点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比.例1:把长为10cm 的线段进行黄金分割,那么较长线段长为 cm 。
知识点二 :相似三角形的性质与判定5. 相似三角形的判定:(1) 两角对应相等的两个三角形相似(AAA).如图,若∠A =∠D ,∠B =∠E ,则△ABC ∽△DEF. (2) 两边对应成比例,且夹角相等的两个三角形相似. 如图,若∠A =∠D ,AC ABDF DE=,则△ABC ∽△DEF. FE DC B A学 班级 姓名 考试号-----------------------------------------------------------密---------------------------------封----------------------------------线--------------------------------------(3) 三边对应成比例的两个三角形相似.如图,若AB AC BCDE DF EF==,则△ABC∽△DEF.6.相似三角形的性质:(1)对应角相等,对应边成比例.(2)周长之比等于相似比,面积之比等于相似比的平方.(3)相似三角形对应高的比、对应角平分线的比和对应中线的比等于相似比.例2:(1)已知△ABC∽△DEF,△ABC的周长为3,△DEF的周长为2,则△ABC与△DEF的面积之比为 .(2) 如图,DE∥BC, AF⊥BC,已知S△ADE:S△ABC=1:4,则AF:AG= .【学习目标】1.加深了解比例的基本性质、线段的比、成比例线段,认识图形的相似、位似等概念和性质.2.理解相似图形的性质与判定、位似的性质与把一个图形放大或缩小,在同一坐标系下感受位似变换后点的坐标的变化规律.【重点难点】重点:利用相似三角形知识解决实际的问题;位似的应用及在平面直角坐标系中作位似图形.难点:如何把实际问题抽象为相似三角形、位似形这一数学模型.【知识回顾】1、相似三角形定义:_________________________.2、判定方法:__________________________3、相似三角形性质:(1)对应角相等,对应边成比例;(2)对应线段之比等于;(对应线段包括哪几种主要线段?)(3)周长之比等于;(4)面积之比等于.4、相似三角形中的基本图形.(1)平行型(X型,A型); (2)交错型;(3)旋转型;(4)母子三角形.5、位似形的性质: .6、将一个图形按一定的比例放大或缩小的步骤为: . 【综合运用】1.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC(2)若AB=4,AD=33,AE=3,求AF的长.2如图,在等腰三角形△ABC中,底边BC=60cm,高AD=40cm,四边形PQRS是正方形,S,R分别在AB,AC上,SR与AD相交于点E.(1)△ASR与△ABC相似吗?为什么?(2)求正方形PQRS的边长.【矫正补偿】如图1,已知矩形ABED,点C是边DE的中点,且AB = 2AD.(1)判断△ABC的形状,并说明理由;(2)保持图1中ABC固定不变,绕点C旋转DE所在的直线MN到图2中(当垂线段AD、BE在直线MN的同侧),试探究线段AD、BE、DE长度之间有什么关系?并给予证明.【完善整合】1.通过本节课的学习你有那些收获?2.你还有哪些疑惑?第六章《图形的相似》易错疑难易错点1 对黄金分割的概念理解不清而出现漏解AB ,点C是线段AB的黄金分割点,则AC的长为.1. 已知线段20易错点2 找不准三角形的对应关系2. 如图,ACD ∆和ABC ∆相似需具备的条件是() A.AC AB CD BC =; B. CD BCAD AC=C. 2AC AD AB =g ;D. 2CD AD BD =g易错点3 混淆相似三角形的性质,误认为相似三角形的面积比等于相似比 3. 如图,若ADE ABC ∆∆:,DE 与AB 相交于点D ,与AC 相交于点E ,2DE =,5BC =,20ABC S ∆=,求ADE S ∆的值.易错点4 不能区分“相似”写“:”的含义4. 如图,在矩形ABCD 中,10,4AB AD ==,点P 是边AB 上一点,连接,PD PC ,若APD ∆与BPC ∆相似,则满足条件的点P 有 个.第4题第5题5. 如图,ABC ∆中,90C ∠=︒,16BC =cm ,12AC =cm ,点P 从点B 出发,沿BC 以2 cm/s 的速度向点C 移动,点Q 从点C 出发,以1 cm/s 的速度向点A 移动,若点,P Q 分别从点,B C 同时出发,设运动时间为t s ,当t = 时,CPQ ∆与CBA ∆相似. 疑难点1 相似三角形的判定和性质的综合应用1. 如图是一块含30°角的直角三角板,它的斜边8AB =8cm ,里面空心DEF ∆的各边与ABC ∆的对应边平行,且各对应边间的距离都是1 cm ,那么DEF ∆的周长是( )A. 5cm ;B. 6cm ;C. (63)-cm ;D. (33)+cm第1题第2题2. 如图,已知矩形ABCD ,2,6AB BC ==,点E 从点D 出发,沿DA 方向以每秒1个单位长度的速度向点A 运动,点F 从点B 出发,沿射线AB 以每秒3个单位长度的速度运动,当点E 运动到点A 时,,E F 两点停止运动.连接BD ,过点E 作EH BD ⊥,垂足为H ,连接EF ,交BD 于点G ,交BC 于点M ,连接,CF EC .给出下列结论:①CDE CBF ∆∆:;②DBC EFC ∠=∠;③DE HGAB EH=;④GH 10.上述结论正确的个数为( )A.1B. 2C. 3D. 4 疑难点2 相似图形中的规律探索3.如图,在平面直角坐标系中,矩形AOCB 的两边,OA OC 分别在x 轴和y 轴上,且2,1OA OC ==.在第二象限内,将矩形AOCB 以原点O 为位似中心放大为原来的32倍,得到矩形111A OC B ,再将矩形111A OC B 以原点O 为位似中心放大32倍,得到矩形222A OC B ……依此类推,得到的矩形n n n A OC B 的对角线交点的坐标为 .第3题 第4题4.如图,已知正方形11ABC D 的边长为1,延长11C D 到1A ,以11A C 为边向右作正方形1122AC C D ,延长22C D 到2A ,以22A C 为边向右作正方形2233A C C D ……依此类推,若112A C =,且点12310,,,,,A D D D D …都在同一直线上,则正方形991010A C C D 的边长是 .疑难点3 相似三角形与函数等知识的综合5. 反比例函数y =的图象在第一象限的分支上有一点A (3,4),P 为x 轴正半轴上的一个动点,(1)求反比例函数解析式.(2)当P 在什么位置时,△OP A 为直角三角形,求出此时P 点的坐标.疑难点4 动态问题中的相似三角形6.如图,在直角坐标系中,点(0,4),(3,4),(6,0)A B C --,动点P 从点A 出发以1个单位长度/秒的速度在y 轴上向下运动,动点Q 同时从点C 出发以2个单位长度/秒的速度在x 轴上向右运动,过点P 作PD y ⊥轴,交OB 于点D ,连接DQ .当点P 与点O 重合时,两动点均停止运动.设运动的时间为t 秒.(1)当1t =时,求线段DP 的长;(2)连接CD ,设CDQ ∆的面积为S ,求S 关于t 的函数表达式,并求出S 的最大值; (3)运动过程中是否存在某一时刻,使ODQ ∆与ABC ∆相似?若存在,请求出所有满足要求的t 的值;若不存在,请说明理由参考答案例1. 5(5-1);例 2.(1)9:4;(2)1:2 综合运用:1.分析:(1)根据平行四边形的性质可得AD ∥BC ,AB ∥CD ,即得∠ADF =∠CED ,∠B +∠C =180°,再由∠AFE +∠AFD =180°,∠AFE =∠B ,可得∠AFD =∠C ,问题得证; (2)根据平行四边形的性质可得AD ∥BC ,CD =AB =4,再根据勾股定理可求得DE 的长,再由△ADF ∽△DEC 根据相似三角形的性质求解即可. 证明:(1)∵四边形ABCD 是平行四边形∴AD ∥BC ,AB ∥CD ∴∠ADF =∠CED ,∠B +∠C =180°∵∠AFE +∠AFD =180,∠AFE =∠B ∴∠AFD =∠C ∴△ADF ∽△DEC ; 解:(2)∵四边形ABCD 是平行四边形,∴AD ∥BC ,CD =AB =4。
九年级上册图形的相似知识点归纳
九年级纳上册图形的相似知识点归】纳【篇一:九年级上册图形的相似知识点归图形的相似考点一、比例线段1、比例线段的相关概念如果选用同一长度单位量得两 a m 条线段 a,b 的长度分别为m,? n ,那么段的比是, b n 或写成 a:b=m :n 在两条线段的比 a :这两条线就说b 中,a 叫做比的前项,b 叫做比的后项。
在四条线段中,如果其中两条线段的比等于另外两条线段的比,那段叫做成比例线段,简称比例线段 a c ? b d 若四条 a,四条线么这b,c,d满足或a:b=c :d,那么 a,b,c,d 叫做组成比例的项,段的 d 叫做段a,d 叫做比例外项,线段b,c 叫做比例内项,线线a,b,c 的第四比例项。
如果作为比例内项的是两条相同的线段,即? 或 a:b=b :c,那么段a,c 的比例中项。
段 b 叫做线线的直线截其他两边(或两边的延长:(1)平行于三角形一边推论段成比例。
应线线),所得的对逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的条直线平行于三角形的第三边。
对应线段成比例,那么这(2)平行于三角形一边且和其他两边相交的直线截得的三角形的三对应成比例。
边与原三角形的三边考点三、相似三角形(3~8 分)1、相似三角形的概念对应角相等,边成比例的三角形叫做相似三角形。
对应的比叫相似用符号“∽”来表示,读作“相似于”。
相似三角形对应边做相似比(或相似系数)。
3、三角形相似的判定(1)三角形相似的判定方法①定义法:对应角相等,对应边成比例的两个三角形相似②平行法:平行于三角形和其他两边(或两边的延长线)相交,所构成的三角形的直线一边与原三角形相似③判定定理1:如果一个三角形的两个角与另一个两角三角形的两个角对应相等,那么这两个三角形相似,可简述为相等,两三角形相似。
对应。
新湘教版九年级上册第3章《图形的相似》小结与复习(1) (共15张PPT)
B、C,交直线n于点D、E、F. 若
AB:AC=1:2,那么DE:EF= 1:2 .
F
C
8、 已知a:b:c=4:3:2,且a+3b-3c=14 , 则4a-3b+c= 18 。 2 9. 已知(2-x):x=x:(1-x), 那么x= . 3 A 10. 已知:如图,DF∥EH∥BC,若AF:FH:HC= AD 2 3 D DE F 1:1.5:1,则 = , = 。 AE 5 7 AB H E 11.如图,DE∥AB,DF∥BC, 若AF:FB=3:2,BC=5,则CE=_____ 2
l1
l2 l3 C
D
B
A (E) F
四、平行线分线段成比例定理: 一组平行线截两条直线,所得的线段对应成比例.
A B
C A D B D E F E A D
AD∥BE∥CF
AB DE = BC EF
E
C
B
C
DE∥BC
△ADE∽△ABC
AD AE DE = = AB AC BC
一、选择题 1.下列各组数中一定成比例的是( B ) A. 2,3,4,5. B. -1,2,-2,4. C. -2, 1, 2,0. D. a,2b,c,2d.
36 4.已知:x:y:z=3:4:5,x+y-z=6,则x+y+z=______.
5. 已知:4x+11y=5z,2x+y=z,则x:y:z= 1:1:3 . 5 a c e 5 2a-c+7e 6. 已知 = = = ,则 = 7 . b d f 7 2b-d+7f 7. 如图,l1∥l2∥l3,分别交直线m于点A、
C
第四章 图形的相似(知识点)
第四章 图形的相似一.成比例线段1.线段的比※1.如果选用同一个长度单位量得两条线段AB, CD 的长度分别是m 、n,那么就说这两条线段的比AB:CD=m:n ,或写成nm B A =. ※2.成比例线段及比例的性质: (1)成比例线段:四条线段a 、b 、c 、d 中,如果a 与b 的比等于c 与d 的比,即d c b a =,那么这四条线段a 、b 、c 、d 叫做成比例线段,简称比例线段.※注意点:①a:b=k,说明a 是b 的k 倍; ②由于线段a 、b 的长度都是正数,所以k 是正数; ③比与所选线段的长度单位无关,求出时两条线段的长度单位要一致.(2)比例的基本性质:若dc b a =, 则ad=bc ; 若ad=bc, 则d b c a d c b a ==或 ※合比性质:如果dc b a =,那么d d c b b a ±=±; ※等比性质:如果n m d c b a =⋅⋅⋅==(0≠+⋅⋅⋅++n d b ),那么n d b m c a +⋅⋅⋅+++⋅⋅⋅++=b a 注意:若没有“b+d+…+n ≠0”这个条件,需分类讨论.二.平行线分线段成比例※平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.如图1,1l //2l //3l ,则EFBC DE AB =.推广:过一点的一线束被平行线截得的对应线段成比例.定理推论:①平行于三角形一边的直线截其它两边(或两边的延长线)所得对应线段成比例.②平行于三角形一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.三.黄金分割如图,点C 把线段AB 分成两条线段AC 和BC,如果ACBC AB AC =,那么称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比, 一条线段有两个黄金分割点.≈-=215AB AC :0.618:1;AB BC 253-=四.相似多边形一般地,形状相同的图形称为相似图形.1.概念:对应角相等、对应边成比例的两个多边形叫做相似多边形.相似多边形对应边的比叫做相似比.2.性质:相似多边形的对应角相等、对应边成比例;周长等于相似比;面积比等于相似比的平方.(3)判定:对应角相等、对应边成比例的两个多边形相似.(两个条件缺一不可)五.三角形的相似(“∽”不需分类讨论,“相似”需分类讨论)1.探索三角形相似的条件※相似三角形的判定方法:一般三角形直角三角形基本定理:平行于三角形的一边且和其他两边(或两边的延长线)相交的直线,所截得的三角形与原三角形相似.①两角对应相等;②两边对应成比例,且夹角相等;③三边对应成比例. ①一个锐角对应相等;②两条边对应成比例;a. 两直角边对应成比例;b.斜边和一直角边对应成比例.2.相似三角形的判定定理的证明3.利用相似三角形测高(3种方法)(1)利用太阳光线平行运用方法1:可以把太阳光近似地看成平行光线,计算时还要用到观测者的身高.(2)利用标杆运用方法2:观测者的眼睛必须与标杆的顶端和旗杆的顶端“三点共线”,标杆与地面要垂直,在计算时还要用到观测者的眼睛离地面的高度.(3)利用反射运用方法3:光线的入射角等于反射角.4.相似三角形的性质 (1)对应角相等、对应边成比例的三角形叫做相似三角形.相似三角形对应边的比叫做相似比.(2)全等三角形是相似三角的特例,这时相似比等于1. 注意:证两个相似三角形,与证两个全等三角形一样,应把表示对应顶点的字母写在对应的位置上.(3)性质:①相似三角形对应角相等,对应边成比例;②相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比;③相似三角形周长的比等于相似比;④相似三角形面积的比等于相似比的平方.※5.图形的位似:→位似图形的概念:如果两个图形不仅相似,而且每组对应点的连线交于一点,对应边互相平行或在一条直线上,那么这样的两个图形叫做位似图形,这个点叫做位似中心.这时两个相似图形的相似比又叫做它们的位似比.→位似图形的性质:(1)位似图形是相似图形,具备相似图形的所有性质;(2)位似图形上的任意一对对应点到位似中心的距离之比等于相似比;(3)位似图形中的对应线段平行(或在一条直线上).→位似图形的画法:(1)画出基本图形; (2)选取位似中心;(3)根据条件确定对应点,并描出对应点;(4)顺次连结各对应点,所成的图形就是所求的图形.例题:如图,已知△ABC 和点O.以O 为位似中心,求作△ABC 的位似图形,并把△ABC 的边长扩大到原来的两倍.注意:给出基本图形和位似中心,可以做两个图形与原图形位似,分别在位似中心同侧和异侧各有一个,在具体的题中需根据实际情况作图.→位似变换与坐标在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或-k.例如:点A(x,y)的对应点为A ´,则A ´点的坐标可以这样确定xA ´=xA ×k ,yA ´=yA ×k 即A ´(kx,ky )或xA ´=xA ×(-k),yA ´=yA ×(-k) 即A ´(-kx,-ky ) 例题:在平面直角坐标系中, 四边形ABCD 的四个顶点的坐标分别为A(-6,6),B(-8,2),C(-4,0),D(-2,4),画出它的一个以原点O 为位似中心,相似比为21的位似图形.题:△ABC三个顶点坐标分别为A(2,3),B(2,1),C(6,2),以点O为位似中心,相似比为2,将△ABC放大,点A的对应点A′的坐标为____________总结:至此,我们学过的图形变换有:平移,轴对称,旋转,位似.(1)平移:上下移:横坐标不变,纵坐标随之平移左右移:纵坐标不变,横坐标随之平移(2)轴对称:关于x轴对称:横坐标不变,纵坐标互为相反数关于y轴对称:纵坐标不变,横坐标互为相反数(3)旋转:绕原点旋转180度(中心对称):横坐标、纵坐标都互为相反数(4)位似:以原点为位似中心,相似比为k的位似图形对应点的坐标的比等于k或-k.。
图形的相似 知识归纳+真题解析
(4)平行于三角形一边的直线和其他两边(或延长线)相交,所构成的三角形与原三角形相 似. 3.相似三角形的性质 (1)相似三角形周长的比等于相似比. (2)相似三角形面积的比等于相似比的平方. (3)相似三角形对应高、对应角平分线、对应中线的比等于相似比. 4.相似多边形的性质 (1)相似多边形周长的比等于相似比. (2)相似多边形面积的比等于相似比的平方. 5.位似图形 (1)定义 两个多边形不仅相似,而且每组对应顶点所在直线相交于一点,这个点叫做位似中 心,对应边的比叫做位似比.位似是一种特殊的相似. (2)性质 (1)位似图形上的任意一对对应点到位似中心的距离的比等于位似比; (2)位似图形对应点的连线或延长线相交于 (3)位似图形对应边成比例; (4)位似图形对应角相等. 一 点;
a c b d
AC AB
4.平行线分线段成比例定理,三条平行线截两条直线,所得的对应线段成比例。 (二)1.相似图形定义:形状相同的图形称为相似图形.相似图形的性质:对应角相等, 对应边的比成比例. 2.相似三角形的判定 (1)如果一个三角形的两角分别与另一个三角形的两角对应相等,那么这两个三角形相似; (2)如果一个三角形的两条边与另一个三角形的两条边对应成比例,且夹角夹角相等,那么 这两个三角形相似; (3)如果一个三角形的三条边和另一个三角形的三条边对应成比例,那么这两个三角形相 似;
AC AB
4.平行线分线段成比例定理,三条平行线截两条直线,所得的对应线段成比例。 ( 二 ) 1. 相 似 图 形 定 义 : 形 状 相 同 的 图 形 称 为 相 似 图 形 . 相 似 图 形 的 性 质 : 对 应 角 ,对应边的比 .
2.相似三角形的判定 (1)如果一个三角形的两角分别与另一个三角形的两角对应 似; (2)如果一个三角形的两条边与另一个三角形的两条边对应 个三角形相似; (3)如果一个三角形的三条边和另一个三角形的三条边对应 似; (4)平行于三角形一边的直线和其他两边 (或延长线 )相交,所构成的三角形与原三角 形 . ,那么这两个三角形相 ,且夹角 ,那么这两 ,那么这两个三角形相
第二十七章_相似知识点
第二十七章 相似知识体系 第一节 图形的相似1.比例线段:①.如果a/b=c/d ,那么ad=bc ;②.如果ad=bc ,且bd≠0,那么a/b=c/d ; 如果a/b=c/d ,那么(a+b)/b=(c+d)/d 。
2.平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段的比相等。
3.相似图形:形状相同的图形叫做相似图形①.相似图形的大小不一定相等。
形状、大小都相等的图形叫做全等图形②.全等图形是相似图形的特殊情况③.图形的相似具有传递性:如果图形A 与图形B 相似,图形B 与图形C 相似,那么图形A 与图形C 相似。
4.相似多边形的特征:①.对应边成比例,对应角相等②.两个相似多边形对应边的比叫做这两个多边形的相似比5.相似多边形的识别:如果两个多边形对应边成比例,对应角相等,那么这两个多边形相似6.黄金分割把一条线段分成两条线段,使较长的线段是原线段与较小的线段的比例中项,叫做把这条线段黄金分割。
A P B即:如图,如果点P 把线段AB 分成两条线段AP 和BP ,使得BP AP AP AB=,那么线段AB 被点P 黄金分割,线段AP 与AB 的比叫做黄金比,点P 叫做线段AB 的黄金分割点,即51AP AB -=. 第二节 相似三角形1.相似三角形的概念:两个对应角相等,对应边成比例的三角形叫做相似三角形。
即:如图,△ABC 和△A 'B 'C ',其中∠A=∠A ',∠B=∠B ',∠C=∠C ',B A ''AB =C B BC ''=A C CA '', 则有△ABC ∽△A 'B 'C '。
1.定义法 对应角相等,对应边成比例的三角形相似2.判定定理①平行于三角形一边的直线和其他两条相交,所构成的三角形与原三角形相似 3.判定定理②如果三角形的三组对应边相等,那么这两个三角形相似 4.判定定理③如果三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似 5.判定定理④ 如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似 第二:腰和底对应成比例的两个等腰三角形相似。
《图形的相似》重点知识归纳
《图形的相似》重点知识归纳知识点1.相似图形的含义把形状相同的图形叫做相似图形。
(即对应角相等、对应边的比也相等的图形)解读:(1)两个图形相似,其中一个图形可以看做由另一个图形放大或缩小得到.(2)全等形可以看成是一种特殊的相似,即不仅形状相同,大小也相同.(3)判断两个图形是否相似,就是看这两个图形是不是形状相同,与其他因素无关.例1.放大镜中的正方形与原正方形具有怎样的关系呢?分析:要注意镜中的正方形与原正方形的形状没有改变.解:是相似图形。
因为它们的形状相同,大小不一定相同.例2.下列各组图形:①两个平行四边形;②两个圆;③两个矩形;④有一个内角80°的两个等腰三角形;⑤两个正五边形;⑥有一个内角是100°的两个等腰三角形,其中一定是相似图形的是_________(填序号).解析:根据相似图形的定义知,相似图形的形状相同,但大小不一定相同,而平行四边形、矩形、等腰三角形都属于形状不唯一的图形,而圆、正多边形、顶角为100°的等腰三角形的形状不唯一,它们都相似.答案:②⑤⑥.知识点2.比例线段对于四条线段a,b,c,d ,如果其中两条线段的长度的比与另两条线段的长度的比相等,即a cb d=(或a:b=c:d)那么这四条线段叫做成比例线段,简称比例线段.解读:(1)四条线段a,b,c,d成比例,记作a cb d=(或a:b=c:d),不能写成其他形式,即比例线段有顺序性.(2)在比例式a cb d=(或a:b=c:d)中,比例的项为a,b,c,d,其中a,d为比例外项,b,c为比例内项,d是第四比例项.(3)如果比例内项是相同的线段,即a bb c=或a:b=b:c,那么线段b叫做线段和的比例中项。
(4)通常四条线段a,b,c,d的单位应一致,但有时为了计算方便,a和b统一为一个单位,c和d统一为另一个单位也可以,因为整体表示两个比相等.例3.已知线段a=2cm, b=6mm, 求a b.分析:求ab即求与长度的比,与的单位不同,先统一单位,再求比.例4.已知a,b,c,d成比例,且a=6cm,b=3dm,d=32dm,求c的长度.分析:由a,b,c,d成比例,写出比例式a:b=c:d,再把所给各线段a,b,,d统一单位后代入求c.知识点3.相似多边形的性质相似多边形的性质:相似多边形的对应角相等,对应边的比相等.解读:(1)正确理解相似多边形的定义,明确“对应”关系.(2)明确相似多边形的“对应”来自于书写,且要明确相似比具有顺序性.例5.若四边形ABCD的四边长分别是4,6,8,10,与四边形ABCD相似的四边形A1B1C1D1的最大边长为30,则四边形A1B1C1D1的最小边长是多少?分析:四边形ABCD与四边形A1B1C1D1相似,且它们的相似比为对应的最大边长的比,即为13,再根据相似多边形对应边成比例的性质,利用方程思想求出最小边的长.。
图形的相似(知识点汇总 华师9上)
⎧⎧⎪⎪⎨⎪⎪⎪⎩⎪⎪⎧⎪⎪⎨⎨⎪⎪⎩⎪⎪⎪⎪⎪⎩比例的性质平行线分线段成比例成比例线段平行线分线段成比例定理相似三角形定义相似三角形的基本判定相似三角形判定相似三角形性质位似一、比例的性质1.a cad bc b d=⇔=,这一性质称为比例的基本性质,由它可推出许多比例形式; 2.a c b db d ac =⇔=(反比定理); 3.a c a bb dcd =⇔=(或d c b a =)(更比定理);4.a c a b c db d b d ++=⇔=(合比定理); 5.ac a b cd b d b d --=⇔=(分比定理); 6.a c a b c d b d a b c d++=⇔=--(合分比定理); 7.(0)a c m a c m a b d n b d n b d n b++⋅⋅⋅+==⋅⋅⋅=++⋅⋅⋅+≠⇔=++⋅⋅⋅+(等比定理).二、 黄金分割如图,若线段AB 上一点C 把线段AB 分成两条线段AC 和BC (AC BC >),且使AC 是AB 和BC 的比例中项(即2AC AB BC =⋅)则称线段AB 被点C 黄金分割,点C 叫线段AB 的黄金分割点,其中510.6182AC AB AB -=≈,图形的相似知识精讲知识网络图0.382BC AB AB =≈,AC 与AB 的比叫做黄金比. A三、平行线分线段成比例定理1.定理:三条平行直线截两条直线,截得的对应线段成比例.2.推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.3.推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边. 4.三角形一边的平行线性质平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形的三边对应成比例. 如图,AB CD EF ∥∥,则AC BD CE DF AC BD CE DFCE DF AC BD AE BF AE BF====,,,.若将AC 称为上,CE 称为下,AE 称为全,上述比例式可以形象地表示为====上上下下上上下下,,,下下上上全全全全. AB C D E FFEDC B A当三条平行线退化成两条的情形时,就成了“A ”字型,“X ”字型.则有 AE AF AE AF EFBC EF EB FC AB AC BC⇔===∥,. A BCE F F ECB A四、相似三角形的定义1.相似三角形:形状相同的两个三角形叫做相似三角形.如图,ABC △与A B C '''△相似,记作ABC A B C '''△∽△,符号∽读作“相似于”.A 'B 'C 'CBA2.相似三角形的相似比:相似三角形对应边的比叫做相似比;全等三角形的相似比是1,“全等三角形”一定是“相似形”,“相似形”不一定是“全等形”。
初三数学相似知识点总结
初三数学相似知识点总结学好数学要善于总结自己掌握的数学的解题方法,只有这样你才能够真正掌握了数学的解题技巧。
做到总结和归纳是学会数学的关键。
下面是整理的初三数学相似知识点,仅供参考希望能够帮助到大家。
初三数学相似知识点1 图形的相似相似多边形的对应边的比值相等,对应角相等;两个多边形的对应角相等,对应边的比值也相等,那么这两个多边形相似;相似比:相似多边形对应边的比值。
2 相似三角形判定:平行于三角形一边的直线和其它两边相交,所构成的三角形和原三角形相似;如果两个三角形的三组对应边的比相等,那么这两个三角形相似;如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么两个三角形相似;如果一个三角形的两个角与另一个三角形的两个角对应相等,那么两个三角形相似。
3相似三角形的周长和面积相似三角形(多边形)的周长的比等于相似比;相似三角形(多边形)的面积的比等于相似比的平方。
4位似位似图形:两个多边形相似,而且对应顶点的连线相交于一点,对应边互相平行,这样的两个图形叫位似图形,相交的点叫位似中心。
初二数学三角形知识点复习1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。
5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
8.多边形的内角:多边形相邻两边组成的角叫做它的内角。
9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。
10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
图形的相似知识点总复习含解析
图形的相似知识点总复习含解析一、选择题1.如图,在平面直角坐标系中,已知点A(―3,6)、B(―9,一3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A.(―1,2)B.(―9,18)C.(―9,18)或(9,―18)D.(―1,2)或(1,―2)【答案】D【解析】【分析】【详解】试题分析:方法一:∵△ABO和△A′B′O关于原点位似,∴△ ABO∽△A′B′O且OA'OA=13.∴A EAD=0E0D=13.∴A′E=13AD=2,OE=13OD=1.∴A′(-1,2).同理可得A′′(1,―2).方法二:∵点A(―3,6)且相似比为13,∴点A的对应点A′的坐标是(―3×13,6×13),∴A′(-1,2).∵点A′′和点A′(-1,2)关于原点O对称,∴A′′(1,―2).故答案选D.考点:位似变换.2.如图,在△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(﹣1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A'B'C,使得△A'B'C的边长是△ABC的边长的2倍.设点B的横坐标是﹣3,则点B'的横坐标是()A.2 B.3 C.4 D.5【答案】B【解析】【分析】作BD⊥x轴于D,B′E⊥x轴于E,根据位似图形的性质得到B′C=2BC,再利用相似三角形的判定和性质计算即可.【详解】解:作BD⊥x轴于D,B′E⊥x轴于E,则BD∥B′E,由题意得CD=2,B′C=2BC,∵BD∥B′E,∴△BDC∽△B′EC,∴1'2 CD BCCE B C==,∴CE=4,则OE=CE−OC=3,∴点B'的横坐标是3,故选:B.【点睛】本题考查的是位似变换、相似三角形的判定和性质,掌握位似变换的概念是解题的关键.3.如图,在△ABC中,DE∥BC,EF∥AB,则下列结论正确的是()A.AD DEDB BC=B.BF EFBC AB=C.AEEC FCDE=D.EF BFAB BC=【答案】C【解析】【分析】根据相似三角形的判定与性质逐项分析即可.由△ADE∽△ABC,可判断A的正误;由△CEF ∽△CAB,可判定B错误;由△ADE~△EFC,可判定C正确;由△CEF∽△CAB,可判定D错误.【详解】解:如图所示:∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴△ADE∽△ABC,∴DE AD AD BC AB DB=≠,∴答案A错舍去;∵EF∥AB,∴△CEF∽△CAB,CF EF BC A B B BF C =≠ ∴答案B 舍去∵∠ADE =∠B ,∠CFE =∠B ,∴∠ADE =∠CFE ,又∵∠AED =∠C ,∴△ADE ~△EFC ,∴AE DE EC FC=,C 正确; 又∵EF ∥AB , ∴∠CEF =∠A ,∠CFE =∠B ,∴△CEF ∽△CAB ,∴EF CE FC BF AB AC BC BC==≠, ∴答案D 错舍去;故选C .【点睛】 本题主要考查相似三角形的判定与性质,熟练掌握两平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角形与原三角形相似是解题的关键.4.如图,在平行四边形ABCD 中,E ,F 分别是边AD ,BC 的中点,AC 分别交BE ,DF 于G ,H ,试判断下列结论:①△ABE ≌△CDF ;②AG =GH =HC ;③2EG =BG ;④S △ABG :S 四边形GHDE =2:3,其中正确的结论是( )A .1个B .2个C .3个D .4个【答案】D【解析】【分析】 根据SAS ,即可证明①△ABE ≌△CDF ;在平行四边形ABCD 中,E ,F 分别是边AD ,BC 的中点,根据有一组对边平行且相等四边形是平行四边形,即可证明四边形BFDE 是平行四边形,由AD ∥BC ,即可证明△AGE ∽△CGB ,△CHF ∽△AHD ,然后根据相似三角形的对应边成比例,证得AG ∶CG =EG ∶BG =1∶2,CH ∶AH =1∶2,即可证得②AG =GH =HC ,③2EG =BG ;由S △ABG =2S △AEG ,S 四边形GHD E =3S △AEG ,可得结论④S △ABG :S 四边形GHDE =2:3.【详解】解:在平行四边形ABCD 中,AB =CD ,∠BAE =∠DCF ,BC =DA ,∵E ,F 分别是边AD ,BC 的中点,∴AE =CF ,∴△ABE ≌△CDF ,故①正确;∵AD ∥BC ,∴△AGE ∽△CGB ,△CHF ∽△AHD ,∴AG ∶CG =EG ∶BG =AE ∶CB ,CH ∶AH =CF ∶AD ,∵E ,F 分别是边AD ,BC 的中点,∴AE =12AD ,CF =12BC , ∴AE ∶CB =1∶2,CF ∶AD =1∶2,∴EG ∶BG =AG ∶CG =1∶2,CH ∶AH =1∶2∴AG =CH =13AC ,2EG =BG ,故③正确; ∴AG =GH =HC ,故②正确;∵S △ABG =2S △AEG ,S 四边形GHD E =3S △AEG ,∴S △ABG :S 四边形GHDE =2:3,故④正确,故选:D【点睛】 本题主要考查全等三角形的判定与性质、相似三角形的判定与性质、平行四边形的判定与性质,熟练掌握这些知识是解本题的关键.5.如图所示,Rt AOB ∆中,90AOB ∠=︒ ,顶点,A B 分别在反比例函数()10y x x =>与()50y x x=-<的图象器上,则tan BAO ∠的值为( )A 5B 5C 25D 10【答案】B【解析】【分析】过A作AC⊥x轴,过B作BD⊥x轴于D,于是得到∠BDO=∠ACO=90°,根据反比例函数的性质得到S△BDO=52,S△AOC=12,根据相似三角形的性质得到=5OBOA=,根据三角函数的定义即可得到结论.【详解】解:过A作AC⊥x轴,过B作BD⊥x轴于D,则∠BDO=∠ACO=90°,∵顶点A,B分别在反比例函数()1y xx=>与()5y xx=-<的图象上,∴S△BDO=52,S△AOC=12,∵∠AOB=90°,∴∠BOD+∠DBO=∠BOD+∠AOC=90°,∴∠DBO=∠AOC,∴△BDO∽△OCA,∴251522BODOACS OBS OA⎛⎫==÷=⎪⎝⎭△△,∴5OBOA=,∴tan∠BAO=5OBOA=.故选B.【点睛】本题考查了反比例函数的性质以及直角三角形的性质,三角形相似的判定和性质.解题时注意掌握数形结合思想的应用,注意掌握辅助线的作法.6.如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,点D是AB的中点,点P是直线BC 上一点,将△BDP沿DP所在的直线翻折后,点B落在B1处,若B1D⊥BC,则点P与点B之间的距离为()A.1 B.54C.1或 3 D.54或5【答案】D【解析】【分析】分点B1在BC左侧,点B1在BC右侧两种情况讨论,由勾股定理可AB=5,由平行线分线段成比例可得12BD BE DEAB BC AC===,可求BE,DE的长,由勾股定理可求PB的长.【详解】解:如图,若点B1在BC左侧,∵∠C=90°,AC=3,BC=4,∴225AC BC+∵点D是AB的中点,∴BD=12BA=52∵B1D⊥BC,∠C=90°∴B1D∥AC∴12 BD BE DEAB BC AC===∴BE=EC=12BC=2,DE=12AC=32∵折叠∴B1D=BD=52,B1P=BP∴B1E=B1D-DE=1∴在Rt△B1PE中,B1P2=B1E2+PE2,∴BP2=1+(2-BP)2,∴BP=5 4如图,若点B1在BC右侧,∵B1E=DE+B1D=32+52,∴B1E=4在Rt△EB1P中,B1P2=B1E2+EP2,∴BP2=16+(BP-2)2,∴BP=5故选:D.【点睛】本题考查了折叠的性质、直角三角形的性质以及勾股定理.此题难度适中,注意数形结合思想的应用,注意折叠中的对应关系.7.在Rt△ABC中,∠BAC=90°,AD是△ABC的中线,∠ADC=45°,把△ADC沿AD对折,使点C落在C′的位置,C′D交AB于点Q,则BQAQ的值为()A2B3C.22D3【答案】A【解析】【分析】根据折叠得到对应线段相等,对应角相等,根据直角三角形的斜边中线等于斜边一半,可得出AD=DC=BD,AC=AC′,∠ADC=∠ADC′=45°,CD=C′D,进而求出∠C、∠B的度数,求出其他角的度数,可得AQ=AC,将BQAQ转化为BQAC,再由相似三角形和等腰直角三角形的边角关系得出答案.【详解】解:如图,过点A作AE⊥BC,垂足为E,∵∠ADC=45°,∴△ADE是等腰直角三角形,即AE=DE=22AD,在Rt△ABC中,∵∠BAC=90°,AD是△ABC的中线,∴AD=CD=BD,由折叠得:AC=AC′,∠ADC=∠ADC′=45°,CD=C′D,∴∠CDC′=45°+45°=90°,∴∠DAC=∠DCA=(180°﹣45°)÷2=67.5°=∠C′AD,∴∠B=90°﹣∠C=∠CAE=22.5°,∠BQD=90°﹣∠B=∠C′QA=67.5°,∴AC′=AQ=AC,由△AEC∽△BDQ得:BQAC=BDAE,∴BQAQ=BQAC=ADAE=2AE=2.故选:A.【点睛】考查直角三角形的性质,折叠轴对称的性质,以及等腰三角形与相似三角形的性质和判定等知识,合理的转化是解决问题的关键.8.如图,O是平行四边形ABCD的对角线交点,E为AB中点,DE交AC于点F,若平行四边形ABCD的面积为8,则DOE的面积是()A.2B.32C.1D.94【答案】C【解析】【分析】由平行四边形的面积,找到三角形底边和高与平行四边形底边和高的关系,利用面积公式以及线段间的关系求解.分别作△OED和△AOD的高,利用平行线的性质,得出高的关系,进而求解.【详解】解:如图,过A 、E 两点分别作AN ⊥BD 、EM ⊥BD ,垂足分别为M 、N ,则EM ∥AN ,∴EM :AN =BE :AB ,∵E 为AB 中点,∴BE=12AB , ∴EM =12AN , ∵平行四边形ABCD 的面积为8,∴2×12×AN×BD =8, ∴AN×BD =8 ∴S △OED =12×OD×EM =12×12BD×12AN =18AN×BD =1. 故选:C .【点睛】 本题考查平行四边形的性质,综合了平行线分线段成比例以及面积公式.已知一个三角形的面积求另一个三角形的面积有以下几种做法:①面积比是边长比的平方比;②分别找到底和高的比.9.若△ABC ∽△DEF ,△ABC 与△DEF 的相似比为2︰3,则S △ABC ︰S △DEF 为( )A .2∶3B .4∶9C 23D .3∶2 【答案】B【解析】【分析】 根据两相似三角形的面积比等于相似比的平方,所以224()39ABC DEF S S ==V V . 【详解】因为△ABC ∽△DEF ,所以△ABC 与△DEF 的面积比等于相似比的平方,所以S △ABC :S △DEF =(23)2=49,故选B . 【点睛】本题考查了相似三角形的性质,解题的关键是掌握:两个相似三角形面积比等于相似比的平方.10.矩形ABCO如图摆放,点B在y轴上,点C在反比例函数ykx=(x>0)上,OA=2,AB=4,则k的值为()A.4 B.6 C.325D.425【答案】C【解析】【分析】根据矩形的性质得到∠A=∠AOC=90°,OC=AB,根据勾股定理得到OB22OA AB=+=5C作CD⊥x轴于D,根据相似三角形的性质得到CD855=,OD45=求得8545,)于是得到结论.【详解】解:∵四边形ABCO是矩形,∴∠A=∠AOC=90°,OC=AB,∵OA=2,AB=4,∴过C作CD⊥x轴于D,∴∠CDO=∠A=90°,∠COD+∠COB=∠COB+∠AOB=90°,∴∠COD=∠AOB,∴△AOB∽△DOC,∴OB AB OA OC CD OD==,∴25424CD OD==,∴CD85=,OD45=,∴4585),∴k325 =,故选:C.【点睛】本题考查了反比例函数图象上点的坐标特征,反比例函数的性质,矩形的性质,相似三角形的判定和性质,正确的作出辅助线是解题的关键.11.把Rt ABC ∆三边的长度都扩大为原来的3倍,则锐角A 的余弦值( )A .扩大为原来的3倍B .缩小为原来的13C .扩大为原来的9倍D .不变 【答案】D【解析】【分析】根据相似三角形的性质解答.【详解】三边的长度都扩大为原来的3倍,则所得的三角形与原三角形相似,∴锐角A 的大小不变,∴锐角A 的余弦值不变,故选:D .【点睛】此题考查相似三角形的判定和性质、锐角三角函数的定义,掌握相似三角形的对应角相等是解题的关键.12.如图,点E 为ABC ∆的内心,过点E 作MN BC P 交AB 于点M ,交AC 于点N ,若7AB =,5AC =,6BC =,则MN 的长为( )A .3.5B .4C .5D .5.5【答案】B【解析】【分析】 连接EB 、EC ,如图,利用三角形内心的性质得到∠1=∠2,利用平行线的性质得∠2=∠3,所以∠1=∠3,则BM=ME ,同理可得NC=NE ,接着证明△AMN ∽△ABC ,所以767MN BM -=,则BM=7-76MN①,同理可得CN=5-56MN②,把两式相加得到MN 的方程,然后解方程即可.【详解】连接EB 、EC ,如图,∵点E 为△ABC 的内心,∴EB 平分∠ABC ,EC 平分∠ACB ,∴∠1=∠2,∵MN ∥BC ,∴∠2=∠3,∴∠1=∠3,∴BM=ME ,同理可得NC=NE ,∵MN ∥BC ,∴△AMN ∽△ABC ,∴MN AM BC AB = ,即767MN BM -=,则BM=7-76MN①, 同理可得CN=5-56MN②, ①+②得MN=12-2MN ,∴MN=4.故选:B .【点睛】此题考查三角形的内切圆与内心,相似三角形的判定与性质,解题关键在于掌握与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.三角形的内心就是三角形三个内角角平分线的交点.13.26,2,A B C '''∆的两边长分别是13,如果ABC ∆与A B C '''∆相似,那么A B C '''∆的第三边长应该是( )A 2B .22C .62D .33【答案】A【解析】【分析】根据题中数据先计算出两相似三角形的相似比,则第三边长可求.【详解】解:根据题意,易证ABC ∆∽△A B C ''',且相似比为:2:1,∴△A B C '''的第三边长应该是22=. 故选:A .【点睛】 本题考查了相似三角形的性质:相似三角形的对应边成比例,关键就是要清楚对应边是谁.14.要做甲、乙两个形状相同(相似)的三角形框架,已知甲三角形框架三边的长分别为50 cm 、60 cm 、80 cm ,乙三角形框架的一边长为20 cm ,则符合条件的乙三角形框架共有( ).A .1种B .2种C .3种D .4种 【答案】C【解析】试题分析:根据相似图形的定义,可由三角形相似,那么它们边长的比相同,均为5:6:8,乙那个20cm 的边可以当最短边,最长边和中间大小的边.故选:C .点睛:本题考查的是相似形的定义,相似图形的形状相同,但大小不一定相同.15.如图,点E 是矩形ABCD 的边AD 的中点,且BE ⊥AC 于点F ,则下列结论中错误的是( )A .AF =12CF B .∠DCF =∠DFCC .图中与△AEF 相似的三角形共有5个D .tan ∠CAD =32【答案】D【解析】【分析】由AE=12AD=12BC,又AD∥BC,所以12AE AFBC FC==,故A正确,不符合题意;过D作DM∥BE交AC于N,得到四边形BMDE是平行四边形,求出BM=DE=12BC,得到CN=NF,根据线段的垂直平分线的性质可得结论,故B正确,不符合题意;根据相似三角形的判定即可求解,故C正确,不符合题意;由△BAE∽△ADC,得到CD与AD的大小关系,根据正切函数可求tan∠CAD的值,故D错误,符合题意.【详解】解:A、∵AD∥BC,∴△AEF∽△CBF,∴AEBC=AFFC,∵AE=12AD=12BC,∴AFFC=12,故A正确,不符合题意;B、过D作DM∥BE交AC于N,∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=12 BC,∴BM=CM,∴CN=NF,∵BE⊥AC于点F,DM∥BE,∴DN⊥CF,∴DF=DC,∴∠DCF=∠DFC,故B正确,不符合题意;C、图中与△AEF相似的三角形有△ACD,△BAF,△CBF,△CAB,△ABE共有5个,故C正确,不符合题意.D、设AD=a,AB=b由△BAE∽△ADC,有ba=2a.∵tan∠CAD=CDAD=ba=22,故D错误,符合题意.故选:D.【点睛】本题考查了相似三角形的判定和性质,矩形的性质,图形面积的计算,正确的作出辅助线是解题的关键.16.如图,在平行四边形ABCD中,AC=4,BD=6,P是BD上的任一点,过点P作EF∥AC,与平行四边形的两条边分别交于点E、F,设BP=x,EF=y,则能反映y与x之间关系的图象是()A.B.C.D.【答案】C【解析】【分析】【详解】图象是函数关系的直观表现,因此须先求出函数关系式.分两段求:当P在BO上和P在OD上,分别求出两函数解析式,根据函数解析式的性质即可得出函数图象.解:设AC与BD交于O点,当P在BO上时,∵EF∥AC,∴EF BPAC BO=即43y x=,∴43y x =;当P在OD上时,有643 DP EF y x DO AC-==即,∴y=48 3x-+.故选C.17.如图,菱形ABCD中,点P是CD的中点,∠BCD=60°,射线AP交BC的延长线于点E,射线BP交DE于点K,点O是线段BK的中点,作BM⊥AE于点M,作KN⊥AE于点N,连结MO、NO,以下四个结论:①△OMN是等腰三角形;②tan∠OMN=33;③BP=4PK;④PM•PA=3PD2,其中正确的是()A.①②③B.①②④C.①③④D.②③④【答案】B【解析】【分析】根据菱形的性质得到AD∥BC,根据平行线的性质得到对应角相等,根据全等三角形的判定定理△ADP≌△ECP,由相似三角形的性质得到AD=CE,作PI∥CE交DE于I,根据点P是CD的中点证明CE=2PI,BE=4PI,根据相似三角形的性质得到1=4KP PIKB BE=,得到BP=3PK,故③错误;作OG⊥AE于G,根据平行线等分线段定理得到MG=NG,又OG⊥MN,证明△MON是等腰三角形,故①正确;根据直角三角形的性质和锐角三角函数求出∠3②正确;然后根据射影定理和三角函数即可得到PM•PA=3PD2,故④正确.【详解】解:作PI∥CE交DE于I,∵四边形ABCD为菱形,∴AD ∥BC ,∴∠DAP=∠CEP ,∠ADP=∠ECP ,在△ADP 和△ECP 中,DAP CEP ADP ECP DP CP ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADP ≌△ECP ,∴AD=CE , 则PI PD CE DC =,又点P 是CD 的中点, ∴1=2PI CE , ∵AD=CE , ∴1=4KP PI KB BE =, ∴BP=3PK ,故③错误;作OG ⊥AE 于G , ∵BM 丄AE 于M ,KN 丄AE 于N ,∴BM ∥OG ∥KN ,∵点O 是线段BK 的中点,∴MG=NG ,又OG ⊥MN ,∴OM=ON ,即△MON 是等腰三角形,故①正确;由题意得,△BPC ,△AMB ,△ABP 为直角三角形,设BC=2,则CP=1,由勾股定理得,则根据三角形面积公式,BM=7, ∵点O 是线段BK 的中点,∴PB=3PO ,∴OG=13BM=21, MG=23MP=27, tan ∠OMN=OG MG ,故②正确; ∵∠ABP=90°,BM ⊥AP ,∴PB2=PM•PA,∵∠BCD=60°,∴∠ABC=120°,∴∠PBC=30°,∴∠BPC=90°,∴PB=3PC,∵PD=PC,∴PB2=3PD,∴PM•PA=3PD2,故④正确.故选B.【点睛】本题考查相似形综合题.18.如图,点D是△ABC的边AB上的一点,过点D作BC的平行线交AC于点E,连接BE,过点D作BE的平行线交AC于点F,则下列结论错误的是()A.AD AEBD EC=B.AF DFAE BE=C.AE AFEC FE=D.DE AFBC FE=【答案】D【解析】【分析】由平行线分线段成比例和相似三角形的性质进行判断.【详解】∵DE//BC,∴AD AEBD EC=,故A正确;∵DF//BE,∴△ADF∽△ABF, ∴AF DFAE BE=,故B正确;∵DF//BE,∴AD AFBD FE=,∵AD AEBD EC=,∴AE AFEC FE=,故C正确;∵DE//BC,∴△ADE∽△ABC,∴DE ADBC AB=,∵DF//BE,∴AF ADAE AB=,∴DE AFBC AE=,故D错误.故选D.【点睛】本题考查平行线分线段成比例性质,相似三角形的性质,由平行线得出比例关系是关键.19.平面直角坐标系xOy中,点P(a,b)经过某种变换后得到的对应点为P′(12a+1,12b﹣1).已知A,B,C是不共线的三个点,它们经过这种变换后,得到的对应点分别为A′,B′,C′.若△ABC的面积为S1,△A′B′C′的面积为S2,则用等式表示S1与S2的关系为()A.S112=S2B.S114=S2C.S1=2S2D.S1=4S2【答案】D【解析】【分析】先根据点P及其对应点判断出变换的类型,再依据其性质可得答案.【详解】由点P(a,b)经过变换后得到的对应点为P′(12a+1,12b﹣1)知,此变换是以点(2,﹣2)为中心、2:1的位似变换,则△ABC的面积与△A′B′C′的面积比为4:1,∴S1=4S2,故选:D.【点睛】本题主要考查几何变换类型,解题的关键是根据对应点的坐标判断出其几何变换类型.20.如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=3时,这两个二次函数的最大值之和等于()A.5B.453C.3 D.4【答案】A【解析】【分析】【详解】过B作BF⊥OA于F,过D作DE⊥OA于E,过C作CM⊥OA于M,∵BF⊥OA,DE⊥OA,CM⊥OA,∴BF∥DE∥CM.∵OD=AD=3,DE⊥OA,∴OE=EA=12OA=2.由勾股定理得:5设P(2x,0),根据二次函数的对称性得出OF=PF=x,∵BF∥DE∥CM,∴△OBF∽△ODE,△ACM∽△ADE.∴BF OF CM AMDE OE DE AE==,x2x2255-,,解得:)52x5BF?x CM22-==,.∴5.故选A.。
九年级《图形的相似》知识点归纳
苏科版九下《图形的相似》知识点归纳知识点1 有关相似形的概念(1)形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形.(2)如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多边形.相似多边形对应边长度的比叫做相似比(相似系数).知识点2 比例线段的相关概念、比例的性质(1)定义: 在四条线段d c b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段.注:①比例线段是有顺序的,如果说a 是d c b ,,的第四比例项,那么应得比例式为:ad c b =. ②()()()a bc d a c d c b d b ad bc a ⎧=⎪⎪⎪=⇔=⎨⎪⎪=⎪⎩,交换内项,交换外项.同时交换内外项 核心内容:bc ad = (2)黄金分割:把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,即2AC AB BC =⋅,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AB AC 215-=≈0.618AB .即512AC BC AB AC == 简记为:512长短==全长 注:①黄金三角形:顶角是360的等腰三角形 ②黄金矩形:宽与长的比等于黄金数的矩形(3)合、分比性质:a c a b c db d b d±±=⇔=. 注:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间发生同样和差变化比例仍成立.如:⎪⎪⎩⎪⎪⎨⎧+-=+--=-⇒=dc dc b a b a c cd a a b d c b a 等等.(4)等比性质:如果)0(≠++++====n f d b n mf e d c b a , 那么ban f d b m e c a =++++++++ . 知识点3 比例线段的有关定理平行线分线段成比例定理:三条平行线截两条直线,所截得的对应线段成比例.已知AD ∥BE ∥CF,可得AB DE AB DE BC EF BC EF AB BC BC EF AC DF AB DE AC DF DE EF=====或或或或等. 特别在三角形中: 由DE ∥BC 可得:ACAEAB AD EA EC AD BD EC AE DB AD ===或或 知识点4 相似三角形的概念(1)定义:对应角相等,对应边成比例的三角形,叫做相似三角形.相似用符号“∽”表示,读作“相似于” .相似三角形对应边的比叫做相似比(或相似系数).相似三角形对应角相等,对应边成比例. 注:①对应性:即把表示对应顶点的字母写在对应位置上 ②顺序性:相似三角形的相似比是有顺序的.③两个三角形形状一样,但大小不一定一样. ④全等三角形是相似比为1的相似三角形.(2)三角形相似的判定方法1、平行法:(上图)平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.2、判定定理1:简述为:两角对应相等,两三角形相似.3、判定定理2:简述为:两边对应成比例且夹角相等,两三角形相似.4、判定定理3:简述为:三边对应成比例,两三角形相似.5、判定定理4:直角三角形中,“斜边和一直角边对应成比例” 全等与相似的比较:三角形全等三角形相似两角夹一边对应相等(ASA) 两角一对边对应相等(AAS) 两边及夹角对应相等(SAS) 三边对应相等(SSS)、(HL )两角对应相等两边对应成比例,且夹角相等三边对应成比例“斜边和一直角边对应成比例”(3如图,Rt △ABC 中,∠BAC=90°,AD 是斜边BC 上的高,则 ∽ ==> AD 2=BD ·DC ,∽ ==> AB 2=BD ·BC ,∽ ==> AC 2=CD ·BC .知识点5 相似三角形的性质(1)相似三角形对应角相等,对应边成比例. (2)相似三角形周长的比等于相似比.(3)相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比. (4)相似三角形面积的比等于相似比的平方.知识点6 相似三角形的几种基本图形:(1) 如图:称为“平行线型”的相似三角形(有“A 型”与“X 型”图)FE D CB A E BD E D(3)B C AE DBC(2) 如图:其中∠1=∠2,则△ADE∽△ABC称为“斜交型”的相似三角形。
北师大数学九年级上册图形的相似知识点详细(一)
图形的相似(一)一、比例线段1、比例线段的相关概念如果选用同一长度单位量得两条线段a ,b 的长度分别为m ,n ,那么就说这两条线段的比是,或写成a :b=m :n在两条线段的比a :b 中,a 叫做比的前项,b 叫做比的后项。
在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段若四条a ,b ,c ,d 满足或a :b=c :d ,那么a ,b ,c ,d 叫做组成比例的项,线段a ,d 叫做比例外项,线段b ,c 叫做比例内项,线段的d 叫做a ,b ,c 的第四比例项。
如果作为比例内项的是两条相同的线段,即c bb a 或a :b=b :c ,那么线段b 叫做线段a ,c 的比例中项。
2、比例的性质(1)基本性质①a :b=c :d ad=bc②a :b=b :c acb 2(2)更比性质(交换比例的内项或外项)d bc a (交换内项)d c b a a cb d (交换外项)a bc d (同时交换内项和外项)(3)反比性质(交换比的前项、后项):cda b d c b a (4)合比性质:ddc b b ad c b a (5)等比性质:ban f d b m e c a n f d b n mf e d c b a )0(n m b a d c b a3、黄金分割1.黄金分割定义:点C 把线段AB 分成两条线段AC 和BC ,如果AC:AB=BC:AC ,那么称线段AB 被点C 黄金分割.点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比.2.618.0215AB AC 二、平行线分线段成比例定理定理:三条平行线截两条直线,所得的对应线段成比例。
则,,,…AB BC DE EF AB AC DEDF BC AC EFDF 推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。
逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。
北师大版数学九年级上册第四章图形的相似知识点归纳及例题
北师大版九年级上册第四章图形的相似知识点归纳及例题【学习目标】1、了解比例的基本性质,线段的比、成比例线段;2、通过具体实例认识图形的相似,探索相似图形的性质,理解相似多边形对应角相等、对应边成比例、周长的比等于相似比、面积的比等于相似比的平方;3、探索并掌握相似三角形的判定方法,并能利用这些性质和判定方法解决生活中的一些实际问题;4、了解图形的位似,能够利用位似将一个图形放大或缩小,在同一直角坐标系中,感受位似变换后点的坐标变化;5、结合相似图形性质和判定方法的探索和证明,进一步培养推理能力,发展逻辑思维能力和推理论证的表达能力,以及综合运用知识的能力,运用学过的知识解决问题的能力.【知识点网络】【知识点梳理】要点一、相似图形及比例线段1.相似图形:在数学上,我们把形状相同的图形称为相似图形(similar figures). 知识点诠释:(1) 相似图形就是指形状相同,但大小不一定相同的图形;(2) “全等”是“相似”的一种特殊情况,即当“形状相同”且“大小相同”时,两个图形全等; 2.相似多边形如果两个多边形的对应角相等,对应边的比相等,我们就说它们是相似多形. 知识点诠释:(1)相似多边形的定义既是判定方法,又是它的性质. (2)相似多边形对应边的比称为相似比.3. 比例线段:对于四条线段a 、b 、c 、d ,如果其中两条线段的比与另两条线段的比相等,如a :b =c :d ,我们就说这四条线段是成比例线段,简称比例线段. 知识点诠释:(1)若a :b =c :d ,则ad=bc ;(d 也叫第四比例项) (2)若a :b=b :c ,则 =ac (b 称为a 、c 的比例中项). 4.平行线分线段成比例:基本事实:两条直线被一组平行线所截,所得的对应线段成比例. 推论:平行于三角形一边的直线与其他两边相交,截得的对应线段成比例. 知识点二、相似三角形 1. 相似三角形的判定:判定方法(一):平行于三角形一边的直线和其他两边相交,所构成的三角形和原三角形相似.判定方法(二):两角分别相等的两个三角形相似. 知识点诠释:要判定两个三角形是否相似,只需找到这两个三角形的两个对应角相等即可,对于直角三角形而言,若有一个锐角对应相等,那么这两个三角形相似. 判定方法(三):两边成比例且夹角相等的两个三角形相似.2b知识点诠释:此方法要求用三角形的两边及其夹角来判定两个三角形相似,应用时必须注意这个角必须是两边的夹角,否则,判断的结果可能是错误的.判定方法(四):三边成比例的两个三角形相似.2.相似三角形的性质:(1)相似三角形的对应角相等,对应边的比相等;(2)相似三角形中的重要线段的比等于相似比;相似三角形对应高,对应中线,对应角平分线的比都等于相似比.知识点诠释:要特别注意“对应”两个字,在应用时,要注意找准对应线段.(3) 相似三角形周长的比等于相似比;(4)相似三角形面积的比等于相似比的平方。
2014中考知识点总结: 图形的相似
2014中考知识点总结:图形的相似在中考的数学领域中,“图形的相似”是一个重要的知识点,它不仅在理论上有着严谨的定义和性质,还在实际问题的解决中发挥着关键作用。
接下来,咱们就一起深入地梳理一下这部分的知识。
首先,我们要明确相似图形的定义。
相似图形指的是形状相同,但大小不一定相同的图形。
简单来说,就是两个图形对应角相等,对应边的比相等。
比如,两个大小不同但形状一样的三角形,就是相似三角形;两个不同大小但形状一样的矩形,就是相似矩形。
相似三角形是“图形的相似”中的重点内容。
相似三角形有着许多重要的判定方法。
第一种判定方法是“两角对应相等的两个三角形相似”。
比如说,如果一个三角形的两个角分别和另一个三角形的两个角相等,那么这两个三角形就是相似的。
第二种是“两边对应成比例且夹角相等的两个三角形相似”。
假设一个三角形的两条边与另一个三角形的两条边对应成比例,并且它们的夹角也相等,那么这两个三角形相似。
第三种是“三边对应成比例的两个三角形相似”。
如果两个三角形的三条边对应成比例,那么它们就是相似的。
相似三角形还有着一系列重要的性质。
相似三角形的对应边成比例,对应角相等。
而且,相似三角形的对应高的比、对应中线的比、对应角平分线的比都等于相似比。
相似三角形的周长比也等于相似比,面积比等于相似比的平方。
在实际解题中,我们常常需要运用这些判定方法和性质来解决问题。
比如,已知两个三角形的一些角和边的关系,判断它们是否相似;或者已知两个相似三角形的相似比,求它们的周长比、面积比等。
除了相似三角形,相似多边形也不容忽视。
相似多边形的对应角相等,对应边成比例。
其性质和相似三角形有相似之处,比如相似多边形的周长比等于相似比,面积比等于相似比的平方。
在解决与图形相似相关的问题时,常常会用到一些基本的思路和方法。
第一步,要认真观察图形,找出可能相似的图形。
第二步,根据已知条件,判断所涉及的图形是否相似,并确定相似比。
第三步,如果是求边长、角度或者面积等具体的量,要运用相似图形的性质和判定方法,建立相应的比例关系或方程进行求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《图形的相似》重点知识归纳
知识点1.相似图形的含义
把形状相同的图形叫做相似图形。
(即对应角相等、对应边的比也相等的图形)解读:(1)两个图形相似,其中一个图形可以看做由另一个图形放大或缩小得到.
(2)全等形可以看成是一种特殊的相似,即不仅形状相同,大小也相同.(3)判断两个图形是否相似,就是看这两个图形是不是形状相同,与其他因素无关.
例1.放大镜中的正方形与原正方形具有怎样的关系呢?
分析:要注意镜中的正方形与原正方形的形状没有改变.
解:是相似图形。
因为它们的形状相同,大小不一定相同.
例2.下列各组图形:①两个平行四边形;②两个圆;③两个矩形;④有一个内角80°的两个等腰三角形;⑤两个正五边形;⑥有一个内角是100°的两个等腰三角形,其中一定是相似图形的是_________(填序号).
解析:根据相似图形的定义知,相似图形的形状相同,但大小不一定相同,而平行四边形、矩形、等腰三角形都属于形状不唯一的图形,而圆、正多边形、顶角为100°的等腰三角形的形状不唯一,它们都相似.答案:②⑤⑥.
知识点2.比例线段
对于四条线段a,b,c,d ,如果其中两条线段的长度的比与另两条线段的长度的
比相等,即a c
b d
=
(或a:b=c:d)那么这四条线段叫做成比例线段,简称比例线
段.
解读:(1)四条线段a,b,c,d成比例,记作a c
b d
=
(或a:b=c:d),不能写成其
他形式,即比例线段有顺序性.
(2)在比例式a c
b d
=
(或a:b=c:d)中,比例的项为a,b,c,d,其中a,d为比例
外项,b,c为比例内项,d是第四比例项.
(3)如果比例内项是相同的线段,即a b
b c
或a:b=b:c,那么线段b叫做线段和
的比例中项。
(4)通常四条线段a,b,c,d的单位应一致,但有时为了计算方便,a和b统一为一个单位,c和d统一为另一个单位也可以,因为整体表示两个比相等.
例3.已知线段a=2cm, b=6mm, 求a b.
分析:求a
b即求与长度的比,与的单位不同,先统一单位,再求比.
例4.已知a,b,c,d成比例,且a=6cm,b=3dm,d=3
2dm,求c的长度.
分析:由a,b,c,d成比例,写出比例式a:b=c:d,再把所给各线段a,b,,d统一单位后代入求c.
知识点3.相似多边形的性质
相似多边形的性质:相似多边形的对应角相等,对应边的比相等.
解读:(1)正确理解相似多边形的定义,明确“对应”关系.
(2)明确相似多边形的“对应”来自于书写,且要明确相似比具有顺序性.例5.若四边形ABCD的四边长分别是4,6,8,10,与四边形ABCD相似的四边
形A
1B
1
C
1
D
1
的最大边长为30,则四边形A
1
B
1
C
1
D
1
的最小边长是多少?
分析:四边形ABCD与四边形A
1B
1
C
1
D
1
相似,且它们的相似比为对应的最大边长的
比,即为1
3,再根据相似多边形对应边成比例的性质,利用方程思想求出最小边
的长.。