第二章-晶体投影
第二章晶体的基本概念
晶体熔化时具有固定的熔点,而非晶体无明显熔点,只存 在一个软化温度范围。
晶体具有各向异性, 非晶体呈各向同性。
石英晶体和石英玻璃
(a)石英晶体
(b)石英玻璃
晶体内部粒子的分布有高度的规律性,因此晶体具有远程有序性。非晶体内的粒子
的分布则只具有近程有序性,就是说只有近邻的一些粒子形成了有规则的结构。图中 分别表示的是石英晶体和石英玻璃的平面结构示意图。构成两者的都是SiO2四面体, Si在四面体的中心,O在四面体的顶点上。然而,在石英晶体中这些四面体有规则地 堆积起来,在石英玻璃中没有严格的堆积顺序,表明后者是非晶体,没有远程有序性, 只有短程有序。
1.678
3
固体的鉴定和分析:物相和成分
SrO + TiO2 SrTiO3
物相鉴定最常用的方法是X-射线衍射。它是基 于一种特定的相具有特征的结构参数,从而表现特征 的衍射参数。
2018/3/9
发现材
结构与性
探索和设
料性能 能的关系 计新材料
• 1986年,(La,Ba)2CuO4
Tc>30K
第二节 结晶化学研究的对象和内容
对晶体的研究不再限于化学组成,而深入到晶体结构 内部。从而产生了结晶学一个新的分支—结晶化学。
• 结晶化学是研究晶体结构规律,并通过晶体 结构特征的诠释,进一步探索晶体性质的一 门学科。
1、晶态固体的性质。 2、晶态固体的鉴定和表征。 3、晶态固体材料的设计和探索。
Study the properties of the crystals: component Structure晶体的差异
晶体与非晶体的温度-时间曲线
高考化学晶体投影知识点
高考化学晶体投影知识点晶体投影是高考化学中的重要知识点之一,理解和掌握晶体投影的相关概念和方法对于解决晶体结构问题具有重要意义。
下面将介绍晶体投影的相关知识点及其应用。
一、晶体投影的定义晶体投影是指将三维晶体结构中的原子、分子或离子的投影投射在一个平面上,用二维图形来表示晶体的结构。
晶体投影可以帮助我们更清晰地观察晶体的结构,便于分析和研究晶体的性质。
二、晶体投影的方法1. 平行投影法平行投影法是一种常用的晶体投影方法,通过将所有原子在一个平面上投影,使得所有原子在投影图上的尺寸和位置与真实晶体结构一致。
可以使用线段或圆点表示原子,根据需要选择合适的比例尺和投影方向进行绘制。
2. 立体投影法立体投影法是另一种常用的晶体投影方法,它可以提供三维晶体结构的立体感。
通常使用矩形或六边形的投影图形表示晶体结构,其中不同的原子用不同的颜色或符号表示。
三、晶体投影的应用1. 晶体结构分析晶体投影可以帮助我们分析和解释晶体的结构。
通过观察晶体投影图,可以确定晶体中的基本单元和各个原子的位置关系,进而推断晶体的晶格类型、空间群和化学组成等信息。
2. 晶体性质研究晶体投影还可以用于研究晶体的物理和化学性质。
通过观察晶体投影图的形状和对称性,可以推断晶体的晶胞参数、晶体的晶系和晶体的晶体学类别,进而预测晶体的性质,如硬度、光学性质等。
3. 材料设计和合成晶体投影在材料科学和工程中有着广泛的应用。
通过研究晶体投影图,可以了解晶体的结构特征和原子排列方式,从而指导新材料的设计和合成。
四、晶体投影的难点和注意事项1. 投影方向的选择选择合适的投影方向是进行晶体投影的关键。
不同的投影方向可以呈现不同的晶体结构信息。
经验上,选择高对称轴或者对称平面作为投影方向,可以简化晶体投影图的绘制,并且更容易把握晶体的对称性。
2. 投影图的分析正确理解和分析晶体投影图对于解决晶体结构问题至关重要。
需要注意的是,晶体投影图只能提供晶体中原子位置在投影面上的信息,需要结合其它实验数据和理论知识进行综合分析。
晶体投影
FCC(111)极射赤面投影
第二章:晶体投影 § 2.2 投影网及极射赤面投影应用
应用:面角测量 N
S
极式网:经线上的纬度差
吴式网:能转动
有且只有一个大圆过两点,此大圆必与0°经线相交于xy平面内 N
S
转动直到两点在一条经线上,读出纬度的差值即为面角
第二章:晶体投影 § 2.3 心射切面投影
极射赤面投影(Stereographic projection):主要用来表示 线、面的方位,及其相互之间的角距关系和运动轨迹, 把物体三维空间的几何要素(面、线)投影到平面上来 进行研究。 特点:简便、直观、是一种形象、综合的定量图解。 在结晶学、地质和航海上被广泛地应用。 步骤: 1. 球面投影:视点-球心,投影面-参考球面 作晶面的法线交投影面于极点P; 2. 极射赤面投影:视点-南极S,投影面-赤平面,赤道-基圆 连接SP,交赤平面于一点即极射赤面投影点p。
第二章:晶体投影 § 2.1 极射赤面投影
晶体学第一定律的意义:使人们从实际晶体千变万化的形态 中,找到它们外形上的内在规律,得以根据面角的关 系,来恢复晶体的理想形状,从而奠定了几何结晶学 的基础。对晶体学的发展产生了极为深远的影响。 面角: 两个晶面法线间的夹角,等于外角
第二章:晶体投影 § 2.1 极射赤面投影 极射赤面投影:
N 晶面 P 晶面法线
p
投影面 基圆 S
晶面在球上的投影
北半球晶面的极射赤面投影
南半球晶面的极射赤面投影
N
S
大圆的极射赤面投影
小圆的极射赤面投影
第二章:晶体投影 § 2.1 极射赤面投影 § 2.2 投影网及极射赤面投影应用 § 2.3 心射切面投影
第二章:晶体投影 § 2.2 投影网及极射赤面投影应用
晶体学基础(第二章)
2.1 面角守恒定律
双圈反射测角仪: 双圈反射测角仪:晶体位于二旋转 轴的交点。 轴的交点。。当观测镜 筒中出现“信号” 筒中出现“信号”时,我们便可以 在水平圈上得到一个读数ρ 极距角) 在水平圈上得到一个读数ρ(极距角), 并在竖圈上得到一个读数ϕ 方位角) 并在竖圈上得到一个读数ϕ(方位角), ρ和ϕ这两个数值犹如地球上的纬度 和经度,是该晶面的球面坐标 球面坐标。 和经度,是该晶面的球面坐标。
使用很简单,但精度较差,且不适于测量小晶体。 使用很简单,但精度较差,且不适于测量小晶体。
2.1 面角守恒定律
单圈反射测角仪, 单圈反射测角仪,精度可达 0.5′ l′-0.5′。但缺点是晶体安置 好之后只能测得一个晶带( 好之后只能测得一个晶带(指 晶棱相互平行的一组晶面) 晶棱相互平行的一组晶面)上 的面角数据。 的面角数据。若欲测另一晶 带上的面角时, 带上的面角时,必须另行安 置一次晶体。测量手续复杂。 置一次晶体。测量手续复杂。
2.1 面角守恒定律 晶体测量(goniometry)又称为测角法。 晶体测量(goniometry)又称为测角法。根据测角 (goniometry)又称为测角法 的数据,通过投影, 的数据,通过投影,可以绘制出晶体的理想形态 图及实际形态图。 图及实际形态图。在这一过程中还可以计算晶体 常数,确定晶面符号(见第四章) 同时, 常数,确定晶面符号(见第四章),同时,还可以 观察和研究晶面的细节(微形貌) 观察和研究晶面的细节(微形貌)。晶体测量是研 究晶体形态的一种最重要的基本方法。 究晶体形态的一种最重要的基本方法。 为了便于投影和运算, 为了便于投影和运算,一 般所测的角度不是晶面的 夹角, 夹角,而是晶面的法线 plane)夹角 (normals to plane)夹角 (晶面夹角的补角),称为 晶面夹角的补角) 面角(interfacial angle)。 面角(interfacial angle)。
晶体投影含球面投影(特选内容)
为区别起见,将北半球的极点P1对应的极射赤面投影点S1用“o”表示;将南 半球的极点P2对应的极射赤面投影点S2用“”表示。
线均分成180份。
优选内容
6
假设球面经纬线网是带有刻度的极薄的透明塑料球。测量球面投影上
两极点P1和P2之间的夹角时,应先把球面经纬线网紧贴在球面投影的表面,
再让P1和P2两极点转到经纬线网的同一条经线上,读出两极点之间的纬度
差,即为两极点间夹角。图中极点优P选1与内容P2之间的夹角为30°。
7
′
15
小圆弧
大圆弧
O
优选内容
球面上的大圆族 在赤道平面上投影形 成大圆弧族,球面上 的小圆族在赤道平面 上投影投影形成小圆 弧族,它们构成一个 坐标网,这种网是乌 里夫首先制成,故称 为吴里夫网。
在乌里夫网上,大圆 弧族将小圆弧族划分 成180个间隔,小圆 弧族也将大圆弧族划 分成180个间隔,每 一间隔为1°。投影基 圆被小圆弧族划分成 360个间隔,每一间 隔为1°。
8
2. 极射赤面投影
以赤道平面为投影平面,称为投影基圆。
取半径极大的球为参考球,把晶体放在球心上,作某晶面的极点P1(此晶面 法线与参考球的交点),或某晶向的迹点P1(此晶向与参考球的交点),将南极 点与此极点(或迹点)连线SP1,与赤道大圆(投影基圆内)交于一点S1,此点 S1则称为某晶面(或晶向)的极射赤面投影。
经纬线坐标网在投影平面上的极射赤面投影是由投影基圆内的放射状直径族(经线的投
晶体学基础晶体投影优秀课件
应用1:已知晶面的球面坐标(方位角与极距角),作 晶面的投影。
例1:晶面M的坐标为r 30°和j 40 ° ,作M的极射赤
平投影
半透明纸 描出基圆 标出网中心X 选横半径为零度子午面 °j 0 °
应用2:已知两晶面的球面坐标,求这两个晶面的面角。
例2:已知两晶面M (r1, j1) 和 P(r2, j2),求此二晶面的面角。
二、极射赤平投影:将晶体球面投影转换成二维平面投影
以赤道平面为投影平 面,以南极S(或北极N) 为视点,将球面上的各个 点线进行投影。即:将球 面上的点与南极点(或北 极点)连线,该连线与赤 平面的交点就是极射赤平 投影点。
联接球面投影点A和 南极S,交赤道平面于a。
在赤平投影图上, 方位角与极距角的体现
5. 上半球极点的投影以“·”表示,下半球极点的投影以
“○”表示,二者重合时以“⊙”表示;
6. 对称中心在基圆的圆心处; 7. 可选任意过投影球心的平面作投影平面,视点随投影面 而改变,视点为该投影面过球心的垂线与投影球的交点。
极距角r :0°- 180° 北极 r = 0° 南极 r = 180°
M
方位角j : 0°- 360° 东方 j = 0°
4.3 极射赤平投影
一、晶体的投影的原理:
投影球、投影面(赤平面)、 北极点与南极点(目测点)。
投影过程:
往球面上投影 作极射赤平投影
即将球面上三维空间的东西投影到二维平面上。
晶体学基础晶体投 影
4.1 面角守恒定律
实际晶体形态(歪晶):偏离理想晶体形态。
——尽管形态各不相同, 看似无规, 但对应的 晶面面角相等, 即发现“面角守恒定律”。
第二章晶体的投影
即:方位角在基圆上度量,极距角则体现为投 影点距圆心的距离(h = r tan ρ /2) 。
极射赤平投影:
是将物体在三维空间的几何要素表述在平面上的一种投影方式。
特点:只反映物体的线和面在三度空间的方位和角距关系,而不涉及它 们的具体位置、长短大小和距离远近。它是一种等角投影。
上述投影平面与球面相截的圆称 为投影基圆。 球面上位于赤道上的点,其极射 赤平投影点将落在基圆上; 北极的投影点即是基圆的中心; 北半球上其他的点,它们的投影 都将落在基圆之内。
第二章 晶体的测量与投影
Ⅰ.面角守恒定律 Ⅱ.晶体的测量 Ⅲ.晶体的球面投影及其坐标 Ⅳ.极射赤平投影和乌尔夫网(吴氏网) Ⅴ.乌尔夫网应用举例
理想晶体与歪晶
p 理想晶体:理想条件下生长的晶体,表现为同一单形的晶面同形等大。 p 歪晶:偏离理想状态的晶体,表现为同一单形的晶面不同形等大,有
些晶面甚至缺失。
˜
˜
˜ ˜
˜˜ ˜
˜
凡是北半球上的点均以南极为视 点;南半球上的点则以北极作为视点。
北半球(包括赤道)上的点的极射 赤平投影点标记为“•”,南半球上者 标记为“○”;
如果南、北半球上的某两个点的投 影位置恰好重合时,则记为“☉”。
也有参考书将北半球(包括赤道)上的点的 极射赤平投影点标记为“⊙”,南半球上者标 记为“×”; 如果南、北半球上的某两个点的投影位置恰 好重合时,则记为“⊕”。
ϕ=350o;ρ=40.5o。
①求作该直线的另一个投影点b 1; ②求b 1的球面坐标值。
例:立方体晶面的球面投影
2. 球面坐标
• 球面坐标(ρ,ϕ):
类似地球的经纬度
• 极距角ρ (纬度) :投影轴与晶面
第二章晶体的基本概念
3
固体的鉴定和分析:物相和成分
SrO + TiO2 SrTiO3
物相鉴定最常用的方法是X-射线衍射。它是基 于一种特定的相具有特征的结构参数,从而表现特征 的衍射参数。
2018/3/9
发现材
结构与性
探索和设
料性能 能的关系 计新材料
• 1986年,(La,Ba)2CuO4
Tc>30K
金刚石 C
石英 SiO2
萤石 CaF2
锆石 ZrSiO4
单晶体(single crystal)和多晶体(polycrystal)
单晶体:原子或离子按一定的几何规律完成周期排列的整块晶体。 多晶体:由许许多多单晶体微粒所形成的固体集合体。
single crystal
particle
polycrystal
对称性
例如食盐晶体具有立方体外形,云母片上的蜡熔化 图形呈椭圆形,而不是呈其他任意的不规则形状, 这些都说明有对称性存在。
晶体(crystal)与非晶体(non-crystal)的异同
non-crystal :Some substances, such as wax, pitch and glass, which posses the outward appearance of being in the solid state, yield and flow under pressure, and they are sometimes regarded as highly viscous liquid.
YBa2Cu3O7-z
90K
Bi2Sr2Can-1CunOz 7-110K
Tl2Ba2Can-1CunOz >93K • 它们是由钙钛矿衍生出来的准二维层状结构。
结晶学课件 第2章 晶体的测量与投影
晶体的上述投影过程可借用吴氏网很方便地进行,下面举例说 明。
1、已知晶面的球面坐标(方位角与极距角),作晶面的投影。
2、已知两晶面的球面坐标,求这两个晶面的面角。
(二)心射极平投影:
与极射赤平投影相反,是将目测点置于投影球中心,在 过北极点的切面上投影.
本章总结:
1. 面角守恒定律及其意义 2.晶体的投影过程 3. 吴氏网的构成与应用 4. 方位角与极距角的概念 5. 投影图的解读,即从投影图上点的分布规律能看出晶 体上晶面的空间分布规律,例如:
3、吴氏网:
用来进行极射赤平投影的工具。
吴氏网的组成:基圆、直径、 大圆弧、小圆弧
它们各是什么投影而成?
水平大圆的投影形成基圆, 直立大圆的投影形成直径
倾斜大圆的投影形成大圆弧
直立小圆的投影形成小圆弧
吴氏网是一个平面网, 但要把它看成是一个空间的球 体,网格能够测量球面上任一点的方位角与极距角, 所以,只要知道方位角与极距角,就可以用吴氏网进 行投影。
第二章 晶体的测量与投影
这一章主要介绍晶体形态的研究方法与手 段。因为晶体形态体现晶体的对称性,所以 本章是为后面研究晶体对称理论奠定基础。
一、面角守恒定律:
实际晶体形态(歪晶):偏离理想晶体形态。
石英晶体形态
“歪晶”导致 同种矿物晶 体形态变化 无常,给形 态研究带来 困难。
尽管形态各不相同, 看似无规, 但对应的晶面面角相等, 即 发现“面角守恒定律”:
这样,晶体上所有晶面的分布规律就反映在赤平面上的 对应点的分布规律。
下图的4个点代表4个怎么样的晶面?
(对于晶体上的对称面我们通常不将之转化为点,而是 直接投影成一条直线或弧线。实习课时再讲。)
在赤平投影图上, 方位角与极距角怎么体现?
晶体的投影
2.2.2晶体的投影(1)极射赤平投影极射赤平投影的投影过程为先经过球面投影,再由球面投影转换到称为赤道平面的投影面上。
如图2-16所示,首先取一定点O作为投影中心,以此点为球心,以一定长为半径作一球面,称为投影球。
然后通过球心作一水平平面,称赤道面。
投影面与球相交的水平圆,称基圆或赤道。
垂直投影面过球心的直径NS称投影轴,N为北极点或上目测点,S为南极点或下目测点。
投影过程分为如下两步:①球面投影如图2-17所示,将晶体放在投影球中心,晶体中心与球心重合,自中心作每个晶面的法线,延伸与球面相交,交点称相应晶面的极点,如图中a和b两点,这些极点就是晶面在球面的投影点。
②极射赤平投影以南极S为目测点进行极射赤平投影。
由S向球面上的极点作连线,连线与赤道平面的交点即为极点的极射赤平投影点。
图2-18表示了由图2-17的球面投影到极射赤平投影的转换。
图2-19给出了它们的极射赤平投影图。
如果晶面的极点位于下半球,若以S为目测点,则晶面的极射赤平投影点将在基圆之外,在这种情况下,应以N为目测点。
为了区分上下半球的极点,上半球极点的投影用“○”表示,下半球极点的投影用“×”表示。
从图2-17和图2-19可以看出,晶体上水平晶面的投影点位于基圆的中心(晶面E、F);直立晶面的投影点位于基圆上(晶面C、D、G、H);倾斜晶面的投影点位于基圆内(晶面A、B),倾斜度越近水平,其投影点距基圆中心越近。
极射赤平投影在晶体学中已广泛应用于晶体的对称、晶体定向、晶面符号和晶带符号等。
图2-20是等轴晶系的六八面体晶体,其对称要素的极射赤平投影见图中所示。
(2)对称要素的极射赤平投影①对称面的投影:将对称面扩展与投影球相交,所得球面上的大圆有如下几种(图2-21(a)):水平对称面的投影与基圆重合(图2-21(b)中a);直立对称面的投影为通过基圆中心的直线(图2-21(b)中b);倾斜面的投影是以基圆直径为弦的大圆弧(图2-21(b)中c,只表示上半球投影)。
《结晶学与矿物学》课程笔记
《结晶学与矿物学》课程笔记第一章:晶体及结晶学一、引言1. 晶体的定义- 晶体是一种固体物质,其内部原子、离子或分子在三维空间内按照一定的规律周期性重复排列,形成具有长程有序结构的物质。
- 晶体的特点是在宏观上表现出明确的几何外形和物理性质的各向异性。
2. 结晶学的定义- 结晶学是研究晶体的形态、结构、性质、生长和应用的科学。
- 它是固体物理学、化学和材料科学的一个重要分支。
3. 晶体与非晶体的区别- 晶体:具有规则的内部结构和外部几何形态,物理性质各向异性。
- 非晶体(如玻璃):内部结构无规则,没有长程有序,物理性质各向同性。
二、晶体的基本特征1. 几何外形- 晶体通常具有规则的几何外形,如立方体、六方柱、四方锥等。
- 几何外形是由晶体的内部结构决定的。
2. 晶面、晶棱和晶角- 晶面:晶体上平滑的平面,由晶体内部的原子平面构成。
- 晶棱:晶面的交线,由晶体内部的原子线构成。
- 晶角:晶棱之间的夹角,由晶体内部的原子角构成。
3. 晶面指数、晶棱指数和晶角指数- 晶面指数:用来表示晶面在晶体中的位置和方向的符号。
- 晶棱指数:用来表示晶棱在晶体中的位置和方向的符号。
- 晶角指数:用来表示晶角的大小和方向的符号。
4. 物理性质各向异性- 晶体的物理性质(如电导率、热导率、折射率等)随方向的不同而变化。
- 这是因为晶体内部原子的排列在不同方向上有所不同。
三、晶体的分类1. 天然晶体与人工晶体- 天然晶体:在自然界中形成的晶体,如矿物、岩石等。
- 人工晶体:通过人工方法在实验室或工业生产中制备的晶体。
2. 单晶体与多晶体- 单晶体:整个晶体内部原子排列规则一致,具有单一的晶格结构。
- 多晶体:由许多小晶体(晶粒)组成的晶体,晶粒之间排列无序。
3. 完整晶体与缺陷晶体- 完整晶体:内部结构完美,没有缺陷的晶体。
- 缺陷晶体:内部存在点缺陷、线缺陷、面缺陷等结构缺陷的晶体。
四、晶体的生长1. 晶体生长的基本过程- 成核:晶体生长的起始阶段,形成晶体的核。
第二章 晶体结构 3【精选】
晶胞分子数1
TiO八面体共顶形成三维网络
钙钛矿结构的畸变
BaTiO3
高温时立方结构被破坏,重构成六方点阵。
图1-27 立方点阵变形时形成的三方、斜方及正方点阵
图1-27 立方点阵变形时形成的正方点阵
BaTiO3的铁电效应产生的微观机理
BaTiO3属钙钛矿型结构,是典型的铁电材料,在 居里温度以下表现出良好的铁电性能,而且是一种很 好的光折变材料,可用于光储存。铁电晶体是指具有 自发极化且在外电场作用下具有电滞回线的晶体。
4)纤锌矿ZnS结构(六方,c= 0.625nm • S2-构成六方密堆积 • Zn2+填充1/2四面体空隙 •Zn2+和S2-离子的配位数均为 4.[ZnS4]及[SZn4] •晶胞分子数为2 •可看成Zn、S各一套穿插而成
常见纤锌矿结构的晶体有BeO、ZnO、CdS、 GaAs等
• Cl-离子作面心立方最紧密堆积 • Na+填充八面体空隙的100%; • a=0.563nm,r+/r-=0.639;CN=6 •两种离子的配位数均为6; 配位多面体为钠氯八面体[NaCl6]或氯钠八面体[ClNa6] • 八面体之间共棱连接(共用两个顶点) •一个晶胞中含有4个NaCl“分子” •整个晶胞由Na+离子和Cl-离子各一套面心立方格子沿晶 胞边棱方向位移1/2晶胞长度穿插而成。
四、ABO3型结构
在含有两种正离子的多元素化合物中,其结构基元 的构成分为两类:其一是结构基元是单个原子或离子; 其二是络阴离子。
ABO3型结构中,如果A离子与氧离子尺寸相差较 大,则形成钛铁矿型结构,如果A离子与氧离子尺寸大 小相同或相近,则形成钙钛矿型结构,其中A离子与氧 离子一起构成FCC面心立方结构。
晶体投影
P
E
S A N F
如图:平面A的面痕 为EFNS,极点为P。 可 以 看 出 P 与EFNS 成90º
两晶面之间的夹角可 用两面痕或两极点之间的 夹 角 表示 。图 中P1 和P2 分别为两平面的极点。大 圆ABCD和BEDF为面痕, 两平面之间夹角为α。为 测量极点之间的角度需要 先作一个能在球面上自由 转动的大圆,并把此大圆 均分成360份,画上刻度。 测 圆 P1 和P2 两极点之间 的夹角时,在球面上转动 此带刻度的大圆、让它通 过 极 点P1 和 P2 ,如图中 的LMNK位置,两极点之 间的刻度数就是这两个极 点之间的角度数。
晶系的标准投影对所有立方晶系晶体都是相同的。
但在其他晶系中、必须考虑点阵常数对点阵面夹角的影 响,所以对某一具体晶体都具有它自己特有的极射赤面标准
投影,它们彼此之间是不能通用的。
因此,极射赤面投影多用于研究立方晶系晶体,而在其 他晶系中用的比较少。
乌式网绘图计算(投影基圆半径R=9) 角度 大圆弧半径 R/(COS(C4*PI()/180)) 5 10 15 9.034 9.139 9.317 小圆弧半径 =R/(COS(C4*PI()/180))R*tan((45-C4/2)*PI()/180) 0.787 1.587 2.412
假设球面经纬线网是带有刻度的极薄的透明塑料球。测量球面投影上 两极点P1和P2之间的夹角时,应先把球面经纬线网紧贴在球面投影的表面, 再让P1和P2两极点转到经纬线网的同一条经线上,读出两极点之间的纬度 差,即为两极点间夹角。图中极点P1与P2之间的夹角为30°。
如果球面投影上原有P1、
P2 两个极点,要确定晶 体 绕AB轴转动某个角度后极 点P1、P2的位置。
1. 球面投影
第二章 无机盐的晶体结构
2012版
第二章-无机盐的晶体结构
12
红砷镍的晶体结构
红砷镍矿(NiAs)的晶体结构: 砷化镍属六方晶系 空间群:D6h4—P63mc 晶胞参数:a=b=3.602Å,
c=5.009 Å 轴率:c/a=1.391 分子数:Z=2 单胞体积:V=56.28Å3
2012版
第二章-无机盐的晶体结构
35
晶体的物理性质
a. 光学颜色:纯萤石为无色,含杂质离子Y、Ce、Ca 时,产生色心,常见的颜色有浅绿色至深绿色,蓝、
绿蓝、黄、酒黄、紫、紫罗兰色、灰、褐、玫瑰红、
深红等。 光泽: 玻璃光泽。
b. 透明度:透明至半透明。
c. 光性:均质体。
d. 折射率:1.438(±0.01) ,无多色性。
第二章-无机盐的晶体结构
10
表:TiO2(金红石)的类质同像体
化合物
a/Å
c/Å
V/Å3
CoF2
4.695
3.180
70.10
FeF2
4.697
3.309
73.00
MgF2
4.623
3.052
65.23
MnF2
4.873
3.310
78.60
NiF2
4.651
3.084
66.71
ZnF2
4.703
3.134
空间群:D414h P42 / mnm
晶胞参数:a=b=4.5937Å, c=2.9587 Å
轴率:a/c=1.55 分子数:Z=2
Rutile的单胞结构
单胞体积V=62.433 Å3
晶体投影
方法 : (一) 晶体定向 一 晶体定向即是在晶体中确定坐标系统。晶体定向的具 体步骤: 1. 找出晶体的全部对称要素,确定对称型; 2. 根据对称型确定晶族、晶系(晶体对称分类); 3.按各晶系选择晶轴的原则进行晶体定向,即将根据选 择晶轴原则选出的对称要素按结晶轴位置放置晶体模 型。由于晶体对称特征有以下二种定向: 三轴定向:X(前后)、Y(左右)及Z(上下) 三轴定向 轴,用于除三、六方晶系以外的其它晶系。 四轴定向:水平等角度分布的X、Y、U和与之垂 四轴定向 直的Z轴,用于三、六方晶系。
实习七、八 晶体定向及 晶面符号
内容: 内容:
第一次实习: 第一次实习 三轴定向(三斜、单斜、斜方、四方、
等轴晶系)晶体的晶面符号的确定。 第二次实习: 第二次实习 四轴定向(三方、六方晶系)晶体的 晶面符号的确定。 第三次实习: 第三次实习 三轴、四轴定向(七个晶系)晶体的 晶面符号及晶带符号的确定。
实习九
单形认识
对照教材47种单形图逐一观察模型,记忆单形名称,尤其对其 中的20种常见单形要熟练地掌握。 分析单形时一定要注意:单形的晶面数目、晶面间的相对位置、 晶面的形状以及晶面和对称要素之间的关系(与对称要素是 平行、垂直、等角度相交,还是任意斜交),同时还要注意 单形的横切面形状等。 例如菱面体:由六个两两平行的菱形晶面组成,晶面三个在上, 三个在下,上下各交于Z轴,并上下晶面相互等角度错开 (区别于偏方面体)。
在确定晶面符号时,应注意下列几点: 在确定晶面符号时,应注意下列几点: 1.晶面指数首先考虑用确定数值,如(321)、(1011)等。当晶面指数难以确 定时,以(hkl)、(hhl)、(hkk)、(hh2h0)、(0kkl)等一般形式表示。晶面与 晶轴负端相截时,对应的晶面指数为负,如与Z轴负端相截与其它两晶轴 平行的晶面,其晶面符号为(001)。 2.晶面指数的一般规律:当晶面与晶轴平行时,其对应的晶面指数为0,如 (100)、(010)、和(1010)等;当晶面与晶轴相截时,截距系数越大晶面指 数越小,如一晶面在X、Y、Z轴上的截距系数分别为1、2、0,晶面符号 为(210);四轴定向晶体的晶面指数前三位代数和为0,如(1010)、 (hh2hl)。 3.当晶面与三个晶轴等距相截时,因其晶体常数不同其对应的晶面指数不 一定全部相等。如与三结晶轴(正端)等距相截的晶面符号:等轴晶系 中为(111)、四方晶系中为(hhl)、低级晶族中则为(hkl)。三方、六方晶系 中为(hh2hl)(与U轴负端相截,截距是其它水平轴的1/2)。 4.所有晶面符号中的晶面指数均为较小的整数(很少超过6),不会出现小数 等非整数。 5.在一个晶体上同一晶面符号决不会在不同晶面上重复出现。 6 . 晶面符号中数字(0除外)与字母不能共存,但不包括系数,如 (hh2hl)。
晶体的投影和倒易点阵ppt课件
倾斜大圆
平行于赤道的小圆 倾斜于赤道的小圆 垂直于赤面的小圆
9
二、极式网与乌式网
1.极式网: 将经纬线坐标网以其本身的赤道平面为投影面,作极射赤面投影, 所得的极射赤面投影网。 由一系列直径和一系列同心圆组成,每一直径和同心圆分别表示经 线和纬线的极射赤面投影,经线等分投影基圆圆周,纬线等分投影 基圆直径。 基圆直径为20 mm,等分间隔为2°
3
2023年10月17日1时53分
概念:晶体的投影是指将构成晶体的晶向和晶面等几何元素以一 定的规则投影到投影面上,使晶向、晶面等几何元素的空间关系 转换成其在投影面上的关系。
分类:球面和赤平面,对应的投影为球面投影和极射赤面投影。 关系的确定:通过晶体的投影可获得晶体的晶向、晶面等元素之
间的关系。此关系通常由极式网和乌式网确定。
23
2023年10月17日1时53分
五、倒易点与正点阵中的(hkl)晶面的对应关系
g*hkl的基本性质表达了与(hkl)的一一对应关系,即一 个g *与一组(hkl)对应;
g* hkl的方向与大小表达了(hkl)在正点阵中的方位与晶 面间距,反之,(hkl)决定了g *的方向和大小;
g* hkl的基本性质也建立了作为终点的倒易阵点与(hkl) 的一一对应关系:
求得其相应倒易点阵参数,从而建
立其倒易点阵。
c
a b V
20
2023年10月17日1时53分
四、倒易点阵的基本性质
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
结晶学与矿物学
2.3. 球面坐标
N A
N
B O a C O
S (a) 2-8 (b) (c)
结晶学与矿物学
3.4. 极射赤平投影
极射赤平投影(stereographic projection) 极射赤平投影
以赤道平面为投影平面,以南极 或北极 为视点, 或北极)为视点 以赤道平面为投影平面,以南极(或北极 为视点,将球面 上的各个点、线进行投影。 上的各个点、线进行投影。 投影基园: 投影基园 大园和大园弧: 大园和大园弧 小园和小圆弧: 小园和小圆弧
结晶学与矿物学
2.2. 晶体的测量
a
β
α
β
b
2 -2 2-3
接触测角仪
结晶学与矿物学
2.2. 晶体的测量
垂直轴 H K a1 a2
ϕ
N
2
A
ρ
水平轴
F
N1 C
2-5
双圈反射测角仪测角原理
2- 4 单圈反射测角仪测角原理
结晶学与矿物学
2.2. 晶体的球面投影
晶体的球面投影(spherical projection) 晶体的球面投影
各晶面法线之投影。亦即设想以晶体的中心为球心, 各晶面法线之投影。亦即设想以晶体的中心为球心, 任意长为半径,作一球面;然后从球心出发(注意: 任意长为半径,作一球面;然后从球心出发(注意: 不是从每个晶面本身的中心出发), ),引每一晶面的法 不是从每个晶面本身的中心出发),引每一晶面的法 延长后各自交球面于一点, 线,延长后各自交球面于一点,这些点便是相应晶面 的球面投影点。 的球面投影点。 大园: 大园 过球心的平面 小园: 小园 平面半径小于球的半径
结晶学与矿物学
晶体的球面投影
(a)
பைடு நூலகம்(b)
结晶学与矿物学
2.3. 球面坐标
投影球球面上的坐标网线, 投影球球面上的坐标网线,其性质与地球上的经 纬线完全相同,只是在计数方法上有所不同。 纬线完全相同,只是在计数方法上有所不同。在 球面坐标网中,与纬度相当的是极距角(ρ), 与经度 球面坐标网中,与纬度相当的是极距角 相当的方位角(φ), ρ和φ就构成了球面坐标值。 就构成了球面坐标值。 相当的方位角 和 就构成了球面坐标值 方位角φ: 方位角 0 ~ 360° ° 极距角ρ: 极距角 0 ~ 180°, 从北极开始 °
结晶学与矿物学
2. 晶体的测量和投影
1. 面角守恒定律 2. 晶体的测量 3. 晶体的球面投影 4. 极射赤平投影 5. 吴氏网 吴氏网(Wulff net)
结晶学与矿物学
2.1. 面角守恒定律
面角守恒定律(law of constancy of angle)是斯丹诺(N. Steno)于1669年首先提出的, 故亦称为斯丹诺定律 (law of Steno)。它的内容是: 同种晶体之间, 对应晶面 间的夹角恒等。 面角 面角的表达
结晶学与矿物学
极射赤平投影
N
B
B D A O CD N C
S (a)
A
结晶学与矿物学
极射赤平投影
N
A C a P P a P C
O
B
O
S
(b)
B
结晶学与矿物学
心射赤平投影
N
2-13
结晶学与矿物学
3.5. 吴氏网(Wulff net) 吴氏网(
吴氏网(Wulff net) 吴氏网
将极射赤平投影的投影平面标上刻度: 纵向标出大 将极射赤平投影的投影平面标上刻度 园弧(间隔 间隔2 横向标出小园弧(间隔 间隔2 园弧 间隔 °), 横向标出小园弧 间隔 °) 。 规定 – 方位角 方位角(φ) 起始点在 E; – 极距角 极距角(ρ)起始点在中心 起始点在中心; 起始点在中心 – 投影点在上半球用小园点表示 投影点在上半球用小园点表示; – 投影点在下半球用小叉表示 。