压实度相对密度计算
土石坝的压实标准及应用中存在的问题.

土石坝的压实标准及应用中存在的问题郭庆国(国家电力公司西北勘测设计研究院工程科研实验院,西安710043)李鹏徐彦文(陕西省水电工程局,西安710068)关键词:土石坝;土石料;压实标准;压实度;相对压实度摘要:土石坝施工的核心是土石料的填筑压实,压实质量的好坏,关键在于能否正确执行压实标准。
本文基于某些工程在执行压实标准中存在一些问题,对此作了简略的分析,以引起注意外,着重对压实标准的定义、条件、相互关系作了较全面的阐述,其目的旨在正确的应用压实标准,确保工程质量。
1 压实标准及有关指标碾压式土石坝的施工,关键工序是对坝体土石料的分层填筑压实,压实效果,用测得的干密度反映出来,所以干密度是设计和施工质控的主要指标。
一般当填筑的土石料较为均匀时,性质比较稳定,在同一压实条件下,干密度接近常数值,这时可用某一干密度作为设计和施工质控标准。
但天然土石料往往是不均匀的,在同一压实条件下,干密度指标是不同的,若仍用某一干密度作为设计和施工质控标准,必然出现对易于压实的土石料,压实后的干密度值容易达到,而压实结果是偏松的,对不易压实的土石料,压实干密度不易达到,而压实结果是偏紧密的,这样形成不均匀土石料在同一压实条件下,紧密程度不同,容易发生不均匀变形,危及坝体安全。
鉴于此种情况,在坝体设计中对不均匀土石料,不用某一固定干密度值作为设计和施工质控指标,而是对粘性土用压实度(见(1)式),对无粘性粗粒土用相对压实度(见(3)(4)式)作为设计标准和施工质控的依据。
式中:D为压实度;ρd 为干密度;ρdmax为最大干密度。
由(1)式看出,D为压实度,是干密度与最大干密度比值,反映相对紧密度的一个无量纲标准值,值的大小,是依据土石坝工程的规模(坝高、工程量、库容等)、重要性(地理位置、效益、作用等),工程等级由规范确定,对某一工程而言,它是一个固定值,代表该土石坝的设计标准;ρd是土料压实后测出的干密度,反映了压实效果的指标值,ρdmax是对该土料用标准压实方法(如ASTMD698方法)[5]测得最优含水量的干密度值,亦称标准压实条件下的最大干密度指标,反映土料的压实特性指标值,ρd 和ρdm ax为同一种土料在两种压实条件下的两个密度指标值。
相对密度和压实度对应表_概述说明以及解释

相对密度和压实度对应表概述说明以及解释1. 引言1.1 概述相对密度和压实度是土壤力学中重要的指标,用于描述土壤颗粒之间的紧密程度和固结状态。
相对密度可以通过比较实际密度与最大单一颗粒密度之间的差异来计算,而压实度则是指土壤在经历了一定程度的压实过程后所达到的密实程度。
1.2 文章结构本文将从以下几个方面对相对密度和压实度进行探讨:概念解释与定义、相对密度与压实度之间的关系、测量方法、影响因素以及应用和意义。
1.3 目的本文旨在全面介绍相对密度和压实度这两个关键概念,深入理解它们在土壤工程中的作用与应用。
通过研究相关测量方法和影响因素,以及分析工程中的实际案例,我们可以更好地把握相对密度和压实度在工程设计和施工过程中的重要性,并展望未来在该领域可能出现的发展趋势与研究方向。
2. 相对密度和压实度2.1 相对密度的概念相对密度是土壤颗粒间隙中固体颗粒占据的比例,是衡量土壤密实程度的指标。
通常用无因次数值表示,范围在0到1之间。
相对密度越高,表示土壤的颗粒排列更加紧密,空隙较少。
2.2 压实度的定义压实度是指土壤在施加压力时经过振实或压实处理后的变形性质。
它衡量了土壤抵押能力以及抵押后恢复能力的能力。
压实度越高,表示土壤越具有抵押和承载荷载能力。
2.3 相对密度与压实度之间的关系相对密度和压实度有着一定的相关性。
当土壤处于低相对密度状态时,颗粒之间存在大量空隙,容易被振碎或受到外部荷载影响而发生变形。
而当土壤处于高相对密度状态时,颗粒之间紧密排列,空隙减少,导致较好的抵押和承载能力。
因此,可以认为相对密度越高,压实度也会相应提高。
然而,相对密度和压实度并非完全一致。
相对密度主要考虑土壤颗粒之间的排列紧密程度,而压实度则同时考虑了土壤的变形性质,在施工过程中经历振实或压实处理。
因此,在具体的工程应用中,需要综合考虑两者指标,并根据具体情况进行分析和判断。
以上是关于相对密度和压实度的基本概念和关系介绍。
沥青路面压实度全自动计算方法

压实度标准值K0(%): 98 S = 0.49 小于K0-1的点数m = 0
n =3
k = 99.0 K=k-Stа /√n = 98.1
tа /√n = 1.686
合格率(n-m)÷n×100% = 100.0
K 结论:
于K0
试验:
计算:
校核:
2.43 2.423
2 3 4 5 6 7 8 9 10 11 12 13 14 15
水中质量 (g)
689.9 7 1169.9
毛体积 密度 (g/cm3)
2.403 2.420 2.410
路面 吸水率 密实度 (%) (%)
0.4 0.4 0.4 98.6 99.3 98.9
K61+900 距中6.0m K62+010 距中9.0m K64+450 距中4.0m
湖南省洞口至新宁高速公路
CY412
沥青路面密度试验记录表(钻芯法)
承包单位: 监理单位: 试验单位 起止桩号
混合料配合比
中铁十局集团第二工程有限公司 长沙中核工程监理咨询有限公司 洞新高速公路LM3合同段工地试验室 K61+800-K62+100左幅
1#:2#:3#:4#:5#:6#:矿粉=25:11:15:14:16:17:2.0
合同号: LM3 编 号:
2013年6月26日
试验日期
混合料种类 AC-25C 水温(℃)
25.0
3
标准试件密度
理论最大相对密度
2.437 2.556
g/cm3
水密度(g/cm ) 表干法
0.9971
钻芯取样桩号及位置
芯样厚度 空气中 (cm) 质量 (g)
路基路面现场试验检测方法之压实度试验检测方法

路基、路面压实质量是道路工程施工质量管理最重要的内在指标之一,只有对路基、路面结构层进行充分压实,才能保证路基、路面的强度。
刚度及路面的平整度,并可以保证及延长路基、路面工程的使用寿命。
现场压实质量用压实度表示,对于路基土及路面基层,压实度是指工地实际达到的干密度与室内标准击实试验所得的最大于密度的比值;对沥青路面,压实度是指现场实际达到的密度与室内标准密度的比值。
一、标准密度(最大干密度)和最佳含水量的确定方法由于筑路材料结构层次等因素的不同,确定室内标准密度的方法也多样化,有些方法需在实践中进一步完善。
最大干密度是指在标准击实曲线(驼峰曲线)上最大的干密度值,该值对应的含水量即为最佳含水量。
(一)路基土的最大子密度和最佳含水量确定方法路基受到的荷载应力,随深度而迅速减少,所以路基上部的压实度应高一些;另外,公路等级高,其路面等级也高,对路基强度的要求则相应提高,所以对路基压实度的要求也应高一些。
因此,高速、一级公路路基的压实度标准,对于路床0~80cm应不小于95%,路堤80~150cm应不小于93%,150cm以下应不小于90%;对于零填及路堑、路槽底面以下0~30cm应不小于95% 。
在平均年降雨量少于150mm且地下水位低的特殊干旱地区(相当于潮湿系数≤ 0.25地区)的压实度标准可降低2%~3%。
因为这些地区雨量稀少,地下水位低,天然土的含水量大大低于最佳含水量,要加水到最佳含水量情况下进行压实确有很大困难,压实度标准适当降低也不致影响路基的强度和稳定性。
在平均年降雨量超过2000mm,潮湿系数>2的过湿地区和不能晾晒的多雨地区,天然土的含水量超过最佳含水量5%时,要达到上述的要求极为困难,应进行稳定处理后再压实。
由于上的性质、颗粒的差别,确定最大干密度的方法也有区别,除了一般上的“击实法”以外,还有粗粒上和巨粒上最大干密度的确定方法。
击实试验由于击实功的不同,可分为重型和轻型击实,两个试验的原理和基本规律相似,但重型击实试验的击实功提高了4.5倍。
浅析道路基层压实超密问题及措施

浅析道路基层压实超密问题及措施摘要:针对道路基层施工中经常出现的压实度超密现象,系统分析了影响超密的主要因素,并提出了相关的解决措施。
关键词:道路基层;压实超密;原因;措施引言压实度是沥青混凝土基层施工质量控制中一个非常重要的指标,在一定的控制范围内,压实度越大沥青混凝土基层的强度越高、板体性和稳定性越好,控制压实度也就控制了水泥碎石基层的质量,进而保证了路面的使用品质。
但压实超密,有时压实度高达105%。
因此,从表面上看,密实度很大,实际上未达到应有的密实度,这一问题值得讨论。
一、工程实例说明(一)工程概况某国道路的改建工程全长25.5km,路面宽l0m,路面结构形式为3cm (AC-13I)改性沥青混凝土+4cm(AC-20I)沥青混凝土+15cm水泥稳定砂掺碎石上基层+15cm水泥稳定砂掺碎石下基层。
上基层配料比采用水泥:碎石:砂=5.0:67:33,7d无侧限抗压强度代表值≥3.0MPa,下基层配料比采用水泥:碎石:砂=4.5:55:45,7d无侧限抗压强度代表≥2.0MPa。
(二)试验研究以下基层为例,在试验室中根据设计建议配料比,按规范要求做出试验标准配料比,即水泥:碎石:砂=4.5:45:55,最大干容重 2.30g/cm3,最佳含水量为6.2%,以此为基准做碎石含量分别为85%、75%、65%、55%、45%、35%、25%(砂的含量分别为15%、25%、35%、45%、55%、65%、75%)的击实试验,试验结果见表1:绘制曲线如图1,图2:图1碎石含量与最大干容重Pd的关系曲线图2碎石含量与7d无侧限抗压强度的关系曲线从图1可以看出,随着集料中碎石含量的增加,最大干容重逐渐增大,当碎石含量增至47%时,最大干容重增大幅度减缓;从图2可以看出,随着碎石含量的增加,无侧限抗压强度逐渐增加从55%—75%的范围内增大幅度较大,两头增幅较缓。
(三)超密现象分析1.如果在压实度超密的检测结果中出现普遍超密的现象,就需要对使用的最大干容重进行检查,查看其是否准确,或者是标准砂、灌砂筒的标定是否复合规定的要求,如果检查发现没有达到标准,不准确或者不规范,就要重新进行试验来确定最大干容重。
压实沥青混合料密度 表干法 自动计算

2.322
2.35
98.8
36.4 671.46 390.39
682.76
1.68
2.297
2.290
2.35
97.4
45.6 840.90 496.71
856.95
1.91
2.334
2.327
2.35
99.0
52.2 963.45 560.05
980.66
1.79
2.291
2.284
2.35
97.2
压实沥青混合料密度试验记录(表干法)
建设项目: 合同号: 施工路段:
施工单位: 监理单位:
设计厚度:
40
mm
D-24.1 (自/抽)检:
结构层名称:
试验日期:
路面桩号
试件的吸水率(%) Sa=(mf-ma)/(mf-mω)×100
25℃ρω=1.026
试件厚度 (mm)
干燥试件 空中质量
ma(g)
试件的 水中质量
备注:试验规程T0705-2000(表干法)适用于吸水率不大于2%的各种沥青混合料(密实型沥青砼面层)。 表中理想最大相对密度rt—由T0711(D-24.4)或T0712(D-24.5)测定。 标准密度ρ0—由沥青混合料实测最大密度ρm计算压实度时,应进行孔隙率折算,作为标准密度ρ0=ρm×[(100-VV)/100]。
试验:
计算:
复核:
mω(g)
试件的 表干质量
mf(g)
吸水率 Sa(%)
相对密度 rf=
ma/(mf-mω)
密度 ρf= rf×ρω
沥青混合 料的标准
密度 ρo= (g/cm3)
压实度K(%) (ρf/ρo)×100
路基压实度的检测方法

第一节压实度试验检测方法路基、路面压实质量是道路工程施工质量管理最重要的内在指标之一,只有对路基、路面结构层进行充分压实,才能保证路基、路面的强度。
刚度及路面的平整度,并可以保证及延长路基、路面工程的使用寿命。
现场压实质量用压实度表示,对于路基土及路面基层,压实度是指工地实际达到的干密度与室内标准击实试验所得的最大于密度的比值;对沥青路面,压实度是指现场实际达到的密度与室内标准密度的比值。
一、标准密度(最大干密度)和最佳含水量的确定方法由于筑路材料结构层次等因素的不同,确定室内标准密度的方法也多样化,有些方法需在实践中进一步完善。
最大干密度是指在标准击实曲线(驼峰曲线)上最大的干密度值,该值对应的含水量即为最佳含水量。
(一)路基土的最大子密度和最佳含水量确定方法路基受到的荷载应力,随深度而迅速减少,所以路基上部的压实度应高一些;另外,公路等级高,其路面等级也高,对路基强度的要求则相应提高,所以对路基压实度的要求也应高一些。
因此,高速、一级公路路基的压实度标准,对于路床0~80cm应不小于95%,路堤80~150cm应不小于93%,150cm以下应不小于90%;对于零填及路堑、路槽底面以下0~30cm应不小于95% 。
在平均年降雨量少于150mm且地下水位低的特殊干旱地区(相当于潮湿系数≤ 0.25地区)的压实度标准可降低2%~3%。
因为这些地区雨量稀少,地下水位低,天然土的含水量大大低于最佳含水量,要加水到最佳含水量情况下进行压实确有很大困难,压实度标准适当降低也不致影响路基的强度和稳定性。
在平均年降雨量超过2000mm,潮湿系数>2的过湿地区和不能晾晒的多雨地区,天然土的含水量超过最佳含水量5%时,要达到上述的要求极为困难,应进行稳定处理后再压实。
由于上的性质、颗粒的差别,确定最大干密度的方法也有区别,除了一般上的“击实法”以外,还有粗粒上和巨粒上最大干密度的确定方法。
由于击实功的不同,可分为重型和轻型击实,两个试验的原理和基本规律相似,但重型击实试验的击实功提高了4.5倍。
砂砾石填筑相对密度

(三)复式堤砂砾料应选择耐风化,水稳性好,颗粒级配较好(连续性好,不均匀系数较大),透水性好,不易发生渗透变形,含泥量小于5%的砂砾石或砾卵石。
砂砾石、砾卵石填筑的设计指标用相对密度Dr表示,一般Dr应达到0.65,即中密程度。
其碾压设备尽量采用振动碾。
以相对密度Dr表示的填筑干密度ρd为:ρdmax=ρmaxρmin/((1-Dr)ρmax+Drρmin) (2-14)式中ρmax、ρmin──分别为由试验得到的最大干密度与最小干密度。
3相对压实度测定由于天然土石料是不均匀的,在同一压实条件下,干密度指标是不同的,若仍用某一干密度作为设计和施工质控标准,必然出现对易于压实的土石料,压实后的干密度值容易达到,而压实结果是偏松的,对不易压实的土石料,压实干密度不易达到,而压实结果是偏紧密的,这样形成不均匀土石料在同一压实条件下,紧密程度不同,容易发生不均匀变形,危及坝体安全。
鉴于此种情况,在坝体设计中对不均匀土石料,不用某一固定干密度值作为设计和施工质控指标,而是对黏性土用压实度,对无黏性粗粒土用相对压实度(以往称相对密度)作为设计标准和施工质控的依据。
相对压实度D=ρd/ρdmax-ρdmin)Dr=ρdmax(ρd-ρdmin)/ρd(ρdmax式中:D-压实度,以小数计;ρd-压实后土石料干密度,g/cm3;ρdmax-最大干密度,以小数计。
ρdmax-最大干密度,g/cm3;ρdmin-最小干密度,g/cm3。
(二)非粘性土的填筑标准对非黏性土以相对密度为设计控制指标。
砂砾石的相对密度不应低于0.75,砂的相对密度不应低于0.7,反滤料宜为0.7。
2011年一级建造师水利水电工程精选讲义(8)掌握土石料场的规划一、料场规划的基本内容:空间规划、时间规划、料场质与量的规划二、料场规划的基本要求1F415012掌握土石坝施工机械的配置1F415013掌握土石坝填筑的施工碾压实验详见教材图1F415013-1(07年)一、土料填筑标准(一)粘性土的填筑标准(09年)含砾和不含砾的粘性土的填筑标准以压实度和最优含水率作为设计控制指标。
公路路基路面压实度评定方法

公路路基路面压实度评定方法压实度是施工质量控制的一个重要质量指标,压实度不够成为高速公路发生早期损坏原因之一。
1、现场测定(或计算)基层(或底基层)、砂石路面及路基土的各种材料的施工压实度常用挖坑灌砂法、环刀法等。
施工压实度按下式计算:K=ρdρc×100(1)式中:K——测定地点的施工压实度,%;ρd——试样的干密度,gcm3;ρc——由击实试验得到的试样的最大干密度,gcm3。
2、对沥青路面的压实度,新的施工规范已经明确地转变对压实度的观念,即由原来采用的钻孔密度控制压实度转变为重点以压实工艺为主,钻孔作为辅助性检验。
钻孔取样应在路面完全冷却后进行,对普通沥青路面通常在第二天取样,对改性沥青及SMA路面宜在第三天以后取样。
沥青面层的压实度按下式计算:K=DD0×100(2)式中:K—沥青层某一测定部位的压实度,%;D—由试验测定的压实沥青混合料试件实际密度,gcm3;D0—沥青混合料的标准密度,gcm3。
沥青路面的压实度,采取重点控制碾压工艺过程,适度钻孔抽检压实度校核的方法。
对于碾压工艺的控制包括压路机的配置(台数、吨位及机型)、排列和碾压方式、压路机与摊铺机的距离、碾压温度、碾压速度、碾压路段长度等。
钻孔作为压实度辅助性检验,可以根据需要选择实验室标准密度、最大理论密度、试验路密度中的1~2中作为钻孔法检验评定的标准密度计算压实度。
施工中采用核子密度仪等无损检测设备进行压实度控制时,宜以试验路密度作为标准密度。
施工及验收过程中的压实度不得采用配合比设计时的标准密度,应按如下方法逐日检测确定标准密度:(1)以实验室密度作为标准密度,即沥青拌合厂每天取样1~2次实测的马歇尔试件密度,取平均值作为该批混合料铺筑路段压实度的标准密度。
其试件成型温度与路面复压温度一致。
当采用配合比设计方法时,也可采用其他相同的成型方法的实验室密度作为标准密度。
(2)以每天实测的最大理论密度作为标准密度。
换填砂路基的施工及压实度检测方法

1 前言在路基工程中,土方路基压实度是一个非常重要的质量评定指标。
但对于无凝聚性的纯砂或略具粘性的砂性土来说,压实度的检测却往往不做,有些工程技术人员认为纯砂的ρd max确定不易,很难对其压实度进行检测,因而普遍凭经验施工,没有进行压实度检测。
这其实是路基施工中的一个误区。
笔者结合广和大桥桥头引道(广州段)的工程实践,着重谈谈换填砂压实质量的控制及其检测方法,以供同行参考。
广和大桥桥头引道(广州段)工程K27+700~K28+100段左幅为旧路排水沟,长400米,宽4米左右,沟中多为腐殖质淤泥。
在路基施工中,采用换填砂方法进行处理,所填砂为附近流溪河中的河砂,略具粘聚性。
因换填面积较大,为保证该段路基的施工质量,并针对换填河砂不同于普通回填土施工的特点,经过分析研究,我们尝试了一些比较适合无粘性砂土施工、检测的方法,取得了较好的施工效果。
下面结合实际情况作简要的介绍。
2 换填砂路基的碾压方法对于一般路基,通常采用压路机进行碾压即可达到预期效果。
但对于纯砂或几乎无粘性的砂性土来说,由于砂是一种散状材料,通常由固态(砂)、气态(空气)、液态(水)三相组成,其突出特点是凝聚性极差,过分碾压容易产生砂土液化,影响碾压效果。
因此用常规压实方法很难使纯砂达到较理想的压实效果,针对这种情况,在实际施工中,经不断尝试,我们采用了下列方法和措施:首先用水冲密实法,使砂基本处于饱水状态,然后在其附近开挖试坑,坑内可放有过滤性作用的网状过滤层(如箩筐等),再用小型抽水机将其中多余水往上抽,直至水抽不上为止。
过一、二天稳定后,为达到更理想效果,亦可采用轻型振动式压路机进行碾压,碾压含水量可控制在10%左右,压实遍数视具体情况而定。
如果工期允许的话,上述方法可反复进行,效果更佳。
经过我们的实践和观察比较证明,采用此种方法,对于纯砂或粘聚性差的砂性土路基是非常适用的。
实践证明,其压实度也可满足规定要求。
3 压实度检测方法通过试验比较,压实后采用常规的检测方法——灌砂法,饱水时用环刀法是可行的,但如何获得砂的最大干密度ρdmax,即检测标准是关键。
沥青混合料的密度与压实度标准

沥青混合料的密度与压实度标准摘要:简要介绍了沥青混合料的最大理论相对密度与压实度对沥青路面质量评价的影响,文中列举了若干工程实例,说明实际工程中的压实度标准可以高于规范的规定值。
关键词:沥青混合料密度压实度一、前言高速公路的沥青路面需要满足大量交通高速、安全、舒适地通行,因此,所用的沥青路面必须具有良好的抗滑性能、优良的平整度。
为了提高沥青路面的使用性能,首先应从原材料和混合料的级配上加以选择,再进行沥青混合料配合比的设计与优化,而在配合比的设计中,确定沥青混合料最大理论相对密度尤为关键。
二、沥青混合料密度1.最大理论相对密度的确定沥青混合料的最大理论相对密度是指没有孔隙的或没有空气的理想沥青混合料的密度,它是确定沥青混合料空隙率的依据,也是确定沥青混凝土现场压实度(以空隙率表示)的依据。
目前有2种方法用于确定沥青混合料的最大密度:一是真空法;二是溶剂法。
最常用的是第一种方法。
矿料经过烘干与热沥青一起在少于1min时间里拌成混合料。
因此在沥青混合料中集料可能处于两种极端状态,一种是沥青不能溶入矿料颗粒的开口孔隙中,则矿料以其毛体积出现在沥青混合料中,这种情况下,计算沥青混合料毛体积密度。
一种是矿料颗粒的开口孔隙全部被沥青充满,则矿料颗粒带着被其吸收的沥青在混合料中占有体积,也就是矿料以其体积(即扣除开口孔隙的体积)出现在沥青混合料中,这种情况下,计算沥青混合料的最大密度时,应该采用矿料颗粒的表观相对密度。
而实际上,混合料中的集料常处于一种中间状态,即吸收了部分沥青,或沥青进入部分开口空隙中。
在不同情况下,沥青占有多少开口孔隙是个难以解答的问题。
《公路沥青路面施工技术规范》JTG F40-2004规定,在计算沥青矿料混合料的最大密度时,对非改性的普通沥青混合料,在成型马歇尔试件的同时,用真空法实测各组沥青混合料的最大理论相对密度。
当只对其中一组油石比测定最大理论相对密度时,可按式(1-1)或(1-2)计算其他不同油石比(沥青用量)的最大理论相对密度;对该改性沥青或SMA混合料宜按式(1-1)或(1-2)计算各个不同沥青用量混合料的最大理论相对密度。
11 相对密度试验

11相对密度试验11.1 一般规定11.1.1 相对密度是无黏性土处于最松散孔隙比与天然状态(或给定)孔隙比之差和最松散态孔隙比与最紧密状态孔隙比之差的比值。
11.1.2 本试验测定砂的最小干密度采用漏斗法或量筒法,测定最大干密度采用振动锤击法;测定碎石类土的最小和最大干密度分别采用固定体积法和振动台振动加重物法。
11.1.3 砂的相对密度试验适用于颗粒粒径小于5 mm、且粒径2~5 mm的试样质量不大于试样总质量的15%及粒径小于0.075 mm的颗粒质量不大于总土质量的12%;砾和碎石类土的相对密度试验适用于最大粒径为60 mm、且粗颗粒中小于0.075 mm的颗粒含量不得大于12%。
11.2 砂的相对密度试验11.2.1本试验应采用仪器设备:1量筒:容积500 ml和1000 ml,后者内径应大于6 cm;2长颈漏斗:颈管内径约1.2 cm,颈口磨平。
见图11.2.1-1;3锤形塞:直径约1.5 cm的圆锥体镶于铁杆上;4砂面拂平器。
见图11.2.1-1;5金属容器:容积250 ml,内径5 cm,高12.7 cm;容积1000 cm内径10 cm,高12.7 cm;6振动叉。
见图11.2.1-2;7击锤:锤质量1.25 kg,落高15 cm,锤底直径5 cm。
见图11.2.1-2 ;8天平:称量5000 g,分度值1 g。
1-锥形塞;2-长颈漏斗;3-砂面拂平器 1-振动叉;2-击锤;3-锤座11.2.2最小干密度试验应按下列步骤进行:1 取代表性的烘干或充分风干的土样,用手搓匀或用圆木棍在橡皮板上碾散,然后过5 mm筛,并剔除大于5 mm的颗粒。
拌合均匀后取1500 g试样进行试验。
2 将锥形塞杆自漏斗下口穿入,并向上提起,使锥体堵住漏斗管口,一并放入容积1000 ml的量筒中,使其下端与筒底接触。
3 称取试样700 g,准确至1 g,均匀倒入漏斗中,将漏斗与塞杆同时提高,移动塞杆使锥体略离开管口,管口应经常保持高出砂面约1~2 cm,使试样缓慢且均匀的落入量筒中。
填土压实度检测实验报告

填土压实度检测实验报告实验名称:填土压实度检测实验一、实验目的:1.了解填土压实度的概念;2.学习填土压实度的测量方法;3.掌握填土压实度的实验操作;4.分析填土压实度与填土性质之间的关系。
二、实验原理:三、实验步骤:1.准备实验装置:使用标准圆筒型压实仪、压实法土壤框架、水密性容器和压实针等设备;2.准备填土样品:将干燥的土壤样品通过过筛实验筛选合适大小的颗粒;3.实验操作:在土壤框架上放置一层土壤样品,并用压实针进行初次压实。
之后,继续添加土壤样品,依次进行再压实,直至实验装置容器充满;4.测量固体体积:在压实过程结束后,将实验装置从容器中取出,测量装置的总质量,并记录下来。
然后,从容器中取出土壤样品,洗净后测量空容器质量。
最后,得到压实土壤样品的固体体积;5.计算孔隙比和相对密度:通过上述数据可以计算得到填土样品的总体积,而填土的固体体积已经测量得到。
因此,可以通过求差得到填土样品的孔隙体积。
进而,可以计算得到填土样品的孔隙比和相对密度。
四、实验结果:根据实验步骤所测得的数据,可以计算填土样品的孔隙比和相对密度,并绘制相对密度与孔隙比的关系曲线。
五、实验分析:1.填土压实度与填土性质之间存在一定的关系,密实的填土具有较高的相对密度和较低的孔隙比;2.不同类型的土壤在压实过程中表现出不同的变化趋势,这些变化趋势与土壤颗粒的大小、形状、含水量等因素有关;3.填土压实度对工程建设有重要的影响,通过实验可以为工程填土设计提供指导和依据。
六、实验总结:通过本次实验,我深入了解了填土压实度的概念和测量方法。
实际操作中,我掌握了填土样品的压实,测量固体体积以及计算孔隙比和相对密度的方法。
实验结果表明填土压实度与填土性质密切相关,这对于工程建设具有重要的指导意义。
1.张强,李平.填土工程手册.科学出版社,2005年.2.石砚臣.土工测试方法与实践.高等教育出版社,2024年.。
压实度和相对密度的关系_概述及解释说明

压实度和相对密度的关系概述及解释说明1. 引言1.1 概述压实度和相对密度是土壤力学性质中的两个重要参数,它们对于土壤的工程行为和工程设计具有重要的影响。
压实度是指土壤颗粒之间充填和紧密程度的度量,相对密度则是指土壤实际密度与最大可能密度之间的比值。
研究压实度和相对密度之间的关系可以帮助我们更好地理解土壤的结构、变形特性以及在工程应用中的行为。
1.2 文章结构本文将从以下几个方面介绍压实度和相对密度的关系:首先,我们将解释压实度和相对密度的概念及其定义;然后,我们将讨论影响压实度和相对密度的因素,包括土壤类型、水含量和含水率以及施工方法和设备选择;接着,我们将详细介绍测量压实度和相对密度的方法,并探讨它们在土壤工程中的应用范围与意义;最后,我们将总结文章主要内容,并分析压实度和相对密度关系,并展望未来研究方向或提出问题等。
1.3 目的本文的目的在于全面阐述压实度和相对密度之间的关系,并探讨其对土壤工程行为和设计的影响。
通过深入了解和分析压实度和相对密度,我们可以提高土壤工程设计的准确性和可靠性,为工程实践提供科学依据。
同时,本文还旨在引起读者的兴趣,并促使更多的研究者在这一领域开展深入研究,推动相关理论和技术的进一步发展。
2. 压实度和相对密度的概念解释:2.1 压实度的定义:压实度是指土壤在施加一定荷载后,由于颗粒间接触而产生互相排斥和变形的能力。
它是衡量土壤工程性质的重要指标之一,通常用在土壤基础工程、道路工程和地基处理等领域。
压实度可以描述土壤的密实程度,是通过比较原始松散状态下的体积与经过压实处理后体积之间的差异来评估。
2.2 相对密度的定义:相对密度也被称为容重或坚固性指标,是指土壤颗粒之间空隙占总体积的比例。
相对密度主要反映了土壤颗粒排列紧密程度的一个参数。
它可以直接测量或通过计算得到,是评估土壤压缩性、承载力等性质的重要依据。
2.3 压实度和相对密度之间的关系:压实度和相对密度都是衡量土壤工程性质的重要指标,并且两者之间存在着紧密关系。
相对密度试验方法

相对密度试验方法(一)概述土的密实程度通常指单位体积中固体颗粒的含量。
土颗粒含量多,土就密实;土颗粒含量少,土就疏松。
但对于无粘性土来说这种表示密实度的方法有明显缺点,主要是这种表示方法没有考虑到粒径级配这一重要因素的影响。
例如取两种不同级配的砂土进行分析,假定第一种砂是理想的均匀圆球,不均匀系数C U=1.0。
若这种砂处于最密实的排列,理论上可以算出这时的孔隙比e=0.35。
如果砂的比重G S=2.65,则最密实时的干密度рd=1.96g/cm3。
第二种砂是同样的理想圆球,但其级配中除大的圆球外,还有小的圆球可以充填孔隙,即不均匀系数Cu>1.0,显然这种砂最密时的孔隙比e<0.35。
这就是说,如果两种砂都具有同样的孔隙比e=0.35,但对于第一种砂已处于最密实状态,而对第二种砂则不是最密实状态。
工程上为了更好地表明粗粒土所处的密实状态,采用将现场土的孔隙比与该种土所能达到最密实时的孔隙比e min和最松时的孔隙比e max相对比的办法来表示现场土孔隙比为e时的密实度。
这种度量密实度的指标称为相对密度Dr公路路基填方工程用击实试验结果控制施工质量,对粘性上来说是很好的,但对于粗粒土,因其理论和实践上不适用于一般粘性土所表示的击实关系曲线,所以用压实度指标控制粗粒土路基的压实质量不尽合理,建议用Dr。
作为压实质量控制指标。
(二)仪器设备(1)量筒:容积为500cm3及100cm3两种,后者内径应大于6cm.(2)长颈漏斗:颈管内径约1.2cm,颈口磨平。
(3)锥形塞:直径约1.5cm的圆锥体镶于铁杆上。
(4)砂面拂平器。
(5)电动最小孔隙比仪,如无此种仪器,可有下列(6)-(8)的设备。
(6)金属容器,有以下两种:①容积250cm3,内径5cm,高度12.7cm。
②容积1000c m3,内径10cm,高度12.7cm。
(7)振动仪。
(8)击锤:锤重1.25kg高度:150mm,锤座直径50mm。