离散控制系统基本概念和数学模型
离散控制系统的最优控制理论
离散控制系统的最优控制理论离散控制系统的最优控制理论是控制工程领域中的一个重要研究方向。
离散控制系统是指在时间上只能在特定时间点进行操作的系统,相比连续控制系统,离散控制系统需要使用离散时间模型进行建模和控制设计。
最优控制理论是研究如何设计控制策略以使系统能够在某种指标下达到最优性能的一门学科。
离散控制系统的最优控制理论旨在寻找最优的控制策略,使得系统的性能指标如稳定性、响应速度、能耗等在给定约束条件下达到最优。
1. 离散控制系统的建模离散控制系统的建模是进行最优控制设计的基础。
在离散控制系统中,系统的状态在一系列离散时间点上进行更新。
离散控制系统的建模通常使用差分方程或状态空间模型。
差分方程描述了系统的状态在每个时间点的更新关系,而状态空间模型则将系统的状态和输入表示为向量,并使用矩阵形式描述系统的动态特性。
根据具体问题的需要,选择合适的建模方法可以更好地描述系统的动态行为。
2. 离散控制系统的性能指标离散控制系统的性能指标是评价系统控制性能的定量指标。
常见的性能指标包括稳定性、响应速度、能耗等。
稳定性是系统重要的性能指标之一,用于评估系统是否能够在有限时间内达到稳定状态。
响应速度是指系统对输入变化的快速响应能力。
能耗则是指系统在完成特定任务时所消耗的能源。
通过选取合适的性能指标,可以更好地评估和改进离散控制系统的性能。
3. 最优控制理论的基本原理最优控制理论的基本原理是寻找一组最优控制策略,使得系统的性能指标达到最优。
最优控制问题通常可以通过数学方法建立为一个优化问题。
其中,最常见的方法是最小化或最大化一个性能指标的数学表达式。
为了求解这些优化问题,可以使用动态规划、最优化理论等数学工具。
最优控制理论提供了一种系统优化设计的方法,可以帮助工程师设计更优秀的控制策略。
4. 最优控制策略的设计方法最优控制策略的设计方法取决于具体的离散控制系统和性能指标。
常见的设计方法包括经典控制方法和现代控制方法。
3离散事件系统仿真基础和建模
24
模型的人工运行(续)
2020/8/10
25
示例2-窗口售票系统
剧院雇一名售票员同时负责窗口销售和对电 话问讯者的咨询服务。
窗口服务比电话服务有更高的优先级。 问讯者打来的电话由电话系统存储后按先来
先服务的原则一一予以答复 建模的目的是研究售票员的忙闲率。2020/8/Fra bibliotek026
实体 流程图分析
常用图示符号
菱形框(表示判断) 矩形框(表示事件、状态、活动等中间过程) 圆端矩形框(表示开始和结束) 箭头线(表示逻辑关系)
2020/8/10
开始 结束
15
建模步骤-八个步骤
2020/8/10
16
示例1
理发店系统
有一个小理发店只有一个理发员。顾客来到理发店 后,如果有人正在理发就坐在一 旁等候。理发员按 先来先理的原则为每一位顾客服务,而且只要有顾 客就不停歇。
库所
变迁
输入
输出
函数
函数
2020/8/10
29
Petri网的变迁
2020/8/10
30
变迁实例
t1
t4
2020/8/10
t2 t3
31
应用举例
一条工业生产线,完成两项工业操作,第一 个操作将传入生产线的半成品S1和部件S2用 2个螺丝钉S3固定在一起,变成半成品S4。 第二个操作再将S4和部件S5用3个螺 丝钉S3 固定在一起,得到新的半成品S6。完成两项 工业操作时都要用到工具S7。假定由于存放 空间的限制,停放在生产线上的半成品S4最 多不能超过5件。
考察目的
建立实体流程图模型; 在假定顾客到达间隔和理发时间服从一定的概率分
布时,考察理发员的忙闲情况。
自动控制原理第7章离散控制系统
Z变换
01
Z变换是分析离散时间信号和系统 的有力工具,它将离散时间信号 或系统转化为复平面上的函数或 传递函数。
02
Z变换的基本思想是通过将离散时 间信号或系统进行无限次加权和 ,将其转化为一个复数域上的函 数或传递函数。
离散状态方程
离散状态方程是描述离散控制系统动 态行为的数学模型,它的一般形式为 $mathbf{dot{x}}(k) = Amathbf{x}(k) + Bu(k)$,其中 $mathbf{x}(k)$表示在时刻$k$的系 统状态向量,$u(k)$表示在时刻$k$ 的输入向量,$A$和$B$是系统的系 数矩阵。
稳态误差主要来源于系统本身的结构 和参数,以及外部干扰和测量噪声。
离散控制系统的动态响应分析
动态响应定义
动态响应是指系统在输入信号作 用下,系统输出信号随时间变化 的特性。
动态响应的描述方
式
动态响应可以通过系统的传递函 数、频率特性、根轨迹图等方式 进行描述。
优化动态响应的方
法
通过调整系统参数、改变系统结 构、引入反馈控制等方法,可以 优化系统的动态响应。
离散控制系统的仿真工具与实例
仿真工具介绍
离散控制系统的仿真工具用于模拟和测试系统的性能和稳定性。常见的仿真工具包括MATLAB/Simulink、 LabVIEW等。这些工具提供了丰富的数学函数库和图形化界面,方便用户进行系统建模和仿真。
仿真实例分析
通过具体的仿真实例,可以深入了解离散控制系统的性能和特点。例如,可以设计一个温度控制系统,通过调整 系统参数和控制算法,观察系统在不同工况下的响应特性和稳定性。通过对比不同方案,可以评估各种参数和控 制策略对系统性能的影响,为实际应用提供参考和依据。
第7章 线性离散控制系统分析
f * (t )
7. 3 Z 变换
7.3.1 Z变换的定义
连续信号 f (t ) 经过采样后的离散信号 f * (t ) 为
f * (t ) f (nT ) (t nT )
其拉普拉斯变换为 令
z e Ts
F (s) L[ f (t )] f (nT )e nTs
* * n 0
的根都位于[W] 的左半部。
7. 5 线性离散系统的稳定性与稳态误差
7.5.1 线性定常离散系统稳定的充要条件
7. 5 线性离散系统的稳定性与稳态误差
7.5.2开环增益和采样周期对离散系统稳定性的影响
开环增益与采样周期对离散系统稳定性的影响: (1)采样周期一定时,增大开环增益会使离散系统的稳 定性变差,甚至使系统不稳定; (2)开环增益一定时,采样周期越长,丢失的信息越 多,离散系统的稳定性及动态性能变差,甚至使系
7. 6 线性离散系统的动态性能分析
7.6.1 线性离散系统的单位阶跃响应
离散系统的闭环脉冲传递函数为 式中,
R( z ) z /( z 1)
。系统输出的变换式为
将上式按幂级数展开,进行Z反变换,可求出输出信号的 脉冲序列 c* (t ) ,绘制单位阶跃响应曲线 c* (t ) ,从而分析 离散系统的动态性能。若不能求出离散系统的闭环脉冲传 递函数 ( z ) ,而R( z) 是已知的,可直接写出 C ( z ) 的表达式。
在线性采样系统理论中,把初始条件为零情况下,系统的离 散输出信号的变换与离散输入信号的变换之比,定义为脉冲 C ( z) 传递函数,记为 G(z)
R( z)
系统输出采样的脉冲序列为 c* (t ) z 1[C ( z)] z 1[G( z) R( z)]
自动控制原理胡寿松第七章解析
1、线性定理 齐次性 Z [ae (t)] aE(z ) Z[e1 (t) e 2 (t)] E1 (z ) E 2 (z ) 叠加性 2、实数位移定理
Z[e(t- kT )] z -k E(z)
Z [e(t kT)] z k [E(z)- e(nT)z -n ]
n 0
k -1
z变换实际上是采样函数拉氏变换的变形,
因此又称为采样拉氏变换
z变换只适用于离散函数,或者说只能表征
连续函数在采样时刻的特性,而不能反映其 在采样时刻之间的特性。
24
成都信息工程学院控制工程系
第七章 线性离散系统的分析与校正
25
成都信息工程学院控制工程系
第七章 线性离散系统的分析与校正
二、Z变换的性质
0T
*
采样器可以用一个周期性闭合的采样开关S来表示。
理想采样开关S: T (t ) (t nT )
n 0
11
成都信息工程学院控制工程系
第七章 线性离散系统的分析与校正
理想单位脉冲序列 采样过程可以看成是一个幅值调制过程。
12
成都信息工程学院控制工程系
第七章 线性离散系统的分析与校正
1 jns t T ( t ) e T n -
1 jns t * 代入采样信号表达式:e ( t ) e( t ) T (t ) e( t )e T n
对采样信号表达式取拉氏变换: 1 E* (s) E(s jns ) T n 采样信号的付氏变换: 1 E* ( j ) E[j( ns )] T n
T (t)的付氏级数形式:
T (t)
n -
(t - nT) C e
833自控基础综合(含自动控制原理、现代控制理论)考试大纲
833自控基础综合(含自动控制原理、现代控制理论)考试大纲1、控制系统的基本概念2、控制系统的数学模型系统输入输出描述方法:线性微分方程、脉冲响应、传递函数、结构图及其等效变换;结构图的等效变换和传递函数求取;系统输出的性质和求取;非系统系统在工作点的线性化方法。
3、控制系统的时域分析稳定性和代数稳定判据;典型输入信号和时域性能指标;一阶及二阶系统的动态响应及性能;高阶系统的极点分布对系统性能的影响、主导极点的概念和相应的分析方法;稳态误差分析。
4、根轨迹法轨迹的基本概念;绘制根轨迹的基本法则;控制系统根轨迹的绘制参量根轨迹;基于根轨迹法的闭环系统性能分析。
5、控制系统的频率特性分析频率特性基本概念;典型环节的频率特性和分析;开环系统的频率特性绘制;奈奎斯特稳定判据、稳定裕度;基于开环频率特性分析系统的性能。
6、控制系统的校正装置综合串联校正装置的特性和频率法综合;串联校正装置的期望对数频率特性设计。
7、非线性系统的相平面分析法相平面法的基本概念和特点;具有典型非线性环节的二阶系统分析。
8、线性离散(时间)控制系统分析线性离散(时间)控制系统的基本概念;采样过程数学描述、采样定理、Z变换;离散(时间)控制系统的数学模型:脉冲响应、差分方程、脉冲传递函数;离散(时间)控制系统的稳定性分析;稳态误差分析。
9、线性系统的状态空间表达式动力系统的状态、状态变量、状态空间表达式的基本概念;状态空间表达式的模拟结构图、状态空间表达式的建立、线性变换。
10、线性控制系统分析(求解):线性定常系统状态方程的零状态响应和零输入响应;矩阵指数函数和状态转移矩阵的概念及其计算方法。
11、线性系统的能控性和观测性线性连续定常系统能控性定义、判据;能观测性定义、判据;能控性和能观测性的对偶关系、能控标准形能控标准形,线性系统的传递函数(阵)中零极点对消与状态能控性,能观测性的关系。
12、线性系统的稳定性稳定性的基本概念;李亚普若夫稳定性第二方法;线性系统的李亚普若夫稳定性分析;李亚普若夫第二方法在线性系统设计中的应用。
离散系统的基本概念
06
CATALOGUE
离散系统的发展趋势与展望
离散系统的新理论与方法
离散系统的新理论
随着科技的不断发展,离散系统的新理论也在不断涌现。例如,离散概率论、离散控制论、离散信息论等,这些 新理论为离散系统的发展提供了重要的理论支持。
离散系统的新方法
在实践中,人们不断探索新的方法来处理离散系统的问题。例如,离散数学、离散优化算法、离散模拟技术等, 这些新方法为离散系统的研究提供了更有效的工具。
状态转移图的绘制方法
根据状态方程,通过计算或模拟得到状态变量的时间序列解,并绘 制成图形。
状态转移图的应用
通过观察状态转移图,可以直观地了解系统动态行为和变化趋势。
04
CATALOGUE
离散系统的稳定性分析
线性离散系统的稳定性分析
定义
线性离散系统是指系统 的数学模型可以表示为 离散时间的线性方程组 ,如差分方程或离散时 间状态方程。
状态方程
1
状态方程是描述离散时间动态系统状态变化的基 本方程,通常表示为离散时间序列的递推关系。
2
状态方程通常由当前状态和输入量来预测下一个 状态,是离散系统分析的重要基础。
3
状态方程的解法包括递归法和矩阵法等,其中递 归法较为直观,而矩阵法适用于大规模系统。
转移矩阵
转移矩阵是描述离散系统状态转移关系的矩阵,其元素表示状态之间的转 移概率。
社会科学领域
在社会学、经济学、管理学等领域中,离散系统也有着广泛的应用。例如,在经济学中,离散模型被用 于描述经济活动中的离散事件;在社会学中,离散模型被用于描述社会结构和社会动态。
离散系统未来的研究方向
要点一
复杂离散系统的研究
随着科技的不断发展,复杂离散系统 的研究已经成为一个重要的研究方向 。例如,复杂网络、离散事件动态系 统等,都是复杂离散系统的研究重点 。
离散控制系统的数学模型
即
Y (z)
z2
z 3z
2
(z
z 1)( z
2)
利用反演积分法求出z反变换,得 y(k) 1 2k k 0,1, 2,
y(t) (1 2k ) (t kT ) k 0
1.2 脉冲传递函数
1.脉冲传递函数定义
在线性定常离散控制系统中,当初始条件为零时,系统离散输出信号的z
变换与离散输入信号的z变换之比,称为线性定常离散控制系统的脉冲传递函
R(z) 1 G1 (z)HG2(z)
自动控制原理
例1-13 试用z变换法求解下列二阶前向差分方程 y(k 2) 3y(k 1) 2y(k) 0
其中,初始条件为 y(0) 0, y(1) 1 。
解:对方程两端取z变换,得
z2Y (z) z2 y(0) zy(1) 3zY (z) 3zy(0) 2Y (z) 0
即 (z2 3z 2)Y (z) y(0)z2 ( y(1) 3y(0))z 代入初始条件,得 (z2 3z 2)Y (z) z
(2)串联环节之间无采样开关时
设开环离散系统如图1-18所示,在两个串联连续环节G1(s)和G2(s)之间没 有理想采样开关。此时系统的传递函数为 G(s) G1(s)G2 (s)
上式作为一个整体进行z变换,由脉冲传递函数定义得
G(z)
Y (z) R(z)
G1G2 (z)
图1-18 环节之间无理想采样开关的开环采样系统
自动控制原理
离散控制系统的数学模型
1.1 线性常系数差分方程
对于线性定常离散控制系统,一般可用n阶后向差分方程描述,即
n
m
y(k) ai y(k i) bir(k j)
i 1
j 1
离散控制系统中的模型控制设计
离散控制系统中的模型控制设计离散控制系统是现代控制领域中的重要研究方向之一。
它涉及到对离散时间信号进行采样、量化和控制的技术。
离散控制系统的模型控制设计是对这些系统的建模和控制器设计的过程,具有广泛的应用价值和实际意义。
1. 离散控制系统的基本模型在离散控制系统中,系统的输入和输出信号在时间上是离散的。
常见的离散控制系统模型包括差分方程模型和状态空间模型。
对于线性时不变系统,可以使用差分方程模型描述系统的输入输出关系。
而对于非线性或时变系统,常常使用状态空间模型来描述系统的动态行为。
2. 模型控制设计的目标离散控制系统的模型控制设计的目标是设计一个控制器,使得系统的输出能够满足预期的性能指标。
通常的性能指标包括系统的稳定性、快速性和抗干扰能力。
在模型控制设计中,需要根据系统的数学模型和性能指标,选择合适的控制器结构和参数,以实现对系统的精确控制。
3. PID控制器设计PID控制器是离散控制系统中最常用的控制器之一。
它由比例(P)、积分(I)和微分(D)三个部分组成,通过对系统的误差信号进行加权运算,调节系统的输出。
PID控制器的设计可以通过经验法则或者优化算法来实现。
常用的经验法则包括Ziegler-Nichols法则和Chien-Hrones-Reswick法则。
4. 线性二次调节器设计线性二次调节器(LQR)是离散控制系统中一种优化控制方法。
它通过最小化系统输出与期望输出之间的误差的平方和,设计一个线性状态反馈控制器。
LQR控制器采用系统的状态反馈控制策略,通过对状态变量进行测量和调节,实现对系统的稳定性和性能的优化。
5. 系统辨识与模型预测控制系统辨识是离散控制系统中的关键技术之一,它通过对实际系统的输入输出数据进行分析和处理,确定系统的数学模型。
基于系统辨识得到的数学模型,可以应用模型预测控制(MPC)方法进行系统控制。
MPC控制器通过对未来一段时间内系统的状态进行预测,计算控制信号,实现对系统的控制和优化。
《自动控制原理》离散系统的数学模型
K (t) L1[G(s)]
(7-55)
再将 K (t) 按采样周期离散化,得加权序列 K (nT ) ;最后将 K (nT ) 进
行 z 变换,按式(7-53)求出 G(z) 。这一过程比较复杂。其实,如果把 z 变
换表 7—2 中的时间函数 e(t) 看成 K (t) ,那么表中的 E(s) 就是 G(s) (见式 (7-55),而 E(z) 则相当于 G(z) 。因此,根据 z 变换表 7—2,可以直接从 G(s) 得到 G(z) ,而不必逐步推导。
本章所研究的离散系统为线性定常离散系统。 注意 zx:离散系统有本质连续和本质离散两种情况
本质连续的离散系统:如液位 炉温采样控制系统中的被控对象 本质离散的离散系统:如计算机。系统直接进行离散计算 问题:如何建立离散系统的数学模型? c(n) F[r(n)] F 的具体形式? 分析:本质连续的离散系统的方框图, 能否 G(s)?G(z)=?
众所周知,利用传递函数研究线性连续系统的特性,有公认的方便 之处。对于线性连续系统,传递函数定义为在零初始条件下,输出量的 拉氏变换与输入量的拉氏变换之比。对于线性离散系统,定义类似。
设开环离散系统如图 7-22 所示,如果系统的初始条件为零,输入信号
为 r(t) ,采样后 r*(t) 的 z 变换函数为 R(z) ,系统连续部分的输出为 c(t) ,
微分方程的经典解法类似,差分方程的经典解法[EX]*也要求出齐次方程 的通解和非齐次方程的一个特解,非常不便。这里仅介绍工程上常用的 后两种解法。
(1)迭代法 又称递推法 若已知差分方程(7-49)或(7-50),并且给定输入序列和输出序列的初 值,则可以利用递推关系可以一步一步地算出输出序列。 例 7-14 已知差分方程
7-4离散系统的数学模型
n
c(k ) 5c(k 1) 6c(k 2) r (k ); r (k ) 1(k ); c(0) 0, c(1) 1。
试用递推法计算输出序列c(k),k = 0,1,2,…,10。
解 采用递推关系 c(k+2) = 1+5c(k+1) - 6c(k); 得 c(0) 0;c(1) 1;
7-4 离散系统的数学模型
1. 离散系统的数学定义
2. 线性常系数差分方程及其解法
3. 脉冲传递函数 4. 组合环节的等效脉冲传递函数 5. 闭环系统的脉冲传递函数计算
6. Z变换的局限性及修正Z变换
离散系统的数学模型 与连续系统类似,单输入单输出线性时不变 离散系统数学模型有三大类:差分方程 ( 时域 ) 、 脉冲传递函数 ( 复数域 ) 和状态空间模型。本节重 点讨论差分方程及其解法、脉冲传递函数的基本 概念、开环和闭环脉冲传递函数的建立方法。 1. 离散系统的数学定义
k 1
2
z c(kT ) ( z 2)( z 3)
z k 1 ( z 1)( z 2) z 3
z 1
z ( z 1)( z 3)
k 1
z 2
0.5 2
k 1
0.5 3 ,k 0;
k 1
c(2) 6; c(3) 25; c(10) 86526;
┇
k
c(0) 1; c(1) 1 0.5 1.5;
lim c(k ) 1.0;
这两个示例表明,用递推法求解差分方程, 计算过于烦琐,不易得到c(k)的通项表达式。
(2) Z变换法(例7-17 )
第8章 线性离散时间控制系统
一阶保持器复现原信号的准确度与零阶保持器相比有所 提高。但由于在式(8-16)中仍然忽略了高阶微分,一阶保持器 的输出信号与原连续信号之间仍有不同。
第8章 线性离散时间控制系统 由式(8-16)可知,一阶保持器的响应可以分解为阶跃响应
和斜坡输入响应之和。将式(8-16)的微分形式变换成式(8-17) 的差分形式,对应的传递函数为式(8-18)。
第8章 线性离散时间控制系统
图8-6 零阶保持器输入信号与输出信号的关系
第8章 线性离散时间控制系统 下面推导零阶保持器的表达式。利用泰勒级数展开公式,
可以得到
如果略去含 Δt、(Δt)2等项,可得
第8章 线性离散时间控制系统 这就是零阶保持器的公式。由式(8-11)可得零阶保持器输出 信号的完整表达式为
第8章 线性离散时间控制系统
第8章 线性离散时间控制系统
8.1 信号采样与采样定理 8.2 信号保持器 8.3 离散系统的数学模型 8.4 离散系统的稳定性分析 8.5 离散系统的稳态误差 8.6 离散系统的动态性能 8.7 离散系统的校正
第8章 线性离散时间控制系统
8.1 信号采样与采样定理
8.1.1 概述 离散时间系统(简称离散系统)是指系统中全部或一部分
进而输入给计算机控制器。也就是说,采样后的离散信号必 须能够保留有原连续信号的完整或近似完整的信息。因此, 周期T 的设定非常重要。
采样定理(也叫Shannon定理)从理论上给出了必须以多 快的采样周期(或多高的采样频率)对连续信号进行采样,才能 保证采样后离散信号可以不失真地保留原连续信号的信息。 换句话说,采样定理给出了对采样周期的限定条件,即采样周 期要在多短时间之内,才能保证采样后的离散信号保留有采 样之前的连续信号的尽量多的信息。
第7章 线性离散系统
z变换的定义 : z eTs
z变换表达式的求解 :
F (z) Z[ f (t)] Z[ f * (t)] f (nT )z n n0
则 x*(t) (10 10 2n) (t nT) 10 (1 2n) (t nT)
n0
n0
2019年12月2日星期一
自动控制原理
28
留数法
3.留数法
x(nT) 等于函数 X (z)zn1 在其全部极点上的留数 和。
即 x(nT) res[X (z)zn1]
2019年12月2日星期一
自动控制原理
26
部分分式展开法
2.部分分式展开法
将函数X(z)展开成若干个简单分式和的形式, 然后利用熟知的一些基本对应关系式,或查z变换表 求得 x*(t) 。
2019年12月2日星期一
自动控制原理
27
部分分式展开法
例13 已知象函数 X (z) 10z ,试求其z反变换。
自动控制原理
3
采样控制系统
典型采样控制系统结构框图 :
采样:在系统运行中,采样开关S断开一定时间后
又闭合,反复动作, 将模拟量变为离散量,这种
间断获取信息的过程称为采样。
采样周期(Sampling Period):采样开关每间
隔一定时间T内接通及断开一次,时间T称为采样周 期。
2019年12月2日星期一
2019年12月2日星期一
自动控制原理
11
保持器—采样信号的复现
离散事件系统建模与控制
离散事件系统建模与控制离散事件系统(DES)是指由一系列离散事件组成的系统,它们之间的相互作用是基于事件的发生和触发。
离散事件系统建模与控制是对这些系统进行描述、分析和控制的过程。
本文将从离散事件系统的定义、建模方法和控制策略等方面进行探讨。
一、离散事件系统简介离散事件系统是一类可以描述为离散事件的数学模型。
它由一组状态、事件和转移函数组成。
状态表示系统在某一时刻的属性,事件表示可能导致状态变化的行为,而转移函数描述了状态和事件之间的关系。
离散事件系统具有离散性、异步性和并发性等特点。
二、离散事件系统建模方法在进行离散事件系统建模时,需要选择合适的建模方法以准确描述系统的行为。
常用的离散事件系统建模方法包括Petri网、有限状态机和时序逻辑等。
1. Petri网Petri网是一种图形化的离散事件系统建模方法。
它通过使用库所、变迁和弧线等元素来描述系统的状态、事件和状态转移过程。
库所表示系统的状态,变迁表示事件,而弧线表示状态之间的转移关系。
通过构建Petri网模型,可以对系统的行为进行形式化描述和分析。
2. 有限状态机有限状态机是一种基于状态转移的离散事件系统建模方法。
它由一组状态、输入事件和输出动作组成。
状态表示系统的内部状态,输入事件触发状态转移,而输出动作表示由状态转移引起的动作。
有限状态机通常使用状态转移图或状态转移表来表示系统的行为。
3. 时序逻辑时序逻辑是一种基于逻辑表达式的离散事件系统建模方法。
它通过使用时序逻辑公式描述系统的行为约束和性质要求。
时序逻辑利用逻辑运算符、时态操作符和时态量词等来表达系统中的事件发生序列和状态转移关系。
三、离散事件系统控制策略离散事件系统控制的目标是确保系统按照预定的行为模式运行并满足性能要求。
为了实现这一目标,可以采用多种控制策略,如启发式控制、优化控制和自适应控制等。
1. 启发式控制启发式控制是一种基于经验规则和专家知识的控制策略。
它通过分析系统的行为特征和性能指标来制定相应的控制策略。
第6章 离散系统
采样周期T 对采样信号 的影响:
0
t (a)
0 T1
t
f(t)
T
f * (t )
0
t (b)
0 T2
t
采样定理也称shannon(香农)定理,叙述如下:
若对于一个具有有限频谱( w wmax)的连续信 号f(t)进行采样,当采样角频率满足 ws 2wmax
时,则采样函数f*(t)能无失真地恢复原来的连 续信号f(t)。wmax为信号有效频谱的最高角频 率, ws 为采样角频率。 当采样角频率 ws 2wmax 时,从采样信号中不 能完全的恢复出原连续信号。
* n 0
2. 采样定理
从理论上讲,离散系统的采样周期T越小, 离散系统越接近连续系统。因为采样周期T太 长,采样点很少时,在两个采样点之间可能丢 失信号中的重要信息。因此,采样周期T不能 太大。只有当把采样周期T缩短以后,得到的 采样值才保留了原信号的主要特征。
f(t)
T
f * (t )
F ( z) e
n 0
anT
z
n
1 e
aT
z e
1
2 aT
z
2
aT 1 e z 1 时,上式的无穷级数也是收敛 当 的。于是求得e-at的Z变换为:
Z [e ] F ( z )
at
1 1 e
aT
z
1
z aT z e
D/A转换器:把离散的数字信号转换成连续的 模拟信号。
f (t )
f (t)
解码
f h(t)
信号复现
0111 1000 0010 0100 1001 0011 0 T 2T 3T 4T 5T (a) t 0 T 2T 3T 4T 5T (b) t 0 T 2T 3T 4T 5T (c) t
《现代控制理论》 教案大纲
《现代控制理论》教案大纲第一章:绪论1.1 课程背景与意义1.2 控制系统的基本概念1.3 控制理论的发展历程1.4 控制理论的应用领域第二章:控制系统数学模型2.1 连续控制系统数学模型2.2 离散控制系统数学模型2.3 状态空间描述2.4 系统矩阵的性质与运算第三章:线性系统的时域分析3.1 系统的稳定性3.2 系统的瞬时性3.3 系统的稳态性能3.4 系统的动态性能第四章:线性系统的频域分析4.1 频率响应的概念4.2 频率响应的性质4.3 系统频率响应的求取方法4.4 系统频域性能指标第五章:线性系统的校正与设计5.1 系统校正的基本概念5.2 常用校正器及其特性5.3 系统校正的方法5.4 系统校正实例分析第六章:非线性控制系统分析6.1 非线性系统的基本概念6.2 非线性系统的数学模型6.3 非线性系统的稳定性分析6.4 非线性系统的控制策略第七章:状态反馈与观测器设计7.1 状态反馈控制的基本原理7.2 状态反馈控制器的设计方法7.3 观测器的设计与分析7.4 状态反馈控制系统应用实例第八章:先进控制策略8.1 鲁棒控制8.2 自适应控制8.3 最优控制8.4 智能控制第九章:最优控制理论9.1 最优控制的基本概念9.2 线性二次调节器(LQR)9.3 离散时间最优控制9.4 最优控制的应用第十章:现代控制理论在工程应用10.1 现代控制理论在自动化领域的应用10.2 现代控制理论在控制中的应用10.3 现代控制理论在航空航天领域的应用10.4 现代控制理论在其他领域的应用第十一章:鲁棒控制理论11.1 鲁棒控制的基本概念11.2 鲁棒控制的设计方法11.3 鲁棒控制的应用实例11.4 鲁棒控制在实际系统中的性能评估第十二章:自适应控制理论12.1 自适应控制的基本概念12.2 自适应控制的设计方法12.3 自适应控制的应用实例12.4 自适应控制在复杂系统中的应用与挑战第十三章:数字控制系统设计13.1 数字控制系统的概述13.2 数字控制器的设计方法13.3 数字控制系统的仿真与实验13.4 数字控制系统在实际应用中的案例分析第十四章:控制系统中的计算机辅助设计14.1 计算机辅助设计的基本概念14.2 控制系统CAD工具与方法14.3 基于软件的控制系统设计与仿真14.4 控制系统CAD在现代工程中的应用案例第十五章:现代控制理论的前沿与发展15.1 现代控制理论的最新研究动态15.2 控制理论与其他领域的交叉融合15.3 未来控制理论的发展趋势15.4 控制理论在解决现实世界问题中的潜力与挑战重点和难点解析本《现代控制理论》教案大纲涵盖了现代控制理论的基本概念、方法与应用,分为十五个章节。
离散时间控制系统
离散时间控制系统离散时间控制系统(Discrete-time control system)是工程系统中常用的一种控制系统。
它是指系统在离散时间点上进行观测和控制的一种方法,与连续时间控制系统相对应。
在离散时间控制系统中,系统的状态、输入和输出均在特定的离散时间点上进行采样和更新。
这些离散时间点称为采样时间点,通常由控制系统的设计要求和性能要求决定。
与连续时间控制系统相比,离散时间控制系统具有采样和计算简单、实时性好等优势。
离散时间控制系统通常由以下基本元素组成:传感器(sensors)、执行器(actuators)、系统状态(system states)、控制器(controller)、采样器(sampler)和计算器(calculator)。
其中,传感器用于采集系统的输入和输出信号,执行器用于控制系统的行为,系统状态用于表示系统的内部状态,控制器用于根据输入信号和系统状态生成控制信号,采样器用于确定采样时间点,计算器用于执行控制算法和计算控制信号。
离散时间控制系统的设计和分析主要涉及系统建模、传递函数、状态空间和系统稳定性等概念。
通过对系统进行建模和分析,可以确定适当的控制策略和参数,实现对系统的控制和优化。
离散时间控制系统广泛应用于自动化控制领域,如工业生产过程控制、机械设备控制、电力系统控制等。
它可以根据离散时间点上的观测和控制信号,对系统进行实时监测和调整,以满足设计要求和性能要求。
总之,离散时间控制系统是一种在特定离散时间点上进行观测和控制的控制系统。
它具有采样和计算简单、实时性好等优势,并广泛应用于自动化控制领域。
通过合理的设计和分析,离散时间控制系统可以实现对系统的控制和优化。
离散时间控制系统(Discrete-time control system)在工程系统中扮演着至关重要的角色。
它可以帮助工程师们实时监测和调整系统状态,以满足设计要求和性能要求。
在本文中,我们将进一步探讨离散时间控制系统的一些关键概念、方法和应用。
自动控制原理总经典总结
自动控制原理总经典总结自动控制原理》总复控制系统控制系统是由受控对象和控制器组成的系统,用于控制和调节被控量。
根据不同的角度,控制系统可以分为恒值系统和随动系统、线性系统和非线性系统、连续系统和离散系统、定常系统和时变系统等。
线性系统线性系统是指系统的输出与输入之间存在线性关系的系统。
建模时可以采用求传函或脉冲传函的方法,分析时可使用根轨迹法、频率特性法等方法。
非线性系统非线性系统是指系统的输出与输入之间不存在线性关系的系统。
建模时可以采用描述函数法或相平面法,稳定性分析时可以求奇点和极限环,运动时间可以通过振幅和频率计算得出。
控制系统的基本概念控制系统的基本术语包括自动控制、系统、自动控制系统、被控量、输入量、干扰量、受控对象、控制器、反馈、负反馈控制原理等。
掌握这些基本概念可以帮助理解控制系统的基本组成和工作原理。
基本控制方式控制系统的基本方式包括开环控制系统、闭环控制系统和复合控制系统。
开环控制系统没有反馈,闭环控制系统则通过反馈控制来实现对被控量的调节,复合控制系统则是开环控制和闭环控制的组合。
数学模型数学模型是用数学表达式描述控制系统的工作原理和特性的模型。
建模时可以采用物理系统的微分方程描述、拉普拉斯变换及反变换、传递函数及典型环节的传递函数、脉冲响应函数等方法。
图形表示可以采用结构图、信号流图等方法。
基本要求研究自动控制原理需要掌握控制系统的基本概念、基本控制方式、数学模型等知识。
同时,需要了解控制系统的分类和典型输入信号,并能够正确理解数学模型的特点和概念。
掌握这些知识可以帮助理解控制系统的工作原理和实际应用。
2.了解动态微分方程建立的一般方法和小偏差线性化方法。
3.掌握使用拉普拉斯变换解微分方程的方法,并对解的结构、运动模态、特征根的关系、零输入响应、零状态响应等概念有清晰的理解。
4.正确理解传递函数的定义、性质和意义,并熟练掌握系统开环传递函数、闭环传递函数、误差传递函数、典型环节传递函数等概念。
7-1 离散系统的基本概念
e*(t) A(t) τ
e*(t)
理想化后: τ→0
t T t
T
矩形面积:s=A(t)×τ
τ :脉冲宽度 A(t):幅度
由定义: B(t ) (t )dt A(t )
0-
0+
由脉冲函数定义,在0-~0+脉冲强 0 度B(t)可视为不变数。而 0 (t )dt 1
所以:B(t)= A(t)×τ
a.开环采样系统:采样器位于系统闭合回路之外, 或系统本身不存在闭合回路。 b.闭环采样系统:采样器位于系统闭合回路之内。 而在实践中用得最多的是:误差采样控制的闭环系统。 误差采样:采样开关设在误差比较点之后。 s:采样开关,τ→0
r(t) e(t) S e*(t) eh(t) c(t)
Gh(s)
e*(t)
e*(t) 信号复现滤波器
(保持器)
eh(t)
e*(t)(t) eh
保持器输入信号
t
保持器输出信号
t
图7-3 保持器的输入与输出信号
保持器可把脉冲信号e*(t)复现为阶梯信号eh(t); 当采样频率足够高时,eh(t)接近于连续信号。
(2) 采样系统的典型结构图
根据采样器在系统中所处的位置不同,可以构成各种采 样系统。
第七章 线性离散系统的分析与校正
7-1 离散系统的基本概念 7-2 信号的采样与保持 7-3 z变换理论 7-4 离散系统的数学模型 7-5 离散系统的稳定性与稳态误差 7-6 离散系统的动态性能分析 7-7 离散系统的数字校正
学习目的
由于数字技术的迅速发展,特别是计算机技术的 发展,数字控制在许多场合取代了模拟控制器,作为 分析与设计数字控制系统的理论基础,离散系统控制 理论发展也非常迅速。 离散控制系统与连续控制系统既有本质上的不同, 又有分析研究方面的相似性,利用z变换法研究离散 系统,可以把连续系统中的许多概念和方法推广到线 性离散系统。 通过本章学习,建立有关离散控制系统的概念, 掌握数字控制中采样和保持这二个信号变换过程及数 学描述,了解z变换理论,建立离散系统的数学模型, 掌握离散系统的分析和校正方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
07.06.2020
8
• 8.1.3 离散控制系统的研究方法
• 拉氏变换,传递函数和频率特性等不再适用,研究离散 控制系统的数学基础是z变换,通过z变换这个数学工具, 可以把我们以前学习过的传递函数,频率特性,根轨迹法 等概念应用于离散控制系统。因而z变换具有和拉氏变换同 等的作用,是研究线性离散系统的重要数学工具。
2
➢ 8.1 离散控制系统的基本概念
• 在控制系统中,如果所有信号都是时间变量的连续函数, 换句话说,这些信号在全部时间上是已知的,则这样的系统称 为连续系统;如果控制系统中有一处或几处信号是一串脉冲或 数码,即这些信号仅定义在离散时间上,则这样的系统称为离 散系统。
• 一般来讲,把系统中的离散信号是脉冲序列形式的离散系统, 称为采样控制系统或脉冲控制系统;当离散量为数字序列形式 时,则称为数字控制系统或计算机控制系统。通常将采样控制 系统和数字控制系统,统称离散系统。
07.06.2020
3
8.1.1 离散控制系统
✓ 1.采样控制系统
一般来讲,把系统中的离散信号是脉冲序列形式的离散 系统,称为采样控制系统或脉冲控制系统。
例:
给定 电位器
e(t)
测温 电阻
θ
被控对象
φ 加热气体
检流计凸轮 β来自电位器电动机 减速器e*(t)
放大器
图8-1 工业炉温采样控制系统
07.06.2020
等的周期采样。
07.06.2020
10
•8.2.1 采样过程及其数学描述
把连续信号转换成离散信号的过程,叫做采样。实现采 样的装置叫做采样器或采样开关。将连续信号加到采样开关
的输入端,采样开关以周期T秒闭合一次,闭合持续时间为 , 于是采样开关输出端得到周期为T、宽度为的脉冲序列e * (t)
如图8-2所示。
07.06.2020
15
✓ 2.零阶保持器 • 由于理想低通滤波器实际是不存在的,工程上采用的
将采样信号恢复为连续时间信号的装置称为保持器。最常 用、最简单的保持器是零阶保持器。零阶保持器可以将采 样点幅值保持至下一个采样瞬时,采样信号经零阶保持器 后,变为阶梯信号 ,e如h (t图) 8-3所示。
• 图8-3 零阶保持器
•07.06.2020
4
• 上图该系统中工业炉是具有时滞特性的惯性环节。检流
计有电流流过,指针发生偏转,设转角为β。设计一同步 电机通过减速器驱动凸轮旋转,使指针周期性的上下运动, 且每隔T秒与电位器接触一次,每次接触时间为τ。其中,T 称为采样周期,τ 称为采样持续时间。
• 当炉温连续变化时,则电位器的输出是一串宽度为τ, 周期为T的离散脉冲电压信号,用 表示。e经* (t过) 放大器、 电动机、减速器去控制炉门角φ的大小,炉温的给定值, 由给定电位器给出。
07.06.2020
9
➢ 8.2 信号的采样与保持
•
•
把连续信号变换为脉冲信号,需要使用采样器;另
一方面,为了控制连续式元部件,又需要使用保持器将脉
冲信号变换成连续信号。因此,为了定量研究离散系统,
必须对信号的采样过程和保持过程用数学的方法加以描述。
在采样的各种方式中,最简单而又最普通的是采样间隔相
离散控制系统基本 概念和数学模型
– 主要内容: • 8.1 离散系统的基本概念 • 8.2 信号的采样与保持 • 8.3 z变换理论 • 8.4 离散控制系统的数学模型 • 8.5 离散控制系统的分析 • 8.6 离散控制系统的数字校正 • 8.7 应用MATLAB分析离散控制系统
07.06.2020
07.06.2020
5
•
• 给定电位器与电桥输出的误差信号是连续变化的,但 通过指针和旋转凸轮的作用后,电位器的输出却为离散值, 这实际上是该系统借助于指针、凸轮这些元部件对连续误 差信号进行采样,将连续信号转换成了脉冲序列,凸轮就 成了采样器(采样开关)。
07.06.2020
6
✓ 2.数字控制系统
来取代采样点处的矩形脉冲,于是就得到连续时间信号的
理想采样表达式为
07.06.2020
e*(t) e(nT)(tnT) n0
12
•上式也可写作:
e*(t)e(t)T(t) •式中T(t)((称t为nT单) 位理想脉冲序列)
n0
•而e * (t )则为加权单位理想脉冲序列。
07.06.2020
13
14
• 8.2.3 信号的复现与零阶保持器 ✓ 1.信号的复现 • 如果不经过滤波器将高频分量滤掉,则相当于给系统加
入噪声。因此在实际应用中,采样开关后面串联一个信号 复现滤波器,通过它使脉冲 复原成连续信号再加到系
e* (t) 统中去。 • 通常在工程上采用接近理想滤波器性能的保持器来代替。
•
•
数字控制系统就是一种以数字计算机或数字控制器去控制 具有连续工作状态的被控对象的闭环控制系统。因此数字 控制系统包括工作于离散状态下数字计算机和工作于连续 状态下被控对象两大部分。
通常用计算机的内部时钟来设定采样周期,整个系统的 信号传递则要求能在一个采样周期内完成。
07.06.2020
7
• 8.1.2 离散控制系统的特点 • 数字控制系统较相应的连续控制系统具有一系列的特点:
• 8.2.2 采样定理
•
香农采样定理:
•
要保证采样后的离散信号不失真地恢复原连续信号,
或者说要保证信号经采样后不会导致任何信息丢失,必须
满足两个条件:
1. 信号必须是频谱宽度受限的,即其频谱所含频率成分的最 高频率为max ;
2. 采样频率必须至少是信号最高频率的两倍即s 2max 。
07.06.2020
τ
e*(t)
0
图8-2 实际采样过程
07.06.2020
e(t)
e*(t)
t
e*(t)
0 T 2T 3T
t
T
11
• 在采样开关的作用下,将采样器的输出近似为矩形脉
冲,任意点的采样值表示为
e(n)T 1[1(tn)T 1(tn T)]
• 则采样信号可表示为
•
如采样持续时e*(t间) 非n 0 常e(n 小)T ,1就[1(t可n 以)T 用1(理t想n单T 位)]脉冲函数