三角函数的易错点以及典型例题与高考真题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数的易错点以及典型例题与真题
1.三角公式记住了吗两角和与差的公式________________; 二倍角公式:_________________ 万能公式 ______________正切半角公式____________________;解题时本着“三看”的基本原则来进行:“看角,看函数,看特征”,基本的技巧有:巧变角,公式变形使用,化切割为弦,用倍角公式将高次降次。 万能公式:
(1) (sinα)2
+(cosα)2
=1 (2)1+(tanα)2=(secα)2
(3)1+(cotα)2=(cscα)2
(4)对于任意非直角三角形,总有 tanA+tanB+tanC=tanAtanBtanC (证明:利用A+B=π-C )
同理可得证,当x+y+z=n π(n ∈Z)时,该关系式也成立
由tanA+tanB+tanC=tanAtanBtanC 可得出以下结论: (5)cotAcotB+cotAcotC+cotBcotC=1
(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2) (7)(cosA )2+(cosB )2+(cosC )2=1-2cosAcosBcosC (8)(sinA )2+(sinB )2+(sinC )2=2+2cosAcosBcosC (9)设tan(A/2)=t
sinA=2t/(1+t^2) (A≠2kπ+π,k∈Z) tanA=2t/(1-t^2) (A≠2kπ+π,k∈Z)
cosA=(1-t^2)/(1+t^2) (A≠2kπ+π,且A≠kπ+(π/2) k∈Z)
2.在解三角问题时,你注意到正切函数、余切函数的定义域了吗正切函数在整个定义域内是否为单调函数你注意到正弦函数、余弦函数的有界性了吗
3.在三角中,你知道1等于什么吗(x x x x 2222tan sec cos sin 1-=+=
ΛΛ====⋅=0cos 2
sin
4tan
cot tan π
πx x 这些统称为1的代换) 常数 “1”
的种种代换有着广泛的应用.(还有同角关系公式:商的关系,倒数关系,平方关系;诱导公试:奇变偶不变,符号看象限)
4.在三角的恒等变形中,要特别注意角的各种变换.(如,
)(αβαβ-+=,)(αβαβ+-=
⎪⎭
⎫
⎝⎛--⎪⎭⎫ ⎝⎛-=+βαβαβ
α222
等)
5.你还记得三角化简题的要求是什么吗项数最少、函数种类最少、分母不含三角
函数、且能求出值的式子,一定要算出值来)
6.你还记得三角化简的通性通法吗(切割化弦、降幂公式、用三角公式转化出现特殊角. 异角化同角,异名化同名,高次化低次);你还记得降幂公式吗cos 2
x=(1+cos2x)/2;sin 2
x=(1-cos2x)/2 7.你还记得某些特殊角的三角函数值吗
(4
1
518sin ,42615cos 75sin ,4
2
675cos 15sin -=︒+=︒=︒-=
︒=︒) 8.你还记得在弧度制下弧长公式和扇形面积公式吗(lr S r l 2
1
,=
=扇形α) 9. 辅助角公式:()θ++=+x b a x b x a sin cos sin 22(其中θ角所在的象限由a, b 的符号确定,θ角的值由a
b
=
θtan 确定)在求最值、化简时起着重要作用. 10.三角函数(正弦、余弦、正切)图象的草图能迅速画出吗能写出他们的单调区、对称轴、对称中心,取最值时的x 值的集合吗(别忘了k ∈Z ) 三角函数性质要记牢。函数y=++⋅)sin(ϕωx A k 的图象及性质:
振幅|A|,周期T=
ω
π
2, 若x=x 0为此函数的对称轴,则x 0是使y 取到最值的点,
反之亦然,使y 取到最值的x 的集合为——————————, 当0,0>>A ω时函数的增区间为————— ,减区间为—————;当0<ω时要利用诱导公式将ω变为大于零后再用上面的结论。
五点作图法:令ϕω+x 依次为ππ
ππ
2,2
3,
,2
求出x 与y ,依点()y x ,作图 注意(1)ϕω+x 的整体化法思维求单调性、对称轴、对称中心、值域等。 (2)用换元法时,注意新的定义域范围。 11.三角函数图像变换还记得吗
平移公式(1)如果点 P (x ,y )按向量()k h a ,=→
平移至P ′(x ′,y ′),则
⎪⎩⎪⎨⎧+=+=.
,
'
'
k y y h x x (2) 曲线f (x ,y )=0沿向量()k h a ,=→
平移后的方程为f (x-h ,y-k )=0 12.解三角形的几个结论:(1) 正弦定理: (2) 余弦定理: (3)面积公式
13.在用反三角函数表示直线的倾斜角、两条异面直线所成的角等时,你是否注意到它们各自的取值范围及意义
①异面直线所成的角、直线与平面所成的角、向量的夹角的取值范围依次是
],0[],2,0[,2,0πππ⎥⎦
⎤
⎝⎛。
②直线的倾斜角、1l 到2l 的角、1l 与2l 的夹角的取值范围依次是
]2
,
0(),,0[),,0[π
ππ。
③反正弦、反余弦、反正切函数的取值范围分别是)2,2(],,0[],2,2[π
πππ
π--
。
14.三角函数易错点的典型例题 (1)隐含条件
例1.设πα<<0,2
1
cos sin =
+αα,则α2cos 的值为 。