指对幂函数经典练习题

合集下载

指对幂函数经典练习题

指对幂函数经典练习题

(三)指数对数函数练习题 1、若函数x a a a y ⋅+-=)33(2是指数函数,则有 ( )A 、21==a a 或B 、1=aC 、2=aD 、10≠>a a 且2、指数式b c =a (b >0,b ≠1)所对应的对数式是 ( )A .log c a =bB .log c b =aC .log a b =cD .log b a =c3、若210,5100==b a ,则b a +2=4、函数y =)12(log 21-x 的定义域为 ( )5、若函数log 2(kx 2+4kx +3)的定义域为R ,则k 的取值范围是( ) 6、若关于x 的方程335-+=a a x 有负根,则实数a 的取值范围是_ ____________. 7、当0>x 时,函数x a y )8(2-=的值恒大于1,则实数a 的取值范围是_ _____.8、函数1241++=+x x y 的值域是 .9、设1052==ba ,则=+ba 11 。

10、函数11+=-x a y )10(≠>a a 且的图象必经过定点 . 11、若43-->a a )1,0(≠>a a ,则a 的取值范围是 .12、函数f (x )=|lg x |,则f (41),f (31),f (2)的大小关系是 13、已知函数3234+⋅-=x x y 的值域为[7,43],试确定x 的取值范围. 14、已知ab >0,下面四个等式中,正确命题为 ( ) ①lg (ab )=lg a +lg b ②lg b a =lg a -lg b ③b a b a lg )lg(212= ④lg (ab )=10log 1ab 15、已知x =2+1,则lo g 4(x 3-x -6)等于 ( ) 16、已知m >0时10x =lg (10m )+lgm 1,则x 的值为 ( ) A .2 B .1 C .0 D .-117、若log a b ·log 3a =5,则b 等于 A .a 3 B .a 5 C .35 D .53 18、5、已知031log 31log >>b a ,则a 、b 的关系是 ( ) A .1<b <a B .1<a <b C .0<a <b <1 D .0<b <a <1 19、函数x y -=1)21(的单调递增区间是 ( ) 20、满足等式lg (x -1)+lg (x -2)=lg2的x 集合为______ _______。

指数函数、对数函数、幂函数练习题大全(标准答案)

指数函数、对数函数、幂函数练习题大全(标准答案)

一、选择题(每小题4分,共计40分) 1.下列各式中成立的一项是( )A .7177)(m n mn =B .3339=C .43433)(y x y x +=+D .31243)3(-=-2.化简)31()3)((656131212132b a b a b a ÷-的结果( )A .a 9-B .a -C .a 6D .29a3.设指数函数)1,0()(≠>=a a a x f x,则下列等式中不正确...的是 ( )A .f (x +y )=f(x )·f (y )B .)()(y f x f y x f =-)( C .)()]([)(Q n x f nx f n∈=D .)()]([·)]([)]([+∈=N n y f x f xy f nnn4.函数210)2()5(--+-=x x y( )A .}2,5|{≠≠x x xB .}2|{>x xC .}5|{>x xD .}552|{><<x x x 或 5.若指数函数xa y =在[-1,1]上的最大值与最小值的差是1,则底数a 等于( )A .215+ B .215- C .215± D .251± 6.方程)10(2||<<=a x ax 的解的个数为 ( )A. 0个B. 1个C. 2个D. 0个或1个 7.函数||2)(x x f -=的值域是( )A .]1,0(B .)1,0(C .),0(+∞D .R8.函数⎪⎩⎪⎨⎧>≤-=-0,0,12)(21x x x x f x ,满足1)(>x f 的x 的取值范围 ( )A .)1,1(-B . ),1(+∞-C .}20|{-<>x x x 或D .}11|{-<>x x x 或9.已知2)(xx e e x f --=,则下列正确的是 ( )A .奇函数,在R 上为增函数B .偶函数,在R 上为增函数C .奇函数,在R 上为减函数D .偶函数,在R 上为减函数10.函数22)21(++-=x x y 得单调递增区间是 ( )A .]1,(--∞B .),2[+∞C .]2,21[D .]21,1[- 二、填空题(每小题4分,共计28分)11.已知0.622,0.6a b ==,则实数a b 、的大小关系为.12.不用计算器计算:48373271021.097203225.0+-⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛--π=__________________. 13.不等式x x 283312--<⎪⎭⎫ ⎝⎛的解集是__________________________.14.已知{}2,1,0,1,2,3n ∈--,若11()()25n n ->-,则=n ___________.15.不等式2221212-++⎪⎭⎫ ⎝⎛<⎪⎭⎫⎝⎛a x axx 恒成立,则a 的取值范围是.16.定义运算:⎩⎨⎧>≤=⊗)()(b a b b a a b a ,则函数()xx x f -⊗=22的值域为_________________17.如图所示的是某池塘中的浮萍蔓延的面积(2m )与时间t (月)的关系:ty a =,有以下叙述:① 这个指数函数的底数是2;② 第5个月时,浮萍的面积就会超过230m ; ③ 浮萍从24m 蔓延到212m 需要经过1.5个月; ④ 浮萍每个月增加的面积都相等;⑤ 若浮萍蔓延到22m 、23m 、26m 所经过的时间 分别为1t 、2t 、3t ,则123t t t +=. 其中正确的是.三、解答题:(10+10+12=32分)18.已知17a a -+=,求下列各式的值: (1)33221122a a a a----; (2)1122a a-+; (3)22(1)a a a -->.19.已知函数)1(122>-+=a a ay x x在区间[-1,1]上的最大值是14,求a 的值.20.(1)已知m x f x+-=132)(是奇函数,求常数m 的值;t/月2 3(2)画出函数|13|-=xy 的图象,并利用图象回答:k 为何值时,方程|31|x k -=无解?有一解?有两解?一、选择题:(本题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、已知32a=,那么33log 82log 6-用a 表示是( )A 、2a -B 、52a -C 、23(1)a a -+ D 、 23a a - 2、2log (2)log log a a a M N M N -=+,则NM的值为( ) A 、41B 、4C 、1D 、4或1 3、已知221,0,0x y x y +=>>,且1log (1),log ,log 1y a a ax m n x+==-则等于( )A 、m n +B 、m n -C 、()12m n +D 、()12m n -4、如果方程2lg (lg5lg 7)lg lg5lg 70x x +++=的两根是,αβ,则αβ的值是( ) A 、lg5lg7B 、lg35C 、35 D 、351 5、已知732log [log (log )]0x =,那么12x -等于( )A 、13 B C D 6、函数2lg 11y x ⎛⎫=-⎪+⎝⎭的图像关于( ) A 、x 轴对称 B 、y 轴对称 C 、原点对称 D 、直线y x =对称7、函数(21)log x y -= )A 、()2,11,3⎛⎫+∞⎪⎝⎭B 、()1,11,2⎛⎫+∞⎪⎝⎭C 、2,3⎛⎫+∞⎪⎝⎭ D 、1,2⎛⎫+∞ ⎪⎝⎭8、函数212log (617)y x x =-+的值域是( )A 、RB 、[)8,+∞C 、(),3-∞-D 、[)3,+∞ 9、若log 9log 90m n <<,那么,m n 满足的条件是( )A 、 1 m n >>B 、1n m >>C 、01n m <<<D 、01m n <<< 10、2log 13a <,则a 的取值范围是( ) A 、()20,1,3⎛⎫+∞ ⎪⎝⎭B 、2,3⎛⎫+∞⎪⎝⎭ C 、2,13⎛⎫ ⎪⎝⎭ D 、220,,33⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭11、下列函数中,在()0,2上为增函数的是( )A 、12log (1)y x =+B 、2log y =C 、21log y x =D 、2log (45)y x x =-+ 12、已知()log x+1 (01)a g x a a =>≠且在()10-,上有()0g x >,则1()x f x a +=是( )A 、在(),0-∞上是增加的B 、在(),0-∞上是减少的C 、在(),1-∞-上是增加的D 、在(),0-∞上是减少的二、填空题:(本题共4小题,每小题4分,共16分,请把答案填写在答题纸上) 13、若2log 2,log 3,m na a m n a+===。

指对幂函数经典练习题

指对幂函数经典练习题

高一数学期末复习幕函数、指数函数和对数函数1、 若函数y = (a 2 - 3a ■ 3) a x 是指数函数,则有 A 、a = 1 或a = 2 B a=1 c 、a=22、 下列所给出的函数中,是幕函数的是 A3 A . y = _X D 、 B . y=χj 3 C. y =2χ3 3、 1.指数式b c =a (b>0, b ≠ 1)所对应的对数式是 A . Iog C a=b4、 若 100a=5, 10b =2,则 2a b = B B .log c b=a C. Iog a b=C D . Iog b a=C 5、 若Xy = O ,那么等式.4x 2y 3 = -2xy.., y 成立的条件是 A 、X 0,y0 B 、X 0, y :: 0 C 、x ::0, y 0 D 6、 函数y= log I (2x -1)的定义域为 V 21 A .( — , +∞) B . : 1 , +∞ )2 7、若函数log 2(kx 2+4kx+3)的定义域为 K 丿B.卜3丿4 9、图中曲线是对数函数 C 3, C 4的a 值依次为G 4 3 1 A .虫丽弔 B . 10、函数 y=lg (A. X 轴对称 C . (a 0且 a = 1(D . y = χ3 -1((、X 0, y 01 C . ( , 1] D . (-∞, 1)2 R 则k 的取值范围是 p 3l 0,4 —P 巧y=log a x 的图象,已知1)的图象关于 1 X B . y 轴对称 C a 3 (DD . (-=0] 3,::aZ ,雳'1⅛四个值,则相应于.原点对称 C i ,.直线y =x 对称11、 若关于X 的方程5x =丿亠 有负根,则实数a 的取值范围是 __________________a -3 12、 当X 0时,函数y =(a 2-8)X的值恒大于1,则实数a 的取值范围是_C2,13、函数y =4x 2x 11的值域是 _____________________________a b11 14、设 2=5 = 10,贝U a b15、 函数y =a x ' ∙1 (a 0且1)的图象必经过定点 ________________________16、 若a a^ (a ∙ 0,a =1),则a 的取值范围是 _________________________ .20、若2x ⑷-4 =0,z =4x-2 4y • 5,求Z 的取值范围21、已知函数y =4x -3 2X ■ 3的值域为[7 , 43],试确定X 的取值范围117、函数 f (x ) =IIg x| ,贝U f (), 418、 已知a x ∙a 公=U ,其中a >0,XX(1) a 2 a ;(2)1f (丄),f (2)的大小关系是3X R ,试用U 将下列各式分别表示出来:3x3xa 2a 乏19、求 Iog 2.56.25也1⅛+ln e+21W 的值.作业1、下列函数一定是指数函数的是A 、 y = 2 1B 、 y = χ3C 、 y=3^x2、已知ab>0,下面四个等式中,正确命题的个数为a1①Ig ( ab ) =lga+lgb ②Ig =Iga -lgb ③ Ib2A . 0B . 13、已知 X= 2+1 U Iog 4 (3 A.-2D . 51 • 0 ,贝y a 、b 的关系是 3 1 v b v aB . 1 v a v bC . 0V a v b V 1若函数y =a x ∙m-1(a ∙0,a=1)的图象在第-A 、a 1B 、a 1 且 m :: 0C9、 函数y =(2)^^的单调递增区间是-X -6) C . 2等于x 3 5 B.—44、已知 m>0 时 10 =lg (10m ) 1+∣gm则X 的值为A . 2 5、6、A .7、1 5、已知 Iog a 3 Iog b3D . 0 V b v a v 1 三、四象限内,则(0 :: a 1且 m 0 D 、 0 ::④ lg ( ab )=—--Iog ab 10D 、(~4D . y = X 42,一 3,一 4,:'I 厂 3:::0 厂 40 :::〉1■■ 3:2 心 4:::0- -3:'3 厂 2:::0 - -4F 列函数中既是偶函数又是 4A . y = X 3= Ig- b2C . 0B . 1D .-1 33 5 5 a B . a C . 3 ((1≡ 1 - 9A 、(―汽十②)B 、(0,+°o) C (1,+c °)10、 如图1 — 9所示,幕函数y =x >在第一象限的图象, 比较Od 2—,1的大小( )< :2 < 1 < :4 ::: 1”:1 <:-1 :::1 - : I(-]0)上是增函数的是32B . y 二 X 2D 、 (0,1)A . B.C. D . 11、12、函数y=x∣x∣,x∙ R,满足( )A.奇函数是减函数B.偶函数又是增函数C奇函数又是增函数D.偶函数又是减函数13、若-1 :::X :::O ,则下列不等式中成立的是( )A、55x :: 0.5xB、5x:: 0.5x:: 5」C 5x:: 5」::0.5x D 0.5x::5「:5x14、下列命题中正确的是( ) A•当〉=0时函数y=x>的图象是一条直线B. 幕函数的图象都经过(0, 0)和(1, 1)点C若幕函数y=x>是奇函数,则y=x>是定义域上的增函数D•幕函数的图象不可能出现在第四象限15、____________________________________________________ 若xc2,则%∕x2—4x+4—|3—x|的值是_________________________________________________ .16、满足等式Ig (X- 1) +Ig (X-2) =lg2 的X 集合为_________________ 。

高一数学指对幂函数典型例题

高一数学指对幂函数典型例题

(每日一练)高一数学指对幂函数典型例题单选题1、已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则( )A .a <b <cB .b <a <cC .b <c <aD .c <a <b答案:A解析:由题意可得a 、b 、c ∈(0,1),利用作商法以及基本不等式可得出a 、b 的大小关系,由b =log 85,得8b =5,结合55<84可得出b <45,由c =log 138,得13c =8,结合134<85,可得出c >45,综合可得出a 、b 、c 的大小关系.由题意可知a 、b 、c ∈(0,1),a b =log 53log 85=lg3lg5⋅lg8lg5<1(lg5)2⋅(lg3+lg82)2=(lg3+lg82lg5)2=(lg24lg25)2<1,∴a <b ; 由b =log 85,得8b =5,由55<84,得85b <84,∴5b <4,可得b <45;由c =log 138,得13c =8,由134<85,得134<135c ,∴5c >4,可得c >45. 综上所述,a <b <c .故选:A.小提示:本题考查对数式的大小比较,涉及基本不等式、对数式与指数式的互化以及指数函数单调性的应用,考查推理能力,属于中等题.2、函数y =log a (3x −1)(a >0,a ≠1)的图象过定点( )A .(23,1)B .(−1,0)C .(23,0)D .(0,−1) 答案:C解析:利用真数为1可求得定点的坐标.对于函数y =log a (3x −1)(a >0,a ≠1),令3x −1=1,可得x =23,则y =log a 1=0, 因此,函数y =log a (3x −1)(a >0,a ≠1)的图象过定点(23,0). 故选:C.3、函数f(x)={a x ,(x <0)(a −2)x +3a,(x ≥0),满足对任意x 1≠x 2,都有f (x 1)−f (x 2)x 1−x 2<0成立,则a 的取值范围是( )A .a ∈(0,1)B .a ∈[13,1)C .a ∈(0,13]D .a ∈[13,2) 答案:C解析:根据条件可知f(x)在R 上单调递减,从而得出{0<a <1a −2<03a ⩽1,解出a 的范围即可.解:∵f(x)满足对任意x 1≠x 2,都有f(x 1)−f(x 2)x 1−x 2<0成立,∴f(x)在R 上是减函数,因为f(x)={a x ,(x <0)(a −2)x +3a,(x ≥0)∴ {0<a <1a −2<0(a −2)×0+3a ⩽a 0,解得0<a ⩽13, ∴a 的取值范围是(0,13].故选:C .4、设2a =5b =m ,且1a +1b =2,则m =( )A .√10B .10C .20D .100答案:A解析:根据指数式与对数的互化和对数的换底公式,求得1a =log m 2,1b =log m 5,进而结合对数的运算公式,即可求解.由2a =5b =m ,可得a =log 2m ,b =log 5m ,由换底公式得1a =log m 2,1b =log m 5,所以1a +1b =log m 2+log m 5=log m 10=2,又因为m >0,可得m =√10.故选:A.5、函数y =ln (3−4x )+1x的定义域是( ) A .(−∞,34)B .(0,34) C .(−∞,0)∪(0,34)D .(34,+∞)答案:C解析:根据具体函数定义域的求解办法列不等式组求解.由题意,{3−4x >0x ≠0 ⇒x <34且x ≠0,所以函数的定义域为(−∞,0)∪(0,34). 故选:C。

幂函数、指数函数、对数函数专练习题(含答案)

幂函数、指数函数、对数函数专练习题(含答案)

高中数学对数函数、指数函数、幂函数练习题1.函数f (x )=x21-的定义域是A.(-∞,0]B.[0,+∞)C.(-∞,0)D.(-∞,+∞) 2.函数x y 2log =的定义域是A.(0,1]B.(0,+∞)C.(1,+∞)D.[1,+∞)3.函数y =A.(3,+∞)B.[3,+∞)C.(4,+∞)D.[4,+∞)4.若集合{|2},{|xM y y N y y ====,则M N ⋂=A.}1|{≥y yB.}1|{>y yC.}0|{>y yD.}0|{≥y y5.函数y=-11-x 的图象是 6.函数y =1-11-x ,则下列说法正确的是A.y 在(-1,+∞)内单调递增B.y 在(-1,+∞)内单调递减C.y 在(1,+∞)内单调递增D.y 在(1,+∞)内单调递减7.函数y =的定义域是A.(2,3)B.[2,3)C.[2,)+∞D.(,3)-∞ 8.函数xx x f 1)(+=在]3,0(上是 A.增函数B.减函数C.在]10,(上是减函数,]31[,上是增函数D.在]10,(上是增函数,]31[,上是减函数 9.的定义域是函数 )2(x lg y -= A.(-∞,+∞)B.(-∞,2)C.(-∞,0]D(-∞,1]10.的取值范围是则若设函数o xx x x x f ,1)f(x 0)(x )0(,12)(o >⎪⎩⎪⎨⎧>≤-=-11.21||x y =函数A.是偶函数,在区间(﹣∞,0)上单调递增B.是偶函数,在区间(﹣∞,0)上单调递减C.是奇函数,在区间(0,+∞)上单调递增D.是奇函数,在区间(0,+∞)上单调递减 12.的定义域是函数xx x y -+=||)1(013.函数y =A.[1,)+∞B.23(,)+∞C.23[,1]D.23(,1]14.下列四个图象中,函数xx x f 1)(-=的图象是15.设A 、B 是非空集合,定义A ×B={x |x ∈A ∪B 且x ∉A ∩B}.已知A={x |y =22x x -},B={y |y =2x ,x >0},则A ×B 等于 A.[0,1)∪(2,+∞)B.[0,1]∪[2,+∞)C.[0,1]D.[0,2]16.设a =20.3,b =0.32,c =log3.02,则Aa >c >bB.a >b >cC.b >c >aD.c >b >a17.已知点(39在幂函数()y f x =的图象上,则()f x 的表达式是 A.()3f x x = B.3()f x x = C.2()f x x-=D.1()()2xf x =18.已知幂函数αx x f =)(的部分对应值如下表:则不等式1)(<x f 的解集是A.{}20≤<x x B.{}40≤≤x x C.{}22≤≤-x x D.{}44≤≤-x x19.已知函数的值为),则,的值域为)1(0[93)(2f a ax x f x∞+--+=A.3B.4C.5D.6指数函数习题一、选择题1.定义运算a ?b =?a ≤b ?,b ?a >b ?)),则函数f (x )=1?2x 的图象大致为( )2.函数f (x )=x 2-bx +c 满足f (1+x )=f (1-x )且f (0)=3,则f (b x )与f (c x )的大小关系是( ) A .f (b x )≤f (c x ) B .f (b x )≥f (c x ) C .f (b x )>f (c x )D .大小关系随x 的不同而不同3.函数y =|2x -1|在区间(k -1,k +1)内不单调,则k 的取值范围是( )A.(-1,+∞)B.(-∞,1)C.(-1,1) D.(0,2)4.设函数f(x)=ln[(x-1)(2-x)]的定义域是A,函数g(x)=lg(-1)的定义域是B,若A?B,则正数a的取值范围( )A.a>3 B.a≥3C.a> D.a≥5.已知函数f(x)=若数列{a n}满足a n=f(n)(n∈N*),且{a n}是递增数列,则实数a的取值范围是( )A.[,3) B.(,3)C.(2,3) D.(1,3)6.已知a>0且a≠1,f(x)=x2-a x,当x∈(-1,1)时,均有f(x)<,则实数a的取值范围是( )A.(0,]∪[2,+∞)B.[,1)∪(1,4]C.[,1)∪(1,2] D.(0,)∪[4,+∞)二、填空题7.函数y=a x(a>0,且a≠1)在[1,2]上的最大值比最小值大,则a 的值是________.8.若曲线|y|=2x+1与直线y=b没有公共点,则b的取值范围是________.9.(2011·滨州模拟)定义:区间[x1,x2](x1<x2)的长度为x2-x1.已知函数y=2|x|的定义域为[a,b],值域为[1,2],则区间[a,b]的长度的最大值与最小值的差为________. 三、解答题10.求函数y =211.(2011·银川模拟)若函数y =a 2x +2a x -1(a >0且a ≠1)在x ∈[-1,1]上的最大值为14,求a 的值.12.已知函数f (x )=3x ,f (a +2)=18,g (x )=λ·3ax -4x 的定义域为[0,1]. (1)求a 的值;(2)若函数g (x )在区间[0,1]上是单调递减函数,求实数λ的取值范围.对数与对数函数同步练习一、选择题 1、已知32a=,那么33log 82log 6-用a 表示是()A 、2a -B 、52a -C 、23(1)a a -+D 、23a a - 2、2log (2)log log a a a M N M N -=+,则NM的值为() A 、41B 、4C 、1D 、4或1 3、已知221,0,0x y x y +=>>,且1log (1),log ,log 1y a a a x m n x+==-则等于() A 、m n +B 、m n -C 、()12m n +D 、()12m n - 4、如果方程2lg (lg5lg 7)lg lg5lg 70x x +++=的两根是,αβ,则αβ的值是()A 、lg5lg7B 、lg35C 、35D 、3515、已知732log [log (log )]0x =,那么12x -等于()A 、13B C D6、函数2lg 11y x ⎛⎫=-⎪+⎝⎭的图像关于()A 、x 轴对称B 、y 轴对称C 、原点对称D 、直线y x =对称7、函数(21)log x y -=A 、()2,11,3⎛⎫+∞⎪⎝⎭B 、()1,11,2⎛⎫+∞⎪⎝⎭C 、2,3⎛⎫+∞⎪⎝⎭D 、1,2⎛⎫+∞ ⎪⎝⎭8、函数212log (617)y x x =-+的值域是()A 、RB 、[)8,+∞C 、(),3-∞-D 、[)3,+∞9、若log 9log 90m n <<,那么,m n 满足的条件是() A 、 1 m n >>B 、1n m >>C 、01n m <<<D 、01m n <<< 10、2log 13a <,则a 的取值范围是() A 、()20,1,3⎛⎫+∞ ⎪⎝⎭B 、2,3⎛⎫+∞⎪⎝⎭C 、2,13⎛⎫ ⎪⎝⎭D 、220,,33⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭11、下列函数中,在()0,2上为增函数的是()A 、12log (1)y x =+B 、2log y =C 、21log yx =D 、2log (45)y x x =-+ 12、已知()log x+1 (01)a g x a a =>≠且在()10-,上有()0g x >,则1()x f x a +=是()A 、在(),0-∞上是增加的B 、在(),0-∞上是减少的C 、在(),1-∞-上是增加的D 、在(),0-∞上是减少的二、填空题13、若2log 2,log 3,m na a m n a+===。

指对幂函数测试题(含有答案)

指对幂函数测试题(含有答案)

实验中学指对幂函数测试题一、选择题:1.函数)1,0(≠>-=a a a a y x 的图像可能是( )A. B. C. D.2.设11{3,2,1,,1,2,3}23α∈----,则使幂y=x a 为奇函数且在(0,+∞)上单调递减的α值的个数为 ( )A. 1B. 2C. 3D. 43.某种产品今年的产量是a ,如果保持5%的年增长率,则经过x 年()x N *∈,当年该产品的产量y=( )A ()15y a x =+%B 5y a x =+%C ()115x y a -=+% D ()15xy a =+%4.若函数23()(23)m f x m x -=+是幂函数,则m 的值为 ( )A .1-B .0C .1D .25.函数x a a a x f ⋅+-=)33()(2是指数函数 ,则a 的值是( )A.1=a 或2=aB.1=aC.2=aD.0>a 或1≠a6.幂函数213112xy,x y ,x y ,x y --====在第一象限内的图象依次是图中的曲线( )A. 2134,,,C C C CB. 2314C ,C ,C ,CC. 4123C ,C ,C ,CD. 3241C ,C ,C ,C7.为了得到函数2log 1yx 的图象,可将函数2log yx 的图象上所有的点的( )A.纵坐标缩短到原来的12倍,横坐标不变,再向右平移1个单位长度 B.纵坐标缩短到原来的12倍,横坐标不变,再向左平移1个单位长度C.横坐标伸长到原来的2倍,纵坐标不变,再向左平移1个单位长度D.横坐标伸长到原来的2倍,纵坐标不变,再向右平移1个单位长度8.函数lg xy x=的图象大致是9.已知函数()2030x x x f x x log ,,⎧>=⎨≤⎩, 则14f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭的值是A .9B .19 C .9- D .19- 10.已知函数()f x 满足(2)(2)f x f x -=+,且21,(1,1],()1|2|,(1,3]m x x f x x x ⎧⎪-∈-=⎨--∈⎪⎩ 其中m>o .若方程3()f x x =恰有5个实数解,则m 的取值范围为( )A .158()3B .15(7) C .48(,)33D . 4(7)311.若幂函数()322233-+++=m mx m m y 的图像不过原点,且关于原点对称,则m 的取值是( )A .2-=mB .1-=mC .12-=-=m m 或D .13-≤≤-m12.函数)1,0(23≠>-=+a a a y x 的图像恒过定点A ,若点A 在直线1-=+nym x 上,且0,>n m ,则n m +3的最小值为 ( )A. 13B. 16C.2611+.D. 28.二、填空题:13.如果幂函数()f x x α=的图象经过点2(2,)2,则(4)f 的值等于_____________ 14.函数2)23x (lg )x (f +-=恒过定点15.已知函数()10x f x =,且实数,,a b c 满足()()()f a f b f a b +=+,()f a +()f b +()f c =()f a b c ++,则c 的最大值为 .16.函数的递增区间是______.三、解答题:17.已知函数f ( x ) = 3x , f ( a + 2 ) = 18 , g ( x ) =λ·3ax – 4x 的定义域为[0,1]。

幂指对函数

幂指对函数

幂函数.指数函数和对数函数练习题一、选择题:1. 下列命题中,真命题是()A、幂函数中不存在既不是奇函数,又不是偶函数的函数;B、如果一个幂函数不是偶函数,那么它一定为奇函数;C、图像不经过点)1,1(-的幂函数,一定不是偶函数;D、如果两个幂函数有三个公共点,那么这两个函数一定相同。

2.已知函数2()lg(f x x x=++,若()f a M=,则()f a-=()A.22a M- B. 22M a- C.22M a- D.22a M-3. 要得到函数xy212-=的图像,只需将函数xy⎪⎭⎫⎝⎛=41的图像()A、向左平移1个单位B、向右平移1个单位C、向左平移21个单位D、向右平移21个单位4.若函数)(xfy-=的图像经过第三、四象限,那么)(1xfy--=的图像经过()A、一、二象限B、二、三象限C、三、四象限D、一、四象限5.若函数()(1)(0,1)xf x a b a a=-+>≠的图像在第一、三、四象限,则必有()A、01,0a b<<>B、01,0a b<<<C、1,0a b><D、1,0a b>>6.要使函数12xy m+=+的图像不经过第二象限,则实数m的取值范围是()A、1m≤-B、1m<-C、2m≤-D、2m≥-7.设函数212log()y x x a=-+的定义域为R,则实数a的取值范围是()A、a R∈B、14a>C、14a≤D、14a≥8.函数()f x的图像与函数1()()2xg x=的图像关于直线y x=对称,则函数2(2)f x x-的单调递减区间是()A、[1,)+∞B、(,1]-∞C、(0,1]D、[1,2)9.函数1xxeye=+的值域是()A、(0,1)B、[0,]eC、[,)e+∞D、(,)(,)e e-∞+∞10.如果21122log(1)log2a aa a+++≤,则实数a的取值范围是()A、1(,)2+∞B、1(,)2-∞C、11(,)22-D、1(0,)211.函数lg(3)(),0,1axf x a a a-=>≠在定义域[1,1]-上是减函数,则实数a的取值范围是()A、(1,3)B、(1,)+∞C、(3,)+∞D、(0,1)二、填空题:12.函数(1)xy+=的定义域是。

高一数学幂函数、指数函数和对数函数练习题(含答案)

高一数学幂函数、指数函数和对数函数练习题(含答案)

高一数学幂函数、指数函数和对数函数练习题1、下列函数一定是指数函数的是 ( ) A、12+=x y B 、3x y = C 、x y -=3 D 、x y 23⋅=2、已知ab >0,下面四个等式中,正确命题的个数为 ( ) ①lg (ab )=lg a +lg b ②lg b a =lg a -lg b ③b a b a lg )lg(212= ④lg (ab )=10log 1ab A .0 B .1 C .2 D .33、已知x =2+1,则lo g 4(x 3-x -6)等于 ( )A .23 B .45 C .0 D .21 4、已知m >0时10x =lg (10m )+lg m 1,则x 的值为 ( ) A .2 B .1 C .0 D .-15、下列图像正确的是 ( )A B C D6、若log a b ·log 3a =5,则b 等于 ( )A .a 3B .a 5C .35D .537、5、已知031log 31log >>b a ,则a 、b 的关系是 ( ) A .1<b <a B .1<a <b C .0<a <b <1 D .0<b <a <1 8、若函数)1,0(1≠>-+=a a m a y x 的图象在第一、三、四象限内,则 ( )A 、1>aB 、1>a 且0<mC 、010><<m a 且D 、10<<a9、函数x y -=1)21(的单调递增区间是 ( ) A 、),(+∞-∞ B 、),0(+∞ C 、),1(+∞ D 、)1,0(10、 如图1—9所示,幂函数αx y =在第一象限的图象,比较1,,,,,04321αααα的大小( )A .102431<<<<<ααααB .104321<<<<<ααααC .134210αααα<<<<<D .142310αααα<<<<< 11、下列函数中既是偶函数又是( ) A . B . C . D .12、 函数R x x x y ∈=|,|,满足 ( )A .奇函数是减函数B .偶函数又是增函数C .奇函数又是增函数D .偶函数又是减函数13、若01<<-x ,则下列不等式中成立的是 ( )A 、 x x x 5.055<<-B 、 x x x -<<55.05C 、x x x 5.055<<-D 、 x x x 555.0<<-14、下列命题中正确的是( ) A .当0=α时函数αx y =的图象是一条直线B .幂函数的图象都经过(0,0)和(1,1)点C .若幂函数αx y =是奇函数,则αx y =是定义域上的增函数D .幂函数的图象不可能出现在第四象限15、若2<x ,则|3|442x x x --+-的值是_____ _____.16、满足等式lg (x -1)+lg (x -2)=lg2的x 集合为______ _______。

高一数学指对幂函数习题(含答案与解析)

高一数学指对幂函数习题(含答案与解析)

高一数学指对幂函数习题(含答案与解析)指对幂函数试卷四一、 选择题1.设的大小关系是、、,则,,c b a c b a 243.03.03log 4log -===A.a <b <cB.a <c <bC.c <b <aD.b <a <c2.函数)4()1(log 2114--+=f x y ,则的值是A.1+2log 43B.-7C.9D.9或7 3.若132log <a ,则a 的取值范围是 )1,32(.A ),32(.B +∞ ),1()32,0(.C +∞ ),32()32,0(.D +∞ 4.三个数A=0.3-0.4,B =log 0.30.4,C =log 40.3之间的大小关系是A.C<B<AB.C<A<BC.A<C<BD.B<C<A5.已知513=-a ,a x +=31log 121,则x 的值属于区间A.(-2,-1)B.(2,3)C.(-3,2)D.(1,2)6.函数f (x )=3x +5,则f -1(x )的定义域是A.(0,+∞)B.(5,+∞)C.(6,+∞)D.(-∞,+∞) 7.下列函数中,在区间(0,2)上是增函数的是: A.()1log 21+=x y B.y x =-log 221 C.()y x x =-+log .09245 D.y x =log 21 8.已知143log <=a y ,那么a 的取值范围是: A.()∞+⎪⎭⎫ ⎝⎛,,1430 B.⎪⎭⎫ ⎝⎛∞+,43 C.⎪⎭⎫ ⎝⎛143, D.()∞+,1 二、填空题1.如果183log ≤a ,则a 的取值范围为____________. 2.满足1+log x >0的x 的集合是 .3.)2log (2)9(log )(91-==-f f x x f a ,则满足函数的值是_____.4.函数1e 1e +-=x x y 的反函数的定义域是_________.5.在23log 3log 3.1log 41982,,,这四个数中,最小的一个是 .6.已知ααn m log log <,试比较m ,n 的大小______________________________________.7.函数y = log 4(x -1)2 (x <1) 的反函数是 __________ .8.求函数)35lg(lg x x y -+=的定义域_________________.三、解答题1.若方程4)lg()lg(2=ax ax 的所有解都大于1,求a 的取值范围.2.求函数()()10log 2≠>-=a a x y a 且的定义域及值域.3.求函数)0()1(log 22<+=x x y 的反函数.4.利用对数函数的单调性,比较下列各组数的大小. (1)e;log π,log 22 (2);2.0log ,3.0log 321 (3)4.0log ,4.0log ,4.0log 432.5.比较下列各组数的大小:(1)3log5,2log3;(2)log0.1,0.2;(3)2log log ,2log ,2log 332323.6.已知函数()f x x x =-+log 23131,(1)求函数的定义域;(2)证明函数是奇函数;(3)证明函数中其定义域上的每个区间上是增函数.7.函数()y ax a =-≠log 210的对称轴方程是x =-2,求a 的值.8.的奇偶性判断函数)1(log )(22++=x x x f .9. 若P (x ,.y )的坐标满足lg y =2lg (2-| x -1| ), 试用图形表示点P 的全体.参考答案选择1. 答案:A2.答案:C3.答案:C4.答案:A5.答案:B6.答案:B7.答案:C8.答案:A 填空1、答案:830≤<a 或a >1 2、答案:(0,2) 3、答案:22 4、答案:{y|11<<-y } 5、答案:log 9326、答案:m n >>1或10>>>m n 或01<<<m n 7.2267答案:y =1-2(x ∈R )8.2271答案:⎪⎭⎫⎢⎣⎡35,1 解答题1.1893答案:)(1001,0 2.2164答案:R ∈≠y x ,0 3.2230答案:反函数)0(12>--=x y x 4.2261答案(1).e log πlog 22>(2)2.0log 3.0log 321>(3)4.0log 4.0log 4.0log 432<< 5.2268答案:(1)3log5>2log(2)log0.1>0.2;(3)2323332log 2log 2log log << 6.2157答案:(1)()f x 的定义域为-∞-⎛⎝ ⎫⎭⎪+∞⎛⎝ ⎫⎭⎪,,1313 .7.2175答案:a =-128.2217答案:奇函数9.2269答案:。

指、对、幂函数例题精选

指、对、幂函数例题精选

答案B例3、比较下列各组中两个数的大小:(1)31.55,31.75;(2)0.71.5,0.61.5;(3)-2(-1.2)3,例题精选例1、下列结论中,正确的是()A .幂函数的图象都通过点(0,0),(1,1)B .幂函数的图象可以出现在第四象限1例2、如图是幂函数y =x m 与y =x n 在第一象限内的图象,则C .当幂指数α取1,3,2时,幂函数y =x α是增函数答案D .当幂指数α=-1时,幂函数y =x α在定义域上是减函数解析当幂指数α=-1时,幂函数y =x -1的图象不通过原点,故选项A 不正确;因为所有的幂函数在区间(0,+∞)上都有定义,且y =x α(α∈R ),y >0,所以幂函数的图象不可能出现在第四象限,故选项B 不正确;而当α=-1时,y =x -1在区间(-∞,0)和(0,+∞)上是减函数,但它在定义域上不是减函数.C(A .-1<n<0<m<1B .n <-1,0<m <1C .-1<n <0,m >1D .n <-1,m >1解析在(0,1)内取同一值x 0,作直线x =x 0,与各图象有交点,则“点低指数大”.如图,0<m <1,n<-1.-2(-1.25)3.解析:(1)考查幂函数y =3x 5的单调性,在第一象限内函数单调递增,∵1.5<1.7,∴31.55<31.75,(2)考查幂函数y =3x 2的单调性,同理0.71.5>0.61.5.(3)先将负指数幂化为正指数幂可知它是偶函数,∵-2(-1.2)3=-21.23,-2(-1.25)3=-21.253,又-21.23> -21.253,∴-2(-1.2)3>-21.253.点评:比较幂形式的两个数的大小,一般的思路是:(1)若能化为同指数,则用幂函数的单调性;(2)若能化为同底数,则用指数函数的单调性;(3)若既不能化为同指数,也不能化为同底数,则需寻找一个恰当的数作为桥梁来比较大小.例4(选做)、函数且y a a a a =2x +2x -1(>0≠1)在区间[-1,1]上有最大值14,则a 的值是_______.分析:令t =a x 可将问题转化成二次函数的最值问题,需注意换元后t 的取值范围.解:令t =a x ,则t >0,函数y =a 2x +2a x -1可化为y =(t +1)2-2,其对称轴为t =-1.∴当a >1时,∵x ∈-[1,1],∴a ≤a x a 1≤,即a 1≤t ≤a .∴当t =a 时,y max =(a +1)2-2=14.解得a =3或a =-5(舍去);当<<a 01时,∵,∈-x 11][,∴≤≤a a a x 1,即≤≤aa t 1,∴ =a t 1时,⎝⎭⎪=+-=⎛⎫a y 12141max 2, 解得=a 31或=-a 51(舍去),∴a 的值是3或31.评注:利用指数函数的单调性求最值时注意一些方法的运用,比如:换元法,整体代入等.例5、求下列函数的定义域:(1)=a y x log 2; (2)=-a y x log (4); (3)=-a y x 2log (9). 分析:此题主要利用对数函数=log a y x 的定义域+∞(0,)求解。

高中数学-幂函数、指数函数与对数函数(经典练习题)

高中数学-幂函数、指数函数与对数函数(经典练习题)

高中数学精英讲解-----------------幂函数、指数函数、对数函数【第一部分】知识复习【第二部分】典例讲解考点一:幂函数例1、比较大小例2、幂函数,(m∈N),且在(0,+∞)上是减函数,又,则m= A.0B.1C.2D.3解析:函数在(0,+∞)上是减函数,则有,又,故为偶函数,故m为1.例3、已知幂函数为偶函数,且在区间上是减函数.(1)求函数的解析式;(2)讨论的奇偶性.∵幂函数在区间上是减函数,∴,解得,∵,∴.又是偶数,∴,∴.(2),.当且时,是非奇非偶函数;当且时,是奇函数;当且时,是偶函数;当且时,奇又是偶函数.例4、下面六个幂函数的图象如图所示,试建立函数与图象之间的对应关系(1)(A),(2)(F),(3)(E),(4)(C),(5)(D),(6)(B).变式训练:1、下列函数是幂函数的是()A.y=2x B.y=2x-1C.y=(x+1)2D.y=2、下列说法正确的是()A.y=x4是幂函数,也是偶函数B.y=-x3是幂函数,也是减函数C.是增函数,也是偶函数D.y=x0不是偶函数3、下列函数中,定义域为R的是()A.y=B.y=C.y=D.y=x-14、函数的图象是()A.B.C.D.5、下列函数中,不是偶函数的是()A.y=-3x2B.y=3x2C.D.y=x2+x-16、若f(x)在[-5,5]上是奇函数,且f(3)<f(1),则()A.f(-1)<f(-3)B.f(0)>f(1)C.f(-1)<f(1)D.f(-3)>f(-5)7、若y=f(x) 是奇函数,则下列坐标表示的点一定在y=f(x)图象上的是()A.(a,-f(a))B.(-a,-f(a))C.(-a,-f(-a))D.(a,f(-a ))8、已知,则下列正确的是()A.奇函数,在R上为增函数B.偶函数,在R上为增函数C.奇函数,在R上为减函数D.偶函数,在R上为减函数9、若函数f(x)=x2+ax是偶函数,则实数a=()A.-2B.-1C.0D.110、已知f(x)为奇函数,定义域为,又f(x)在区间上为增函数,且f(-1)=0,则满足f(x)>0的的取值范围是()A.B.(0,1)C.D.11、若幂函数的图象过点,则_____________.12、函数的定义域是_____________.13、若,则实数a的取值范围是_____________.14、是偶函数,且在上是减函数,则整数a的值是_____________.DACAD ABACD9、,函数为偶函数,则有f(-x)=f(x),即x2-ax=x2+ax,所以有a=0.10、奇函数在对称区间上有相同的单调性,则有函数f(x)在上单调递增,则当x<-1时,f(x)<0,当-1<x<0时,f(x)>0,又f(1)=-f(-1)=0,故当0<x<1时,f(x)<0,当x>1时,f(x)>0.则满足f(x)>0的.11、解析:点代入得,所以.12、解:13、解析:,解得.14、解:则有,又为偶函数,代入验证可得整数a的值是5.考点二:指数函数例1、若函数y=a x+m-1(a>0)的图像在第一、三、四象限内,则()A.a>1B.a>1且m<0C.0<a<1且m>0D.0<a<1例2、若函数y=4x-3·2x+3的值域为[1,7],试确定x的取值范围.例3、若关于x的方程有负实数解,XX数a的取值范围.例4、已知函数.(1)证明函数f(x)在其定义域内是增函数;(2)求函数f(x)的值域.例5、如果函数(a>0,且a≠1)在[-1,1]上的最大值是14,求a的值.例1、解析:y=a x的图像在第一、二象限内,欲使其图像在第一、三、四象限内,必须将y=a x向下移动.而当0<a<1时,图像向下移动,只能经过第一、二、四象限或第二、三、四象限.只有当a>1时,图像向下移动才可能经过第一、三、四象限,故a>1.又图像向下移动不超过一个单位时,图像经过第一、二、三象限,向下移动一个单位时,图像恰好经过原点和第一、三象限.欲使图像经过第一、三、四象限,则必须向下平移超过一个单位,故m-1<-1,∴m<0.故选B.答案:B例2、分析:在函数y=4x-3·2x+3中,令t=2x,则y=t2-3t+3是t的二次函数,由y ∈[1,7]可以求得对应的t的范围,但t只能取正的部分. 根据指数函数的单调性我们可以求出x的取值范围.解答:令t=2x,则y=t2-3t+3,依题意有:∴x≤0或1≤x≤2,即x的范围是(-∞,0]∪[1,2].小结:当遇到y=f(a x)类的函数时,用换元的思想将问题转化为较简单的函数来处理,再结合指数函数的性质得到原问题的解.例3、分析:求参数的取值范围题,关键在于由题设条件得出关于参数的不等式.解答:因为方程有负实数根,即x<0,所以,解此不等式,所求a的取值范围是例4、分析:对于(1),利用函数的单调性的定义去证明;对于(2),可用反解法求得函数的值域.解答:(1),设x1<x2,则.因为x1<x2,所以2x1<2x2,所以,所以.又+1>0, +1>0,所以f(x1)-f(x2)<0,即f(x1)<f(x2),故函数f(x)在其定义域(-∞,+∞)上是增函数.(2)设,则,因为102x>0,所以,解得-1<y<1,所以函数f(x)的值域为(-1,1).例5、分析:考虑换元法,通过换元将函数化成简单形式来求值域.解:设t=a x>0,则y=t2+2t-1,对称轴方程为t=-1.若a>1,x∈[-1,1],∴t=a x∈,∴当t=a时,y max=a2+2a-1=14.解得a=3或a=-5(舍去).若0<a<1,x∈[-1,1],∴t=a x∈.∴当时,.解得(舍去).∴所求的a值为3或.变式训练:1、函数在R上是减函数,则的取值范围是()A.B.C.D.2、函数是()A.奇函数B.偶函数C.既奇又偶函数D.非奇非偶函数3、函数的值域是()A.B.C.D.4、已知,则函数的图像必定不经过()A.第一象限B.第二象限C.第三象限D.第四象限5、函数的定义域为()A.B.C.D.6、函数,满足f(x)>1的x的取值范围是()A.B.C.D.7、函数的单调递增区间是()A.B.C.D.8、已知,则下列正确的是()A.奇函数,在R上为增函数B.偶函数,在R上为增函数C.奇函数,在R上为减函数D.偶函数,在R上为减函数9、函数在区间上是增函数,则实数的取值范围是()A.B.C.D.10、下列说法中,正确的是()①任取x∈R都有;②当a>1时,任取x∈R都有;③是增函数;④的最小值为1;⑤在同一坐标系中,的图象对称于y轴.A.①②④B.④⑤C.②③④D.①⑤11、若直线y=2a与函数y=|a x-1|(a>0且a≠1)的图象有两个公共点,则a的取值范围__.12、函数的定义域是______________.13、不论a取怎样的大于零且不等于1的实数,函数y=a x-2+1的图象恒过定点________.14、函数y=的递增区间是___________.15、已知9x-10·3x+9≤0,求函数y=()x-1-4()x+2的最大值和最小值.16、若关于x的方程25-|x+1|-4·5-|x+1|-m=0有实根,求m的取值范围.17、设a是实数,.(1)试证明对于a取任意实数,f(x)为增函数;(2)试确定a的值,使f(x)满足条件f(-x)=-f(x)恒成立.18、已知f(x)=(a>0且).(1)求f(x)的定义域、值域.(2)讨论f(x)的奇偶性.(3)讨论f(x)的单调性.答案与提示:1-10 DADAD DDACB1、可得0<a2-1<1,解得.2、函数定义域为R,且,故函数为奇函数.3、可得2x>0,则有,解得y>0或y<-1.4、通过图像即可判断.5、.6、由,由,综合得x>1或x<-1.7、即为函数的单调减区间,由,可得,又,则函数在上为减函数,故所求区间为.8、函数定义域为R,且,故函数为奇函数,又,函数在R上都为增函数,故函数f(x)在R上为增函数.9、可得.10、①中当x=0时,两式相等,②式也一样,③式当x增大,y减小,故为减函数.11、0<a<提示:数形结合.由图象可知0<2a<1,0<a<.12、提示:由得2-3x>2,所以-3x>1,.13、(2,2) 提示:当x=2时,y=a0+1=2.14、(-∞,1]提示:∵y=()x在(-∞,+∞)上是减函数,而函数y=x2-2x+2=(x-1)2+1的递减区间是(-∞,1],∴原函数的递增区间是(-∞,1].15、解:由9x-10·3x+9≤0得(3x-1)(3x-9)≤0,解得1≤3x≤9.∴0≤x≤2,令()x=t,则≤t≤1,y=4t2-4t+2=4(t-)2+1.当t=即x=1时,y min=1;当t=1即x=0时,y max=2.16、解法一:设y=5-|x+1|,则0<y≤1,问题转化为方程y2-4y-m=0在(0,1]内有实根.设f(y)=y2-4y-m,其对称轴y=2,∴f(0)>0且f(1)≤0,得-3≤m<0.解法二:∵m=y2-4y,其中y=5-|x+1|∈(0,1],∴m=(y-2)2-4∈[-3,0).17、(1)设,即f(x1)<f(x2),所以对于a取任意实数,f(x)在(-∞,+∞)上为增函数.(2)由f(-x)=-f(x)得,解得a=1,即当a=1时,f(-x)=-f(x).18、解:(1)定义域为R...∴值域为(-1,1).(2),∴f(x)为奇函数.(3)设,则当a>1时,由,得,,∴当a>1时,f(x)在R上为增函数.同理可判断当0<a<1时,f(x)在R上为减函数.考点三:对数函数例1、求函数的定义域和值域,并确定函数的单调区间.例2、已知函数f(x)=lg(ax2+2x+1)(a∈R).(1)若函数f(x)的定义域为R,XX数a的取值范围;(2)若函数f(x)的值域为R,XX数a的取值范围.例3、已知的最大值和最小值以与相应的x值. 例4、已知f(x)=log a(a x-1)(a>0,a≠1).(1)求f(x)的定义域;(2)讨论f(x)的单调性;(3)求函数y=f(2x)与y=f-1(x)的图象交点的横坐标.例1解:由-x2+2x+3>0 ,得 x2-2x-3<0,∴-1<x<3,定义域为 (-1,3);又令 g(x)=-x2+2x+3=-(x-1)2+4,∴当 x∈(-1,3) 时, 0<g(x)≤4. ∴ f(x)≥=-2 ,即函数 f(x) 的值域为[-2,+∞);∵ g(x)=-(x-1)2+4 的对称轴为 x=1.∴当-1<x≤1 时, g(x) 为增函数,∴为减函数.当 1≤x<3 时, g(x)为减函数,∴ f(x)为增函数.即f(x) 在(-1,1] 上为减函数;在[1,3 )上为增函数.例2、分析:令g(x)=ax2+2x+1,由f(x)的定义域为R,故g(x)>0对任意x∈R均成立,问题转化为g(x)>0恒成立,求a的取值范围问题;若f(x)的值域为R,则g(x)的值域为B必满足B(0,+∞),通过对a的讨论即可.解答:(1)令g(x)=ax2+2x+1,因f(x)的定义域为R,∴ g(x)>0恒成立.∴∴函数f(x)的定义域为R时,有a>1.(2)因f(x)的值域为R,设g(x)=ax2+2x+1的值域为B,则B(0,+∞).若a<0,则B=(-∞,1-](0,+∞);若a=0,则B=R,满足B(0,+∞).若a>0,则△=4-4a≥0,∴ a≤1.综上所述,当f(x)的值域为R时,有0≤a≤1.例3、分析:题中条件给出了后面函数的自变量的取值范围,而根据对数的运算性质,可将函数化成关于log2x的二次函数,再根据二次函数在闭区间上的最值问题来求解.解答:当t=3时,y有最大值2,此时,由log2x=3,得x=8.∴当x=2时,y有最小值-.当x=8时,y有最大值2.例4、分析:题设中既含有指数型的函数,也含有对数型的函数,在讨论定义域,讨论单调性时应注意对底数a进行讨论,而(3)中等价于求方程f(2x)=f-1(x)的解.解答:(1)a x-1>0得a x>1.∴当a>1时,函数f(x)的定义域为(0,+∞),当0<a<1时,函数f(x)的定义域为(-∞,0).(2)令g(x)=a x-1,则当a>1时,g(x)=a x-1在(0,+∞)上是增函数.即对0<x1<x2,有0<g(x1)<g(x2),而y=log a x在(0,+∞)上是增函数,∴ log a g(x1) <log a g(x2),即f(x1)<f(x2).∴ f(x)= log a(a x-1)在(0,+∞)上是增函数;当0<a<1时,g(x)=a x-1在(-∞,0)上是减函数.即对x1<x2<0,有g(x1)>g(x2)>0.而y=log a x在(0,+∞)上是减函数,∴ log a g(x1) <log a g(x2),即f(x1)<f(x2).∴ f(x)=log a(a x-1)在(-∞,0)上是增函数.综上所述,f(x)在定义域上是增函数.(3)∵ f(2x)= log a(a2x-1),令y=f(x)= log a(a x-1),则a x-1=a y,∴ a x=a y+1,∴ x= log a (a y+1)(y∈R).∴ f-1(x)= log a (a x+1)(x∈R).由f(2x)=f-1(x),得log a(a2x-1)= log a(a x+1).∴ a2x-1= a x+1,即(a x)2-a x-2=0.∴ a x=2或a x=-1(舍).∴ x=log a2.即y=f(2x)与y= f-1(x)的图象交点的横坐标为x=log a2.变式训练:一、选择题1、当a>1时,在同一坐标系中,函数y=a-x与y=log a x的图象是()A.B.C.D.2、将y=2x的图象(),再作关于直线y=x对称的图象,可得函数y=log2(x+1)和图象.A.先向左平行移动1个单位B.先向右平行移动1个单位C.先向上平行移动1个单位D.先向下平行移动1个单位3、函数的定义域是()A.(1,+∞)B.(2,+∞)C.(-∞,2)D.(1,2]4、函数y=lg(x-1)+3的反函数f-1(x)=()A.10x+3+1B.10x-3-1C.10x+3-1D.10x-3+15、函数的递增区间是()A.(-∞,1)B.(2,+∞)C.(-∞,)D.(,+∞)6、已知f(x)=|log a x|,其中0<a<1,则下列各式中正确的是()A.B.C.D.7、是()A.奇函数而非偶函数B.偶函数而非奇函数C.既是奇函数又是偶函数D.既非奇函数也非偶函数8、已知0<a<1,b>1,且ab>1,则下列不等式中正确的是()A.B.C.D.9、函数f(x)的图象如图所示,则y=log0.2f(x)的图象示意图为()A.B.C.D.10、关于x的方程(a>0,a≠1),则()A.仅当a>1时有唯一解B.仅当0<a<1时有唯一解C.必有唯一解D.必无解二、填空题11、函数的单调递增区间是___________.12、函数在2≤x≤4范围内的最大值和最小值分别是___________.13、若关于x的方程至少有一个实数根,则a的取值范围是___________.14、已知(a>0,b>0),求使f(x)<0的x的取值范围.15、设函数f(x)=x2-x+b,已知log2f(a)=2,且f(log2a)=b(a>0且a≠1),(1)求a,b的值;(2)试在f(log2x)>f(1)且log2f(x)<f(1)的条件下,求x的取值范围.16、已知函数f(x)=log a(x-3a)(a>0且a≠1),当点P(x,y)是函数y=f(x)图象上的点时,点Q(x-2a,-y)是y=g(x)图象上的点.(1)写出y=g(x)的解析式;(2)若当x∈[a+2,a+3]时,恒有|f(x)-g(x)|≤1,试求a的取值范围.答案与提示:1-10 DDDDA BBBCC1、当a>1时,y=log a x是单调递增函数,是单调递减函数,对照图象可知D正确. ∴应选D.2、解法1:与函数y=log2(x+1)的图象关于直线y=x对称的曲线是反函数y=2x-1的图象,为了得到它,只需将y=2x的图象向下平移1个单位.解法2:在同一坐标系内分别作出y=2x与y=log2(x+1)的图象,直接观察,即可得D.3、由≥0,得 0<x-1≤1,∴ 1<x≤2.5、应注意定义域为(-∞,1)∪(2,+∞),答案选A.6、不妨取,可得选项B正确.7、由f(-x)=f(x)知f(x)为偶函数,答案为B.8、由ab>1,知,故且,故答案选B. 10、当a>1时,0<<1,当0<a<1时,>1,作出y=a x与y=的图象知,两图象必有一个交点.11、答案:(-∞,-6)提示: x2+4x-12>0 ,则 x>2 或 x<-6.当 x<-6 时, g(x)=x2+4x-12 是减函数,∴在(-∞,-6)上是增函数 .12、答案:11,7 :∵ 2≤x≤4,∴.则函数,∴当时,y最大为11;当时,y最小为7.13、答案:(-∞,] 提示:原方程等价于由③得. ∴当x>0时,9a≤,即a≤.又∵ x≠3,∴ a≠2,但a=2时,有x=6或x=3(舍).∴ a≤.14、解:要使f(x)<0,即.当a>b>0时,有x>;当a=b>0时,有x∈R;当0<a<b时,有x<.15、解:(1)∵f(log2a)=b,f(x)=x2-x+b,∴(log2a)2-log2a+b=b,解得a=1(舍去),a=2,又log2f(a)=2,∴log2(a2-a+b)=2,将a=2代入,有log2(2+b)=2, ∴b=2;(2)由log2f(x)<f(1)得log2(x2-x+2)<2,∴x2-x-2<0,解得-1<x<2,由f(log2x)>f(1)得(log2x)2-log2x+2>0,解得0<x<1或x>2,∴x∈(0,1).16、解:(1)设Q(x′,y′),则,∵点P(x,y)在y=f(x)的图象上,∴.(2)当x∈[a+2,a+3]时,有x-3a>0且>0成立.而x-3a≥a+2-3a=2-2a>0,∴ 0<a<1,且恒成立.∴ 0<a<1.由 |f(x)-g(x)|≤1,即∴ r(x)=x2-4ax+3a2在[a+2,a+3]上是增函数.∴ h(x)=log a(x2-4ax+3a2)在[a+2,a+3]上是减函数. ∴当x=a+2时,h(x)max=h(a+2)=log a(4-4a),当x=a+3时,h(x)min=h(a+3)=log a(9-6a).。

指对幂函数测试题(含有详解答案)

指对幂函数测试题(含有详解答案)

指对幂函数测试题(含有详解答案)work Information Technology Company.2020YEAR1.函数)1,0(≠>-=a a a a y x 的图像可能是( )A. B. C. D.2.设11{3,2,1,,1,2,3}23α∈----,则使幂y=x a 为奇函数且在(0,+∞)上单调递减的α值的个数为 ( )A. 1B. 2C. 3D. 43若函数()log (01)a f x x a =<<在区间[],2a a 上的最大值是最小值的3倍,则a 的值为( ) A 、24 B 、22 C 、14 D 、124.若函数23()(23)m f x m x -=+是幂函数,则m 的值为 ( ) A .1- B .0 C .1 D .25.函数x a a a x f ⋅+-=)33()(2是指数函数 ,则a 的值是( )A.1=a 或2=aB.1=aC.2=aD.0>a 或1≠a 6.幂函数213112x y,x y ,x y ,x y --====在第一象限内的图象依次是图中的曲线( ) A. 2134,,,C C C CB. 2314C ,C ,C ,CC. 4123C ,C ,C ,CD. 3241C ,C ,C ,C7.函数lg xy x=的图象大致是8已知(10)x f x =,则(5)f = ( ) A 、510 B 、105 C 、lg10 D 、lg 59.已知函数()2030x x x f x x log ,,⎧>=⎨≤⎩, 则14f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭的值是A .9B .19C .9-D .19-10、设集合2{|3,},{|1,}x S y y x R T y y x x R ==∈==-∈,则S T 是( ) A 、∅ B 、T C 、S D 、有限集 11.若幂函数()322233-+++=m mx m m y 的图像不过原点,且关于原点对称,则m 的取值是 ( )A .2-=mB .1-=mC .12-=-=m m 或D .13-≤≤-m12.函数)1,0(23≠>-=+a a a y x 的图像恒过定点A ,若点A 在直线1-=+nym x 上,且0,>n m ,则n m +3的最小值为 ( )A. 13 B. 16 C.2611+. D. 28. 13.如果幂函数()f x x α=的图象经过点2(2,),则(4)f 的值等于_____________ 14.函数2)23x (lg )x (f +-=恒过定点 15、在(2)log (5)a b a -=-中,实数a 的取值范围是 ______.16.函数的递增区间是______.17.已知函数f ( x ) = 3x , f ( a + 2 ) = 18 , g ( x ) =λ·3ax – 4x 的定义域为[0,1]。

指数、对数、幂函数单元小练习

指数、对数、幂函数单元小练习

幂、指、对函数单元综合题1. 关于x 的方程ln 1x e x =的实根个数是 ____2.已知函数()2x f x x =+,2()log g x x x =+,3()h x x x =+的零点依次为,则,,a b c 由小到大的顺序是3.函数()lg(2)1f x x x =⋅+-的图象与x 轴的交点个数有 个4.若()1f x ax b =+-(01a <≤)在[]0,1上有零点,则2b a -的最小值为 .5.若函数2()lg 22f x x a x =⋅-+在区间(1,2)内有且只有一个零点,那么实数a 的取值范围是 .,,a b c6.已知()f x 是R 上的偶函数,且当0x ≥时,()2x f x =,又a 是函数2()ln(1)g x x x =+-的正零点,则(2)f -,()f a ,(1.5)f 大小关系是7.已知闭区间[](),a b a b <的“长度”定义为b a -.函数()log 1a y x a =>的定义域为[](),m n m n <,值域为[]0,1.若区间[],m n 的长度的最小值为34,则实数a 的值为 .8.已知函数()()()⎪⎩⎪⎨⎧=≠=000lg x x x x f ,则方程()()02=-x f x f 的实根共有 个.13.设,m n Z ∈,函数()()2log 4f x x =-+的定义域是[],m n ,值域是[]0,2,若关于x 的方程012||=++m x 有唯一的实数解,则m n += .10. 对于在区间],[b a 上有意义的两个函数)(x f 和)(x g ,如果对任意],[b a x ∈,均有1|)()(|≤-x g x f , 那么我们称)(x f 和)(x g 在],[b a 上是接近的.若)1(log )(2+=ax x f 与x x g 2log )(=在闭区间]2,1[上是接近的,则a 的取值范围是。

(完整版)幂函数、指数函数、对数函数专练习题(含答案)

(完整版)幂函数、指数函数、对数函数专练习题(含答案)

精心整理1.函数f(x)= . 1 2x的定义域是A. ( —x, 0]B.[0,+x)C. ( —X, 0)D. (―^,+呵2•函数y . log2 x的定义域是A. (0,1]B.(0,+x)C.(1,+x)D.[1,+x)3. 函数y Jog2 ^2的定义域是A.(3,+x )B.[3,+x )C.(4,+x )D.[4,+x)4. 若集合M {y | y 2x}, N {y | y . x 1},贝"M NA.{y|y 1}B.{y|y 1} C{y|y 0}D.{y|y 0}5. 函数y二-1的图象是x 16. 函数y=1 ——,则下列说法正确的是x 1A.y在(—1,+x)内单调递增B.y在(—1,+x)内单调递减Cy在(1,+x)内单调递增 D.y在(1,+x)内单调递减7. 函数y Jog°.5(3 x)的定义域是A.(2,3)B.[2,3) C[2, )D.( ,3)8. 函数f(x) x 在(0,3]上是xA.增函数B.减函数C在(0,1]上是减函数,[1,3]上是增函数。

.在(0,1]上是增函数,[1,3]上是减函数9. 函数y \ lg (2 x)的定义域是A.(-x, +X)B.(-x, 2)C.(-x, 0]D(-x, 1]— 2 x1,(x 0)10. 设函数f(x) 若f(X o) 1,则X o的取值范围是V x (x 0)11. 函数y |x|2A.是偶函数,在区间(-x ,0)上单调递增B.是偶函数,在区间(-x ,0)上单调递减C是奇函数,在区间(0,+x)上单调递增D.是奇函数,在区间(0,+x)上单调递减精心整理12. 函数y "―1)—的定义域是13. 函数y log i (3x 2)的定义域是A.[1, )B.(3, )C.[|,1]D.(3,1]14. 下列四个图象中,函数f(x) x 1的图象是x15. 设A、B是非空集合,定义A X B={x| x € A U B且x A A B}.已知A={x| y= 2x x2},B={y| y=2x,x>0},则A X B 等于A. :0,1)U (2,u)B. :0,1]U[ 2,+乂)C. :0,1]D. :0,2]16. 设a=20.|,b=0.32,c=log2.|,则Aa> c> bB.a> b> cC.b> c> aD.c> b> a17. 已知点「八3)在幕函数y f(x)的图象上,贝S f(x)的表达式是3 9「J-i 广一”:八, /■/1A. f(x) 3xB. f(x) x3C.f (x) x 2D. f (x)(一厂218. 已知幕函数f(x) x的部分对应值如下表:则不等式f (|x) 1的解集是A. x0 x 42B. x|o x 4C. 弋2 x V2D. x 4 x 419.已知函数f(x) x ax 3a 9的值域为[0,),则f (1)的值为A.3B.4C.5D.6I I \ 、指数函数习题一、选择题1. 定义运算a?b= ?a< b?,b?a>b?)),则函数f(x) =1?2x的图象大致为()2 .函数f (x) = x2- bx+ c 满足f (1 + x) = f (1 —x)且f (0) = 3,则f ( b x)与f (c x)的大小关系是()A. f(b x) <f (c x) 精心整理精心整理B. f(b x) >f(c x)C. f(b x)>f(c x)D. 大小关系随x的不同而不同3. 函数y = |2x- 1|在区间(k —1, k +1)内不单调,则k的取值范围是()A. ( —1,+切B.(―汽1)C. ( —1,1)D. (0,2)4. 设函数f(x) =ln[( x —1)(2 —x)]的定义域是A,函数g(x) = lg( —1)的定义域是B. 若A?B,则正数a的取值范围()A. a>3B. a>3C. a>D. a>5. 已知函数f (x)=若数列{a n}满足a n = f(n)( n€ N*),且{a n}是递增数列,则实数a 的取值范围是()A. [ , 3)B. (, 3)C. (2,3)D. (1,3)6. 已知a>0且a z 1, f (x) = x2—a x,当x € ( —1,1)时,均有f (x)v,则实数a的取值范围是()A. (0 , ] U [2 ,+乂)B. [ , 1) U (1,4]C. [ , 1) U (1,2]D. (0 , ) U [4 ,+ = )二、填空题7. ___________________________________________________________________ 函数y=a x( a>0,且a z 1)在[1,2]上的最大值比最小值大,则a的值是__________________ .8. _____________________________________________________________ 若曲线|y| = 2x+ 1与直线y= b没有公共点,则b的取值范围是 ____________________ .9. (2011 •滨州模拟)定义:区间[X1, X2](X1«2)的长度为X2—心已知函数y = 2|x|的定义域为[a, b],值域为[1,2],则区间[a, b]的长度的最大值与最小值的差为6、1、已知3a 2,那么log 3 8 2log 3 6用a 表示是()A 、 a 2B 、 2、 2叽(皿 5a 2C 3a (1 a)2D 3a a 2Iog a N ,则M的值为() 2N) log a MA 、 3、 丄B 4C 1D 4 或 14已知 x 2 y 21,x 0, yA ,0,且 log a (1 x)m,log a ----------- n,则 log a y 等于()1 xA 、m n B m n C 、1 m 24、 A 、如果方程 lg 2x (Ig5 Ig 7)lg x丄35Ig5gg7 B 、lg35 C 35D 5、 A 、 1一 m n2lg5 clg 7 0的两根是,,贝卩g 的值是()1已知 Iog 7【log 3(log 2 x )] 0,那么 x 2 等于()1B > LC LD 1一3 2 ; 3 2.2 3*3 函数y Ig 2 1的图像关于()x 轴对称B 、y 轴对称C 、原点对称D 直线y x 对称 精心A 、11. (2011 •银川模拟)若函数y = a 2^2a x — 1(a >0且1)在x € [ —1,1]上的最大值 为14,求a 的值.12.已知函数 f (x ) = 3x , f (a + 2) = 18, g (x ) = X ・3ax — 4x 的定义域为[0,1]. (1)求a 的值;⑵ 若函数g (x )在区间[0,1]上是单调递减函数,求实数 入的取值范围.对数与对数函数同步练习、选择题 三、解答题 10.求函数y = 2x 3x4的定义域、值域和单调区间.7、函数y log(2x 1) .3r~2的定义域是()2 1A -,1 U 1, B、,1 U 1,3 2C、2, D !,3 2&函数y log1 (x26x 17)的值域是()2A、R B 8, C , 3 D 3,9、若log m9 log n9 0,那么m,n满足的条件是()A、m n 1B、n m 1C、0 n m 1D 0 m n 110、log a2 1,则a的取值范围是()3A、0, — U 1,B、2,C、—,1 D> 0,—U -2,3 3 3 3 311、下列函数中,在0,2上为增函数的是()A、y log1 (x 1)B、y log2、x2121 2C、y log2—D y log 1 (x 4x 5)x忑12、已知g(x) log a|x+1| (a 0且a 1)在1,0 上有g(x) 0,则f(x)是()A、在,0上是增加的B、在,0上是减少的C、在,1上是增加的D在,0上是减少的二、填空题13、若log a 2 m,log a 3 n,a2m n。

幂指对函数练习

幂指对函数练习

幂指对函数练习1. 已知幂函数()()21322p p Z f x x p -++=∈在()0,+∞上是增函数,且在定义域上是偶函数,求p 的值,并写出相应的函数.2. 已知幂函数221m m y x --=在区间(),0-∞上是减函数,求m 的最大负整数值.3. 已知()()22k k xk Z f x -++=∈满足()()23f f <. (1)求k 的值;(2)是否存在正数m ,使()()()[]121,1,2g x mf x m x x =-+-∈-的值域为174,8⎡⎤-⎢⎥⎣⎦?为假设存在,求出m 的范围;假设不存在,说明理由.4. 942--=a a x y 是偶函数,且在),0(+∞是减函数,则整数a 的值是 .5. 假设幂函数a y x =的图像在0<x <1时位于直线y =x 的下方,则实数a 的取值范围是6. 假设幂函数()f x 与函数g (x )的图像关于直线y =x 对称,且函数g (x )的图像经过,则()f x 的表达式为_______________ 7. 假设3131)23()2(---<+a a ,求a 的取值范围。

8. 已知函数y =42215x x --.〔1〕求函数的定义域、值域; 〔2〕判断函数的奇偶性; 〔3〕求函数的单调区间.9. 一个幂函数y =f (x )的图像过点(3, 427),另一个幂函数y =g (x )的图像过点(-8, -2), 〔1〕求这两个幂函数的解析式; 〔2〕判断这两个函数的奇偶性;〔3〕作出这两个函数的图像,观察得f (x )< g (x )的解集.10. 假设函数()2(57)(1)x f x a a a =-+-是指数函数,求a 的值。

11. 设 ,求函数124325x x y -=-⋅+的最大值和最小值.12 函数()25425x x f x -+⎛⎫= ⎪⎝⎭的单调减区间是 .13. 函数y =a x -1a (a >0,且a ≠1)的图像可能是( )14. 作出函数12x y -=与12x y -=的图像.15. 已知函数[)1423,2,x x y a x --=-⋅-∈-+∞的最小值是4-,求实数a 的值。

幂函数指数函数与对数函数练习题及解析

幂函数指数函数与对数函数练习题及解析

幂函数、指数函数与对数函数练习题及解析一、选择题1.(2007北京文、理,5分)函数()3(02)x f x x =<≤的反函数的定义域为( )A .(0)+∞,B .(19],C .(01),D .[9)+∞, 答案:B ;[解析] 函数()3(02)x f x x =<≤的反函数的定义域为原函数的值域,原函数的值域为(19],。

2.(2007山东文、理,5分)给出下列三个等式:()()()()()()f xy f x f y f x y f x f y =++=,,()()()1()()f x f y f x y f x f y ++=-. 下列函数中不满足其中任何一个等式的是( )A .()3x f x =B .()sin f x x =C .2()log f x x =D .()tan f x x = 答案:B ;[解析] 依据指、对数函数的性质可以发现A 满足()()()f x y f x f y +=,C 满足()()()f xy f x f y =+,而D 满足()()()1()()f x f y f x y f x f y ++=-,B 不满足其中任何一个等式。

3.(2007全国2理,5分)以下四个数中的最大者是( )A .(ln2)2B .ln (ln2)C .ln 2D .ln2 答案:D ;[解析] ∵0ln 21<<,∴ln (ln2)<0,(ln2)2<ln2,而ln 2=21ln2<ln2,∴最大的数是ln2。

4.(2007安徽理,5分)若A=}822|{2<≤∈-x Z x ,B=2 1{x R ||log x |}∈>,则)(C R B A 的元素个数为( ) A .0个 B .1个 C .2个 D .3个 答案:C ;[解析] 由于A=}822|{2<≤∈-x Z x =}321|{<-≤∈x Z x =1{|x Z ∈-<1}x ≤={0,1},而B=}1|log ||{2>∈x R x =}2210|{><<∈x x R x 或,那么)(C R B A ={0,1},则)(C R B A 的元素个数为2个。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学期末复习幂函数、指数函数和对数函数
1、若函数x
a a a y ⋅+-=)33(2是指数函数,则有 ( ) A 、21==a a 或 B 、1=a C 、2=a D 、10≠>a a 且 2、下列所给出的函数中,是幂函数的是 ( ) A .3x y -= B .3-=x y C .32x y = D .13
-=x y
3、1.指数式b c =a (b >0,b ≠1)所对应的对数式是 ( ) A .log c a =b B .log c b =a C .log a b =c D .log b a =c
4、若210,5100==b
a ,则
b a +2= ( ) A 、0 B 、1 C 、2 D 、3
5、若0≠xy ,那么等式y xy y x 2432-=成立的条件是 ( ) A 、0,0>>y x B 、0,0<>y x C 、0,0><y x D 、0,0<<y x
6、函数y =)12(log 2
1-x 的定义域为 ( )
A .(
21,+∞) B .[1,+∞) C .( 2
1
,1] D .(-∞,1) 7、若函数log 2(kx 2+4kx +3)的定义域为R ,则k 的取值范围是 ( )
A .⎪⎭
⎫ ⎝⎛43,0
B .⎪⎭
⎫⎢⎣⎡43,0
C .⎥⎦⎤
⎢⎣⎡4
3,0 D .⎪⎭
⎫ ⎝⎛+∞-∞,43
]0,(
8、函数3
4
x y =的图象是 ( )
第9题 A . B . C . D .
9、图中曲线是对数函数y =log a x 的图象,已知a 取431
3,,,
3510
四个值,则相应于C 1,C 2,
C 3,C 4的a 值依次为 ( )
A .101,53,34,3
B .53,101,34,3
C .101,53,3,34
D .5
3
,101,3,34
10、 函数y =lg (x
+12
-1)的图象关于 ( )
A .x 轴对称
B .y 轴对称
C .原点对称
D .直线y =x 对称
11、若关于x 的方程33
5-+=
a a x
有负根,则实数a 的取值范围是_ ____________. 12、当0>x 时,函数x
a y )8(2-=的值恒大于1,则实数a 的取值范围是_ _____.
13、函数12
41
++=+x x y 的值域是 . 14、设1052==b
a ,则=+b
a 11 。

15、函数11
+=-x a y )10(≠>a a 且的图象必经过定点 .
16、若43-->a a )1,0(≠>a a ,则a 的取值范围是 . 17、函数f (x )=|lg x |,则f (41),f (3
1),f (2)的大小关系是 18、已知u a a x
x =+-,其中a >0, R x ∈,试用u 将下列各式分别表示出来:
(1)2
2
x x a
a -+ ; (2) 2
32
3x x a
a -+.
19、求log 2.56.25+lg 100
1
+ln e +3log 122+的值.
20、若0442=-+y x , 5424+⋅-=y
x z , 求 z 的取值范围.
21、已知函数3234+⋅-=x
x y 的值域为[7,43],试确定x 的取值范围.
作业
1、下列函数一定是指数函数的是 ( ) A、1
2+=x y B 、3
x y = C 、x
y -=3 D 、x
y 23⋅=
2、已知ab >0,下面四个等式中,正确命题的个数为 ( ) ①lg (ab )=lg a +lg b ②lg
b a =lg a -lg b ③b
a
b a lg )lg(212= ④lg (ab )=10log 1ab
A .0
B .1
C .2
D .3
3、已知x =2+1,则lo g 4(x 3-x -6)等于 ( )
A .
23 B .45 C .0 D .2
1
4、已知m >0时10x =lg (10m )+lg m
1
,则x 的值为 ( )
A .2
B .1
C .0
D .-1
5、下列图像正确的是 ( )
A B C D
6、若log a b ·log 3a =5,则b 等于 ( ) A .a 3 B .a 5 C .35 D .53
7、5、已知03
1
log 31log >>b a
,则a 、b 的关系是 ( ) A .1<b <a B .1<a <b C .0<a <b <1 D .0<b <a <1
8、若函数)1,0(1≠>-+=a a m a y x
的图象在第一、三、四象限内,则 ( ) A 、1>a B 、1>a 且0<m C 、010><<m a 且 D 、10<<a
9、函数x
y -=1)
2
1(的单调递增区间是 ( ) A 、),(+∞-∞ B 、),0(+∞ C 、),1(+∞ D 、)1,0(
10、 如图1—9所示,幂函数α
x y =在第一象限的图象,
比较1,,,,,04321αααα的大小( )
A .102431<<<<<αααα
B .104321<<<<<αααα
C .134210αααα<<<<<
D .142310αααα<<<<<
11、下列函数中既是偶函数又是(,)-∞0上是增函数的是 ( )
A .y x =43
B .y x =32
C .y x =-2
D .y x
=-14




12、 函数R x x x y ∈=|,|,满足 ( ) A .奇函数是减函数B .偶函数又是增函数C .奇函数又是增函数D .偶函数又是减函数 13、若01<<-x ,则下列不等式中成立的是 ( ) A 、 x
x
x
5.055<<-B 、 x
x
x
-<<55.05 C 、x x
x 5.05
5<<- D 、 x x x 555.0<<-
14、下列命题中正确的是
( )
A .当0=α时函数α
x y =的图象是一条直线 B .幂函数的图象都经过(0,0)和(1,1)点
C .若幂函数αx y =是奇函数,则α
x y =是定义域上的增函数 D .幂函数的图象不可能出现在第四象限
15、若2<x ,则|3|442x x x --+-的值是_____ _____.
16、满足等式lg (x -1)+lg (x -2)=lg2的x 集合为______ _______。

17、若y x x 25552
=⋅,则y 的最小值为__ ______.
18、 log a
3
2
<1,则a 的取值范围是 . 19、f (x )=)12(log 12+-x a 在(-2
1
,0)上恒有f (x )>0,则a 的取值范围 ___.
20、求函数 |
1|21-⎪


⎝⎛=x y 的定义域、值域.
21、已知1,2222
>=+-x x x ,求22x x --的值
22、已知函数2
222(log )3log 3x x y =-⋅+[1,2]x ∈的值域
答案:
1-5 CBDBC 6-10 CBACC
11、a<-3 12、a>3或者a<-3 13、()1,+∞ 14、1 15、()1,2a ∈ 16、a>1 17、11()()(2)43
f f f >> 18、2u + 2(1)u u +- 19、
13
2
20、()3,21- 21、[]2,3x ∈
1-5 CBBCB 6-10 CDBAC 11-14 CCBD
15、 -1 16、{3} 17、18-
18、1a a >2或者0<<3
19、(-1,2-)∪(1,2)
20、(],0,1R 原函数的定义域为原函数的值域为 21、-2
22、[]2,3-原函数的值域为
一.1. C 2. C 3 B 4. D 二.1. B 2. C 3. 4. 5. 6. 7. B 8. B 9. C 10. C 11. 12.
三 。

1 B 2. 3. 4. 5.
6. 7. A 8. 9. C 10. 11.
(奇偶性) 1. A 2. B 3. 4. C 5. D 6. 7. 8.C 9. C
(三)图像、定点 1. B 2. B 3. ()1,2 4. B 5.A 6. D 7.D。

相关文档
最新文档