激光加热表面淬火简介
表面淬火技术及其应用
表面淬火技术及其应用
表面淬火技术是一种通过对工件表面进行加热、快速冷却的方式,来改变工件表面硬度、耐磨性、耐腐蚀性等性能的热处理工艺。
以下是表面淬火技术及其应用的一些介绍:
1.感应加热表面淬火技术:感应加热是通过电磁感应来加热工件
表面的一种方式,适用于各种形状的工件,如轴、齿轮、带轮
等。
该技术可提高工件表面的硬度、耐磨性和疲劳强度,同时
保持心部材料的韧性。
2.火焰加热表面淬火技术:火焰加热是通过氧气和乙炔等可燃气
体燃烧后对工件表面进行加热的一种方式,适用于大型工件和
批量生产的工件,如齿轮、轴等。
该技术可提高工件表面的硬
度、耐磨性和耐腐蚀性。
3.电接触加热表面淬火技术:电接触加热是通过电极与工件表面
接触,通过电流加热工件表面的一种方式,适用于小型工件,
如轴、齿轮等。
该技术可提高工件表面的硬度、耐磨性和耐腐
蚀性。
4.电解液加热表面淬火技术:电解液加热是通过将工件作为阴极
插入电解液中,利用电解反应来加热工件表面的一种方式,适
用于小型工件,如轴、齿轮等。
该技术可提高工件表面的硬度、
耐磨性和耐腐蚀性。
表面淬火技术的应用广泛,可应用于汽车、航空航天、机械制造等领域中的各种工件,如轴、齿轮、曲轴、连杆等。
通过表面淬火处理,可以提高工件的使用寿命和可靠性,降低维修成本,提高生产效率。
激光淬火技术工艺介绍及应用
激光淬火技术是利用聚焦后的激光束快速加热钢铁材料表面,使其发生相变,形成马氏体淬硬层的过程。
激光淬火前后工件的变形几乎可以忽略,因此特别适合高精度要求的零件表面处理。
激光淬硬层的深度依照零件成分、尺寸与形状以及激光工艺参数的不同,一般在0.3~2.0mm 范围之间。
对大型齿轮的齿面、大型轴类零件的轴颈进行淬火,表面粗糙度基本不变,不需要后续机械加工就可以满足实际工况的需求。
激光淬火现已成功地应用到冶金行业、机械行业、石油化工行业中易损件的表面强化,特别是在提高轧辊、导卫、齿轮、剪刃等易损件的使用寿命方面,效果显著,取得了很大的经济效益与社会效益,近年来在模具、齿轮等零部件表面强化方面也得到越来越广泛的应用。
一:激光淬火的特点
1.淬火零件不变形、激光淬火的热循环过程快、中碳钢、大型轴类;
2.几乎不破坏表面粗糙度、采用防氧化保护薄涂层、模具钢、各种模具;
3.激光淬火不开裂、精确定量的数控淬火、冷作模具钢、模具、刃具;
4.对局部、沟、槽淬火、定位精确的数控淬火、中碳合金钢、减振器;
5.激光、淬火清洁、高效、不需要水或油等冷却介质、铸铁材料、发动机汽缸;
6.淬火硬度比常规方法高、淬火层组织细密、强韧性好、高碳合金钢、大型轧辊。
二:激光淬火工业应用实例
激光淬火技术可对各种导轨、大型齿轮、轴颈、汽缸内壁、模具、减振器、摩擦轮、轧辊、滚轮零件进行表面强化。
适用材料为中、高碳钢,铸铁。
南京中科煜宸激光技术有限公司专业从事激光增材制造装备(3D打印、激光修复)、智能激光焊接装备、自动化生产线、核心器件(工艺软件、送粉器、加工头)和金属粉末材料的研发与制造,感兴趣的用户可以咨询了解一下。
激光表面淬火-李凤辉
激光表面淬火1 引言激光淬火又称为激光相变硬化,是指以高能密度的激光束照射工件表面,使其需要硬化部位瞬间吸收光能并立即转化为热能,从而使激光作用区的温度急剧上升形成奥氏体,经随后的快速冷却,获得极细小马氏体和其他组织的高硬化层的一种热处理技术。
热量从工件表面向基体内部快速传导,表面得以急剧冷却(冷却速度可达104℃∕s甚至106℃∕s),实现自冷淬火。
2 激光表面淬火的优缺点由于激光相变硬化加热及冷却都是在快速下进行的,所以使得激光相变硬化与常规热处理有许多不同之处。
⑴激光淬火比普通淬火硬度高,耐磨性好,对于低、中碳钢效果更为明显。
⑵激光淬火变形小,热影响区小。
⑶由于激光淬火是自冷,因而不用淬火介质,不必清洗,无污染,生产环境好。
⑷硬化层深度可以控制。
⑸因为光的传递方便,所以可实现自动化生产。
⑹可任意选淬火部位,对零件任一局部可施行淬火,只要光照到的部位均可处理。
尽管激光是一先进技术,有许多优点,但也存在一些不利因素和一定局限性。
⑴设备较贵,一次投资大,对操作人员要求较高。
⑵淬火前表面要增加一预处理工序。
⑶大面积淬火时,扫描带之间有软带,硬度不连续。
⑷光电转化效率还较低。
⑸硬化层深度较浅。
3 激光表面淬火工艺3.1 激光淬火表面预处理由于一般钢铁零件是是在精加工后才强化处理的,表面光亮,对激光的反射率很高,吸收激光能量的能力很低,因此待处理工件表面必须经过表面预处理,以提高激光能量的利用率。
通常采用黑化处理,即在零件表面得到一层对光具有高吸收率的黑色薄膜。
磷化法:用磷酸锰或磷酸锌为主的溶液浸渍零件(可加温),在表面得到深灰色的绒状薄膜,膜厚约10μm,CO2激光吸收率可由激光表面的10%~15%提高到70%~95%。
这种黑化处理仅适用于低碳钢、中碳钢和铸铁,对高合金钢(如不锈钢)效果不好。
炭素法:用炭素墨汁或或石墨-粘结济溶液涂在零件表面。
这种方法可用在任何材料上,还可进行局部涂敷。
这种涂层吸收率为90%左右,对材料有一定增碳作用。
表面淬火定义
表面淬火定义表面淬火是一种金属材料处理技术,旨在提高金属材料的硬度和耐磨性。
在表面淬火过程中,金属材料的表面被快速加热到高温,然后迅速冷却,使其细化晶粒并形成马氏体组织,从而获得优异的机械性能。
表面淬火是一种常用的金属材料处理方法,广泛应用于机械制造、汽车制造、航空航天等领域。
通过表面淬火处理,可以显著提高金属材料的硬度和耐磨性,增加其使用寿命和耐久性。
同时,表面淬火还可以改善金属材料的表面质量,提高其抗腐蚀性能,增强其抗拉强度和抗压强度。
表面淬火的基本原理是利用金属材料的相变规律。
当金属材料被加热到一定温度时,其晶体结构会发生变化,从而产生新的组织结构。
在表面淬火过程中,金属材料的表面被加热到临界温度以上,使其达到奥氏体相区,然后迅速冷却,使其迅速转变为马氏体组织。
马氏体组织具有高硬度和优异的耐磨性,可以显著提高金属材料的机械性能。
表面淬火可以采用多种方法进行,常见的方法包括火焰淬火、电火花淬火、激光淬火等。
不同的淬火方法适用于不同的金属材料和工件形状。
火焰淬火是一种较常用的表面淬火方法,它通过将金属材料的表面加热到高温并迅速冷却,使其形成马氏体组织。
电火花淬火利用电火花放电的高温和高能量特性,将金属材料的表面加热到临界温度以上,并通过迅速冷却形成马氏体组织。
激光淬火则利用激光的高能量和高密度特性,将金属材料的表面加热到临界温度以上,并通过迅速冷却形成马氏体组织。
表面淬火不仅可以提高金属材料的硬度和耐磨性,还可以改善其表面质量。
在表面淬火过程中,金属材料的表面会发生相变,原有的晶粒会细化并形成马氏体组织。
这种细化的晶粒结构可以显著提高金属材料的表面质量,使其更加光滑、均匀,减少表面缺陷和气孔的产生。
同时,表面淬火还可以提高金属材料的抗腐蚀性能,使其更加耐腐蚀和耐磨损。
表面淬火是一种有效的金属材料处理方法,可以显著提高金属材料的硬度和耐磨性,改善其表面质量,增强其机械性能和抗腐蚀性能。
在工业生产中,表面淬火被广泛应用于各个领域,为产品的质量和性能提供了有力支撑。
激光加热表面淬火原理【详解】
表面淬火技术原理:激光淬火,也称激光热处理、激光硬化,即利用聚焦后的激光束快速加热金属材料表面,使其发生相变成马氏体淬硬层的一种高新技术,分为激光相变硬化、激光熔凝硬化和激光冲击硬化三种工艺方法。
技术特点 :1.激光淬火马氏体晶粒更细、位错密度更高,硬度更高,耐磨性更好。
2.变形极小,甚至无变形,适合于高精度零件处理,部分场合可作为材科和零件的最后处理工序。
3.无需回火,淬火表面得到压应力,不易产生裂纹。
4.如工柔牲好,适用面广,可方便地处理大尺寸工件和沟、槽、深孔、内孔、盲孔等局部区域。
5可根据需要调整硬化层深浅。
6.硬度梯度非常小,硬度基本不随激光硬化层深变化而变化。
7.适合的材料广泛,包括各种中高碳钢、工具钢、模具钢以及铸铁材料等。
8.加工过程自动化控制,工期短,质量稳定。
9.低碳环保,无需冷却介质,无废气废水排放。
技术参数 :适合材质:各类中高碳钢、铸铁淬火硬度:一般可比感应淬火高1-5HRC 淬火深度:0.1-1.2mm 应用领域激光淬火技术解决了许多常规热处理工艺无法解决的难题,已大量应用于冶金、汽车、模具、五金、轻工、机械制造等行业。
适合各类型零件的热处理:1.难以进入热处理炉的大型工件。
2.仅需对沟、槽、孔、边、刃口等局部表面进行热处理的工件。
3.常规热处理工艺难以处理到的部位。
4.对热处理变形量要求高的精密零件。
5.铸铁工件表面的热处理。
6.常规热处理工艺易产生裂纹的零件。
7.常规热处理工艺达不到硬度要求的零件。
激光表面修复技术原理通过在基材表面添加不同成分、性能的熔覆材料,并利用高能密度的激光束使之与基材表面薄层一起熔凝的方法,在基材表面形成与其为冶金结合的具有特殊物理、化学或力学性能的添料熔覆层。
技术特点 :1.激光熔覆层与基体为致密冶金结合,结合强度高,不脱落。
2. 加工过程热影响区和热变形小,不改变基材内部金属性能。
3. 可实现工件表面性能的定制,熔覆耐磨损、耐腐蚀、耐高温等特殊功能层。
表面淬火——精选推荐
表面淬火
表面淬火是将刚件的表面层淬透到一定的深度,而心部分仍保持未淬火状态的一种局部淬火的方法。
表面淬火时通过快速加热,使刚件表面很快到淬火的温度,在热量来不及穿到工件心部就立即冷却,实现局部淬火。
表面淬火的目的在于获得高硬度,高耐磨性的表面,而心部仍然保持原有的良好韧性,常用于机床主轴,齿轮,发动机的曲轴等。
表面淬火采用的快速加热方法有多种,如电感应,火焰,电接触,激光等,目前应用最广的是电感应加热法。
感应加热表面淬火就是在一个感应线圈中通以一定频率的交流电(有高频,中频。
工频三种),是感应圈周围产生频率相同的交变磁场,置于磁场之中的工件就会产生与感应线圈频率相同,方向相反的感应电流,这个电流叫涡流。
由于集肤效应,涡流主要集中在工件的表层。
由涡流所产生的电阻热使工件表层被迅速加热到淬火温度,随即向工件喷水,将工件表层淬硬。
感应电流的频率愈高,集肤效应也愈强烈,故高频感应加热用途最广。
高频感应加热常用频率是200~300kHz,其加热速度极快,通常只有几秒种,淬硬层深度一般为0.5~2mm。
主要用于要求淬硬层较薄的中,小型零件,如齿轮,轴等。
扩展阅读:
1.《金属工艺学》郑文英主编高等教育出版社。
热处理--表面淬火技术
我所关注的表面工程领域——表面淬火技术一、表面淬火技术的原理和分类采用特定热源将钢铁材料表面快速加热到Ac3(对亚共析钢)或者Ac1(对过共析钢)之上,然后使其快速冷却并发生马氏体相变,形成表面强化层的工艺过程,就称为表面淬火技术。
实际上,不仅仅是钢铁,凡是能通过整体强化的金属材料,原则上都可以进行表面淬火。
需要注意的是,表面淬火只对工件的表面或部分表面进行热处理,所以只改变表层的组织,使其表面硬度、耐磨性和疲劳强度均高。
而心部或其它部分的组织仍保留原来的低硬度、高塑性和高韧性的性能,这样工件截面上由于组织不同性能也就不同。
表面淬火便于实现机械化、自动化,质量稳定,变形小,热处理周期短,费用少,成本低,还可用碳钢代替一些合金钢。
对于表面淬火的使用材料,原则上,碳的质量分数在0.35%--1.20%的中、高碳钢及基体相当于中碳钢的普通灰铸铁、球墨铸铁、可锻铸铁、合金铸铁均可以实现表面淬火,但中碳钢与球墨铸铁是最适宜于表面淬火的材料。
根据加热方法不同,表面淬火可分为感应加热(高频、中频、工频)表面淬火、火焰加热表面淬火、激光加热表面淬火、电子束表面淬火、接触电阻加热表面淬火、电解液加热表面淬火等。
工业上应用最多的为感应加热、火焰加热、激光加热表面淬火。
这里我主要介绍了感应加热、激光加热表面淬火技术,以及感应加热表面淬火国内外的发展现状及趋势。
二、感应加热表面淬火感应加热表面淬火法是采用一定方法使工件表面产生一定频率的感应电流,将零件表面迅速加热,然后迅速淬火冷却的一种热处理操作方法。
生产中把工件放入由空心铜管绕成的感应线圈中,当感应线圈通以交流电时,便会在工件内部感应产生频率相同、方向相反的感应电流。
感应电流在工件内自成回路,故称为“涡流”。
涡流在工件截面上的分布是不均匀的,表面电流密度最大,心部电流密度几乎为零,这种现象称为集肤效应。
由于钢本身具有电阻,因而集中于工件表面的涡流,几秒种可使工件表面温度升至800~1000℃,而心部温度仍接近室温,在随即喷水(合金钢浸油)快速冷却后,就达到了表面淬火的目的。
表面淬火概念
表面淬火概念
表面淬火是一种热处理工艺,用于改善材料表面的硬度和耐磨性,同时保持内部的韧性和强度。
它主要适用于金属材料,如钢和铁。
表面淬火的过程涉及将材料加热到足够高的温度,然后迅速冷却,以产生所需的组织和性能变化。
与传统的整体淬火相比,表面淬火仅对材料表面进行处理,因此能够改善表面的性能而不会对整体结构产生太大的影响。
在表面淬火过程中,常用的方法包括火焰淬火、电火花淬火、激光淬火和电子束淬火等。
这些方法都会在材料表面形成高温区域,并通过迅速冷却使表面发生相变,从而获得较高的硬度。
表面淬火可以增加材料表面的耐磨性、抗腐蚀性和抗疲劳性能。
它常用于制造工业中需要经受高应力和摩擦的部件,如齿轮、刀具、轴承等。
通过表面淬火,这些部件的使用寿命可以得到显著延长。
需要注意的是,表面淬火过程需要严格控制温度和冷却速度,以确保达到所需的材料性能。
不正确的淬火过程可能导致材料变形、裂纹和不均匀的硬度分布。
因此,在进行表面淬火之前,应仔细研究材料的性质和淬火工艺,以确保最佳的处理效果。
激光熔凝(淬火)及原理介绍
激光熔凝(淬火)及原理介绍激光熔凝原理激光熔凝也称激光熔化淬火。
激光熔凝是用激光束将获得工件表面加热熔化到一定深度,然后自冷使熔层凝固,获得较为细化均质的组织和所需性能的表面改性技术。
激光熔凝原理与激光非晶化基本上相一致。
但激光熔凝处理时激光的能量密度和扫描速·度均远小于激光非晶化。
激光熔凝与激光合金化不同,它在表面熔化时一般不添加任何合金元素,熔凝层与材料基体是天然的冶金结合;在激光熔凝过程中,可以排除杂质和气体,同时急冷重结晶获得的组织有较高的硬度、耐磨性和抗蚀性;其表面熔层深度远大于激光非晶化。
激光熔凝是将金属材料表面在激光束照射下成为溶化状态,同时迅速凝固,产生新的表面层。
根据材料表面组织变化情况,可分为合金化、重溶细化、上釉和表面复合化等。
我公司的轧辊激光熔凝产品是用适当的参数的激光辐照材料表面,使其表面快速熔融、快速冷凝,获得较为细化均质的表面改性技术。
它具有以下优点:表面熔化时一般可添加超硬耐磨金属元素或化学元素,熔凝层与材料基体形成冶金结合。
在激光熔凝过程中,可以排除杂质和气体,同时急冷重结晶获得的杂质有较高的硬度、耐磨性和抗腐蚀性。
其熔层薄、热作用区小,对表面粗糙度和工件尺寸影响不大,有时可不再进行后续磨光而直接使用。
提高溶质原子在基体中固溶度极限,晶粒及第二相质点超细化,形成亚稳相可获得无扩散的单一晶体结构甚至非晶态,从而使生成的新型合金获得传统方法得不到的优良性能。
激光(相变)淬火和激光熔凝淬火激光(相变)淬火技术是利用聚焦后的激光束入射到钢铁材料表面,使其温度迅速升高到相变点以上,当激光移开后,由于仍处于低温的内层材料的快速导热作用,使受热表层快速冷却到马氏体相变点以下,进而实现工件的表面相变硬化。
激光淬火原理与感应淬火、火焰淬火技术相同。
但是其技术特点是,所使用的能量密度更高,加热速度更快,不需要淬火介质,工件变形小,加热层深度和加热轨迹易于控制,易于实现自动化,因此可以在很多工业领域中逐步取代感应淬火和化学热处理等传统工艺。
多功能激光淬火技术
多功能激光淬火技术
多功能激光淬火技术是一种利用激光器对材料进行淬火处理的技术。
激光淬火是一种快速加热和快速冷却的热处理方法,通过高功率激光束对工件表面进行瞬间加热,然后迅速冷却,以改变材料的性能和结构。
多功能激光淬火技术具有以下特点和优势:
1. 灵活性:激光淬火可以针对不同材料和不同形状的工件进行精确控制,适应性强。
2. 高硬化深度:激光淬火可以实现较高的硬化深度,提高工件的表面硬度和耐磨性。
3. 短时间处理:激光淬火处理时间短,一般在几十微秒至几毫秒之间,可以大幅度提高生产效率。
4. 小热影响区域:激光束的直径小,热影响区域小,可以减少对工件其他部分的热影响,提高工件的整体性能。
5. 可控性强:激光淬火可以根据需要对激光功率、扫描速度等参数进行调整,实现定制化的热处理过程,有利于控制工件的性能和质量。
6. 适用范围广:激光淬火适用于各种金属材料,包括钢、铝合金、镁合金等。
多功能激光淬火技术在汽车制造、航空航天、机械制造等领域有广泛应用。
它可以提高零件的表面硬度、耐磨性和抗腐蚀性,延长使用寿命,同时还可以改善零件的尺寸精度、表面质量和疲劳性能,提高整体装配质量和可靠性。
因此,多功能激光淬火技术对于提高产品质量和降低生产成本具有重要意义。
为您浅谈介绍激光淬火
为您浅谈介绍激光淬火激光淬火是一种利用激光束进行材料表面处理的技术,它通过将材料加热到超过其临界温度,并在极短时间内进行急冷处理,从而提高材料的硬度和强度。
在工业应用中,激光淬火通常被用来提高机械零件的硬度、耐磨性和耐腐蚀性。
本文将为您详细介绍激光淬火的原理、设备、应用及优缺点。
原理激光淬火利用激光的高能量密度,将材料表面局部区域加热至其超过临界温度,这样可以引起材料结构的相变。
当加热的材料表面急速冷却时,就会形成一种非晶化的结构,在几微米至数十微米的深度范围内形成了高硬度表面层。
这种过程称为淬火,可以提高材料的硬度、强度和耐磨性。
设备激光淬火设备主要由激光器、光学系统、控制系统等组成。
激光器通常是固体激光器或半导体激光器,输出激光束能量密度高达1000万瓦/平方厘米以上,很容易将材料表面加热到临界温度以上。
光学系统主要由聚焦器和扫描器组成,聚焦器可以将激光束聚焦到特定大小和形状的点上,扫描器可以控制激光束在样品表面的移动轨迹。
控制系统则负责控制激光器的功率、光束大小和扫描速度等参数。
应用激光淬火在很多工业领域都有广泛的应用,一些常见的领域包括:汽车制造激光淬火主要应用于汽车发动机的摇臂、气门、凸轮轴等零部件的表面强化,从而提高它们的耐磨度和寿命。
它还可以用于车轮轮缘、制动盘等零部件的淬火处理,从而提高它们的载荷能力和耐久性。
机械制造激光淬火通常应用于各种机械零部件的表面强化。
例如:工具钢、刀具、齿轮、滚动轴承等。
这些零件在使用时会受到大量的磨损和摩擦,使用激光淬火可以有效地提高它们的耐磨性和使用寿命。
航空航天激光淬火可以用于各种航空航天领域的零部件制造。
例如:飞机涡轮叶片、阀门、虹吸口等零部件的表面淬火处理,能够提高它们的机械性能和抗腐蚀性,同时保证它们的轻量化。
优缺点激光淬火作为一种物理表面处理技术,具有以下优缺点:优点1.可以实现局部淬火处理,不会影响材料整体性能。
2.处理速度快,处理质量高,能够满足工业化生产的需要。
激光熔凝(淬火)及原理介绍
激光熔凝(淬火)及原理介绍激光熔凝原理激光熔凝也称激光熔化淬火。
激光熔凝是用激光束将获得工件表面加热熔化到一定深度,然后自冷使熔层凝固,获得较为细化均质的组织和所需性能的表面改性技术。
激光熔凝原理与激光非晶化基本上相一致。
但激光熔凝处理时激光的能量密度和扫描速·度均远小于激光非晶化。
激光熔凝与激光合金化不同,它在表面熔化时一般不添加任何合金元素,熔凝层与材料基体是天然的冶金结合;在激光熔凝过程中,可以排除杂质和气体,同时急冷重结晶获得的组织有较高的硬度、耐磨性和抗蚀性;其表面熔层深度远大于激光非晶化。
激光熔凝是将金属材料表面在激光束照射下成为溶化状态,同时迅速凝固,产生新的表面层。
根据材料表面组织变化情况,可分为合金化、重溶细化、上釉和表面复合化等。
我公司的轧辊激光熔凝产品是用适当的参数的激光辐照材料表面,使其表面快速熔融、快速冷凝,获得较为细化均质的表面改性技术。
它具有以下优点:表面熔化时一般可添加超硬耐磨金属元素或化学元素,熔凝层与材料基体形成冶金结合。
在激光熔凝过程中,可以排除杂质和气体,同时急冷重结晶获得的杂质有较高的硬度、耐磨性和抗腐蚀性。
其熔层薄、热作用区小,对表面粗糙度和工件尺寸影响不大,有时可不再进行后续磨光而直接使用。
提高溶质原子在基体中固溶度极限,晶粒及第二相质点超细化,形成亚稳相可获得无扩散的单一晶体结构甚至非晶态,从而使生成的新型合金获得传统方法得不到的优良性能。
激光(相变)淬火和激光熔凝淬火激光(相变)淬火技术是利用聚焦后的激光束入射到钢铁材料表面,使其温度迅速升高到相变点以上,当激光移开后,由于仍处于低温的内层材料的快速导热作用,使受热表层快速冷却到马氏体相变点以下,进而实现工件的表面相变硬化。
激光淬火原理与感应淬火、火焰淬火技术相同。
但是其技术特点是,所使用的能量密度更高,加热速度更快,不需要淬火介质,工件变形小,加热层深度和加热轨迹易于控制,易于实现自动化,因此可以在很多工业领域中逐步取代感应淬火和化学热处理等传统工艺。
激光淬火技术简介
激光淬火技术简介本文简要介绍激光对材料表面改性处理中激光淬火技术的实现方法、主要特点、面临的问题以及目前国内外的研究现状.自从60年代激光问世以后, 激光技术作为一门举世瞩目的高新技术, 几乎在各行各业都获得了重要的应用. 20多年前, 利用大功率激光实现材料表面相变硬化的可行性便在实验室里得到证实, 很快, 美国通用汽车公司将这项技术第一个用于工业生产. 我国自70年代末研制成功千瓦级二氧化碳激光器之后, 激光热处理的工业应用亦取得了重要的成就, 从此, 人们始终未中断对这项技术的应用研究. 但是, 时至今日, 激光热处理在工业上的应用情况显得远远低于最初的估计, 即使是在汽车工业, 激光热处理在国内外也未广泛用于工业生产.一、激光淬火简介从能量传输的观点而言, 激光是一种功率密度极高的能量流. 当激光辐照金属材料表面时, 材料表层将激光注入的能量转换为热而使温度迅速增高; 当激光作用停止后, 由于金属是热的良异体, 材料基体对热能的扩散而使热影响区的温度迅速下降, 从而使材料表层经历了一个热处理过程. 金属热处理的结果与材料热影响区域所经历的热循环相关, 通过控制作用激光的功率、功率密度分布、激光作用时间等参数, 可以改变热循环, 从而完成材料表层的淬火或退火等工艺.在激光热处理中,金属材料的激光淬火是激光热处理的一项最重要的内容,激光淬火又称为激光相变硬化, 是指以高能密度的激光束照射工件表面, 使其需要硬化部位瞬间吸收光能并立即转化为热能, 从而使激光作用区的温度急剧上升形成奥氏体, 经随后的快速冷却, 获得极细小马氏体和其他组织的高硬化层的一种热处理技术。
对激光淬火的深入研究表明, 这是一个涉及光束质量、工件的热物理特性、工件的几何形状以及光作用方式等众多因素的复杂技术, 对设备的配置以及操作人员的素质都有较高的要求. 设备昂贵和技术复杂的问题,较大幅度地提高了工件热处理的成本, 降低了这项技术对传统热处理工艺的竞争力. 也许, 这就是这项技术未能迅速推广的主要原因. 但是, 激光淬火和其它传统的热处理工艺相比(例如工件整体的盐浴淬火、工件表面的感应淬火) , 它具有可以精确控制热处理区域及工件热变形小等一系列优点. 只要能够较好地控制激光淬火的工艺过程, 原则上可以用价格便宜, 易于加工的材料制造工件的基体, 在工件的关键部位用激光进行处理, 便能显著提高产品的质量, 简化工件的生产工艺, 降低工件的成本, 增强激光淬火对其它传统热处理工艺的竞争能力.二、激光淬火表面预处理由于一般钢铁零件是是在精加工后才强化处理的,表面光亮,对激光的反射率很高,吸收激光能量的能力很低,因此待处理工件表面必须经过表面预处理,以提高激光能量的利用率。
激光表面淬火名词解释
激光表面淬火名词解释
激光表面淬火是一种采用激光作为热源进行加热和淬火处理的
表面处理方法。
其基本原理是利用激光束的高能量密度,将激光能量聚焦在材料表面的小区域上,瞬间加热材料表层,然后迅速冷却,使其产生快速固化和淬火的效果。
激光表面淬火的主要特点包括:
1. 高能量密度:激光束聚焦后能量密度非常高,可以瞬间加热材料表层到很高的温度,达到淬火的要求。
2. 快速加热和冷却:激光能量作用时间非常短暂,可以实现快速加热和冷却的效果,避免了传统淬火中可能产生的变形和裂纹等问题。
3. 局部性能改善:激光表面淬火只在局部区域进行处理,可以有选择性地改善材料表面的性能,同时保持材料的内部结构不变。
4. 精确控制:激光表面淬火可以通过调整激光功率、扫描速度和淬火参数等来精确控制材料的淬火效果,实现定制化的处理。
激光表面淬火在工业生产中广泛应用于金属材料的硬化处理、提高材料表面硬度和耐磨性、改善材料的耐腐蚀性能等方面,具有高效、精确、可控等优点。
激光和电子束加热表面淬火工艺
激光和电子束加热表面淬火是两种新的金属热处理技术,它们是在20世纪70年代初发展起来的。
由于它们加热上的一些显著特点,为金属的表面热处理带来了一些新的概念和特点。
下面我们就来具体介绍一下激光和电子束加热表面淬火工艺。
1、激光热处理的基本原理激光是一种亮度极高,单色性和方向性极强的光源。
激光加热和一般加热方式不同,它是利用激光束由点到线、由线到面的以扫描方式来实现。
常用扫描方式有两种,一种是以轻微散焦的激光束进行横扫描,它可以单程扫描,也可以交叠扫描;另一种是用尖锐聚焦的激光束进行往复摆动扫描。
表面淬火时最主要的是控制表面温度和加热深度,因而用激光扫描加热时关键是控制扫描速度和功率密度。
如果扫描速度太慢,温度可以迅速上升到超过材料的熔点;如果功率密度太小,材料又得不到足够的热量,以致达不到淬火所需要的相变温度,或者停留时间过长,加热深度过深,以致不能自行冷却淬火。
2、激光热处理的特点、发展和应用激光热处理的特点主要有以下几个方面:(1)加热速度快,淬火不用冷却剂。
因为激光能量密度大,故可使金属表面在百分之几甚至千分之几秒内升高到所需淬火温度。
由于升温快加热集中,因而停止照射时可以把热量迅速传至周围未被加热金属,被加热处可以迅速冷却,达到自行淬火的效果。
(2)可以进行局部的选择性淬火,由于激光具有高的方向性和相干性,可控制性能好,它可用光屏系统传播和聚焦。
因此,可以按任何复杂的几何图形进行局部选择性加热淬火,而不影响邻近部位的组织和粗糙度。
(3)几乎没有变形。
3、电子束加热表面淬火电子束加热是通过电子流轰击金属表面,电子流和金属中的原子碰撞来传递能量进行加热。
电子束加热表面时,表面温度和淬透深度除和电子束能量大小有关外,还和轰击时间有关,轰击时间长,温度就高,加热深度也增加。
激光加热和电子束加热相比较,电子束加热效率更高,消耗能量是所有表面加热中最小的;而激光加热本身的电效率低,成本较高。
大功率激光器维护也是比较复杂的,但是除了激光器本身以外,没有特殊要求,而电子束系统一定要真空度。
现代激光淬火知识
现代激光淬火知识
现代激光淬火是一种利用激光技术对金属表面进行淬火处理的方法。
激光淬火具有高效、快速、高精度和可控性好等特点,广泛应用于各种金属材料的淬火加工和表面改性。
激光淬火的原理是利用激光束高能量密度的特点,使材料表面迅速加热到临界温度以上,并迅速冷却,使材料表面形成具有高硬度和耐磨性的相,从而提高材料的硬度、强度和耐磨性。
激光淬火的优点主要体现在以下几个方面:
1. 高效快速:激光淬火的加工速度快,一般情况下只需要几秒钟,大大节约了淬火处理时间。
2. 可控性好:激光淬火可以对激光功率、扫描速度、淬火时间等参数进行精确控制,能够根据材料的特性和要求进行定制化加工。
3. 表面硬化:激光淬火可以使材料表面硬度提高几倍甚至几十倍,同时还能提高材料的抗疲劳性能和抗弯曲性能。
4. 高精度:激光淬火能够实现对复杂形状零件的加工,并可以实现局部淬火,避免了整体淬火带来的零件形状变化和变形的问题。
5. 应用广泛:激光淬火适用于各种金属材料,包括钢、铸铁、铝合金等。
总的来说,现代激光淬火技术在提高材料硬度、强度和耐磨性方面具有独特的优势,被广泛应用于制造业中的零部件加工和表面改性等领域。
表面淬火的原理及应用视频
表面淬火的原理及应用视频1. 简介表面淬火是一种通过控制材料表面冷却速率实现的热处理技术。
它包括对材料进行局部加热,并在加热后迅速冷却,以改变材料的表面组织结构和性能。
表面淬火广泛应用于许多领域,例如机械制造、航空航天、汽车工业等。
2. 原理表面淬火的原理是将材料表面加热至高温状态,然后迅速冷却,使材料表面形成马氏体组织或硬质化相,从而达到提高材料硬度和耐磨性的目的。
表面淬火的原理包括以下几个方面:2.1 加热阶段在表面淬火过程中,首先对材料表面进行加热,通常采用火焰加热、电阻加热或激光加热等方法。
加热时应控制加热温度和时间,使材料表面达到所需的高温状态。
2.2 冷却阶段在加热后,迅速对材料表面进行冷却,以使材料表面结构发生变化。
冷却方法常用的包括水淬、油淬、气体淬等方式,具体选择冷却方式根据材料的性质和应用要求而定。
2.3 表面组织改变通过控制加热和冷却过程,使材料表面的组织结构发生改变。
通常情况下,材料表面会形成马氏体组织或硬质化相,从而提高材料的硬度、强度和耐磨性。
3. 应用视频以下是一个表面淬火的应用视频,展示了表面淬火技术在实际生产中的应用情况:•视频标题:表面淬火技术在工业生产中的应用•视频时长:3分钟•视频内容:1.简要介绍表面淬火的原理和特点;2.展示实际工业生产中采用表面淬火技术的案例;3.分析使用表面淬火技术后材料表面性能的改善情况;4.引导观看者了解更多有关表面淬火的相关知识和应用领域。
4. 总结表面淬火是一种通过控制材料表面冷却速率来改变材料表面性能的热处理技术。
它可以提高材料的硬度、强度和耐磨性,广泛应用于机械制造、航空航天、汽车工业等领域。
通过观看应用视频,可以更直观地了解表面淬火技术在工业生产中的应用情况,进一步了解表面淬火的原理和特点。
激光淬火原理
激光淬火原理激光淬火(Laser quenching)技术是目前最为先进的金属表面加工技术之一,它在改善材料表面硬度、抗磨损性、耐腐蚀性等方面具有广泛的应用前景。
本文将阐述激光淬火的原理、特点及其对材料性质的影响,以期为相关领域的研究和应用提供参考。
激光淬火是利用激光束对金属材料进行加热处理,使其表面快速升温(通常在毫秒级别),然后迅速冷却,目的是使材料表面的“温度差”尽可能大。
温度差越大,淬火效果越好。
淬火时,金属表面温度会瞬间升高到几千摄氏度,随后高温区域很快膨胀,由于冷却速度快且不均匀,使金属表面处于高应力状态,从而得到了比传统淬火工艺更好的硬度和抗磨损性能。
激光淬火的主要基础设备由激光源、聚焦光路、加工平台及控制系统等主要组成。
激光源是激光淬火设备的关键,常用的激光源有CO2、Nd:YAG、光纤激光等。
聚焦光路将激光束集中于加工材料表面,主要包括凸透镜、聚焦镜等光学元器件;加工平台可实现精准控制加工位置、加工速度和深度等参数;控制系统用于实现激光淬火设备工艺参数的设置和运行控制。
激光淬火工艺中需要考虑的主要参数包括激光功率、扫描速度、放置时间、加工深度等。
这些参数的设置需要依据材料的性质和加工要求等因素进行综合考虑和优化配置。
二、激光淬火的特点1.高加工效率,可大幅降低生产成本。
与传统淬火工艺相比,激光淬火的处理速度更快,可在毫秒或微秒的时间内完成加工,从而极大地提高了加工效率,减少了生产成本。
2.更好的加工品质和加工精度。
由于激光束具有非接触式、高精密度的加工方式,因此能够精确地控制加工深度和表面质量,从而实现更高的加工精度和更好的加工品质。
3.具有更高的可控性和适应性。
激光淬火可根据材料的不同特性和加工要求来调整工艺参数,同时也能够控制淬火后材料的硬度、强度和韧性等性质,并能够对不同形状、尺寸和材料的工件进行加工。
4.提高材料的性能和延长使用寿命。
淬火后的材料表面硬度和强度都会大大提高,从而提高了材料的抗磨损性、耐腐蚀性和使用寿命。
金属的表面淬火
金属的表面淬火——激光加热表面淬火摘要摘要正文:激光加热表面淬火为热源加热,具有高能量密度,可以在金属表面获得非结晶组织,显著提高零件的疲劳强度和耐磨性。
激光加热表面淬火是以高能量的激光束作为热源的热处理。
处理过程是将激光束扫描金属零件表面,其红外能量被零件表面吸收而迅速形成很高的温度,使金属发生相变。
关键词:激光加热表面淬火强度随着经济与现代生产技术的飞速发展,淬火工艺在现代机械制造工业得到广泛的应用。
机械中重要零件,尤其在汽车、飞机、火箭中应用的钢件几乎都经过淬火处理。
表面淬火的目的在于获得高硬度,高耐磨性的表面,而心部仍然保持原有的良好韧性,常用于机床主轴,齿轮,发动机的曲轴等。
表面淬火是将钢件的表面层淬透到一定的深度,而心部分仍保持未淬火状态的一种局部淬火的方法。
表面淬火时通过快速加热,使钢件表面很快到淬火的温度,在热量来不及穿到工件心部就立即冷却,实现局部淬火。
表面淬火的方法很多,有感应加热表面淬火,火焰加热表面淬火,盐浴加热表面淬火,电解液加热表面淬火,激光加热表面淬火,电子束加热表面淬火等。
其中,激光加热表面淬火为热源加热,具有高能量密度,可以在金属表面获得非结晶组织,显著提高零件的疲劳强度和耐磨性。
激光的特点是高亮度、高方向性、高单色性和高相干性。
高亮度和高方向性对激光加热淬火就有决定性的意义。
高亮度即激光束的能量高,在很小的面积上形成高达kW/的功率密度。
高方向性可使激光束容易控制,不仅可以将激光束引向任何位置,还可以将能量传到很远而不致衰减。
激光加热表面淬火是以高能量的激光束作为热源的热处理。
处理过程是将激光束扫描金属零件表面,其红外能量被零件表面吸收而迅速形成很高的温度,使金属发生相变。
随着激光束离开金属表面,零件表面的热量,依靠金属本身热传导迅速向内部传递,而形成极大的冷却速度,可以靠自激冷却使零件表面淬火,使其硬化。
激光加热表面淬火在提高轧辊、导卫、齿轮、剪刃等易损件的使用寿命方面效果显著,取得了很大的经济效益与社会效益。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
激光加热表面淬火简介:
(1)定义:利用聚集后的激光束快速加热钢铁材料表面,使其发生相变形成马氏体淬硬层的热处理工改错为激光加热表
面淬火。
(2)特点:与普通热处理相比,它具有如下特点:
①加热速度极快,工件热变形极小。
由于激光功率密度高,加
热速度可达1010℃/s,因而热影响区小,工件热变形小,劳动条件好。
②其冷却速度很高,在工件有足够质量前提下,冷速可达1023℃
/s;不需冷却介质,靠热量由表向里的传导自动淬火。
③由于激光束扫描(加热)面积很小,可十分精确地对形状复
杂的工件(如有盲孔、小孔、小槽、薄壁零件等)进行处理或局部处理,也可根据需要在同一零件的不同部位进行不同的处理。
④能精确控制其加工条件,操作简单,可实现在线加工,也易
于与计算机连接,便于实现自动化生产。
⑤不需要加热介质,有利于环境保护;工件经激光淬火后表面
硬度高(比普通淬火硬度值高15%~~20%)、疲劳强度高(表面具有4000Mpa以上的残余压应力)。
⑥节省能源,并且工件表面清洁,处理后不需修磨,可作为工
件精机械加工的最后一道工序。
其不足之处在于:只能改变工件表面性能,但不能改善心部
性能;不能用于重负荷工件,也不适用于大型工件。
(3)原理:用于热处理的激光淬火装置主要是CO2气体激光器,它所发生的激光波长为10.6μm,此波长具有很好的大气透过率,很多物质对此波长的辐射线具有一定吸收率;它具有输出功率大(20~~100kW)、效率高(可达20%~~40%)、持续工件时间长等优点。
激光加热金属主要是通过光子同金属材料表面的电子和声子的能量交换,使处理层材料温度升高,在10-7~~10-9s之内就能使作用深度内达到局部热平衡,在金属材料表面形成的这层高温“热层”继而又作为内部金属的加热热源,并以热传导方式进行传热。
激光加热表面淬火就是以高能量激光作为能源以极快速度加热工件并自冷淬火的工艺。
其实质就是利用激光产生的热量对工件表面进行处理的过程,它是一种新型的热处理工艺技术。
应当注意事项的是激光加热表面淬火效果与材料表面的反射率、密度和热导率等密切相关,由于所有金属都是10.6μm波长和CO2激光的良好反射体,反射率可高达70%~80%,对于反射率高的材料,激光能量不能被充分,所以激光淬火前要对金属表面施加吸光涂层(黑化处理)以增加吸收率。
常用的黑化方法,主要有磷化、氧化等,或在金属表面涂覆一层可大师吸收激光的涂料(如碳素墨汁、胶体石墨、粉状金属氧化物、黑色丙烯酸、氨基屏光漆等)。
(3)工艺参数及应用:钢铁材料进行激光淬火的主要工艺参数
为:激光束的功率(P,单位:W)、激光光斑直径(Db单
位:mm)、激光束的扫描速度(σ单位:cm/s)等。
当涂
层材料和工件的化学成分一定时,改变激光束功率密度和
激光束扫描速度,可获得不同硬化层深度(H单位:mm)、硬度值及组织等,以达到所需的力学性能。
它们之间的关
系如下:
H∝P Dbσ
硬化层的组织则与工件的化学成分有关。
一般碳素钢的激光硬化层组织基本上是细针状马氏体;合金钢则为板条马氏体+碳化物+少量残余奥氏体等。
激光硬化层与基体交界的过渡区组织极为复杂,呈多相状态。
激光束未照射部位仍为原始金相组织。
表1为几种常用钢材的激光淬火工艺参数与力学性能及组织的关系,表2为45号钢激光加热表面淬火后的效果比较。
表1 几种常见钢材的激光淬火工艺参数与力学性能及组织的关系
表2 15号钢激光加热表面淬火后的效果比较
激光加热表面淬火,虽然开发时间较短,但进展较快,已在一些机械产品的生产中获得成功应用,例如变速箱齿轮,发动机气缸套,轴承圈和导轨等。