九年级数学下册 分式知识点总结

合集下载

分式数学知识点归纳总结

分式数学知识点归纳总结

分式数学知识点归纳总结一、分式的定义和基本性质1. 分式是由分子和分母组成的数,分子和分母都是整数,并且分母不为零。

2. 分式可以表示有理数,有理数包括整数和分数。

3. 分式可以看作是代数式的特殊形式,其中分母不为零。

4. 分式的分子和分母可以约分,即分子和分母同时除以一个相同的非零数。

5. 分式可以相加、相减、相乘和相除,也可以化简和合并。

6. 分式的大小比较可以用分式的加减乘除性质进行比较。

二、分式的化简和合并1. 化简分式:化简分式是指对分式的分子和分母进行约分,使分数的值保持不变的基础上,得到最简分数。

2. 合并分式:合并分式是指将两个分式相加或者相减,得到一个最简分式。

三、分式的加减乘除性质1. 分式的加法性质:分式相加时,首先要找到它们的公分母,然后将分子相加,分母保持不变。

2. 分式的减法性质:分式相减时,首先要找到它们的公分母,然后将分子相减,分母保持不变。

3. 分式的乘法性质:分式相乘时,分子相乘,分母相乘。

4. 分式的除法性质:分式相除时,将除数分子分母互换,再将所得的分式作为乘数分式进行运算。

四、分式的大小比较1. 分式的大小比较:分式大小的比较可以用分式的加减乘除性质进行比较。

对于两个分式a/b和c/d来说,若a/b<c/d,则ad<bc;若a/b>c/d,则ad>bc。

2. 分式的大小比较练习:比较分式大小时,可以将分式通分进行比较,也可以将分式转化为小数进行比较。

五、分式方程的解法1. 分式方程的定义:分式方程是含有分式的代数方程。

2. 分式方程的解法:对于分式方程的解法,首先要通过分式的化简和合并,将分式方程化为最简分式方程,然后可以通过分式方程的乘法性质和除法性质进行求解。

六、分式在实际应用中的问题求解1. 分式在应用问题中的运用:分式在实际生活中有着广泛的应用,包括比例、百分数、利率、比率、工程问题等。

2. 分式应用问题求解:在实际应用问题中,我们可以将问题中的条件转化为分式形式,然后通过分式的运算法则进行求解。

初三下册数学重点知识梳理

初三下册数学重点知识梳理

初三下册数学重点知识梳理为了帮助初三学生更好地复习数学,以下是初三下册数学的重点知识梳理。

本文将以章节的形式进行梳理,并提供相关的知识点和要点。

第一章分式1.1 分式的概念- 分式的定义:分子和分母都是整式的式子叫做分式。

- 分式的性质:分式可以化成小数,也可以化成整式。

- 分式的运算:加法、减法、乘法和除法。

1.2 分式的运算法则- 分式的加法和减法:分子一样时,分子相加减,分母保持不变。

- 分式的乘法:分子相乘,分母相乘。

- 分式的除法:分子乘以分母倒数。

1.3 分式方程- 分式方程的解法:将分式方程转化为整式方程进行求解。

第二章比例与类比2.1 比例的概念- 比例的定义:两个具有相同单位的数之间的等比关系称为比例。

- 比例的性质:比例中的两个比值相等。

2.2 比例的运算法则- 比例的四则运算:比例的加、减、乘、除。

2.3 类比的概念- 类比的定义:两个比例相等称为类比。

- 类比的性质:类比中的两个比例相等。

2.4 类比的运算法则- 类比的四则运算:类比的加、减、乘、除。

第三章直线3.1 直线的概念- 直线的定义:两点确定一条直线。

- 直线的性质:直线没有弯曲,无限延伸,任意两点都在直线上。

3.2 直线的倾斜角- 直线的倾斜角:直线与水平线的夹角称为倾斜角。

- 倾斜角的计算:倾斜角的计算方法。

3.3 直线的表示方法- 直线的一般式方程:Ax + By + C = 0。

- 直线的斜截式方程:y = kx + b。

第四章数据与概率4.1 数据的统计- 数据的收集:调查、观察、实验等。

- 数据的整理:整理数据并绘制统计图表。

- 数据的分析和解读:根据统计图表进行数据分析和解读。

4.2 概率的概念- 概率的定义:某一事件发生的可能性的大小。

- 概率的运算法则:加法原理、乘法原理。

4.3 概率的应用- 概率的计算:通过概率的运算法则计算事件发生的概率。

- 概率的统计:通过实际的统计数据进行概率的研究。

分式必考知识点

分式必考知识点

分式是数学中的一个重要知识点,也是许多学生在学习数学过程中较为困惑的部分。

本文将从基础概念、分式的基本运算、简化分式以及分式方程等方面,逐步介绍分式的必考知识点。

一、基础概念1.分式的定义:分式是指一个整体被分为若干等份,每份的大小用分母表示,总份数用分子表示。

分子在上,分母在下,二者之间用一条水平线隔开,如:1/2。

2.分子和分母:在分式中,分子表示被分割的整体中的一份,分母表示整体被分割成的份数。

3.分式的值:分式的值等于分子除以分母的结果。

例如,1/2表示整体被分为2份,其中的1份。

二、基本运算1.分式的加减法:分式的加减法要求分母相同,通过找到分式的最小公倍数,将分式的分母转换为相同的数,然后对分子进行加减。

例如,1/3 +1/4 = 4/12 + 3/12 = 7/12。

2.分式的乘法:分式的乘法要求将分子与分母分别相乘。

例如,1/2 ×2/3 = (1 × 2)/(2 × 3) = 2/6 = 1/3。

3.分式的除法:分式的除法可以转化为乘法的倒数运算。

将除法转换为乘法,并将除数的分子与被除数的分母相乘,除数的分母与被除数的分子相乘。

例如,1/2 ÷ 2/3 = 1/2 × 3/2 = 3/4。

三、简化分式1.约分:将分式的分子与分母同时除以它们的最大公约数,得到一个等价的最简分式。

例如,4/8可以约分为1/2,因为4和8的最大公约数是4。

2.整数部分化为分数:将整数转化为分数形式,分子为整数,分母为1。

例如,2可以表示为2/1。

四、分式方程1.分式方程的定义:分式方程是含有分式的等式。

分式方程的求解过程与一元一次方程类似。

2.分式方程的求解步骤:–对分式方程的两边进行通分,将分式方程转化为整式方程。

–将方程两边的分式化为最简分式。

–化简方程两边的整式,并合并同类项。

–通过移项和合并同类项,将方程化为一元一次方程。

–求解方程,得到未知数的值。

分式知识点总结

分式知识点总结

分式知识点总结1.分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子叫做分式。

2.分式有意义、无意义的条件:分式有意义的条件:分式的分母不等于0;分式无意义的条件:分式的分母等于0。

3.分式值为零的条件:当分式的分子等于0且分母不等于0时,分式的值为0。

(分式的值是在分式有意义的前提下才可以考虑的,所以使分式为0的条件是A=0,且B≠0.)(分式的值为0的条件是:分子等于0,分母不等于0,二者缺一不可。

首先求出使分子为0的字母的值,再检验这个字母的值是否使分母的值为0.当分母的值不为0时,就是所要求的字母的值。

)4.分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变。

用式子表示为(),其中A、B、C是整式注意:(1)“C是一个不等于0的整式”是分式基本性质的一个制约条件;(2)应用分式的基本性质时,要深刻理解“同”的含义,避免犯只乘分子(或分母)的错误;(3)若分式的分子或分母是多项式,运用分式的基本性质时,要先用括号把分子或分母括上,再乘或除以同一整式C;(4)分式的基本性质是分式进行约分、通分和符号变化的依据。

5.分式的通分:和分数类似,利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把几个异分母分式化成相同分母的分式,这样的分式变形叫做分式的通分。

通分的关键是确定几个式子的最简公分母。

几个分式通分时,通常取各分母所有因式的最高次幂的积作为公分母,这样的分母就叫做最简公分母。

求最简公分母时应注意以下几点:(1)“各分母所有因式的最高次幂”是指凡出现的字母(或含字母的式子)为底数的幂选取指数最大的;(2)如果各分母的系数都是整数时,通常取它们系数的最小公倍数作为最简公分母的系数;(3)如果分母是多项式,一般应先分解因式。

6.分式的约分:和分数一样,根据分式的基本性质,约去分式的分子和分母中的公因式,不改变分式的值,这样的分式变形叫做分式的约分。

分式知识点总结及复习

分式知识点总结及复习

分式知识点总结及复习一、基本概念分式是指两个整数之间用分数线表示的表达式,其中分数线上方的整数称为分子,下方的整数称为分母。

分子和分母可以是正整数、负整数或零。

二、分数的分类1. 真分数:分子小于分母的分数,如1/2、3/4。

2. 假分数:分子大于等于分母的分数,如7/4、11/3。

3. 带分数:由整数部分和真分数部分组成的复合分数,如2 1/2、33/4。

三、分数的基本运算1. 分数的加法:分母相同时,分子相加;分母不同时,通分后分子相加。

2. 分数的减法:分母相同时,分子相减;分母不同时,通分后分子相减。

3. 分数的乘法:分子相乘,分母相乘。

4. 分数的除法:将除法转化为乘法,即将除数取倒数后与被除数相乘。

5. 分数的约分:将分子和分母的公约数除去,使分数达到最简形式。

6. 分数的比较:分数大小的比较依据是分子和分母的大小关系。

四、分式的应用1. 长度比较:如果表示相同长度的量,分母较大的分数表示的长度较小。

2. 面积比较:如果表示相同形状的图形面积,分母较大的分数表示的面积较小。

3. 比例求解:对于一个比例关系,可以使用分数来表示两个量之间的关系。

4. 混合运算:在实际的数学题中,分式常常与整数、小数一起进行混合运算。

五、常用的分数的表示法1. 百分数:百分数是分数的一种表示形式,以分母为100。

2. 小数:小数是另一种分数的表示形式,可以将分数化为小数进行计算。

六、常见的分数问题1. 分数的相加减问题:根据题意确定分数的运算方式,并进行对应的计算。

2. 分数的乘法除法问题:将乘法转化为分数的相乘运算,将除法转化为分数的相除运算。

3. 分数的约分问题:找到分子与分母的公约数,并进行约分化简。

4. 比较分数大小问题:比较分子与分母的大小关系来确定分数的大小。

七、常见的解分数问题的方法解决分数问题可以通过下面的方法来进行:1. 手算:将分数转化为小数进行计算,或者使用分数与整数的运算规则进行计算。

初中数学分式知识点归纳

初中数学分式知识点归纳

初中数学分式知识点归纳分式是初中数学中的一个重要内容,分式的概念和运算在解决实际问题中有着广泛的应用。

在这篇文章中,我将对初中数学中常见的分式知识点进行归纳,帮助学生更好地理解和掌握分式。

一、分式的定义和基本性质分式可以表示为a/b的形式,其中a称为分子,b称为分母。

分式的值可以为整数、小数或无理数。

在分式中,分子和分母都可以是整数、代数式或其他形式。

1.1 分式的定义分式是用一个数的算式表示另一个数。

1.2 分式的基本性质(1)两个分数相等的充要条件是分子与分母分别相等。

(2)分子分母的积是一个确定的数,即a/b * b/a = 1。

(3)一个分数乘以或除以一个非零数,其值不变,即a/b * c = ac/b,a/b ÷ c = a/b * 1/c。

(4)分子分母同时乘(或除)以同一个非零数,不改变分数的值,即a/b = a * c /b * c,a/b = a ÷ c /b ÷ c。

二、分式的基本运算分式的运算包括加法、减法、乘法和除法四种基本运算,下面将逐一介绍这些运算的具体方法。

2.1 分式的加法和减法(1)同分母的分式相加(减):保持分母不变,分子相加(减),结果的分子写在分数线上,分母不变。

(2)异分母的分式相加(减):找到它们的公倍数作为新的分母,然后将分子按照原来的分母和新分母的比例相加(减),得到的结果即为最简分数,如果需要化简,在得到的结果上进行约分。

2.2 分式的乘法分式的乘法中,将两个分式的分子相乘作为新的分子,分母相乘作为新的分母,并将结果化简为最简分数。

2.3 分式的除法分式的除法可以转化为分式的乘法,即将除号转化为乘号,同时将除数的分子与被除数的分母相乘作为新的分子,将除数的分母与被除数的分子相乘作为新的分母,并将结果化简为最简分数。

三、分式的化简和分式方程的解法化简分式的目的是将分式转化为最简分数的形式,使得分子和分母互质。

化简分式的方法包括约分和转换为连分数等。

分式知识点总结

分式知识点总结

分式知识点总结分式是数学中的一个重要概念,它在实际应用中十分常见。

本文将对分式的定义、基本性质以及常见的操作进行总结和讲解。

一、分式的定义分式由分子和分母组成,通常形式为a/b,其中a和b为整数,b不等于0。

分子表示了被分割的数量,分母表示了每份的份数。

二、分式的基本性质1. 分式的值是一个有理数,可以是正数、负数或零。

2. 分式的值可以是一个整数、真分数或带分数。

3. 分式可以化简,即将分子和分母同时除以一个公因数,得到一个等价的分式。

4. 分式可以相互比较大小,分子相乘,分母相乘,得到的积的大小关系不变。

三、分式的运算1. 分式的加法和减法:- 分式加法:将两个分式的分母找到一个公倍数,分别乘以这个公倍数后得到新的分数,然后将它们的分子相加,分母保持不变。

- 分式减法:与分式加法类似,将两个分式的分母找到一个公倍数,分别乘以这个公倍数后得到新的分数,然后将它们的分子相减,分母保持不变。

2. 分式的乘法和除法:- 分式乘法:将两个分式的分子相乘,分母相乘,得到的分子作为新分数的分子,得到的分母作为新分数的分母。

- 分式除法:将第一个分式的分子与第二个分式的分母相乘,作为新分数的分子;将第一个分式的分母与第二个分式的分子相乘,作为新分数的分母。

3. 分式的化简:- 将分式的分子和分母同时除以一个公因数,直到分子和分母没有公因数为止,得到一个等价的分式。

四、分式的应用场景1. 比例和比例分配问题:比例可以用分式来表示,通过求解分式可以解决比例分配问题。

2. 股票涨跌问题:利用分式可以计算股票的涨跌幅度。

3. 质量问题:分式可以用来表示物体的质量与体积之间的关系,解决质量问题。

通过以上对分式的定义、基本性质以及常见的操作进行总结和讲解,相信读者对分式的概念及其应用有了更深入的理解。

在实际问题中,对分式的灵活运用可以帮助我们更好地解决各种计算和应用问题。

2020春北师大版数学九年级下册(BS)中考知识点第3讲 分式

2020春北师大版数学九年级下册(BS)中考知识点第3讲 分式
简公分母,然后根据分式的性质通分.
例:分式 和 的最简公分母为 .
5.分式的加减法
(1)同分母:分母不变,分子相加减.即 ± = ;
(2)异分母:先通分,变为同分母的分式,再加减.即 ± = .
例: =-1.
6.分式的乘除法
(1)乘法: · = ;(2)除法: = ;
(3)乘方: = (n为正整数).
第3讲分式
一、知识清单梳理
知识点一:分式的相关概念
关键点拨及对应举例
1.分式的概念
(1)分式:形如 (A,B是整式,且B中含有字母,B≠0)的式子.
(2)最简分式:分子和分母没有公因式的分式.
在判断某个式子是否为分式时,应注意:(1)判断化简之间的式子;(2)π是常数,不是字母.例:下列分式:①;②;③;④ ,其中是分式是②③④;最简
由分式的基本性质可将分式进行化简:
例:化简: = .
知识点三:分式的运算
4.分式的约分和通分
(1)约分(可化简分式):把分式的分子和分母中的公因式约去,
即 ;
(2)通分(可化为同分母):根据分式的基本性质,把异分母的分式化为同分母的分式,即
分式通分的关键步骤是找出分式的最
2.分式的意义
(1)无意义的条件:当B=0时,分式 无意义;
(2)有意义的条件:当B≠0时,分式 有意义;
(3)值为零的条件:当A=0,B≠0时,分式 =0.
失分点警示:在解决分式的值为0,求值的问题时,一定要注意所求得的值满足分母不为0.
例:当 的值为0时,则x=-1.
3.基本性质
(1)基本性质: (C≠0).
例: = ; =2y;
= .
7.分式的混合运算
(1)仅含有乘除运算:首先观察分子、分母能否分解因式,若能,就要先分解后约分.

【人教版】2019九年级数学下册中考知识点梳理第3讲 分式

【人教版】2019九年级数学下册中考知识点梳理第3讲 分式
2.分式的意义
(1)无意义的条件:当B=0时,分式 无意义;
(2)有意义的条件:当B≠0时,分式 有意义;
(3)值为零的条件:当A=0,B≠0时,分式 =0.
失分点警示:在解决分式的值为0,求值的问题时,一定要注意所求得的值满足分母不为0.
例:当 的值为0时,则x=-1.
3.基本性质
( 1 后根据分式的性质通分.
例:分式 和 的最简公分母为 .
5.分式的加减法
(1)同分母:分母不变,分子相加减.即 ± = ;
(2)异分母:先通分,变为同分母的分式,再加减.即 ± = .
例: =-1.
6.分式的乘除法
(1)乘法: · = ;(2)除法: = ;
(3)乘方: = (n为正整数).
第3讲分式
一、知识清单梳理
知识点一:分式的相关概念
关键点拨及对应举例
1.分式的概念
(1)分式:形如 (A,B是整式,且B中含有字母,B≠0)的式子.
(2)最简分式:分子和分母没有公因式的分式.
在判断某个式子是否为分式时,应注意:(1)判断化简之间的式子;(2)π是常数,不是字母.例:下列分式:①;②;③;④ ,其中是分式是②③④;最简分式③.
(2)由基本性质可推理出变号法则为:
; .
由分式的基本性质可将分式进行化简:
例:化简: = .
知识点三:分式的运算
4.分式的约分和通分
(1)约分(可化简分式):把分式的分子和分母中的公因式约去,
即 ;
(2)通分(可化为同分母):根据分式的基本性质,把异分母的分式化为同分母的分式,即
分式通分的关键步骤是找出分式的最
例: = ; =2y;
= .
7.分式的混合运算

人教版九年级数学下册全册中考知识点梳理分式方程

人教版九年级数学下册全册中考知识点梳理分式方程
(2)解所得的整式方程;
(3)检验:把所求得的x的值代入最简公分母中,若最简公分母为0,则应舍去.
3.增根
使分式方程中的分母为0的根即为增根.
例:若分式方程 有增根,则增根为1.
知识点二:分式方程的应用
4.列分式方程解应用题的一般步骤
(1)审题;(2)设未知数;(3)列分式方程;(4)解分式方程;(5)检验:(6)作答.
第7讲分式方程
一、知识清单梳理
知识点一:分式方程及其解法
关键点拨及对应举例
1.定义
分母中含有未知数的方程叫做分式方程.
例:在下列方程中,① ;② ;③ ,其中是分式方程的是③.
2.解分式方程
基本思路:分பைடு நூலகம்方程整式方程
例:将方程 转化为整式方程可得:1-2=2(x-1).
解法步骤:
(1)去分母,将分式方程化为整式方程;
在检验这一步中,既要检验所求未知数的值是不是所列分式方程的解,又要检验所求未知数的值是不是符合题目的实际意义.

分式知识点总结

分式知识点总结

分式知识点总结一、分式的定义如果 A、B 表示两个整式,并且 B 中含有字母,那么式子 A/B 就叫做分式。

其中 A 叫做分子,B 叫做分母。

需要注意的是,分母 B 的值不能为 0,如果 B=0,那么分式就没有意义了。

例如,分式 1/x,当 x=0 时,这个分式就没有意义。

二、分式的基本性质分式的分子和分母同时乘以(或除以)同一个不为 0 的整式,分式的值不变。

用式子表示为:A/B = A×C/B×C,A/B = A÷C/B÷C(C 为不等于 0 的整式)。

这就像分蛋糕,如果把蛋糕(分式的值)平均分成的份数(分母)和每份的大小(分子)同时扩大或缩小相同的倍数,蛋糕的大小(分式的值)不变。

例如,对于分式 2/3,分子分母同时乘以 2,得到 4/6,分式的值不变。

三、分式的约分把一个分式的分子和分母的公因式约去,叫做分式的约分。

约分的关键是确定分子和分母的公因式。

确定公因式的方法:1、系数:取分子和分母系数的最大公因数。

2、字母:取相同字母的最低次幂。

例如,对于分式 6x/8x²,分子分母的公因式是 2x,约分后得到 3/4x。

四、分式的通分把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。

通分的关键是确定几个分式的最简公分母。

确定最简公分母的方法:1、取各分母系数的最小公倍数。

2、凡单独出现的字母连同它的指数作为最简公分母的一个因式。

3、同底数幂取次数最高的。

例如,对于分式 1/2x 和 1/3y,最简公分母是 6xy,通分后分别为3y/6xy 和 2x/6xy。

五、分式的运算1、分式的乘法法则:分式乘以分式,用分子的积做积的分子,分母的积做积的分母。

用式子表示为:(A/B)×(C/D) = AC/BD。

例如,(2/3)×(4/5) = 8/15。

2、分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

分式概念知识点总结

分式概念知识点总结

分式概念知识点总结一、分式的概念分式是指一个整体被分成若干个相等的部分,其中每个部分被称为分子,整体被称为分母。

分式通常以 a/b 的形式表示,其中 a 和 b 都为整数,b 不为0。

分数的分母表示被分成的份数,分子表示取了多少份。

例如,2/3 表示整体被分成了3份,取了其中的2份。

二、分式的基本形式1. 真分式:分数的分子小于分母,即 |a| < b。

2. 假分式:分数的分子大于或等于分母,即|a| ≥ b。

3. 显分式:分式中的分子和分母都是已知的数。

4. 隐分式:未知数出现在分子或分母中。

三、分式的性质1. 两个分式相乘:a/b * c/d = ac/bd2. 两个分式相除:a/b ÷ c/d = ad/bc3. 两个分式相加:a/b + c/d = (ad + bc)/bd4. 两个分式相减:a/b - c/d = (ad - bc)/bd四、分式的化简1. 将分子和分母约分到最简形式。

2. 若分数中含有开平方,可将分子或分母的平方根提出来。

3. 若分数中含有负号,可将负号移到分子或分母。

五、分式的运算1. 分式的四则运算:包括加、减、乘、除。

2. 分式的化简:将分数化成最简形式。

3. 分式的混合运算:结合整数和分数进行运算。

六、分式方程1. 单分式方程:方程中只有一个分式。

2. 复分式方程:方程中含有多个分式。

七、分式的应用1. 比例问题:利用分式来描述两个量的比值,解决比例问题。

2. 百分比问题:将百分数化成分式,进行计算和比较。

3. 复利问题:利用复利的计算公式,将利率和时间表示成分式,求解复利问题。

八、分式的图形表示1. 分式在直角坐标系中的图形表示:分数可以表示成长度或面积的比值,可以在直角坐标系中用直线或曲线表示。

2. 分式在统计图中的表示:在统计图中,分数可以表示成比例的形式,用图形表示出来。

九、分式的应用领域1. 数学:在代数、几何、概率等方面,分式的概念和运算都有广泛的应用,是数学中重要的基础知识。

九年级分式的知识点总结

九年级分式的知识点总结

九年级分式的知识点总结分式是数学中常见的一种数表示形式,由分子和分母组成,表示一个数与另一个数的比值关系。

九年级学生在学习分式的时候,需要掌握以下几个重要的知识点:1. 分式的定义和表示方法分式由分子和分母两部分组成,分子表示被除数,分母表示除数。

分式可以用斜线或者横线将分子和分母分开,例如 a/b 就表示一个分式,其中 a 是分子,b 是分母。

2. 分式的化简和约分化简分式是指将分式中的分子和分母都除以它们的公因式,使得分子和分母之间的比值不变,从而得到一个最简形式的分式。

约分是指将分式中的分子和分母约去它们的公因式,使得分子和分母没有可约的公因式。

3. 分式的乘法和除法分式的乘法是指将两个分式相乘,分子与分子相乘,分母与分母相乘,然后化简得到最简分式。

分式的除法是指将一个分式除以另一个分式,可以通过将除法转化为乘法,然后再进行乘法操作得到最终结果。

4. 分式的加法和减法分式的加法是指将两个分式进行通分,然后将分子相加,分母保持不变,最后再化简得到最简分式。

分式的减法同样是先将两个分式进行通分,然后将分子相减,分母保持不变,最后再化简得到最简分式。

5. 分式的混合运算在实际问题中,我们常常需要将分式与整数进行混合运算。

这时,可以先将整数转化为分式,然后按照运算顺序进行计算,最后将结果化简为最简分式。

6. 分式方程的求解分式方程是指含有分式的方程,求解分式方程需要将方程两边的分式化简,然后根据方程的性质进行变形,最终找出方程的解。

通过对以上知识点的学习和掌握,九年级的学生可以更好地理解和运用分式,在解决实际问题时能够灵活运用。

只有通过不断的练习和巩固,才能真正掌握分式的应用技巧。

希望同学们能够运用好这些知识点,提高自己的数学水平。

初中数学九年级下册《第3讲 分式》知识点归纳

初中数学九年级下册《第3讲 分式》知识点归纳

第3讲分式
数学选择题解题技巧
1、排除法。

是根据题设和有关知识,排除明显不正确选项,那么剩下唯一的选项,自然就是正确的选项,如果不能立即得到正确的选项,至少可以缩小选择范围,提高解题的准确率。

排除法是解选择题的间接方法,也是选择题的常用方法。

2、特殊值法。

即根据题目中的条件,选取某个符合条件的特殊值或作出特殊图形进行计算、推理的方法。

用特殊值法解题要注意所选取的值要符合条件,且易于计算。

此类问题通常具有一个共性:题干中给出一些一般性的条件,而要求得出某些特定的结论或数值。

在解决时可将问题提供的条件特殊化。

使之成为具有一般性的特殊图形或问题,而这些特殊图形或问题的答案往往就是原题的答案。

利用特殊值法解答问题,不仅可以选用特别的数值代入原题,使原题得以解决而且可以作出符合条件的特殊图形来进行计算或推理。

3、通过猜想、测量的方法,直接观察或得出结果。

这类方法在近年来的中考题中常被运用于探索规律性的问题,此类题的主要解法是运用不完全归纳法,通过试验、猜想、试误验证、总结、归纳等过程使问题得解。

浙教版九下数学知识点归纳总结

浙教版九下数学知识点归纳总结

浙教版九下数学知识点归纳总结第一章分式方程与分式不等式1.1分式的定义与性质-分式的定义:分式是由整式(多项式)与非零常数的商组成的表达式。

-分式的性质:分式一般可化简为最简形式。

分式的最简形式是指分子与分母之间互质,即它们没有公共因子。

1.2分式方程-分式方程的定义:含有未知数的分式等式称为分式方程。

-分式方程的解:使分式方程成立的未知数的值称为分式方程的解。

-分式方程的求解步骤:通常使用消元法,将含有未知数的分式方程转化为整式(多项式)方程。

1.3分式不等式-分式不等式的定义:分式的大小关系称为分式不等式。

-分式不等式的解集:分式不等式的解集就是满足分式不等式的所有实数。

1.4解分式方程与分式不等式的方法-满足分式等式条件且在分母非零的定义域内的解即是方程的解。

-解分式不等式的方法:找出使分式不等式的分子或分母变号的点,然后根据各个变号的区间来确定不等式的解集。

第二章几何与立体几何2.1角-角的定义:角是由两条相交的射线或线段所围成的图形。

-角的分类:按角的大小可以分为锐角、直角、钝角和平角。

-角的度量:利用角度表示角的大小,以度(°)为单位。

2.2三角形的性质与判定-三角形的性质:三角形的内角和等于180°。

-三角形的判定:根据边长和角度的关系可以判断三角形的类型,如等腰三角形、直角三角形等。

2.3相似三角形-相似三角形的定义:具有对应角相等且对应边成比例的两个三角形称为相似三角形。

-相似三角形的判定:三角形对应角相等即可判断它们相似。

-相似三角形的性质:两个相似三角形的对应边长之比等于对应边长之比的绝对值。

2.4平行线与比例-平行线与比例的定义:平行线的概念是指在同一平面内,不相交的两直线,它们的每一对相对线上的点的终点分别平行连接,这样的直线称为平行线。

比例是指两个有序线段长度的比值。

-平行线的性质:平行线的对应角相等,平行线与截线的交角为内错角;同位角相等,内错角互补;与平行线相交的两直线任意一对同位角互补。

分式知识点总结

分式知识点总结

分式知识点总结一、分式的定义分式是一种用分数形式表示的数,它由分子和分母两部分组成,分式一般形式为a/b,式中a为分子,b为分母,b≠0。

分子和分母可以是整数,也可以是含有未知数的代数式,如x、y等。

例如:3/4、1/x、2x/3等都是分式。

二、分式的性质1. 分式的值:分式的值是由分子除以分母所得到的数值,例如3/4的值为0.75,1/2的值为0.5。

2. 分式的大小比较:当两个分式的分母相同,分子大小比较;当分母不同,可以通过通分后比较分子大小来比较分式的大小。

三、分式的运算1. 分式的加减法分式的加减法:通分后将分子相加(或相减),分母不变,再化简得到最简分式。

2. 分式的乘法分式的乘法:将两个分式的分子相乘,分母相乘,化简得到最简分式。

3. 分式的除法分式的除法:将一个分式除以另一个分式相当于将第一个分式乘以第二个分式的倒数,化简得到最简分数。

四、分式的化简化简分式:将分子与分母的公因式约去得到最简分式,例如6/9可化简为2/3。

五、分式的应用分式在数学中有很多应用,在实际生活中也有很多应用。

例如:比例问题、分数运算、容积、质量等问题都可以用分式来表示和计算。

另外,在代数方程式的解题过程中,也会用到分式。

在教学中,我们应该注重培养学生的分式意识和分式运算能力,让学生掌握分式的定义、性质、运算规律、化简方法和应用技巧,提高学生的数学运算能力和解决问题的能力。

我们可以通过具体的问题来引导学生学习,通过让学生参与讨论、举一些实际例子来让学生理解分式的应用,激发学生的学习兴趣。

总之,分式是数学中一个重要的内容,它在数学学习中有着广泛的应用。

通过系统的总结分式的相关知识点,希望可以帮助学生更好地理解和掌握分式,提高数学学习的效果和兴趣。

九年级数学下册知识点总结

九年级数学下册知识点总结

九年级数学下册知识点总结1. 分式1.1 分式的基本概念分式是由分子和分母组成的数的形式,分子和分母都可以是整数、多项式或者其他数。

1.2 分式的化简对于一个分式,如果分子和分母存在可以约分的公因式,可以进行化简,将分子和分母都除以最大公因式。

1.3 分式的乘法和除法分式的乘法:将两个分式相乘时,先将分子和分母分别相乘,然后化简得到最简分式。

分式的除法:将一个分式除以另一个分式时,将除式的分子和除数的分母互换位置,然后进行分式的乘法运算。

1.4 分式的加法和减法分式的加法和减法:分母相同的两个分式可以直接相加或相减,然后化简得到最简分式。

分母不同的两个分式,需要进行通分,再进行相加或相减。

2. 二元一次方程组2.1 二元一次方程组的定义二元一次方程组是包含两个未知数的一次方程的集合,通常形式为:ax + by = cdx + ey = f其中a、b、c、d、e、f为已知数。

2.2 二元一次方程组的解法二元一次方程组有三种解法: - 消元法:通过变换,将一个方程的一个未知数的系数(一般选择系数较小的项)消掉,然后带入另一个方程,解出一个未知数,再带回去解出另一个未知数。

- 代入法:将一个方程解出一个未知数,然后代入另一个方程,解出另一个未知数。

- 直接法:通过方法直接解出两个未知数的值。

2.3 二元一次方程组的应用二元一次方程组可以用来解决实际问题,如求两个数的问题、面积与周长问题等。

3. 三角形3.1 三角形的基本概念三角形是由三条边和三个内角组成的图形,根据边长和角度的不同,可以分为等边三角形、等腰三角形、直角三角形和一般三角形等。

3.2 三角形的面积和周长三角形的面积可以通过海伦公式或高度公式计算,周长是三条边的长度之和。

3.3 三角形的性质三角形具有一些重要的性质:角的和为180°,两边之差小于第三边,两角之和大于第三角,等边三角形的三个内角相等等。

3.4 三角形的相似性质三角形具有相似的性质:对应角相等,对应边成比例。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3讲分式
一、知识清单梳理
知识点一:分式的相关概念
关键点拨及对应举例
1.分式的概念
(1)分式:形如 (A,B是整式,且B中含有字母,B≠0)的式子.
(2)最简分式:分子和分母没有公因式的分式.
在判断某个式子是否为分式时,应注意:(1)判断化简之间的式子;(2)π是常数,不是字母.例:下列分式:①;②;③;④ ,其中是分式是②③④;最简分式③.
(2)由基本性质可推理出变号法则为: = .
知识点三:分式的运算
4.分式的约分和通分
(1)约分(可化简分式):把分式的分子和分母中的公因式约去,
即 ;
(2)通分(可化为同分母):根据分式的基本性质,把异分母的分式化为同分母的分式,即
分式通分的关键步骤是找出分式的最
例: = ; =2y;
= .
7.分式的混合运算
(1)仅含有乘除运算:首先观察分子、分母能否分解因式,若能,就要先分解后约分.
(2)含有括号的运算:注意运算顺序和运算律的合理应用.一般先算乘方,再算乘除,最后算加减,若有括号,先算括号里面的.
失分点警示:分式化简求值问题,要先将分式化简到最简分式或整式的形式,再代入求值.代入数值时注意要使原分式有意义.有时也需运用到整体代入.
简公分母,然后根据分式的性质通分.
例:分式 和 的最简公分母为 .
5.分式的加减法
(1)同分母:分母不变,分子相加减.即 ± = ;
(2)异分母:先通分,变为同分母的分式,再加减.即 ± = .
例: =-1.
6.分式的乘除法
(1)乘法: · = ;(2)除法: = ;
(3)乘方: = (n为正整数).
2.分式的意义
(1)无意义的条件:当B=0时,分式 无意义;
(2)有意义的条件:当B≠0时,分式 有意义;
(3)值为零的条件:当A=0,B≠0时,分式 =0.
失分点警示:在解决分式的值为0,求值的问题时,一定要注意所求得的值满足分母不为0.
例:当 的值为0时,则x=-1.
3.基本性质
(1)基本性质: (C≠0).
相关文档
最新文档