高三数学理科模拟试题及答案

合集下载

高三数学(理科)模拟试题(含答案)

高三数学(理科)模拟试题(含答案)

高三数学(理科)模拟试题(含答案)本试卷分选择题和非选择题两部分,共4页, 满分150分,考试用时120分钟. 注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名、考号填写在答题卡上.2.答案一律做在答题卡上,选择题的每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案;3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4. 保持答题卡的整洁,不要折叠,不要弄破,考试结束后,将试卷和答题卡一并收回.第一部分 选择题 (共60分)一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 集合1,24k M x x k Z ⎧⎫==-∈⎨⎬⎩⎭,1,42k N x x k Z ⎧⎫==+∈⎨⎬⎩⎭,则(***) A .=M N B .M ⊂≠ N C .N ⊂≠ M D .M N =∅I 2. 原命题为“若12,z z 互为共轭复数,则12z z =”,其逆命题,否命题,逆否命题真假性依次为(***)A .真,假,真B .真,真,假C .假,假,真D .假,假,假3. 已知平面向量r a ,r b 是非零向量,2=r a ,()2⊥+r r r a a b ,则向量r b 在向量ra 方向上的投影为(***)A.1- B. 1 C. 2-D. 24. 平面∥α平面β的一个充分条件是(***) A .存在一条直线a a a αβ,∥,∥ B .存在一条直线a a a αβ⊂,,∥C .存在两条平行直线a b a b a b αββα⊂⊂,,,,∥,∥D .存在两条异面直线a b a b a b αββα⊂⊂,,,,∥,∥ 5. 函数2()log 3sin()2π=-f x x x 零点的个数是(***)A .2B .3C .4D .56. 已知函数()sin 2cos2=-f x a x b x (a ,b 为常数,0≠a ,∈x R )在12π=x 处取得最大值,则函数3π⎛⎫=+⎪⎝⎭y f x 是(***) A. 奇函数且它的图象关于点,02π⎛⎫⎪⎝⎭对称 B. 偶函数且它的图象关于点,02π⎛⎫⎪⎝⎭对称 C. 奇函数且它的图象关于π=x 对称 D. 偶函数且它的图象关于π=x 对称 7. 已知函数()f x 的图象连续且在()2,+∞上单调,又函数()2=+y f x 的图象关于y 轴对称, 若数列{}n a 是公差不为0的等差数列,且()()42016=f a f a ,则{}n a 的前2019项之和为(***) A .0B .2019C .4038D .40408.函数()2sin cos2=+f x x x 在,22ππ⎡⎤-⎢⎥⎣⎦上的单调减区间为(***) A .,26ππ⎡⎤--⎢⎥⎣⎦和0,6π⎡⎤⎢⎥⎣⎦ B .,06π⎡⎤-⎢⎥⎣⎦和,62ππ⎡⎤⎢⎥⎣⎦C .,26ππ⎡⎤--⎢⎥⎣⎦和,62ππ⎡⎤⎢⎥⎣⎦D .,66ππ⎡⎤-⎢⎥⎣⎦9. 函数()2112---=x x x f 的值域是(***)A. 44,33⎡⎤-⎢⎥⎣⎦B. 4,03⎡⎤-⎢⎥⎣⎦C. []0,1D. 40,3⎡⎤⎢⎥⎣⎦10. 已知圆221x y +=,点(1,0)A ,△ABC 内接于圆,且60∠=o BAC ,当B ,C 在圆上运动时,BC 中点的轨迹方程是(***)A .2212x y +=B .2214x y +=C .221122⎛⎫+=< ⎪⎝⎭x y x D. 221144⎛⎫+=< ⎪⎝⎭x y x 11. 已知双曲线2222:1x y C a b-=的右焦点为F ,过点F 向双曲线的一条渐近线引垂线,垂足为M ,交另一条渐近线于N ,若2MF FN =u u u u r u u u r,则双曲线的离心率(***)A .3 B .3C D. 2 12. 若正四面体SABC 的面ABC 内有一动点P 到平面SAB ,平面SBC ,平面SCA 的距离依次成等差数列,则点P 在平面ABC 内的轨迹是(***)A .一条线段B .一个点C .一段圆弧D .抛物线的一段第二部分 非选择题 (共90分)二、填空题:本大题共4小题,每小题5分,共20分.请将答案填在答题卡的相应位置上.13. 在区间[]0,2上分别任取两个数m ,n ,若向量(),=r a m n ,()1,1=rb ,则满足1-≤r r a b 的概率是***.14. 已知两个等差数列{}n a 和{}n b 的前n 项和分别为n A 和n B ,且311+=+n n A n B n ,则25837++=+a a a b b ***.15. 已知随机变量X~B (2,p ),Y~N (2,σ2),若P (X ≥1)=0.64,P (0<Y<2)=p ,则P (Y>4)=***. 16. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,22222=+b a c ,当()tan -B A 取最大值时,角A 的值为***.三、解答题:满分 70 分. 解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个 试题考生都必须做答,第22、23题为选考题,考生根据要求做答. (一)必考题:共60分. 17. (本小题满分12分)已知数列{}n a 满足:21=a ,241-=+-n a a n n (2≥n ). (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若数列{}n b 满足:n nb b b b )12(73321-++++Λ=n a ,求数列{}n b 的通项公式.18. (本小题满分12分)某花店根据过往某品种鲜花的销售记录,绘制出日销售量的频率分布直方图,如图所示,将日销售量落入各组区间的频率视为概率,且假设每天的销售量相互独立. (Ⅰ)求在未来的4天中,有2天的日销售量低于100枝 且另外2天不低于150枝的概率;(Ⅱ)用ξ表示在未来的4天日销售量不低于100枝的天 数,求随机变量ξ的分布列和数学期望.19. (本小题满分12分)如图,AB 是圆O 的直径,点C 是圆O 上异于A ,B 的点,直 线PC ⊥平面ABC ,E ,F 分别是PA ,PC 的中点.(Ⅰ)记平面BEF 与平面ABC 的交线为l ,试判断直线l 与 平面PAC 的位置关系,并加以证明;(Ⅱ)设2PC AB =,求二面角E l C --大小的取值范围.20. (本小题满分12分)已知椭圆2222:1+=x y C a b(0a b >>)的离心率为22,过左焦点F 的直线与椭圆交于A ,B两点,且线段AB 的中点为21,33⎛⎫- ⎪⎝⎭. (Ⅰ)求椭圆C 的方程;(Ⅱ)设M 为C 上一个动点,过点M 与椭圆C 只有一个公共点的直线为1l ,过点F 与MF 垂直的直线为2l ,求证:1l 与2l 的交点在定直线上,并求出该定直线的方程.21. (本小题满分12分)已知函数()f x =ln ,x a x a +∈R .(Ⅰ)求函数()f x 的单调区间;(Ⅱ)当[]1,2x ∈时,都有()0f x >成立,求a 的取值范围;(Ⅲ)试问过点(1,3)P 可作多少条直线与曲线()y f x =相切?并说明理由.(二)选考题:共10分. 请考生从给出的第22、23两题中任选一题作答,并用2B 铅笔在答题卡上把所选题目对应的题号涂黑,注意所做题目的题号必须与所涂题号一致,如果多做,则按所做的第一题计分.22. (本小题满分10分)选修4-4:坐标系与参数方程已知直线l 的参数方程为cos sin x m t y t αα=+⎧⎨=⎩ (t 为参数,0)απ≤<,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为4cos ρθ=,射线θϕ=,4πθϕ=+,4πθϕ=-,分别与曲线C 交于,,A B C 三点(不包括极点O ),其中(,)44ππϕ∈-. (Ⅰ)求证:OB OC OA +=; (Ⅱ)当12πϕ=时,若,B C 两点在直线l 上,求m 与α的值.23. (本小题满分10分)选修4-5:不等式选讲已知函数()222f x x a x a =+-+-.(Ⅰ)若()13<f ,求实数a 的取值范围;(Ⅱ)若关于x 的不等式()2≥f x 恒成立,求实数a 的取值范围.参考答案一、选择题:本大题共12小题,每小题5分,共60分.二、填空题:本大题共4小题,每小题5分,共20分.13.4π 14. 215 15. 0.1 16. 6π三、解答题:满分 70 分. 解答应写出文字说明、证明过程或演算步骤.17. (本小题满分12分)解:(Ⅰ)由241-=+-n a a n n (2≥n )可化为()()12220--+-+=n n a n a n . 令2=-n n c a n ,则10-+=n n c c ,即1-=-n n c c . 因为12=a ,所以1120=-=c a , 所以0=n c ,即20-=n a n ,故2.=n a n ……6分 (若用不完全归纳,没有证明,可给4分) (Ⅱ)由()1233721++++-=L n n n b b b b a ,可知()()11231137212---++++-=≥L n n n b b b b a n , 两式作差得()()12122--=-=≥n n n n b a a n , 即()2221=≥-n nb n . ……10分 又当1=n 时,也112==b a 满足上式, ……11分 故221=-n nb . ……12分18. (本小题满分12分) 解:(Ⅰ)设日销售量为x ,“有2天日销售低于100枝,另外2天不低于150枝”为事件A. 则()1000.002500.006500.4Px ≤=⨯+⨯=,……1分()1500.005500.25P x ≥=⨯=,……2分()22240.40.250.06.P A C ∴=⨯⨯=……4分题号 1 2 3 4 5 6 7 8 9 10 11 12 答案BCADBACBCDAA(Ⅱ)日销售量不低于100枝的概率0.6=P ,则()~4,0.6B ξ.……6分于是()()440.60.40,1,2,3,4.k k k Pk C k ξ-==⨯⨯=……8分则分布列为ξ1234P16625 96625 216625 216625 81625……10分()16962162168101234 2.4.625625625625625E ξ∴=⨯+⨯+⨯+⨯+⨯=……12分19. (本小题满分12分) 解:(Ⅰ)//平面l PAC . ……………1分证明如下://Q EF AC ,AC ABC ⊂平面,EF ABC ⊄平面,//平面∴EF ABC . ……………2分又EF BEF ⊂平面,平面BEF 与平面ABC 的交线为l ,//∴EF l . ……………3分而,l PAC EF PAC ⊄⊂平面平面,//平面∴l PAC . ……………………4分(Ⅱ)解法一:设直线l 与圆O 的另一个交点为D ,连结D E ,FB .由(Ⅰ)知,//BD AC ,而,AC BC BD BC ⊥∴⊥.Q PC ⊥平面ABC ,PC BD ∴⊥.而PC BC C =I ,,BD PBC ∴⊥平面 又FB PBC ⊂Q 平面,BD BF ∴⊥,FBC ∴∠是二面角E l C --的平面角. ………………8分1tan cos FC AB FBC BC BC ABC∠===∠.注意到0,0cos 12ABC ABC π<∠<∴<∠<,tan 1FBC ∴∠>.02FBC π<∠<Q ,(,)42FBC ππ∴∠∈,即二面角E l C --的取值范围是(,)42ππ. ………………12分解法二:由题意,AC ⊥BC ,以CA 为x 轴,CB 为y 轴,CP 为z 轴建立空间直角坐标系,设AB =2,BC =t (02)t <<,则2(0,,0),(0,0,2),(4,,0)B t F D t t -,2(0,,2),(4,0,0)BF t BD t =-=-u u u r u u u r. …………6分设平面DBF 的法向量为(,,)m x y z =u r,则由00m BF m BD ⎧⋅=⎪⎨⋅=⎪⎩u r u u u ru r u u u r 得22040ty z t x -+=⎧⎪-=,取2y =得(0,2,)m t =u r . 易知平面BCD 的法向量(0,0,1)n =r, …………8分设二面角E l C --的大小为θ,易知θ为锐角.22||2cos (0,)2||||441m n m n tt θ⋅===⋅++u u r u u r u r r , …………11分42ππθ∴<<,即二面角E l C --的取值范围是(,)42ππ. …………12分20. (本小题满分12分)解:(Ⅰ)由题可知(,0)-F c ,直线AB 的斜率存在.设11(,)A x y ,22(,)B x y ,由于点A ,B 都在椭圆上,所以2211221+=x y a b ①,2222221+=x y a b②①—②,化简得2221222212--=-y y b a x x ③ 又因为离心率为2,所以2212=b a . …………2分又因为直线AB 过焦点F ,线段AB 的中点为21,33⎛⎫-⎪⎝⎭,所以1243+=-x x ,1223+=y y ,12121323-=--+y y x x c ,代入③式,得1213324233⨯-=⎛⎫⎛⎫-+⨯- ⎪ ⎪⎝⎭⎝⎭c ,解得1=c . …………5分 再结合222-=a b c ,解得22=a ,21=b ,故所求椭圆的方程为2212+=x y . …………6分(Ⅱ)证明:设00(,)M x y ,由对称性,设00>y ,由2212+=x y ,得椭圆上半部分的方程为=y'()=-=y x ,又1l 过点M且与椭圆只有一个公共点,所以12==-l x k y , 所以01000:()2-=--x l y y x x y , ④ 因为2l 过点F 且与MF 垂直,所以0201:(1)+=-+x l y x y , ⑤………10分 联立④⑤,消去y ,得220000122+=----x x x y x x ,又220012+=x y ,所以002202+⋅++=x x x ,从而可得2=-x ,所以1l 与2l 的交点在定直线2=-x 上. …………12分21. (本小题满分12分)解:(Ⅰ)函数()f x 的定义域为{}0x x >,()1a x af x x x+'=+=.…………………1分(1)当0a ≥时,()0f x '>恒成立,函数()f x 在(0,)+∞上单调递增; (2)当0a <时, 令()0f x '=,得x a =-.当0x a <<-时,()0f x '<,函数()f x 为减函数;当x a >-时,()0f x '>,函数()f x 为增函数.…………………2分 综上所述,当0a ≥时,函数()f x 的单调递增区间为(0,)+∞.当0a <时,函数()f x 的单调递减区间为(0,)a -,单调递增区间为(,+)-∞a .……………………………………………………………………3分(Ⅱ)由(Ⅰ)可知,(1)当1a -≤时,即1a ≥-时,函数()f x 在区间[]1,2上为增函数,所以在区间[]1,2上,min ()(1)1f x f ==,显然函数()f x 在区间[]1,2上恒大于零;………………4分(2)当12a <-<时,即21a -<<-时,函数()f x 在[)1a -,上为减函数,在(],2a - 上为增函数,所以min ()()ln()f x f a a a a =-=-+-.依题意有min ()ln()0f x a a a =-+->,解得>-a e ,所以21a -<<-.………………5分 (3)当2a -≥时,即2a ≤-时,()f x 在区间[]1,2上为减函数, 所以min ()(2)2ln 2==+f x f a .依题意有min ()2ln 20=+>f x a ,解得2ln 2a >-,所以22ln 2a -<≤-. …………6分 综上所述,当2ln 2a >-时,函数()f x 在区间[]1,2上恒大于零.………………7分(Ⅱ)另解:当1x =时,显然ln 10x a x +=>恒成立. …………4分当(1,2]x ∈时,ln 0+>x a x 恒成立ln ⇔>-x a x 恒成立ln x a x⇔>-的最大值. 令()ln =-x m x x ,则21ln '()0ln -=>x m x x ,易知()ln =-xm x x在(1,2]上单调递增, 所以()m x 最大值为2(2)ln 2m =-,此时应有2ln 2>-a . …………6分综上,a 的取值范围是2(,)ln 2-+∞. …………7分(Ⅲ)设切点为000,ln )x x a x +(,则切线斜率01ak x =+, 切线方程为0000(ln )(1)()ay x a x x x x -+=+-. 因为切线过点(1,3)P ,则00003(ln )(1)(1)ax a x x x -+=+-. 即001(ln 1)20a x x +--=.………………① ………………8分 令1()(ln 1)2g x a x x =+--(0)x >,则2211(1)()()a x g x a x x x -'=-=. (1)当0a <时,在区间(0,1)上,()0g x '>,()g x 单调递增;在区间(1,)+∞上,()0g x '<,()g x 单调递减, 所以函数()g x 的最大值为(1)20g =-<. 故方程()0g x =无解,即不存在0x 满足①式.因此当0a <时,切线的条数为0. ………………9分(2)当0a >时, 在区间(0,1)上,()0g x '<,()g x 单调递减,在区间(1,)+∞上,()0g x '>,()g x 单调递增,所以函数()g x 的最小值为(1)20g =-<.取211+=>ax ee ,则221112()(11)20----=++--=>a a g x a e ae a. 故()g x 在(1,)+∞上存在唯一零点.取2121--=<ax ee,则221122()(11)224++=--+--=--aag x a e ae a a212[2(1)]+=-+a a e a .设21(1)t t a=+>,()2=-t u t e t ,则()2'=-t u t e . 当1t >时,()220'=->->tu t e e 恒成立.所以()u t 在(1,)+∞单调递增,()(1)20>=->u t u e 恒成立.所以2()0g x >.故()g x 在(0,1)上存在唯一零点.因此当0a >时,过点P (1,3)存在两条切线. ………………11分(3)当0a =时,()f x x =,显然不存在过点P (1,3)的切线.综上所述,当0a >时,过点P (1,3)存在两条切线;当0a ≤时,不存在过点P (1,3)的切线.………………………………12分(Ⅲ)另解:设切点为000,ln )x x a x +(,则切线斜率01a k x =+, 切线方程为0000(ln )(1)()ay x a x x x x -+=+-. 因为切线过点(1,3)P ,则00003(ln )(1)(1)ax a x x x -+=+-, 即001(ln 1)20a x x +--=. ………………8分 当0a =时,020-=无解. ………………9分 当0a ≠时,12ln 1x x a+-=-, 令1()ln 1g x x x =+-,则21'()-=x g x x, 易知当01<<x 时,21'()0-=<x g x x ;当1>x 时,21'()0-=>x g x x,所以()g x 在(0,1)上单调递减,在(1,)+∞上单调递增. ………………10分 又(1)0g =,且0lim ()lim ()x x g x g x →→+∞==+∞,故当20a ->时有两条切线,当20a-<时无切线, 即当0a <时有两条切线,当0a >时无切线. ………………11分 综上所述,0a <时有两条切线,0a ≥时无切线. ………………12分22. (本小题满分10分)选修4-4:坐标系与参数方程证明:(Ⅰ)依题意,4cos ϕ=OA ,………………………………………………1分4cos 4πϕ⎛⎫=+⎪⎝⎭OB ,4cos 4πϕ⎛⎫=-⎪⎝⎭OC ,……………3分 则4cos 4cos 44ππϕϕ⎛⎫⎛⎫+=++- ⎪ ⎪⎝⎭⎝⎭OB OC 8cos cos 4πϕ=ϕ=.=OA…………5分解:(Ⅱ)当12πϕ=时,,B C 两点的极坐标分别为2,3π⎛⎫⎪⎝⎭,6π⎛⎫-⎪⎝⎭,…………6分化成直角坐标为(B ,(3,C . ……………………………7分经过点,B C 的直线方程为)2=-y x ,……………………………8分 又直线l 经过点(),0m ,倾斜角为α,且0απ≤<, 故2=m ,23πα=. ………………10分23. (本小题满分10分)选修4-5:不等式选讲解:(Ⅰ)∵()13<f ,∴123+-<a a . …………………………………1分① 当0≤a 时,得()123-+-<a a ,即23>-a ,∴203-<≤a ;…………2分 ② 当102<<a 时,得()123+-<a a ,即2>-a ,∴102<<a ; …………3分③ 当12≥a 时,得()123--<a a ,即43<a ,∴1423≤<a . …………4分综上所述,实数a 的取值范围是24,33⎛⎫- ⎪⎝⎭. ……………………………………5分(Ⅱ)∵()222f x x a x a =+-+-2122=+-+-ax x a11+222=+-++--a ax x x a51122≥+-+-a a x512≥-a , 当12=-ax 时,等号成立,∴()f x 的值最小为512-a. …………8分 ∴5122-≥a,解得25≤-a或65≥a.……………………………………9分∴实数a的取值范围是26,,55⎛⎤⎡⎫-∞-+∞⎪⎥⎢⎝⎦⎣⎭U. …………10分。

2024届高三数学仿真模拟卷(全国卷)(理科)(全解全析)

2024届高三数学仿真模拟卷(全国卷)(理科)(全解全析)

2024年高考第三次模拟考试数学(理科)·全解全析(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.测试范围:高考全部内容5.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}24A x x =-≤≤,{}260B x x x =-≥,则A B = ()A .[]2,0-B .[]0,4C .[]2,6-D .[]4,6【答案】A【分析】首先解一元二次不等式求出集合B ,再根据交集的定义计算可得.【详解】由260x x -≥,即()60x x -≥,解得6x ≥或0x ≤,所以{}(][)260,06,B x x x ∞∞=-≥=-⋃+,又{}24A x x =-≤≤,所以[]2,0A B ⋂=-.故选:A 2.已知3i 2z a =(R a ∈,i 是虚数单位),若21322z =,则=a ()A .2B .1C .12D .14【答案】C【分析】运用复数代数运算及两复数相等的性质求解即可.【详解】由题意知,22231(i)i=i2422z a a=+=-+,所以23142a⎧-=⎪⎪=,解得12a=.故选:C.3.如图,已知AM是ABC的边BC上的中线,若AB a=,AC b=,则AM等于()A.()12a b-B.()12a b--C.()12a b+D.()12a b-+【答案】C【分析】根据平面向量线性运算法则计算可得.【详解】因为AM是ABC的边BC上的中线,所以12CM CB=,所以12AM AC CM AC CB=+=+()()()111222AC A CB A AC aBA b=+-=+=+.故选:C4.已知函数()()πtan0,02f x xωϕωϕ⎛⎫=+><<⎝⎭的最小正周期为2π,直线π3x=是()f x图象的一条对称轴,则()f x的单调递减区间为()A.()π5π2π,2πZ66k k k⎛⎤-+∈⎥⎝⎦B.()5π2π2π,2πZ33k k k⎛⎤--∈⎥⎝⎦C.()4ππ2π,2πZ33k k k⎛⎤--∈⎥⎝⎦D.()π2π2π,2πZ33k k k⎛⎤-+∈⎥⎝⎦【答案】B【分析】根据()()πtan0,02f x xωϕωϕ⎛⎫=+><<⎝⎭的最小正周期确定ω的值,根据函数的对称轴求出ϕ,结合正切函数的单调性,列出不等式,即可求得答案.【详解】由于()()πtan 0,02f x x ωϕωϕ⎛⎫=+><< ⎪⎝⎭的图象是将()tan y x ωϕ=+的图象在x 轴下方部分翻折到x 轴上方,且()tan y x ωϕ=+π0,02ωϕ⎛⎫><<⎪⎝⎭仅有单调递增区间,故()()tan f x x ωϕ=+和()tan y x ωϕ=+的最小正周期相同,均为2π,则π12π,2ωω=∴=,即()1tan 2f x x ϕ⎛⎫=+ ⎪⎝⎭,又直线π3x =是()f x 图象的一条对称轴,则1π1π,Z 232k k ϕ⋅+=∈,即1ππ,Z 26k k ϕ=-∈,结合π02ϕ<<,得π3ϕ=,故()1πtan 23f x x ⎛⎫=+ ⎪⎝⎭,令π1πππ,Z 223k x k k -<+≤∈,则5π2π2π2π,Z 33k x k k -<≤-∈,即()f x 的单调递减区间为()5π2π2π,2πZ 33k k k ⎛⎤--∈ ⎥⎝⎦,故选:B5.已知直线l 过点()1,1A 交圆22:4O x y +=于,C D 两点,则“CD =l 的斜率为0”的()A .必要而不充分条件B .充分必要条件C .充分而不必要条件D .即不充分也不必要条件【答案】A【分析】根据充分性、必要性的定义,结合直线的斜率是否存在进行判断即可.【详解】当直线的斜率等于0时,直线的方程为1y =,代入方程224x y +=中,得x =,显然CD =;当直线的不存在斜率时,直线的方程为1x =,代入方程224x y +=中,得y =CD =因此是必要而不充分条件,故选:A6.甲、乙、丙、丁、戊共5名同学进行唱歌比赛,决出第一名到第五名.丙和丁去询问成绩,回答者对丙说:很遗憾,你和丁都没有得到冠军,对丁说:你当然不会是最差的从这两个回答分析,5人的名次排列方式共有()A .24种B .54种C .96种D .120种【答案】B【分析】根据题意,分2种情况讨论:①丙是最后一名,则丁可以为第二、三、四名,剩下的三人安排在其他三个名次,②丙不是最后一名,丙丁需要排在第二、三、四名,剩下的三人安排在其他三个名次,由加法原理计算可得答案.【详解】根据题意,丙丁都没有得到冠军,而丁不是最后一名,分2种情况讨论:①丙是最后一名,则丁可以为第二、三、四名,即丁有3种情况,剩下的三人安排在其他三个名次,有33A 6=种情况,此时有1863=⨯种名次排列情况;②丙不是最后一名,丙丁需要排在第二、三、四名,有23A 6=种情况,剩下的三人安排在其他三个名次,有33A 6=种情况,此时有6636⨯=种名次排列情况;则一共有361854+=种不同的名次情况,故选:B .7.函数()πln sin 2x x f x x⎛⎫⋅- ⎪⎝⎭=的部分图象大致为()A .B .C.D.【答案】C【分析】先求出函数的定义域和奇偶性,排除BD ,再求出特殊点的函数值,得到答案.【详解】()πln sin ln cos 2x x x x f x x x⎛⎫⋅- ⎪⋅⎝⎭==定义域为()(),00,∞-+∞U ,且()()()ln cos ln cos x x x x f x f x x x-⋅-⋅-==-=--,所以函数()f x 是奇函数,图象关于原点中心对称,排除B 、D .又()ln 2cos 2202f ⋅=<,故A 错误.故选:C .8.祖暅是我国南北朝时期伟大的数学家.祖暅原理用现代语言可以描述为“夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的面积总相等,那么这两个几何体的体积相等”.例如,可以用祖暅原理推导半球的体积公式,如图,底面半径和高都为R 的圆柱与半径为R 的半球放置在同一底平面上,然后在圆柱内挖去一个半径为R ,高为R 的圆锥后得到一个新的几何体,用任何一个平行于底面的平面α去截这两个几何体时,所截得的截面面积总相等,由此可证明半球的体积和新几何体的体积相等.若用平行于半球底面的平面α去截半径为R 的半球,且球心到平面α,则平面α与半球底面之间的几何体的体积是()A .3π24R B .3π24R C .3π12R D .3π12R 【答案】C 【分析】分别求得面α截圆锥时所得小圆锥的体积和平面α与圆柱下底面之间的部分的体积,结合祖暅原理可求得结果.【详解】 平面α截圆柱所得截面圆半径2r =,∴平面α截圆锥时所得小圆锥的体积2311ππ3212V r R R =⋅=,又平面α与圆柱下底面之间的部分的体积为232πV R R R =根据祖暅原理可知:平面α与半球底面之间的几何体体积33321πππ21212V V V R R R =-=-=.故选:C.9.已知函数()21e 3ln ,ln ,ln ,ln 222f x x a f b f c f ⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()A .a b c <<B .b a c <<C .c<a<bD .a c b<<【答案】B【分析】用定义证明函数()f x 的奇偶性及在()0,1上的单调性,利用函数()f x 的奇偶性及单调性,对数函数ln y x =的性质及对数运算可得结果.【详解】因为函数()f x 的定义域为{}0x x ≠,又()()ln ln f x x x f x -=-==,所以()f x 为偶函数,当01x <<时,任取12x x >,()()12121221ln ln ln ln ln ln 0f x f x x x x x x x -=-=-=-<,即()()12f x f x <,所以()f x 在()0,1上为减函数,因为31ln2ln02>>>,所以()()()113ln ln2ln2ln2ln 22a f f f f f c-⎛⎫⎛⎫===-=<= ⎪ ⎪⎝⎭⎝⎭,即a c <,设3401,1x x <<<,则()4444ln ln ln f x x x x ===,()3333ln ln ln f x x x x ===-,若()()34f x f x =,则34ln ln x x -=,所以341x x =,因为2e ln 2ln212=->,所以22e 11ln e 22ln2ln 2b f f f ⎛⎫ ⎪⎛⎫⎛⎫=== ⎪ ⎪⎪-⎝⎭⎝⎭ ⎪ ⎪⎝⎭,又()21ln21ln202ln22ln2--=>--,即11ln202ln2>>>-,所以()1ln22ln2f f ⎛⎫< ⎪-⎝⎭,即b a <,故选:B.10.已知数列{}n a 满足1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩当为偶数时当为奇数时,若81a=,1a 的所有可能取值构成集合M ,则M 中的元素的个数是()A .7个B .6个C .5个D .4个【答案】B 【分析】由81a=,利用递推关系,分类讨论逆推出1a 的不同取值,进而可得答案.【详解】若81a =,又1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩当为偶数时当为奇数时,根据上述运算法进行逆推,可得72a =,64a =,所以58a =或51a =;若58a =,则4316,32a a ==或35a =;当332a =时,2164,128a a ==或121a =;若35a =时,2110,20a a ==或13a =;当51a =,则4322,4,8a a a ===或21a =;当28a =时,116a =;当21a =时,12a =,故81a=时,1a 的所有可能的取值集合{}2,3,16,20,21,128M =即集合M 中含有6个元素.故选:B11.如图,已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为1(,0)F c -,2(,0)F c ,点A 在C 上,点B 在y 轴上,A ,2F ,B 三点共线,若直线1BF1AF的斜率为C 的离心率是()AB .32CD .3【答案】B【分析】根据斜率及双曲线的对称性得12BF F △为等边三角形,再根据同角间关系求解三角函数值,进而用正弦定理求出121410,33AF c AF c ==,由双曲线定义可得423c a =,从而得到离心率.【详解】由题意,直线1BF12π3BF F ∴∠=,又12BF BF =,所以12BF F △为等边三角形,故12122BF BF F F c ===,2112π2π,33BF F F F A ∠=∠=,在12AF F △中,21tan 0F F A ∠>,则21F F A ∠为锐角,则212111sin 14F F A F F A ∠=∠=,212πsin sin 3A F F A ⎛⎫=+∠= ⎪⎝⎭由正弦定理,12121221sin sin sin F F AF AF AF F AF F A==∠∠,=∴121410,33AF c AF c ==,由122AF AF a -=,得423c a =,32c e a ∴==.故答案选:B .12.已知()f x ,()g x 都是定义在R 上的函数,对任意x ,y 满足()()()()()f x y f x g y g x f y -=-,且()()210f f -=≠,则下列说法正确的是()A .()01f =B .函数()21g x +的图象关于点()1,0对称C .()()110g g +-=D .若()11f =,则()202311n f n ==∑【答案】D【分析】利用赋值法结合题目给定的条件可判断AC ,取()()2π2πsin,cos 33f x xg x x ==可判断B ,对于D ,通过观察选项可以推断()f x 很可能是周期函数,结合()()()(),f x g y g x f y 的特殊性及一些已经证明的结论,想到令1y =-和1y =时可构建出两个式子,两式相加即可得出()()()11f x f x f x ++-=-,进一步得出()f x 是周期函数,从而可求()20231n f n =∑的值.【详解】解:对于A ,令0x y ==,代入已知等式得()()()()()000000f f g g f =-=,得()00f =,故A错误;对于B ,取()()2π2πsin,cos 33f x xg x x ==,满足()()()()()f x y f x g y g x f y -=-及()()210f f -=≠,因为()3cos 2π10g ==≠,所以()g x 的图象不关于点()3,0对称,所以函数()21g x +的图象不关于点()1,0对称,故B 错误;对于C ,令0y =,1x =,代入已知等式得()()()()()11010f f g g f =-,可得()()()()110100f g g f ⎡⎤-=-=⎣⎦,结合()10f ≠得()100g -=,()01g =,再令0x =,代入已知等式得()()()()()00f y f g y g f y -=-,将()00f =,()01g =代入上式,得()()f y f y -=-,所以函数()f x 为奇函数.令1x =,1y =-,代入已知等式,得()()()()()21111f f g g f =---,因为()()11f f -=-,所以()()()()2111f f g g =-+⎡⎤⎣⎦,又因为()()()221f f f =--=-,所以()()()()1111f f g g -=-+⎡⎤⎣⎦,因为()10f ≠,所以()()111g g +-=-,故C 错误;对于D ,分别令1y =-和1y =,代入已知等式,得以下两个等式:()()()()()111f x f x g g x f +=---,()()()()()111f x f x g g x f -=-,两式相加易得()()()11f x f x f x ++-=-,所以有()()()21f x f x f x ++=-+,即:()()()12f x f x f x =-+-+,有:()()()()()()11120f x f x f x f x f x f x -+=++--+-+=,即:()()12f x f x -=+,所以()f x 为周期函数,且周期为3,因为()11f =,所以()21f -=,所以()()221f f =--=-,()()300f f ==,所以()()()1230f f f ++=,所以()()()()()()()2023111232023202311n f n f f f f f f ===++++===∑ ,故D 正确.故选:D.第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分13.已知数列{}n a 的前n 项和2n S n n =+,当9n nS a +取最小值时,n =.【答案】3【分析】根据n S 求得n a ,再结合对勾函数的单调性,即可求得结果.【详解】因为2n S n n =+,则当2n ≥时,()()221112n n n a S S n n n n n -=-=+----=,又当1n =时,112a S ==,满足2n a n =,故2n a n =;则9n n S a +29191222n n n n n ++⎛⎫==++ ⎪⎝⎭,又9y x x=+在()1,3单调递减,在()3,+∞单调递增;故当3n =时,9n n+取得最小值,也即3n =时,9n n S a +取得最小值.故答案为:3.14.若函数()sin 1f x x x ωω=-在[]0,2π上恰有5个零点,且在ππ[,415-上单调递增,则正实数ω的取值范围为.【答案】9542ω≤≤【分析】根据给定条件,利用辅助角公式化简函数()f x ,再利用正弦函数的性质求解即得.【详解】依题意,函数π()2sin(13f x x ω=+-,由()0f x =,得π1sin()32x ω+=,则ππ2π36x k ω+=+或π5π2π,Z 36x k k ω+=+∈,由[0,2π]x ∈,得πππ[,2π333x ωω+∈+,由()f x 在[0,2π]上恰有5个零点,得29ππ37π2π636ω≤+<,解得935412ω≤<,由3ππ22πx ω+≤-≤,得5ππ66x ωω-≤≤,即函数()f x 在5ππ[,66ωω-上单调递增,因此5ππ[,]ππ[,]41566ωω-⊆-,即45π6πω≤--,且π6π15ω≥,解得502ω<≤,所以正实数ω的取值范围为9542ω≤≤.故答案为:9542ω≤≤15.已知52345012345(23)x a a x a x a x a x a x +=+++++,则123452345a a a a a -+-+=.(用数字作答)【答案】15【分析】根据条件,两边求导得到12342345415(23)2345x a a x a x a x a x +=++++,再取=1x -,即可求出结果.【详解】因为52345012345(23)x a a x a x a x a x a x +=+++++,两边求导可得12342345415(23)2345x a a x a x a x a x +=++++,令=1x -,得到23454115(23)2345a a a a a -=-+-+,即12345234515a a a a a -+-+=,故答案为:15.16.已知定义在R 上的函数()f x 满足()4()0f x f x '+>,且(01f =),则下列说法正确的是.①()f x 是奇函数②(0,),()0x f x ∃∈+∞>③41(1)e f >④0x ∀>时,41()e xf x <【答案】②③【分析】根据构造函数的规律由令()()4e xg x f x =,再结合奇函数的性质可得①,求导分析单调性和极值可得②③④.【详解】令()()4e x g x f x =,则()()()()()4444e e e 4x x x g x f x f x f x f x '''=+=+⎡⎤⎣⎦,若()f x 是奇函数,则()()f x f x -=-,取0x =时,即()00f =,但(01f =),故①错误;因为4e 0,(0,)x x >∈+∞恒成立,且()4()0f x f x '+>,所以()0g x '>恒成立,()g x 在(0,)+∞上为单调递增函数,所以()()()()()44110e 101e g g f f f >⇒>⇒>,故②正确;由②可知,③正确;因为()g x 在(0,)+∞上为单调递增函数,所以当0x >时有()()()()0,001g x g g f >==,所以()()441e 1e x xf x f x >⇒>,故④错误;故答案为:②③三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知()sin ,5sin 5sin m B A C =+ ,()5sin 6sin ,sin sin n B C C A =--垂直,其中A ,B ,C 为ABC 的内角.(1)求cos A 的大小;(2)若BC =ABC 的面积的最大值.【答案】(1)35;(2)4.【详解】(1)由()sin ,5sin 5sin m B A C =+ ,()5sin 6sin ,sin sin n B C C A =-- 垂直,得0m n ⋅=,...............1分即sin (5sin 6sin )(5sin 5sin )(sin sin )0B B C A C C A -++-=,整理得2226sin sin sin sin sin 5B C A B C +-=,...............2分在ABC 中,由正弦定理得22265b c a bc +-=,...............3分由余弦定理得2223cos 25b c a A bc +-==,所以cos A 的大小为35................5分(2)由(1)知,在ABC 中,3cos 5A =,则4sin 5A ==,...............6分由22265b c a bc +-=,得22266482555a b c bc bc bc bc ==+-≥-=,即10bc ≤,...................................................................................................8分当且仅当b c =时取等号,...................................................................................................9分因此ABC 的面积12sin 425ABC S bc A bc ==≤ ,..........................................................11分所以ABC 的面积的最大值是4.....................................................12分18.(12分)2016年10月“蓝瘦香菇”等网络新词突然在网络流行,某社区每月都通过问卷形式进行一次网上调查,现从社区随机抽取了60名居民进行调查.已知上网参与问卷调查次数与参与人数的频数分布如下表:参与调查问卷次数[)0,2[)2,4[)4,6[)6,8[)8,10[]10,12参与调查问卷人数814814106(1)若将参与调查问卷不少于4次的居民称为“关注流行语居民”,请你根据频数分布表,完成22⨯列联表,据此调查你是否有99%的把握认为在此社区内“关注流行语与性别有关”?男女合计关注流行语8不关注流行语合计40(2)从被调查的人中按男女比例随机抽取6人,再从选取的6人中选出3人参加政府听证会,求选出的3人为2男1女的概率.附:参考公式()()()()()22n ad bc K a b c d a c b d -=++++及附表()2P K k ≥0.1000.0500.0100.001k 2.706 3.841 6.63510.828【答案】(1)列联表见解析,有99%的把握认为在此社区内“关注流行语与性别有关”;(2)35【详解】(1)依题意,关注流行语居民人数为81410638+++=,不关注流行语居民人数为81422+=,...................................................................................................2分所以22⨯列联表如下:男女合计关注流行语30838不关注流行语101222合计4020602K 的观测值2260(3012108)7.03 6.63540203822K ⨯-⨯=≈>⨯⨯⨯,................................................................4分所以有99%的把握认为在此社区内“关注流行语与性别有关”...................5分(2)依题意,男居民选出406660⨯=(人),.......................................6分记为a b c d ,,,,女居民选出2人,记为,E F ,从6人中任选3人的样本空间{,,,,,,,,,,abc abd abE abF acd acE acF adE adF aEF Ω=,,,,,,,,,}bcd bcE bcF bdE bdF bEF cdE cdF cEF dEF ,共20个,.................................9分选出的3人为2男1女的事件{,,,,,,,,,,,}A abE abF acE acF adE adF bcE bcF bdE bdF cdE cdF =,共12个,...........11分所以选出的3人为2男1女的概率123()205P A ==......................................12分19.(12分)在几何体中,底面ABC 是边长为2的正三角形.⊥AE 平面ABC ,若,5,4,3AE CD BF AE CD BF ===∥∥.(1)求证:平面DEF ⊥平面AEFB ;(2)是否在线段AE 上存在一点P ,使得二面角P DF E --的大小为π3.若存在,求出AP 的长度,若不存在,请说明理由.【答案】(1)证明见解析(2)存在;4AP =-【详解】(1)证明:如图,设,M N 分别为,EF AB 边的中点,连接,,MN DM CN ,..1分因为⊥AE 平面,,5,4,3ABC AE CD BF AE CD BF ===∥∥,所以42AE BFMN CD +===,//MN BF ,进而MN CD ∥,即四边形CNMD 为平行四边形,可得MD CN ∥,......................................3分在底面正三角形ABC 中,N 为AB 边的中点,则CN AB ⊥,......................................4分又⊥AE 平面ABC ,且CN ⊂平面ABC ,所以AE CN ⊥.由于⋂=AE AB A ,且AE AB ⊂、平面ABFE ,所以CN ⊥平面ABFE ......................5分因为,MD CN CN ⊥∥平面ABFE ,则MD ⊥平面ABFE ,又MD ⊂平面DEF ,则平面DEF ⊥平面AEFB .......................................6分(2)如图,以点A为坐标原点,建立空间直角坐标系,则()())0,0,5,0,2,4,E D F .设点()0,0,P t,则)()()1,1,0,2,1,0,2,4DF DE DP t =--=-=--..................8分设平面PDF 的法向量为()1111,,n x y z = ,平面EDF 的法向量为()2222,,n x y z =.由题意知110,0,n DF n DP ⎧⋅=⎪⎨⋅=⎪⎩即()111110,240,y z y t z --=-+-=⎪⎩令12z =,则114,y t x =-=14,2n t ⎫=-⎪⎭ ,......................................9分220,0,n DF n DE ⎧⋅=⎪⎨⋅=⎪⎩即222220,20,y z y z --=-+=⎪⎩取22z =,则)22n = ,...............................10分由121212π1cos ,cos 32n n n n n n ⋅===,28290t t +-=,解得:4t =±-,由于点P 为线段AE 上一点,故05t ≤≤,所以4t =-,......................................11分当4t =-时,二面角P DF E --所成角为锐角,即存在点P 满足,此时4AP =.......................................12分20.(12分)已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2P ⎛⎫ ⎪⎝⎭在椭圆C 上,且PF 垂直于x 轴.(1)求椭圆C 的方程;(2)直线l 斜率存在,交椭圆C 于,A B 两点,,,A B F 三点不共线,且直线AF 和直线BF 关于PF 对称.(ⅰ)证明:直线l 过定点;(ⅱ)求ABF △面积的最大值.【答案】(1)22143x y +=(2)(ⅰ)证明见解析;(ⅱ)4【详解】(1)点31,2P ⎛⎫⎪⎝⎭在椭圆C 上,且PF 垂直于x 轴,则有()1,0F 设椭圆C 的焦距为()20c c >,则1c =,.......................................................................1分点31,2P ⎛⎫ ⎪⎝⎭代入椭圆方程,有()222219191441a b a a +=+=-,解得2a =,则222413b a c =-=-=,所以椭圆C 的方程为22143x y +=...................................................................................3分(2)(ⅰ)设直线l 的方程为y kx m =+,由22143y y k x x m =+⎧⎪⎨⎪+⎩=,消去y ,整理得()2223484120kxkmx m +++-=,因为l 交椭圆C 于,A B 两点,所以()22Δ48430k m =-+>,设()()1122,,,A x y B x y ,所以21212228412,3434km m x x x x k k -+=-=++, (5)分因为直线AF 和直线BF 关于PF 对称,所以()()()()12121212121212220111111AF BF kx x m k x x my y kx m kx m k k x x x x x x +-+-+++=+=+==------所以()()()21212224128222203434m kmkx x m k x x m k m k m k k --+-+-=⨯+-⨯-=++所以222282488860km k km k m mk m --+--=解得4m k =-................................................................................................................7分所以直线l 的方程为()44y kx k k x =-=-,所以直线l 过定点()4,0................................,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,.......8分(ⅱ)设直线l 的方程为4x ny =+,由224143x ny x y =+⎧⎪⎨+=⎪⎩,消去x ,整理得()223424360n y ny +++=,因为l 交椭圆C 于,A B 两点,所以()()()222Δ241443414440n n n =-+=->,解得24n >,........................................................................................................9分1212222436,3434n y y y y n n +=-=++,所以12y y -=所以121331822ABFS y y =⨯-=⨯⨯ .............................10分令()24,0n t t -=>则18184ABC S ==≤,当且仅当163t =时取等号,所以ABF △面积的最大值为4......................................................................12分21.(12分)已知函数()2,0eax x f x a =>.(1)当2a =时,求函数()f x 的单调区间和极值;(2)当0x >时,不等式()()2cos ln ln 4f x f x a x x ⎡⎤-≥-⎣⎦恒成立,求a 的取值范围.【答案】(1)单调递增区间为:(0,1),单调递减区间为:(,0)-∞和(1,)+∞;极大值21(1)f e =,极小值(0)0f =;(2)(]0,2e 【详解】(1)当2a =时,()22=exx f x ()()2222222e e 22(1)=e e x x xxx x x x f x ⋅-⋅⋅--'=......................................2分令()=0f x ',解得0x =或1x =,......................................3分所以()()x f x f x '、、的关系如下表:x(,0)-∞0(0,1)1(1,)+∞()f x '-+-()f x 单调递减0单调递增21e 单调递减所以函数()f x 的单调递增区间为:(0,1),单调递减区间为:(,0)-∞和(1,)+∞;......................................4分极大值21(1)f e=,极小值(0)0f =;......................................5分(2)[]222()cos ln ()ln 4cos ln 2ln 4e eaa x xx x f x f x a x x a x x ⎛⎫-≥-⇔-≥- ⎪⎝⎭ln 2e 2(ln 2)cos(ln 2)0a x x a x x a x x -⇔----≥......................................6分令()e 2cos t g t t t =--,其中ln 2a x x t -=,设l (2)n a x x F x =-,0a >2()2a a x x xF x --='=令()0F x '>,解得:02ax <<,......................................8分所以函数()F x 在0,2a ⎛⎫ ⎪⎝⎭上单调递增,在,2a ⎛⎫+∞ ⎪⎝⎭上单调递减,max ()ln 22a a F x F a a ⎛⎫==- ⎪⎝⎭,且当0x +→时,()F x →-∞,所以函数()F x 的值域为,ln 2a a a ⎛⎤-∞- ⎥⎝⎦;......................................9分又()e 2sin t g t t '=-+,设()e 2sin t h t t =-+,,ln 2a t a a ⎛⎤∈-∞- ⎥⎝⎦,则()e cos t h t t '=+,当0t ≤时,e 1,sin 1t t ≤≤,且等号不同时成立,即()0g t '<恒成立;当0t >时,e 1,cos 1t t >≥-,即()0h t '>恒成立,所以()h t 在(0,)+∞上单调递增,又(0)1g '=-,(1)e 2sin10g '=-+>,所以存在0(0,1)t ∈,使得0()0g t '=,当00t t <<时,()0g t '<,当0t t >时,()0g t '>,所以函数()g t 在0(,)t -∞上单调递减,在0(,)t +∞上单调递增,且(0)0g =......................................11分当ln 02aa a -≤即02e a <≤时,()0g t ≥恒成立,符合题意;当ln02a a a ->即2e a >时,取10min ln ,2a t a a t ⎧⎫=-⎨⎬⎩⎭,必有1()0g t <,不符合题意.综上所述:a 的取值范围为(]0,2e ......................................12分(二)选考题:共10分.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.选修4-4:坐标系与参数方程22.(10分)在平面直角坐标系xOy 中,曲线C 的参数方程为12cos 2sin x y αα=+⎧⎨=⎩(α为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l的极坐标方程为sin 42πρθ⎛⎫-= ⎪⎝⎭.(1)求C 的普通方程和l 的直角坐标方程;(2)设直线l 与x 轴相交于点A ,动点B 在C 上,点M 满足AM MB =,点M 的轨迹为E ,试判断曲线C 与曲线E 是否有公共点.若有公共点,求出其直角坐标;若没有公共点,请说明理由.【答案】(1)C 的普通方程为()2214x y -+=,l 直角坐标方程为30x y -+=.(2)存在,坐标为33,,4444⎛⎛--- ⎪ ⎪⎝⎭⎝⎭【详解】(1)由题设曲线C 的参数方程,消参得()2214x y -+=,............................2分由cos ,sin x y ρθρθ==,且)πsin sin cos 4ρθρθρθ⎛⎫-=-=⎪⎝⎭y =30x y -+=,......................................4分∴C 的普通方程为()2214x y -+=,l 直角坐标方程为30x y -+=...............................5分(2)当0y =时,()33,0x A =-⇒-,易知()12cos ,2sin B a a +,设(),M x y ,可得()()3,,2cos 1,2sin AM x y MB a x a y =+=-+-,......................................6分32cos 1cos 1,2sin sin x a x x a AM MB y a y y a +=-+=-⎧⎧=⇒⎨⎨=-=⎩⎩(a 是参数),消参得方程为()2211,x y ++=......................................8分且1,2,1,3E C C E C E r r r r r r ==-=+=,则圆心距离2,d ==得C E C E r r d r r -<<+,则两圆相交,故两圆存在公共点,联立方程组()()22221114x y x y ⎧++=⎪⎨-+=⎪⎩,解得34x y ⎧=-⎪⎪⎨⎪=⎪⎩或34x y ⎧=-⎪⎪⎨⎪=⎪⎩,故坐标为33,,44⎛⎛--- ⎝⎭⎝⎭......................10分选修4-5:不等式选讲23.(10分)已知()2122f x x x x =-+-+.(1)求()2f x ≥的解集;(2)记()f x 的最小值为t ,且2(0,0)3a b t a b +=>>,求证:11254a b a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭.【答案】(1)113x x x ⎧⎫≤≥⎨⎬⎩⎭或(2)证明见解析【详解】(1)()2122f x x x x =-+-+,当0x <时,532x -+≥,解得0x <,......................................1分当102x ≤<时,332x -+≥,解得103x ≤≤,......................................2分当112x ≤<时,12x +≥,解得x ∈∅,......................................3分当1x ≥时,532x -≥,解得1x ≥,......................................4分综上所述,()2f x ≥的解集为13x x ⎧≤⎨⎩或}1≥x .......................................5分(3)由已知可得()5301330211<12531x x x x f x x x x x -+<⎧⎪⎪-+≤≤⎪=⎨⎪+≤⎪⎪->⎩,所以当12x =时,()f x 的最小值为32...............................................................................................6分1a b ∴+=,211,24a b a b ab +⎛⎫+=∴≤= ⎪⎝⎭,当且仅当12a b ==取等,......................................8分令t ab =,则104t <≤,211()212225224a b ab a b ab ab t a b ab ab ab t +-⎛⎫⎛⎫++=++=+-=+-≥ ⎪⎪⎝⎭⎝⎭,当且仅当14t =取等,此时12a b ==.......................................10分。

2023年高中数学理科高考模拟试题4(附答案)

2023年高中数学理科高考模拟试题4(附答案)

2023年高中数学理科高考模拟试题(附答案)姓名班级学号得分说明:1、本试卷包括第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分100分。

考试时间90分钟。

2、考生请将第Ⅰ卷选择题的正确选项填在答题框内,第Ⅱ卷直接答在试卷上。

考试结束后,只收第Ⅱ卷第Ⅰ卷(选择题)1.如图,已知全集,集合,则图中阴影部分表示的集合的子集个数为()A、5;B、6;C、7;D、82.已知x,y为正数,且xy=1,则的最小值为()A.4;B.6;C.2;D.3.已知为执行如图所示的程序框图输出的结果,则二项式的展开式中含项的系数是()A.48;B.72;C.-120;D.-1924.已知椭圆的离心率为,直线与椭圆交于两点且线段的中点为,则直线的斜率为()A.;B.; C.;D.5.函数的定义域为开区间,导函数在内的图象如下图所示,则函数在开区间内有极小值点()A.1个B.0个C.2个D.3个6.三名同学到五个社区参加社会实践活动,要求每个社区有且只有一名同学,每名同学至多去两个社区,则不同的派法共有()A.90种B.60种C.45种D.30种7.在正三棱柱中,,点E是的中点,点F是上靠近点B的三等分点,则异面直线与所成角的余弦值是()A.B.C.D.8.已知复数,在复平面内对应点分别为,,则()A.1B.C.2D.39.已知是椭圆的两个焦点,P为椭圆上一点,且,则点P到y轴的距离为()A.2B.C.D.110.已知为锐角,若,则()A.B.C.D.第Ⅱ卷(非选择题)评卷人得分二、填空题(每题5分,共25题)11.已知向量满足,且对于任意x,不等式恒成立,设的夹角为,则___________12.已知圆C1:与C2:,若C1与圆C2有且仅有一个公共点,则实数a的值为___________.13.已知函数,其中,若在区间(,)上恰有2个零点,则的取值范围是____________.14.设,使不等式取等号的的取值范围__________.15.在三棱锥S-ABC中,△ABC是边长为6的正三角形,SA=SB=SC=15,平面DEFH分别与AB,BC,SC,SA交于点D,E,F,H.且D,E分别是AB,BC的中点,如果直线SB∥平面DEFH,那么四边形DEFH的面积为________.评卷人得分三、综合题(每题15分,共75分)16.中内角的对边分别为,向量且(Ⅰ)求锐角的大小,(Ⅱ)如果,求的面积的最大值17.如图,在四棱柱中,底面是正方形,侧棱与底面垂直,点是正方形对角线的交点,,点,分别在和上,且.(Ⅰ)求证:∥平面;(Ⅱ)若,求的长;(Ⅲ)在(Ⅱ)的条件下,求二面角的余弦值.18.已知数列的前项和,是等差数列,且(1)求数列的通项公式;(2)令求数列的前项和.19.已知椭圆的离心率,短轴长为.(1)求椭圆方程;(2)若椭圆与轴正半轴、轴正半轴的交点分别为、,经过点且斜率k的直线与椭圆交于不同的两点、.是否存在常数,使得向量20.已知函数(1)讨论当a>0时,函数的单调性;(2)若曲线上两点A、B处的切线都与y轴垂直,且线段AB与x轴有公共点,求实数a的取值范围.参考答案一、选择题第1题第2题第3题第4题第5题D A D AA二、填空题第11题:第12题:6,或-6;第13题:或,第14题:第15题:三、解答题第16题:(1)即:第6题第7题第8题第9题第10题ABBCA为锐角(2)代入上式,得到,(当且仅当a=c=2时成立)(当且仅当a=c=2时成立)第17题:(I)证明:取,连结和,因为,EE1‖BC,BC=AD,BC‖AD,所以EE1=AD,EE1‖AD,所以四边形为平行四边形;所以AE1‖DE,在矩形中,A1F=BE1,所以四边形为平行四边形,所以B1F‖AE1,B1F‖DE,因为DE⊂平面BDE,B1F⊄BDE所以B1F‖平面BDE(2)连接,在四棱柱中,平面,因为,,所以平面,所以,已知得,平面,所以,,在△与△中,,,所以△∽△,所以,即。

高考数学(理科)模拟考试卷(附参考答案与解析)

高考数学(理科)模拟考试卷(附参考答案与解析)

高考数学(理科)模拟考试卷(附参考答案与解析)一、单选题(本大题共12小题,共60.0分。

在每小题列出的选项中,选出符合题目的一项)1. 若复数z满足iz=4+3i,则复数z在复平面内对应的点在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限2. 已知集合A={(x,y)|x2+y2=1}和B={(x,y)|y=x},则A∩B中元素的个数为( )A. 3B. 2C. 1D. 03. 已知向量a⃗,b⃗⃗满足|a⃗|=1,|b⃗⃗|=√ 3和|a⃗⃗−2b⃗⃗|=3,则a⃗⃗⋅(a⃗⃗+b⃗⃗)=( )A. −2B. −1C. 1D. 24. 我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如16=3+13.在不超过16的素数中,随机选取两个不同的数,其和等于16的概率是( )A. 15B. 215C. 115D. 255. 的展开式中x3y3的系数为40,则实数a的值为( )A. 4B. 2C. 1D. 126. 设椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1和F2,离心率为√ 22,P是C上一点,且F1P⊥F2P.若△PF1F2的面积为2,则a=( )A. 1B. 2C. √ 2D. 47. 在△ABC中cosC=23,AC=4和BC=3则cos A2=( )A. √ 306B. √ 33C. 13D. 568. 如图,四边形ABCD为正方形,ED⊥平面ABCD,FB//ED和AB=ED=2FB=2,则三棱锥F−ACE 的体积为( )A. 23B. 43C. 2D. √ 39. 在正方体AC1中,点M为平面ABB1A1内的一动点,d1是点M到平面ADD1A1的距离,d2是点M到直线BC的距离,且d1=λd2(λ>0)(λ为常数),则点M的轨迹不可能是( )A. 圆B. 椭圆C. 双曲线D. 抛物线10. 已知函数f(x)是定义在R上的奇函数,且f(x)的图象关于x=1对称.若f(1)=3,则f(2)+f(3)+⋯+f(50)=( )A. 3B. 2C. 0D. 5011. 设A,B,C,D是同一个半径为4的球的球面上四点,AB=AC=2√ 3和BC=6,则三棱锥D−ABC 体积的最大值为( )A. 3√ 3B. 6√ 3C. 12√ 3D. 18√ 312. 已知a∈R,设函数若关于x的不等式f(x)≥0在R上恒成立则a 的取值范围为( )A. [0,e2] B. [0,2] C. [0,1] D. [0,e]二、填空题(本大题共4小题,共20.0分)13. 已知等差数列{a n}前9项的和为27,且a10=8,则a15=______ .14.15. 在直线l:y=−2上取一点D作抛物线C:x2=4y的切线,切点分别为A,B,直线AB与圆E:x2+ y2−4x−2018=0交于M,N两点,当|MN|最小时,则D的横坐标是______ .16. 已知函数f(x)=sin(ωx+φ)(ω>0),下述四个结论:①若φ=π5,且f(x)在[0,2π]有且仅有5个零点,则f(x)在(0,2π)有且仅有3个极大值点;②若φ=π4,且f(x)在[0,2π]有且仅有4个零点,则f(x)在[0,2π]有且仅有2个极大值点; ③若φ=π5,且f(x)在[0,2π]有且仅有5个零点,则f(x)在(0,π10)上单调递增; ④若φ=π3,且f(x)在(0,π)有且仅有2个零点和3个极值点,则ω的范围是(136,83). 其中所有正确结论的编号是______ .三、解答题(本大题共7小题,共82.0分。

高三模拟数学试卷理科答案

高三模拟数学试卷理科答案

1. 答案:D解析:根据三角函数的性质,sin(π - α) = sin α,cos(π - α) = -cos α,tan(π - α) = -tan α。

因此,选项D正确。

2. 答案:A解析:函数f(x) = |x - 2|在x = 2处取得最小值0,故A正确。

3. 答案:B解析:根据指数函数的性质,若a > 1,则a^x在x递增;若0 < a < 1,则a^x在x递减。

故B正确。

4. 答案:C解析:根据数列的性质,数列{an}是等差数列,且an > 0。

则an + 1 = an +d > 0,故C正确。

5. 答案:A解析:根据立体几何的性质,若AB垂直于平面PQ,则AB垂直于PQ上的任意一条直线。

故A正确。

二、填空题6. 答案:π/2解析:由题意知,△ABC为直角三角形,∠BAC = π/2,故∠ABC = π/2 -∠ACB = π/2。

7. 答案:-1/2解析:根据等比数列的性质,an = a1 r^(n-1),则a5 = a1 r^4,a6 = a1 r^5。

由题意知a5/a6 = -1/2,代入an的表达式得r = -1/2。

8. 答案:2解析:由题意知,直线l的方程为2x - 3y + 4 = 0。

设点P的坐标为(x, y),则P到直线l的距离d = |2x - 3y + 4| / √(2^2 + 3^2) = |2x - 3y + 4| / 5。

由题意知d = 2,代入得|2x - 3y + 4| = 10。

解得x = 3,y = 2。

9. 答案:(1)f(x) = 2x^3 - 3x^2 + 2(2)f'(x) = 6x^2 - 6x(3)当x = 0时,f(x)取得极小值f(0) = 2;当x = 1时,f(x)取得极大值f(1) = 1。

10. 答案:(1)设圆心为O,则圆O的方程为(x - a)^2 + (y - b)^2 = r^2。

高三数学(理科)模拟试卷及答案3套

高三数学(理科)模拟试卷及答案3套

高三数学(理科)模拟试卷及答案3套模拟试卷一一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|2,}xA y y x ==∈R ,{|lg(2)}B x y x ==-,则A B =I ( ) A .(0,2)B .(,2]-∞C .(,2)-∞D .(0,2]2.若复数z 满足(i 1)2i z -=(i 为虚数单位),则z 为( ) A .1i +B .1i -C .1i -+D .1i --3.AQI 即空气质量指数,AQI 越小,表明空气质量越好,当AQI 不大于100时称空气质量为“优良”,如图是某市3月1日到12日AQI 的统计数据,则下列叙述正确的是( )A .这12天的AQI 的中位数是90B .12天中超过7天空气质量为“优良”C .从3月4日到9日,空气质量越来越好D .这12天的AQI 的平均值为1004.已知平面向量(2,3)=a ,(,4)x =b ,若()⊥-a a b ,则x =( ) A .1B .12C .2D .35.某围棋俱乐部有队员5人,其中女队员2人,现随机选派2人参加围棋比赛,则选出的2人中有女队员的概率为( ) A .103 B .35C .45D .7106.已知m ,n 表示两条不同的直线,α表示平面,下列说法正确的是( ) A .若m α∥,n α∥,则m n ∥B .若m α⊥,n α⊥,则m n ∥C .若m α⊥,m n ⊥,则n α∥D .若m α∥,m n ⊥,则n α⊥7.函数π()3sin(2)(||)2f x x ϕϕ=+<的图象向左平移π6个单位长度后,所得到的图象 关于原点对称,则ϕ等于( ) A .π6B .π6-C .π3D .π3-8.下图是某实心机械零件的三视图,则该机械零件的表面积为( )A .662π+B .664π+C .662π-D .664π-9.函数2()ln(1)f x x x =+-的图象大致是( )A .B .C .D .10.正三角形ABC 的边长为2,将它沿高AD 折叠,使点B 与点C 3, 则四面体ABCD 外接球的表面积为( ) A .6πB .7πC .8πD .9π11.有如下命题:①函数sin y x =与y x =的图象恰有三个交点;②函数sin y x =与y x =一个交点;③函数sin y x =与2y x =的图象恰有两个交点;④函数sin y x =与3y x =的图象恰有三个交点,其中真命题的个数为( )A .1B .2C .3D .412.若函数2(1)()f x x x ax b =-++()的图象关于点(2,0)-对称,1x ,2x 分别是()f x 的 极大值点与极小值点,则21x x -=( ) A .3- B .23C .23-D .3二、填空题:本大题共4小题,每小题5分.13.在ABC △中,若13AB =,3BC =,120C ∠=︒,则AC =_____.14.如图,圆C (圆心为C )的一条弦AB 的长为2,则AB AC ⋅=u u u r u u u r_____.15.在4(1)x x ++的展开式中,2x 项的系数为________(结果用数值表示). 16.定义在正实数上的函数(){{}}f x x x =⋅,其中{}x 表示不小于x 的最小整数,如{0.2}1=,{1.6}2=,当(0,]x n ∈,n ∈*N 时,函数()f x 的值域为n A ,记集合n A 中元素的个数为n a ,则n a =________.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(12分)如图,在平面四边形ABCD 中,23AB =,2AC =,90ADC CAB ∠=∠=︒,设DAC θ∠=. (1)若60θ=︒,求BD 的长度; (2)若30ADB ∠=︒,求tan θ.18.(12分)为了解全市统考情况,从所有参加考试的考生中抽取4000名考生的成绩,频率分布直方图如下图所示.(1)求这4000名考生的平均成绩x (同一组中数据用该组区间中点值作代表);(2)由直方图可认为考生考试成绩z 服从正态分布2(,)N μσ,其中μ,2σ分别取考生的平均成绩x 和考生成绩的方差2s ,那么抽取的4000名考生成绩超过84.81分(含84.81分)的人数估计有多少人? (3)如果用抽取的考生成绩的情况来估计全市考生的成绩情况,现从全市考生中随机抽取4名考生,记成绩不超过84.81分的考生人数为ξ,求(3)P ξ≤.(精确到0.001)附:①2204.75s =,204.7514.31≈;②2~(,)z N μσ,则()0.6826P z μσμσ-<<+=,(22)0.9544P z μσμσ-<<+=;③40.84130.501≈.19.(12分)如图,三棱柱111ABC A B C -中,111160B A A C A A ∠=∠=︒,14AA AC ==,2AB =,P ,Q 分别为棱1AA ,AC 的中点.(1)在BC 上确定点M ,使AM ∥平面1PQB ,并说明理由; (2)若侧面11ACC A ⊥侧面11ABB A ,求直线11C A 与平面1PQB 所成角的正弦值.20.(12分)已知两直线方程1:l y x =与2:2l y x =-,点A 在1l 上运动,点B 在2l 上运动,且线段AB 的长为定值.(1)求线段AB 的中点C 的轨迹方程;(2)设直线:l y kx m =+与点C 的轨迹相交于M ,N 两点,O 为坐标原点, 若54OM ON k k ⋅=,求原点O 到直线l 的距离的取值范围.21.(12分)已知函数2(1)211()()22x f x e x e f x -'=-+⋅. (1)求()f x 的单调区间;(2)若存在1x ,212()x x x <,使得12()()1f x f x +=,求证:122x x +<.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(10分)【选修4-4:坐标系与参数方程】在平面直角坐标系xOy 中,曲线1C 的参数方程为2cos 22sin x y αα⎧=⎪⎨=+⎪⎩(α为参数),直线2C 的方程为y x =,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)求曲线1C 的极坐标方程;(2)若直线2C 与曲线1C 交于P ,Q 两点,求||||OP OQ ⋅的值.23.(10分)【选修4-5:不等式选讲】 已知函数()|||22|(0)f x x m x m m =--+>. (1)当1m =时,求不等式()1f x ≥的解集;(2)若x ∀∈R ,t ∃∈R ,使得()|1||1|f x t t +-<+,求实数m 的取值范围.答案一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】A2.【答案】A3.【答案】C4.【答案】B5.【答案】D6.【答案】B7.【答案】D8.【答案】B9.【答案】B10.【答案】B11.【答案】C12.【答案】C二、填空题:本大题共4小题,每小题5分.13.【答案】114.【答案】215.【答案】1916.【答案】(1)2n n+三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.【答案】(1)19;(2)233.【解析】(1)由题意可知,1AD=,在ABD△中,150DAB∠=︒,23AB=,1AD=,由余弦定理可知,2223(23)12231()19BD=+-⨯⨯⨯-=,19BD=.(2)由题意可知,2cosADθ=,60ABDθ∠=︒-,在ABD△中,由正弦定理可知,sin sinAD ABABD ADB=∠∠,∴2cos43sin(60)θθ=-,∴2tan33θ=.18.【答案】(1)70.5x=分;(2)约635人;(3)0.499.【解析】(1)由题意知:∴450.1550.15650.2750.3850.15950.170.5x=⨯+⨯+⨯+⨯+⨯+⨯=,∴4000名考生的竞赛平均成绩x为70.5分.(2)依题意z服从正态分布2(,)Nμσ,其中70.5xμ==,2204.75Dσξ==,14.31σ≈,∴z服从正态分布22(,)(70.5,14.31)N Nμσ=,而()(56.1984.81)0.6826P z P zμσμσ-<<+=<<=,∴10.6826(84.81)0.15872P z -≥==. ∴竞赛成绩超过84.81分(含84.81分)的人数估计为0.158********.8⨯=人635≈人. (3)全市竞赛考生成绩不超过84.81分的概率10.15870.8413-=.而(4,0.8413)B ξ~,∴444(3)1(4)1C 0.841310.5010.499P P ξξ≤=-==-⋅≈-=.19.【答案】(1)详见解析;(2. 【解析】(1)取1BB 中点E ,连结AE ,BQ ,在1BB Q △中,取H 为BQ 中点,连接,EH AH ,则1EH B Q ∥, 延长AH 与BC 交于点M ,则M 即为所求点,11ABB A 为平行四边形,点E ,P 为中点,则1AE PB ∥,由线面平行的判定定理可得AE ∥平面1PQB , 同理可得,EH ∥平面1PQB , 又AE EH E =I ,111B P B Q B =I ,据此可得平面AME ∥平面1PQB ,故AM ∥平面1PQB . (2)作QO ⊥平面11ABB A ,与1A A 延长线交于O ,则1AO =,QO =1OB ==1QB =,∵12B P =,PQ =1cos QPB ∠==,∴1sin QPB ∠=,∴112242PQB S ⨯==⨯△.作11PN C A ∥,则直线11AC 与平面1PQB 所成角即直线PN 与平面1PQB 所成角,∵142PQN S =⨯=△1123B PQN V -=⨯=.设N 到平面1PQB 的距离为h ,则1232h ⨯=,∴h =,∴直线11A C 与平面1PQB 所成角的正弦值为39413h =.20.【答案】(1)2214x y +=;(2)214[0,7. 【解析】(1)∵点A 在12:2l y x =上运动,点B 在22:2l y x =-上运动, ∴设112()A x x ,222(,)B x x , 线段AB 的中点(,)C x y ,则有122x x x +=,1222222x x y =,∴122x x x +=,1222x x -=, ∵线段AB 的长为定值2222121222()()822x x x x -++=, 即22(22)2)8x +=,化简得2214x y +=, ∴线段AB 的中点C 的轨迹方程为2214x y +=. (2)设33(,)M x y ,44(,)N x y ,联立2214x y y kx m ⎧+=⎪⎨⎪=+⎩,得222(41)8440k x kmx m +++-=,222(8)4(41)(44)0Δkm k m =-+->,化简得2241m k <+①,则342841kmx x k +=-+,23424441m x x k -=+, 2234343434()()()y y kx m kx m k x x km x x m =++=+++,若54OM ON k k ⋅=,则343454y y x x =,即343445y y x x =,所以2234343444()45k x x km x x m x x +++=,即22222448(45)4()404141m km k km m k k --+-+=++,化简得2254m k +=②, 由①②得2605m ≤<,215204k <≤, 因为O 到直线l的距离d =,所以2222225941114(1)km d k k k -===-++++, 又因为215204k <≤,所以2807d ≤<, 所以O 到直线l的距离的取值范围是[0,7. 21.【答案】(1)函数()f x 在R 上单调递增;(2)证明见解析. 【解析】(1)2(1)1()2()2x f x e x e f -''=-+⋅, 令12x =,则111()1()22f e f e ''=-+⋅,解得11()2f e'=,∴2(1)()21x f x ex -'=-+, 令2(1)()21x h x ex -=-+,2(1)11()222(1)(1)x x x h x e e e ---'=-=+-,∴1x =时,函数()f x '取得极小值即最小值,∴()(1)0f x f ''≥=, ∴函数()f x 在R 上单调递增. (2)由(1)可得:函数2(1)21()2x f x e x x -=-+在R 上单调递增. 要证明:12121222()(2)x x x x f x f x +<⇔<-⇔<-,又12()()1f x f x +=,因此1222()(2)1()(2)f x f x f x f x <-⇔-<-,即22()(2)10f x f x +-->,11(1)1122f =-+=,则121x x <<, 令2(1)22(1)211()(2)()1(2)2122x x g x f x f x e x x e x x --=-+-=--+-+-+-2(1)2(1)21124322x x e e x x --=+-+-, 1x >,(1)0g =,2(1)2(1)()44x x g x e e x --'=-+-+,令2(1)2(1)()44x x x ee x ϕ--'=-+-+,2(1)2(1)()2240x x x e e ϕ--'=+-≥,∴()g x '在(1,)+∞上单调递增.∴()(1)0g x g ''>=,∴函数()g x 在(1,)+∞上单调递增. ∴()(1)0g x g >=,因此结论122x x +<成立.22.【答案】(1)2cos 4sin 30ρθρθ--+=;(2)3. 【解析】(1)曲线1C的普通方程为22((2)4x y +-=, 则1C的极坐标方程为2cos 4sin 30ρθρθ--+=.(2)设1(,)P ρθ,2(,)Q ρθ, 将π6θ=代入2cos 4sin 30ρθρθ--+=,得2530ρρ-+=, 所以123ρρ=,所以||||3OP OQ ⋅=. 23.【答案】(1)2[2,]3--;(2)01m <<.【解析】(1)当1m =时,1|1||22|131x x x x ≤-⎧--+≥⇔⎨+≥⎩或11311x x -<<⎧⎨--≥⎩或131x x ≥⎧⎨--≥⎩,解得223x -≤≤-,所以原不等式的解集为2[2,]3--. (2)()|1||1|()|1||1|f x t t f x t t +-<+⇔<+--对任意x ∈R 恒成立,对实数t 有解.∵3,()3,3,x m x m f x x m m x m x m x m +≤-⎧⎪=---<<⎨⎪--≥⎩,根据分段函数的单调性可知:x m =-时,()f x 取得最大值()2f m m -=, ∵||1||1|||(1)(1)|2t t t t +--≤+--=,∴2|1||1|2t t -≤+--≤,即|1||1|t t +--的最大值为2, 所以问题转化为22m <,解得01m <<.模拟试卷二考试时量:120分钟 试卷满分:150分一、选择题(本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的) 1.设集合{}{}22|log (2),|320A x y x B x x x ==-=-+<,则A C B =A .(,1)-∞B .(,1]-∞C .(2,)+∞D .[2,)+∞2. 设i 为虚数单位,若()2a iz a R i-=∈+是纯虚数,则a = A .12 B . 12- C .1 D .1- 3. 已知某超市2019年12个月的收入与支出数据的折线图如图所示:根据该折线图可知,下列说法错误的是A .该超市2019年的12个月中的7月份的收益最高B .该超市2019年的12个月中的4月份的收益最低C .该超市2019年1~6月份的总收益低于2019年7~12月份的总收益D .该超市2019年7~12月份的总收益比2019年1~6月份的总收益增长了90万元 4.已知3sin()32πα-=2020cos()3πα+= A 23.23.12D .12-5. 已知12121ln ,2x x e -==,3x 满足33ln x e x -=,则A .123x x x <<B .132x x x <<C .213x x x <<D .312x x x <<6. 函数2()1sin 1xf x x e ⎛⎫=-⎪+⎝⎭图象的大致形状是A B C D7.公元前5世纪,古希腊哲学家芝诺发表了著名的阿基里斯悖论:他提出让乌龟在阿基里斯前面1000米处开始与阿基里斯赛跑,并且假定阿基里斯的速度是乌龟的10倍.当比赛开始后,若阿基里斯跑了1000米,此时乌龟便领先他100米,当阿基里斯跑完下一个100米时,乌龟先他10米,当阿基里斯跑完下一个10米时,乌龟先他1米,……所以,阿基里斯永远追不上乌龟.按照这样的规律,若阿基里斯和乌龟的距离恰好为210-米时,乌龟爬行的总距离为A .410190-米B .5101900-米C .510990-米D .4109900-米8.已知函数()2sin()(0,0),()2,()082f x x f f ππωϕωϕπ=+><<==,且()f x 在(0,)π上单调.则下列说法正确的是 A .12ω=B .62()82f π-= C .函数()f x 在[,]2ππ--上单调递增 D .函数()f x 的图象关于点3(,0)4π对称 9.在AOB ∆中,OA a OB b ==u u u r r u u u r r ,,满足||2a b a b ⋅=-=r r r r,则AOB ∆的面积的最大值为3 B. 2C. 232210.已知双曲线C :22221(0,0)x y a b a b-=>>,12,F F 分别为其左、右焦点,O 为坐标原点,若点2F 关于渐近线的对称点恰好落在以1F 为圆心,1OF 为半径的圆上,则C 的离心率是 A 2 B 3.2 D .311. 在正方体1111ABCD A B C D -中,P ,Q 分别为1AD ,1B C 上的动点,且满足1AP B Q =,则下列4个命题中: ①存在P ,Q某一位置,使AB PQ ∥; ②BPQ V 的面积为定值;③当0PA >时,直线1PB 与直线AQ 一定异面;④无论P ,Q 运动到何位置,均有BC PQ ⊥. 其中所有正确命题的序号是A. ①②④B. ①③④C. ①③D. ②④12.若函数12()2log (0)x x f x ex a a -=+->在区间(0,2)内有两个不同的零点,则实数a的取值范围是A. 22)e B. (0,2]C. 222)e + D. 3424(2,2)e +二、填空题(本大题共4小题,每小题5分,共20分. 把答案填在答题卡中的横线上) 13.若25(ax 的展开式中5x 的系数为80-,则实数a =__ __. 14.在菱形ABCD 中,060DAB ∠=,将这个菱形沿对角线BD 折起,使得平面DAB ⊥平 面BDC ,若此时三棱锥A BCD -的外接球的表面积为5π,则AB 的长为 . 15.已知数列{}n a 满足11a =,135n n a a n ++=+,*n N ∈,则(1)21n a -= , (2)2111(1)i i ni i a a +=+-=∑ .16.如图,衡阳市有相交于点O 的一条东西走向的公路l 与一条南北走向的公路m ,有一商城A 的部分边界是椭圆的四分之一,这两条公路为椭圆的对称轴,椭圆的长半轴长为2,短半轴长为1(单位:千米). 根据市民建议,欲新建一条公路PQ ,点,P Q 分别在公路,l m 上,且要求PQ 与椭圆形商城A 相切,当公路PQ 长最短时,OQ 的长为________千米.Q三、解答题(本大题共6小题,共70分. 解答应写出文字说明,证明过程或演算步骤) (一)必考题:60分.17.(本小题满分12分) 已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且tan(sin 2cos )cos 2222A C A C a b a+=. (1)求角B 的值;(2)若△ABC 的面积为D 为边AC 的中点,求线段BD 长的最小值.18.(本小题满分12分) 已知正方形ABCD ,E ,F 分别为AB ,CD 的中点,将△ADE 沿DE 折起,使△ACD 为等边三角形,如图所示,记二面角A-DE-C 的大小为(0)θθπ<<.(1)证明:点A 在平面BCDE 内的射影G 在直线EF 上; (2)求角θ的正弦值.EE19.(本小题满分12分) 如图,已知椭圆2222:1(0)x y C a b a b+=>>的长轴12A A 长为4,过椭圆的右焦点为F 作斜率为(0)k k ¹的直线交椭圆于B ,C 两点,直线12,BA BA 的斜率之积为34-.1)求椭圆C 的方程;2)已知直线:4l x =,直线11,A B A C 分别与l 相交于,N 两点,设E 为线段MN 的中点,求证:BC EF ^20.(本小题满分12分)已知函数()e sin )(2()2xf x x a R ax π=--∈+.(1)当1a =时,求函数()f x 在区间[,]ππ-上的值域; (2)对于任意120x x π<<<,都有2121()()22x x f x f x a e e π->---,求实数a 的取值范围.21. (本小题满分12分) 随着科学技术的飞速发展,网络也已经逐渐融入了人们的日常生活,网购作为一种新的消费方式,因其具有快捷、商品种类齐全、性价比高等优势而深受广大消费者认可.某网购公司统计了近五年在本公司网购的人数,得到如下的相关数据(其中“x =1”表示2015年,“x =2”表示2016年,依次类推;y 表示人数):(1)300万人; (2)该公司为了吸引网购者,特别推出“玩网络游戏,送免费购物券”活动,网购者可根据抛掷骰子的结果,操控微型遥控车在方格图上行进. 若遥控车最终停在“胜利大本营”,则网购者可获得免费购物券500元;若遥控车最终停在“失败大本营”,则网购者可获得免费购物券200元. 已知骰子出现奇数与偶数的概率都是12,方格图上标有第0格、第1格、第2格、…、第20格。

高三下学期数学(理科)模拟考试卷-附参考答案

高三下学期数学(理科)模拟考试卷-附参考答案

高三下学期数学(理科)模拟考试卷-附参考答案注意事项:1.答卷前,考生务必将自己的姓名、班级和考号填写在答题卡上.2.回答选择题时,则选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,则将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中只有一项是符合题目要求的.1.已知集合{}{220,M xx x N x y =--<==∣∣,则M N ⋃=( ) A.(],e ∞- B.()0,2 C.(]1,e - D.()1,2- 2.已知复数z 满足()12i 34i z -=-,则z 的共轭复数z =( )A.12i --B.12i -+C.12i -D.12i +3.2023年3月24日是第28个“世界防治结核病日”,我国的宣传主题是“你我共同努力,终结结核流行”,呼吁社会各界广泛参与,共同终结结核流行,维护人民群众的身体健康.已知某种传染疾病的患病率为5%,通过验血诊断该病的误诊率为2%,即非患者中有2%的人诊断为阳性,患者中有2%的人诊断为阴性.若随机抽取一人进行验血,则其诊断结果为阳性的概率为( )A.0.46B.0.046C.0.68D.0.0684.过抛物线2:4C y x =焦点F 的直线交抛物线C 于()()1122,,,A x y B x y 两点,以线段AB 为直径的圆的圆心为1O ,半径为r ,点1O 到C 的准线l 的距离与r 的积为25,则()12r x x +=( )A.40B.30C.25D.205.根据《民用建筑工程室内环境污染控制标准》,文化娱乐场所室内甲醛浓度30.1mg /m为安全范围.已知某新建文化娱乐场所施工中使用了甲醛喷剂,处于良好的通风环境下时,则竣工1周后室内甲醛浓度为36.25mg /m ,3周后室内甲醛浓度为31mg /m ,且室内甲醛浓度()t ρ(单位:3mg /m )与竣工后保持良好通风的时间t (*t ∈N )(单位:周)近似满足函数关系式()eat bt ρ+=,则该文化娱乐场所的甲醛浓度若要达到安全开放标准,竣工后至少需要放置的时间为( ) A.5周 B.6周 C.7周 D.8周6.在轴截面顶角为直角的圆锥内,作一内接圆柱,若圆柱的表面积等于圆锥的侧面积,则圆柱的底面半径与圆锥的底面半径的比值为( )A.14 B.4 C.12 D.27.已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12,F F ,点M 是双曲线右支上一点,且12MF MF ⊥,延长2MF 交双曲线C 于点P .若12MF PF =,则双曲线C 的离心率为( )8.在ABC 中90,4,,A AB AC P Q ===是平面ABC 上的动点,且2AP AQ PQ ===,M 是边BC 上一点,则MP MQ ⋅的最小值为( )A.1B.2C.3D.4二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列结论正确的有( )A.若随机变量,ξη满足21ηξ=+,则()()21D D ηξ=+B.若随机变量()23,N ξσ~,且(6)0.84P ξ<=,则(36)0.34P ξ<<=C.若样本相关系数r 的绝对值越接近1,则成对样本数据的线性相关程度越强D.按从小到大顺序排列的两组数据:甲组:27,30,37,,40,50m ;乙组:24,,33,44,48,52n .若这两组数据的第30百分位数、第50百分位数都分别对应相等,则67m n +=10.2022年12月,神舟十四号返回舱成功着陆,返回舱是宇航员返回地球的座舱,返回舱的轴截面可近似看作是由半圆和半椭圆(都包含,M N 点)组成的“曲圆”,半圆的圆心在坐标原点,半圆所在的圆过椭圆的焦点()0,3F ,椭圆的短轴长等于半圆的直径,如图,在平面直角坐标系中下半圆与y 轴交于点G .若过原点O 的直线与上半椭圆交于点A ,与下半圆交于点B ,则( )A.椭圆的离心率为12B.AFG 的周长为6+C.ABF 面积的最大值是92D.线段AB长度的取值范围是6,3⎡+⎣11.如图,四棱柱1111ABCD A B C D -的底面是边长为1AA ⊥底面ABCD ,三棱锥1A BCD -的体积是3,底面ABCD 和1111A B C D 的中心分别是O 和1,O E 是11O C 的中点,过点E 的平面α分别交11111,,BB B C C D 于点,,F N M ,且BD ∥平面,G α是线段MN 上任意一点(含端点),P 是线段1A C 上任意一点(含端点),则( )A.侧棱1AAB.四棱柱1111ABCD A B C D -的外接球的表面积是40πC.当1125B F BB =时,则平面α截四棱柱所得的截面是六边形 D.PO PG +的最小值是512.已知()()e e ,, 1.01,1e 1e 0.9911a bc d a b c d c d a b >>==-=-=++,则( )A.0a b +>B.0c d +>C.0a d +>D.0b c +>三、填空题:本题共4小题,每小题5分,共20分.13.在平面直角坐标系xOy 中角α的顶点为O ,始边与x 轴的非负半轴重合,终边与圆229x y +=相交于点5t ⎛⎫ ⎪ ⎪⎝⎭,则sin 22πα⎛⎫+= ⎪⎝⎭__________. 14.已知多项式5625601256(2)(1)x x a a x a x a x a x -+-=+++++,则1a =__________.15.已知函数()()2e 2ln x f x k x x x =+-和()2e xg x x=,若()g x 的极小值点是()f x 的唯一极值点,则实数k 的最大值为__________.16.“0,1数列”是每一项均为0或1的数列,在通信技术中应用广泛.设A 是一个“0,1数列”,定义数列()f A :数列A 中每个0都变为“1,0,1”,A 中每个1都变为“0,1,0”,所得到的新数列.例如数列:1,0A ,则数列():0,1,0,1,0,1f A .已知数列1:1,0,1,0,1A ,且数列()1,1,2,3,k k A f A k +==,记数列k A 的所有项之和为k S ,则1k k S S ++=__________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)如图,在平面四边形ABCD中3,,sin AC AB DAC BAC BAC ∠∠∠====.(1)求边BC ; (2)若23CDA π∠=,求四边形ABCD 的面积. 18.(本小题满分12分)在各项均为正数的数列{}n a 中()21112,2n n n n a a a a a ++==+. (1)求数列{}n a 的通项公式; (2)若n b =,数列{}n b 的前n 项和为n S ,证1n S <19.(本小题满分12分)2023年3月某学校举行了普通高中体育与健康学业水平合格性考试,考试分为体能测试和技能测试,其中技能测试要求每个学生在篮球运球上篮、羽毛球对拉高远球和游泳3个项目中任意选择一个参加.某男生为了在此次体育学业考试中取得优秀成绩,决定每天训练一个技能项目.第一天在3个项目中任意选一项开始训练,从第二天起,每天都是从前一天没有训练的2个项目中任意选一项训练.(1)若该男生进行了3天训练,求第三天训练的是“篮球运球上篮”的概率;(2)设该男生在考前最后6天训练中选择“羽毛球对拉高远球”的天数为X ,求X 的分布列及数学期望. 20.(本小题满分12分)已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别是12,,F F P 是椭圆上一动点(与左、右顶点不重合),12PF F的内切圆半径的最大值是312.(1)求椭圆C 的方程;(2)过()4,0H 作斜率不为0的直线l 交椭圆于,A B 两点,过B 作垂直于x 轴的直线交椭圆于另一点Q ,连接AQ ,设ABQ 的外心为G ,求证:2AQ GF 为定值.21.(本小题满分12分)在三棱台111A B C ABC -中1AA ⊥平面111111,2,1,ABC AB AC AA A B AB AC ====⊥,E F 分别是1,BC BB 的中点,D 是棱11A C 上的动点.(1)求证:1AB DE ⊥(2)若D 是线段11A C 的中点,平面DEF 与11A B 的交点记为M ,求平面AMC 与平面AME 夹角的余弦值.22.(本小题满分12分)已知函数()ln 1f x x ax =-+有两个零点12,x x ,且122x x >. (1)求实数a 的取值范围;(2)证明:222112e x x x x ⎛⎫⋅+>⎪⎝⎭参考答案1.【答案】C 解析:2201,2M xx x =--<=-∣,由1ln 0x -,得0e x <,则{0,e]N x y ===∣,所以(]1,e M N ⋃=-.故选C.2.【答案】C 解析:因为()12i 34i 5z -=-==,可得()()()512i 512i 12i 12i 12i z +===+--+,所以12i z =-.故选C. 3.【答案】D 解析:设随机抽取一人进行验血,其诊断结果为阳性为事件A ,设随机抽取一人为患者为事件B ,随机抽取一人为非患者为事件B ,则()()()()()0.980.050.020.95P A P A B P B P A B P B =+=⨯+⨯=∣∣0.068.故选D.4.【答案】A 解析:由抛物线的性质知,点1O 到C 的准线l 的距离为12AB r =,依题意得2255r r =⇒=,又点1O 到C 的准线l 的距离为()121252x x r ++==,则有128x x +=,故()1240r x x +=.故选A.5.【答案】B 解析:由题意可知()()()()32341e6.25,3e 1,e 125a ba b a ρρρρ++======解得2e 5a=.设该文化娱乐场所竣工后放置0t 周后甲醛浓度达到安全开放标准,则()()0001102e e e6.255t a t at b a b t ρ--++⎛⎫==⋅=⨯ ⎪⎝⎭0.1,整理得01562.52t -⎛⎫ ⎪⎝⎭.设1562.52m -⎛⎫= ⎪⎝⎭ 因为455562.522⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,所以415m <-<,即56m <<,则011t m --,即0t m 故竣工后至少需要放置的时间为6周.故选B.6.【答案】D 解析:设圆柱和圆锥底面半径分别为,r R ,因为圆锥轴截面的顶角为直,设圆柱高为h ,则,h R r h R r R R-==-,由题意得()222R r r R r πππ⨯=+⨯-,解得2r R=.故选D .7.【答案】D 解析:设1(2)MF t t a =>,由双曲线的定义可得22MF t a =-,又21PF MF t == 则12PF t a =+,由12MF MF ⊥,可得22211||MF MP PF +=,即222(22)(2)t t a t a +-=+,解得3t a =.又2221221MF MF F F +=,即222(3)4a a c +=即c =,所以c e a ==.故选D.8.【答案】B 解析:取PQ 的中点N ,则,MP MN NP MQ MN NQ MN NP =+=+=-,可得()()2221,MP MQ MN NP MN NP MN NP MN MN MA AN MA AN ⋅=+⋅-=-=-=+-当且仅当点N 在线段AM 上时,则等号成立,故|||||||||||3|MN MA AN MA -=-显然当AM BC ⊥时,则MA 取到最小值|||||3||233|MN MA ∴--=故21312MP MQ MN ⋅=--=.故选B.9.【答案】BC 解析:对于A ,由方差的性质可得()()()224D D D ηξξ==,故A 错误;对于B ,由正态密度曲线的对称性可得(36)(6)0.50.34P P ξξ<<=<-=,故B 正确;对于C ,由样本相关系数知识可得,样本相关系数r 的绝对值越接近1,则成对样本数据的线性相关程度越强,故C 正确;对于D ,甲组:第30百分位数为30,第50百分位数为372m +,乙组:第30百分位数为n ,第50百分位数为33447722+=,则30,3777,22n m =⎧⎪⎨+=⎪⎩解得30,40,n m =⎧⎨=⎩故70m n +=,故D 错误.故选BC. 10.【答案】BD 解析:由题知,椭圆中的几何量3b c ==,所以a =则离心率2c e a ===故A 不正确;因为3AB OB OA OA =+=+由椭圆性质可知332OA ,所以6332AB +故D 正确;设,A B 到y 轴的距离分别为12,d d则()1212113222ABFAOFOBFSSSd OF d OF d d =+=⋅+⋅=+当点A在短轴的端点处时,则12,d d 同时取得最大值3,故ABF 面积的最大值是9,故C 不正确;由椭圆定义知2AF AG a +==AFG 的周长6AFGCFG =+=+B 正确.故选BD.11.【答案】BCD 解析:对于选项A ,因为三棱锥1A BCD -的体积111323V AA=⨯⨯=解得1AA=A错误;对于选项B,外接球的半径满足22221440R AB AD AA=++=故外接球的表面积2440S Rππ==,故选项B正确;对于选项D,因为BD∥平面1111,,BD B D B Dα⊄∥平面α,所以11B D∥平面α,又平面1111A B C D⋂平面11,MN B Dα=⊂平面1111A B C D,所以11B D MN∥,又因为四边形1111A B C D是正方形1111A CB D⊥,所以11AC MN⊥,因为侧棱1AA⊥底面1111,A B C D MN⊂底面1111A B C D 所以1AA MN⊥,又1111AC AA A⋂=,所以MN⊥平面11AAC C,垂足是E,故对任意的G,都有PG PE,又因为1111114OO O E AC===,故215PO PG PO PE OE OO++==,故选项D正确;对于选项C,如图,延长MN交11A B的延长线于点Q,连接AQ交1BB于点F,在平面11CC D D内作MH AF∥交1DD于点H,连接AH,则平面α截四棱柱所得的截面是五边形AFNMH,因为1112B Q B N AB==,所以此时1113B FBB=,故11113B FBB<<时截面是六边形,1113B FB<时截面是五边形,故选项C正确.故选BCD.12.【答案】AD 解析:对于A,e e1.010,1,111a ba ba b==>∴>->-++令()e(1)1xf x xx=>-+则()2e1)xxf xx=+'所以()f x在()1,0-上单调递减,在()0,∞+上单调递增,且()01f=,又()1 1.01f>故01,10a b<<-<<令()()()()()()ln ln2ln1ln1,1,1h x f x f x x x x x=--=-++-+∈-,则()2112220111h xx x x-=-+=-<+-+-',所以()h x在()1,1-上单调递减,且()()00,1,0h b=∈-()()()()()()ln ln0,,,f b f b f b f b f af b a b∴-->∴>-∴>-∴>-即0a b+>,故选项A 正确;对于B ,()()1e 1e 0.990,1,1c d c d c d -=-=>∴<< 令()()1e (1)x g x x x =-<,则()e x g x x '=-,所以()g x 在(),0∞-上单调递增,在()0,1上单调递减,且()01g =,又()10.99g -<,故01,10c d <<-<<.令()()()()()()()ln ln 2ln 1ln 1,1,1m x g x g x x x x h x x =--=-++-+=∈-,所以()m x 在()1,1-上单调递减,且()()()()()()00,0,1,ln ln 0,m c g c g c g c g c =∈∴--<∴<- ()(),g d g c d c ∴<-∴<-,即0c d +<,故选项B 错误;对于C ,()()()()()()()11100,0.99,1,0,101f xg a a g a g d g x f a =∴-==>-∈-∴->- 又()g x 在(),0∞-上单调递增 ,0a d a d ∴->∴+< 故选项C 错误;对于D ,由C 可知 ()()(),0,1g b g c b ->-∈ 又()g x 在()0,1上单调递减,b c ∴-< 即0b c +>,故选项D 正确.故选AD.13.【答案】35- 解析:因为角α的终边与圆229x y +=相交于点t ⎫⎪⎪⎝⎭,所以cos 3α=÷=223sin 2cos22cos 12125πααα⎛⎫+==-=⨯-=- ⎪⎝⎭⎝⎭. 14.【答案】74 解析:对于5(2)x -,其二项展开式的通项为515C (2)r r r r T x -+=-,令51r -=,得4r =,故4455C (2)80T x x =-=,对于6(1)x -,其二项展开式的通项为616C (1)k k k k T x -+=- 令61k -=,得5k =,故5566C (1)6T x x =-=-,所以180674a =-=.15.【答案】2e 4 解析:由()2e x g x x =可得()()22442e e e 2x x x x x x x g x x x'-⋅-⋅==,当0x <或2x >时,则()0g x '>,当02x <<时,则()0g x '<,所以()g x 的极小值点是2.由()()2e 2ln xf x k x x x=+-可得()()()()432e 2e 12,0,xx x x k f x k x x x x x x ∞-⎛⎫⎛⎫=+-='--∈+ ⎪ ⎪⎝⎭⎝⎭,因为()f x 的唯一极值点为2,所以3e 0x k x x -或3e 0x k x x -恒成立,所以2e x k x 或2e xk x在()0,∞+上恒成立,因为()2e xg x x=在()0,2上单调递减,在()2,∞+上单调递增,当x ∞→+时,则()g x ∞→+,所以2e x k x 在()0,∞+上恒成立,则()2min e ()24k g x g ==.16.【答案】1103k -⨯ 解析:设数列k A 中0的个数为,1k a 的个数为k b ,则112,2k k k k k k a a b b a b ++=+=+,两式相加,得()113k k k k a b a b +++=+,又115,a b +=∴数列{}k k a b +是以5为首项,3为公比的等比数列153k k k a b -∴+=⨯两式相减,得17.【答案】解:(1)因为sin 14BAC BAC ∠∠=为锐角,所以cos 14BAC ∠==.因为3AC AB ==,在ABC 中由余弦定理得2222cos BC AC AB AC AB BAC ∠=+-⋅⋅即279231BC =+-=,得1BC =. (2)在ADC 中由正弦定理得sin sin CD AC DAC ADC∠∠==,所以1CD =.在ADC 中由余弦定理得222cos 2AD CD AC ADC AD CD ∠+-=⋅,即211722AD AD+--=,解得2AD =.因为121331273,12sin 214423ABCACDSS π=⨯⨯⨯==⨯⨯⨯=所以34ABCACDABCD S SS=+==四边形. 18.【答案】解:(1)()()()211112,20n n n n n n n n a a a a a a a a ++++=+∴-+=,则120n n a a +-=或10n n a a ++= 10,2n n n a a a +>∴=∴数列{}n a 为等比数列,公比为12,2,a =∴数列{}n a 的通项公式为2n n a =.(2)证明:由(1)得112,2n n n n a a ++==则n b ======∴数列{}n b 的前n项和为11n S n =+-=-1n S ∴<当2n时,则10,n n n S S b --===>∴当*n ∈N 时,则{}n S 为递增数列1n S S ∴n S1n S <19.【答案】解:(1)当第一天训练的是“篮球运球上篮”且第三天训练的也是“篮球运球上篮”为事件A ;当第一天训练的不是“篮球运球上篮”且第三天训练的是“篮球运球上篮”为事件B . 由题知,3天的训练过程中总共的可能情况为32212⨯⨯=种 所以,()()12112111,126126P A P B ⨯⨯⨯⨯==== 所以,第三天训练的是“篮球运球上篮”的概率()()13P P A P B =+=.(2)由题知,X 的可能取值为0,1,2,3考前最后6天训练中所有可能的结果有53296⨯=种当0X =时,则第一天有两种选择,之后每天都有1种选择,所以,()5521210329648P X ⨯====⨯; 当1X=时,则共有24444220+++++=种选择,所以()20519624P X ===; 当3X =时,则共有844824+++=种选择,所以()2413964P X ===; 所以()()()()5025210139648P X P X P X P X ==-=-=-=== 所以,X 的分布列为所以()1012324824484E X =⨯+⨯+⨯+⨯=. 20.【答案】解:(1)由题意知1,22c a c a =∴=,又222b a c =-,则,b =设12PF F 的内切圆半径为r ,则()()()121212112222PFF SPF PF F F r a c r a cr =++⋅=+⋅=+⋅. 故当12PF F 面积最大时,则r 最大,即点P 位于椭圆短轴顶点时r = )a c bc +=,把2,a c b ==代入,解得2,1a b c === 所以椭圆C 的方程为22143x y +=.(2)由题意知,直线AB 的斜率存在且不为0,设直线AB 的方程为4x ty =+代入椭圆方程得()()()222223424360,Δ(24)1443414440t y ty t t t +++==-+=-> 设()()1122,,,A x y B x y ,则1212222436,3434t y y y y t t -+==++ 因此可得1223234x x t +=+ 所以AB 中点的坐标为221612,3434t t t -⎛⎫ ⎪++⎝⎭因为G 是ABQ 的外心,所以G 是线段AB 的垂直平分线与线段BQ 的垂直平分线的交点,由题意可知,B Q 关于x 轴对称,故()22,Q x y -AB 的垂直平分线方程为2216123434tt x y t t ⎛⎫--=+ ⎪++⎝⎭ 令0y =,得2434x t =+,即24,034G t ⎛⎫⎪+⎝⎭,所以2222431,3434t GF t t =-=++ 又AQ ==221234t t ==+ 故24AQ GF =,所以2AQGF 为定值,定值为4. 21.【答案】解:(1)证明:取线段AB 的中点G ,连接1,A G EG ,如图所示 因为,E G 分别为,BC AB 的中点,所以EG AC ∥在三棱台111A B C ABC -中11AC AC ∥ 所以,11EG AC ∥,且11D A C ∈ 故1,,,E G A D 四点共面.因为1AA ⊥平面,ABC AG ⊂平面ABC ,所以1AA AG ⊥ 因为1111111,,AA A B AG AG A B AA AG ===⊥∥ 所以四边形11AA B G 是正方形,所以11AB AG ⊥. 又1111111111,,,AB AC AC AG A AC AG ⊥⋂=⊂平面1A DEG 所以1AB ⊥平面1A DEG .因为DE ⊂平面1A DEG ,所以1AB DE ⊥.(2)延长EF 与11C B 相交于点Q ,连接DQ ,则11DQ A B M ⋂=. 因为,F E 分别为1BB 和BC 的中点1B Q BE ∥,所以111B Q B FBE BF== 则11112B Q BE BC B C ===,所以,1B 为1C Q 的中点. 又因为D 为11A C 的中点,且11A B DQ M ⋂=,则M 为11A C Q 的重心 所以1112233A M AB == 因为1AA ⊥平面,ABC AC ⊂平面ABC ,所以1AA AC ⊥.因为11111,AB AC AC AC ⊥∥,所以1AB AC ⊥. 又因为1111,,AA AB A AA AB ⋂=⊂平面11AA B B 所以AC ⊥平面11AA B B ,所以1,,AC AB AA 两两垂直以A 为原点,1,,AC AB AA 所在直线分别为,,x y z 轴建立如图所示空间直角坐标系则()()()()20,0,0,0,2,0,2,0,0,1,1,0,0,,13A B C E M ⎛⎫ ⎪⎝⎭所以()()22,0,0,0,,1,1,1,03AC AM AE ⎛⎫=== ⎪⎝⎭. 设平面AMC 的法向量为()1,,n a b c =则1120,20,3n AC a n AM b c ⎧⋅==⎪⎨⋅=+=⎪⎩取3b =-,则()10,3,2n =-. 设平面AME 的法向量为()2,,n x y z =则220,20,3n AE x y n AM y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩取3y =-,可得()23,3,2n =-. 所以,12121213cos ,2213n n n n n n ⋅===⨯ 故平面AMC 与平面AME 夹角的余弦值为22. 22.【答案】解:(1)()ln 1f x x ax =-+的定义域为()()110,,ax f x a x x∞-+=='- 当0a 时,则()0f x '>恒成立,所以()f x 在()0,∞+上单调递增,()f x 不可能有两个零点,故舍去;当0a >时,则令()0f x '>,解得10x a <<,令()0f x '<,解得1x a> 所以()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ∞⎛⎫+ ⎪⎝⎭上单调递减 所以max 11()ln f x f a a ⎛⎫==⎪⎝⎭. 要使()f x 有两个零点,则max 1()ln 0f x a=>,解得01a <<. 又22111444242ln 10,ln 1110e e e e a f a f a a a a a a ⎛⎫⎛⎫=-⋅+=-<=-+<-+=-< ⎪ ⎪⎝⎭⎝⎭所以当01a <<时,则()f x 在11,e a ⎛⎫ ⎪⎝⎭和214,a a ⎛⎫⎪⎝⎭上各有一个零点21,,x x 且122x x >,所以1122ln 10,ln 10,x ax x ax -+=⎧⎨-+=⎩由fx 的单调性知,当()21,x x x ∈时,则()0f x > 当()1,x x ∞∈+时,则()0f x <.因为2212x x x <<,所以()220f x >,即()2222ln 221ln 1x ax x ax -+>-+ 所以2ln2ax <,而22ln 1x ax +=,即2ln 1ln2x +<,所以220ex <<,而22ln 1x a x +=.令()ln 12,0,e x h x x x +⎛⎫=∈ ⎪⎝⎭,则()221ln 1ln x x h x x x -'--== 因为20,e x ⎛⎫∈ ⎪⎝⎭,所以2ln ln 0ex ->->,所以()0h x '> 所以()h x 在20,e ⎛⎫⎪⎝⎭上单调递增所以()2ln2eln22e 2eh x h ⎫<==⎪⎭,所以eln20,2a ⎛⎫∈ ⎪⎝⎭.(2)因为1220x x >>,所以22211212e e 2x x x x x x ⎛⎫⋅+⋅ ⎪⎝⎭,当且仅当12x x =时取等号 而1220x x >>,故222112e e x xx x ⎛⎫⋅+>⋅⎪⎝⎭要证222112e x x x x ⎛⎫⋅+>⎪⎝⎭2e 42⋅,即证1228e x x ,即证1228ln ln e x x 即证12ln ln 3ln22x x +-.设12x t x =,因为1220x x >>,所以2t > 由(1)得1122ln 1,ln 1,x ax x ax +=⎧⎨+=⎩,两式作差,化简得21ln ln ln 1,ln 1ln 11t tx x t t t =-=-+-- 所以122ln ln ln ln 21tx x t t +=+--. 令()2ln ln 2,21tg t t t t =+->-,则()2212ln (1)t t t g t t t '--=-. 令()212ln t t t t ϕ=--,则()()2222ln ,20t t t t tϕϕ'=---''=>,易知()t ϕ'在()2,∞+上单调递增故()()222ln20t ϕϕ'>'=->,所以()t ϕ在()2,∞+上单调递增,所以()()234ln20t ϕϕ>=->所以()g t 在()2,∞+上单调递增,所以()()23ln22g t g >=-,即12ln ln 3ln22x x +>-得证.所以不等式222112e x x x x ⎛⎫⋅+> ⎪⎝⎭.。

高三理科数学模拟试卷答案

高三理科数学模拟试卷答案

一、选择题(每小题5分,共50分)1. 若函数f(x) = 2x - 3在区间[1, 4]上单调递增,则f(x)的值域为()A. [-1, 5]B. [2, 7]C. [5, 9]D. [1, 7]答案:D解析:由于f(x) = 2x - 3是一次函数,其斜率为正,因此在整个定义域上单调递增。

在区间[1, 4]上,f(1) = -1,f(4) = 5,所以值域为[1, 5]。

2. 已知等差数列{an}的前n项和为Sn,若a1 = 3,公差d = 2,则S10为()A. 110B. 120C. 130D. 140答案:B解析:等差数列的前n项和公式为Sn = n/2 (2a1 + (n - 1)d)。

代入a1 = 3,d = 2,n = 10,得S10 = 10/2 (23 + (10 - 1)2) = 120。

3. 若复数z满足|z - 1| = |z + 1|,则z在复平面上的轨迹是()A. 直线B. 圆C. 双曲线D. 双曲线的一支答案:A解析:|z - 1| = |z + 1|表示复数z到点(1, 0)和点(-1, 0)的距离相等,因此z在复平面上位于这两点连线的垂直平分线上,即直线x = 0。

4. 若函数f(x) = x^3 - 3x在区间[0, 2]上单调递减,则f(x)的极值点为()A. x = 0B. x = 1C. x = 2D. 无极值点答案:B解析:f'(x) = 3x^2 - 3。

令f'(x) = 0,得x = 1。

由于f''(x) = 6x,f''(1) = 6 > 0,所以x = 1是f(x)的极小值点。

5. 已知向量a = (2, 3),向量b = (4, 6),则向量a与向量b的夹角余弦值为()A. 1/2B. 1/4C. 1/3D. 3/4答案:A解析:向量a与向量b的夹角余弦值为cosθ = (a·b) / (|a|·|b|)。

高三模考理科数学试卷答案

高三模考理科数学试卷答案

一、选择题(每题5分,共50分)1. 下列各数中,无理数是()A. $\sqrt{4}$B. $\sqrt{3}$C. $\pi$D. $\frac{1}{2}$答案:B2. 函数$f(x)=2x+1$的图像与直线$y=3$的交点坐标是()A. $(1,3)$B. $(2,3)$C. $(1,2)$D. $(2,2)$答案:B3. 已知等差数列$\{a_n\}$中,$a_1=3$,$a_5=13$,则公差$d$为()A. 2B. 3C. 4D. 5答案:A4. 若$A=\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$,则$A^{-1}$为()A. $\begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix}$B. $\begin{bmatrix} 4 & -3 \\ -2 & 1 \end{bmatrix}$C. $\begin{bmatrix} 2 & -1 \\ -3 & 1 \end{bmatrix}$D. $\begin{bmatrix} 2 & -3 \\ -1 & 1 \end{bmatrix}$答案:A5. 在平面直角坐标系中,点$P(2,3)$关于直线$y=x$的对称点坐标是()A. $(2,3)$B. $(3,2)$C. $(3,-2)$D. $(-2,3)$答案:B6. 若$|a|=3$,$|b|=5$,则$|a+b|$的最大值为()A. 8B. 10C. 12D. 15答案:B7. 函数$f(x)=x^3-3x^2+4x-1$在$x=1$处的导数为()A. 1B. 2C. 3D. 4答案:C8. 已知$A=\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$,则$|A|$的值为()A. 1B. 2C. 3D. 4答案:D9. 在$\triangle ABC$中,若$A=60^\circ$,$a=8$,$b=10$,则$c$的值为()A. $6\sqrt{3}$B. $4\sqrt{3}$C. $3\sqrt{3}$D. $2\sqrt{3}$答案:A10. 若$y=2^x$,则$\frac{dy}{dx}$为()A. $2^x\ln 2$B. $2^x$C. $2^x\ln 10$D. $2^x\ln e$答案:A二、填空题(每题5分,共50分)11. 若$f(x)=ax^2+bx+c$,且$f(1)=2$,$f(-1)=0$,$f(2)=6$,则$a+b+c=$______。

高三数学(理工类)模拟检测试题(附答案)

高三数学(理工类)模拟检测试题(附答案)

高三数学(理工类)模拟检测试题本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共150分。

考试时间120分钟。

第I 卷(选择题 共60分)注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上。

3.考试结束,监考人将本试卷和答题卡一并收回。

参考公式:三角函数的积化和差公式[])sin()sin(21cos sin β-α+β+α=β⋅α [])cos()cos(21cos cos β-α+β+α=β⋅α [])sin()sin(21sin cos β-α-β+α=β⋅α [])cos()cos(21sin sin β-α-β+α-=β⋅α 一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是正确的。

1.已知集合}6 4 3{P ,,⊂,P 中至多有一个偶数,则这样的集合P 共有 A .2个 B .4个 C .5个 D .6个2.用α表示一个平面,m 表示一条直线,则α内至少有一条直线与mA .平行B .相交C .垂直D .异面3.直线2y 3x =-被圆⎪⎩⎪⎨⎧θ+-=θ+=sin 23y cos 21x (θ∈R )所截的弦长为 A .32 B .2 C .3 D .14.与正弦曲线y=sinx 关于直线43x π=对称的曲线是 A .y=sinx B .y=cosx C .y=-sinx D .y=-cosx5.如图,在正三棱台111C B A ABC -中,AC 21CC C A 111==,D 在边BC 上,且11AC //D B 平面,则异面直线A A D B 11与所成角的余弦值为A .23B .21C .41D .436.在1,2,3,4,5,6这六个数的排列中,1,3,5从左到右是递增的,并且2,4,6从左到右是递减的排列有A .360种B .120种C .40种D .20种7.在等差数列}a {n 中,n S 是数列}a {n 的前n 项和,已知n m S S =(m ≠n ),则=+n m SA .0B .n m S S +C .)S S (21n m + D .-m-n 8.在△ABC 中,AB=3,内切动圆切AB 于D ,且AD=2DB ,则顶点C 的轨迹是A .双曲线B .双曲线的一部分C .抛物线D .抛物线的一部分9.某工厂产值第二年增长率为p ,第三年增长率为q ,第四年增长率为r ,设这三年平均增长率为x ,则A .3r q p x ++=B .3r q p x ++< C .3r q p x ++≥ D .3r q p x ++≤ 10.圆锥的轴截面顶角为32π,过顶点的截面面积最大值为4,则其侧面积是 A .24π B .8π C .π32 D .π3411.下列命题①若z ∈C ,则R z z |z |22∈⇔=。

高三数学理科模拟试题及答案

高三数学理科模拟试题及答案

一、选择题:10i 1.2-iA. -2+4iB.-2-4iC.2+4iD.2-4i10i(2+i) 2 4i.应选 A.解:原式(2-i)(2+i)2. 设会合Ax | x3 , Bx 1 B =x |,则AIx4A.B.3,4C.2,1D.4.解:Bx 1 x | ( x 1)( x 4) 0x |1 x 4.A IB (3,4) x |x 43. 已知ABC中,cot A12, 则 cosA5A.1255 12 13B.C.D.131313ABC中,cot A12 ( , ) .解:已知, A52.应选 B.1112 cos A131 tan2 A1 5 ) 2(12应选 D.x在点 1,1 处的切线方程为4. 曲线 y1 2xA. x y 20 B. x y 2 0 C. x 4 y 5 0 D. x 4 y 5 02x 1 2x[12 ]| x 11, 解:y |x 12 |x 1(2 x 1)(2 x 1)故切线方程为 y 1 ( x 1), 即 x y2 0应选 B.5. 已知正四棱柱 ABCD A 1 B 1C 1D 1 中, AA 1 2 AB ,E 为 AA 1 中点,则异面直线 BE 与 CD 1 所成的角的余弦值为A.10 B.1 C.310 D.3105105解:令AB 1则AA 12 ,连 A 1BQ C 1D ∥ A 1B 异面直线 BE 与 CD 1 所成的角即 A 1B与 BE 所成的角。

在A 1BE 中由余弦定理易得 cos A 1BE3 1010 。

应选 C6. 已知向量 a2,1 ,a b10,| a b | 5 2 ,则 |b |A.5B.10C. 5D. 25r r rr r rr r 解:Q 50 | a b |2 | a |22agb | b |2 5 20 | b |2 | b | 5 。

应选 C7. 设alog 3 , b log 2 3, c log 3 2 ,则A. a b cB. a c bC. b a cD. b c a解:Q log 32 log 2 2 log 23 b clog 2 3 log 2 2 log 3 3 log 3 a b a bc . 应选 A.8. 若 将 函 数ytanx的图像向右平移个单位长度后,与函数46y tan x6 的图像重合,则的最小值为A .1B.1 C.1D.16432向右平移 个单位解: ytanx6ytan[ ( x)] tanx464646k6 6k1( k Z) , 2又Q1min.应选 D29. 已 知直线 y k x2 k 0 与抛 物线 C : y 28x 相 交于A 、B 两点, F 为C 的焦点,若 | FA | 2 | FB |,则 kA.1 B.2 C.2 D.2 23333解 : 设 抛 物 线C : y 28x的 准 线 为 l : x 2 直 线y k x 2 k 0 恒过定点 P 2,0 . 如图过 A 、B 分 别作 AM l 于 M , 于 N ,由|FA| 2|FB|,则|AM | 2|BN|,点 B 为 AP 的中点. 连接OB ,则|OB| 1|AF|,2|OB| |BF|B1B(1,2 2)2 2 02 2 , 应选 D点 的横坐标为 故点 的坐标为 k,1 ( 2)310. 甲、乙两人从 4 门课程中各选修 2 门。

高三数学(理科)模拟试卷及答案3套

高三数学(理科)模拟试卷及答案3套

高三数学(理科)模拟试卷及答案3套模拟试卷一时间:120分钟 分值:150分―、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知复数312z i=-(i 是虚数单位),则复数z 的共轭复数z =( ) A.3655i + B. 3655i - C. 1255i - D. 1255i +2.(错题再现)下列命题正确的是( )A .123x x +--≥B .若a 与b 共线,b 与c 共线,则a 与c 共线C .若|a +b |=|a -b |,则a ·b =0D .2213x x ++-≤3.函数()=sin 3f x x πω⎛⎫- ⎪⎝⎭在区间[]0,2π上至少存在5个不同的零点,则正整数ω的最小值为()A. 3B.2C. 4D. 54.从分别写有A 、B 、C 、D 、E 的5张卡片中任取2张,这2张卡片上的字母恰好是按字母顺序相邻的概率是( ) A.25B.15C. 103D. 355.执行如图所示的程序框图,则输出S 的值为( )A. 213log 32+ B. 2log 3C. 2D. 36.若x ,y 满足不等式组1010330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则232z x y =-+的最小值为( )A. -5B. -4C. -3D. -27.已知函数22,1()log ,1a x ax x f x x x ⎧-+-≤=⎨>⎩在R 上单调递增,则实数a 的取值范围是( )A. 13a <≤B. 2a ≥C. 23a ≤≤D. 02a <≤或3a ≥8.设P ,Q 分别为22(6)2x y +-=和椭圆22110x y +=上的点,则P ,Q 两点间的最大距离是( ) A. 52B. 246+C. 27+D. 269.已知() f x 为定义在R 上的奇函数, ()()g x f x x =-,且当(],0x ∈-∞时, ()g x 单调递增,则不等式()()2123f x f x x --+≥-的解集为( )A. ()3,+∞B. [)3,+∞C. (,3]-∞D. (,3)-∞ 10.已知球O 的半径为4,矩形ABCD 的顶点都在球O 的球面上,球心O 到平面ABCD 的距离为2,则此矩形的最大面积为() A. 12 B. 18 C. 24 D. 30 11.已知正数,a b 满足221a b ab +=+,则()312a b -+的最大值为()A. 22B. 2C. 2D. 112.设n S 是数列{}n a 的前n 项和,且11a =,11n n n a S S ++=-,则使22110n nnS S +取得最大值时n 的值为( ) A. 2 B. 5 C. 4 D. 3二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卡相应位置上。

天津市高三模拟考试(理科)数学试卷-带答案解析

天津市高三模拟考试(理科)数学试卷-带答案解析

天津市高三模拟考试(理科)数学试卷-带答案解析班级:___________姓名:___________考号:___________一、单选题1.集合{}24A x x => 和 {}51B x x =-<<,则()R A B ⋂=( )A .{}52x x -<<-B .{}22x x -<<C .{}21x x -<<D .{}21x x -≤<2.若21:|34|2,:02p x q x x -<<--,则p ⌝是q ⌝的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.函数()2114cos 22x x x xf x ---+=+的部分图象大致是( )A .B .C .D .4.为了了解一片经济林的生长情况 ,随机抽测了其中60株树木的底部周长(单位:cm ) , 所得数据均在区间[]80,130上,其频率分布直方图如图所示 ,则在抽测的60株树木中,树木的底部周长小于100cm 的棵数是( )A .18B .24C .36D .485.当曲线y 240kx y k -++=有两个不同的交点时, 实数k 的取值范围是( ) A .3(,0)4-B .35,4[)12-C .3[1,)4--D .3(,]4-∞-6.设,,1,1x y R a b ∈>>,若3x y a b == 2a b +=,则11x y+的最大值为( )A .4B .3C .2D .17.已知双曲线22:1124x y C -= ,点F 是C 的右焦点,若点P 为C 左支上的动点,设点P 到C 的一条渐近线的距离为d ,则||d PF +的最小值为( )A .2+B .C .8D .108.将函数()()cos 04f x x πωω⎛⎫=+> ⎪⎝⎭的图象向右平移4π个单位长度后得到函数()g x 的图象 若()g x 在5,44ππ⎛⎫ ⎪⎝⎭上单调递减 则ω的最大值为( ) A .14B .34C .12D .19.已知函数222,0()ln ,0x kx k x f x x x ⎧++⎪=⎨>⎪⎩ 若关于x 的不等式()f x k 的解集为[,][,]m n a b ⋃ 且n a <127232mn ab k +-< 则实数k 的取值范围为( )A .54,167⎛⎫⎪⎝⎭B .14,87⎛⎫ ⎪⎝⎭C .15,88⎛⎫ ⎪⎝⎭D .14,27⎡⎫⎪⎢⎣⎭二、填空题10.已知i 为虚数单位 则复数2021i =_______.11.若2nx ⎛ ⎝的展开式中二项式系数之和为256 则展开式中常数项是__________. 12.已知2x > 则42x x +-的最小值是______.13.圆柱的体积为34π 若该圆柱的两个底面的圆周在同一个球的球面上 则该球的体积为____________.三、双空题14.某志愿者召开春季运动会 为了组建一支朝气蓬勃、训练有素的赛会志愿者队伍 欲从4名男志愿者 3名女志愿者中随机抽取3人聘为志愿者队的队长 则在“抽取的3人中至少有一名男志愿者”的前提下“抽取的3人中全是男志愿者”的概率是___________;若用X 表示抽取的三人中女志愿者的人数 则()E X =___________.15.已知平面四边形ABCD AC BD ⊥ 3AB = 2AD = 712DC AB =则BAD ∠=______;动点E F 分别在线段DC CB 上 且DE DC λ= CF CB λ= 则AE AF ⋅的取值范围为____.四、解答题16.记ABC 的内角A B C 的对边分别为a b c 已知点D 为AB 的中点 点E 满足2AE EC = 且()()cos cos cos πsin a A a B C A C +-=-.(1)求A ;(2)若BC =DE =求ABC 的面积. 17.如图,正三棱柱111ABC A B C 中,E 是AC 中点.(1)求证:1AB 平面1BEC ;(2)若2AB =,1AA ,求点A 到平面1BEC 的距离;(3)当1A A AB 为何值时,二面角1E BC C --18.已知坐标平面内三点()()()2,4,2,0,1,1A B C ---. (1)求直线AB 的斜率和倾斜角;(2)若,,,A B C D 可以构成平行四边形且点D 在第一象限 求点D 的坐标; 19.已知等差数列{}n a 的前n 项和为n S 公差0d > 且231424,10a a a a =+=. (1)求数列{}n a 的通项公式; (2)若()*12111N n nT n S S S =++⋯+∈ 求n T . 20.已知函数()2e xf x x =.(1)求曲线()y f x =在点()()1,1f 处的切线方程;(2)证明:当0x >时 ()3e 2e xf x ≥-.参考答案与解析1.D【分析】解出集合A 利用补集和交集的含义即可得到答案. 【详解】24x > 则2x >或<2x - 则{2A xx =<-∣或2}x > R{22}A x x =-≤≤∣{51}B x x =-<<∣ 则()R {21}A B xx ⋂=-≤<∣ 故选:D. 2.B【分析】首先解不等式得到p ⌝:2x ≥或23x ≤q ⌝:2x ≥或1x ≤- 再根据包含关系即可得到答案. 【详解】|34|2x -< 得2342x -<-< 即223x << 即p ⌝:2x ≥或23x ≤.由2102x x <--得220x x --< 即12x -<< q ⌝:2x ≥或1x ≤-.因为{|2x x ≥或1}x ≤-{|2x x ≥或2}3x ≤所以p ⌝是q ⌝的必要不充分条件. 故选:B 3.C【分析】由已知可得 ()04f = 可得出A 、B 项错误;根据()π0f > 可得出D 项错误. 【详解】由已知可得 ()f x 定义域为R 且()21104cos0442210f --+==+= 所以A 、B 项错误;又()()()()2211114cos 4cos 2222x x x x x x x xf x f x -------+-+-===++ 所以()f x 为偶函数. 又()22π1π1π1π1π4cos ππ4π02222f ------+-==>++ 所以D 项错误 C 项正确.故选:C. 4.B【分析】根据频率直方图中小矩形的面积代表这一组的频率进行求解即可. 【详解】由频率直方图可知:树木的底部周长小于100cm 的棵数为:(0.0150.025)106024+⨯⨯=故选:B 5.C【分析】作曲线y =24y kx k =++的图象 计算出直线24y kx k =++与曲线y =时对应的实数k 的值 数形结合可得结果.【详解】对方程y =224y x =- 即()2204y x y +=≥所以曲线y 224x y +=的上半圆对直线方程变形得()24y k x =++ 该直线过定点()2,4P - 且斜率为k 如下图所示:当直线24y kx k =++与半圆y 2= 解得34k =-当直线24y kx k =++过点()2,0A 时 440k += 解得1k =-.由图形可知 当曲线y 24y kx k =++有两个相异的交点时 31,4k ⎡⎫∈--⎪⎢⎣⎭.故选:C 6.C【分析】先解出,x y 再根据对数性质化简 最后根据基本不等式求最值. 【详解】3log 3,log 3x y a b a b x y ==∴==333log l 1og log ()1a b ab x y∴+=+=29a b ab +=≤(当且仅当2a b =时取等号)因此3log 1192y x +≤=即11x y+的最大值为2 故选:C【点睛】本题考查指数式与对数式转换、对数运算性质、基本不等式求最值 考查综合分析求解能力 属中档题. 7.A【分析】设双曲线左焦点为(40)F '-,,求出其到渐近线的距离 利用双曲线定义将||d PF +转化为2||a PE F P ++' 利用当,,P F E '三点共线时 2F a PE P ++'取得最小值 即可求得答案.【详解】由双曲线22:1124x y C -=,可得2a b == (40)F ,设双曲线左焦点为(40)F '-,不妨设一条渐近线为:b l y x x a =-= 即0x = 作PE l ⊥ 垂足为E 即||PE d = 作F H l '⊥,垂足为H 则||2F H '==因为点P 为C 左支上的动点所以2PF PF a '-= 可得2PF a PF '=+ 故2|2|d FP PE a PF a PE F P '+=++=++'由图可知 当,,P F E '三点共线时 即E 和H 点重合时 2||a PE F P ++'取得最小值最小值为2||2F H '⨯=即||d PF +的最小值为2 故选:A . 8.B【分析】求得()cos 44g x x ωππω⎛⎫=-+ ⎪⎝⎭ 由5,44x ππ⎛⎫∈ ⎪⎝⎭可求得4444x πωπππωωπ<-+<+ 结合函数()g x 的单调性可得出关于ω的不等式 由此可得出ω的最大值.【详解】将()f x 的图象向右平移4π个单位长度后得到()cos 44g x x ωππω⎛⎫=-+ ⎪⎝⎭的图象. 因为5,44x ππ⎛⎫∈ ⎪⎝⎭所以4444x πωπππωωπ<-+<+ 因为()g x 在5,44ππ⎛⎫⎪⎝⎭上单调递减 所以4πωππ+≤ 304ω<≤ 所以ω的最大值为34.故选:B. 9.A【分析】易知0k > 由表达式画出函数图像 再分类讨论y k =与函数图像的位置关系 结合不等关系即可求解【详解】易知当0k > 0x 时 22227()224k f x x kx k x k ⎛⎫=++=++ ⎪⎝⎭()f x 的图象如图所示.当直线y k =在图中1l 的位置时 22724k k k << 得1427k <<,m n 为方程2220x kx k k ++-=的两根即2220x kx k k ++-=的两根 故22mn k k =-; 而1ab =则2211327212122232mn ab k k k k k k +-=-+-=-+<即2644850k k -+< 解得1588k << 所以1427k <<;当直线y k =在图中2l 的位置时 22k k 且0k > 得102k <;此时0n = 则112712232mn ab k k +-=-< 得51162k <≤.所以 k 的取值范围是54,167⎛⎫⎪⎝⎭.故选:A【点睛】本题考查函数零点与方程根的关系 数形结合思想 分类讨论思想 属于中档题 10.i .【解析】直接利用虚数单位i 的运算性质得答案. 【详解】20214505()i i i i ==; 故答案为:i .【点睛】本题考查复数代数形式的乘除运算 考查了虚数单位i 的性质 是基础题. 11.28【分析】根据二项式展开式的系数和公式可得n 的值 然后再利用展开式通项公式求得常数项.【详解】解:因为2nx ⎛ ⎝的展开式中二项式系数之和为256 所以2256n= 故8n = 即该二项式为882223x x x -⎛⎫⎛⎫=- ⎪⎝⎭⎝设其展开式的通项为1k T + 则1k T +=()()()2216282338811kk k kkk k k C xx C x----⎛⎫-=- ⎪⎝⎭当216203k k --=时 即6k = 此时该项为()668128C ⨯-=故答案为:28. 12.6【分析】根据给定条件 利用均值不等式计算作答.【详解】2x >则44(2)22622x x x x +=+-+≥=-- 当且仅当422x x =-- 即4x =时取“=” 所以42x x +-的最小值是6. 故答案为:6 13.43π 【分析】利用柱体的体积公式求出圆柱的高 由勾股定理求出球的半径 根据球的体积公式可得结果.【详解】设圆柱的高为h圆柱体积为34π 234h ππ∴⨯⨯=⎝⎭1h = 设球半径为R 则()22221R =+244R = 可得1R =∴球的体积为34433R ππ= 故答案为43π.【点睛】本题主要考查圆柱与球体的性质 以及柱体与球体的体积公式 意在考查综合运用所学知识解答问题的能力 考查了空间想象能力 属于中档题. 14.217 97##219 【分析】由条件概率公式计算在“抽取的3人中至少有一名男志愿者”的前提下“抽取的3人中全是男志愿者”的概率 由古典概型概率公式计算事件0,1,2,3X =的概率 再由期望公式公式得结论.【详解】由题意三人全是男志愿者 即事件X 0= 34374(0)35C P X C === 21433718(1)35C C P X C ===()12433712235C C P X C === 33371(3)35C P X C ===181219()1233535357E X =⨯+⨯+⨯= 再记全是男志愿者为事件A 至少有一名男志愿者为事件B 4()(0)35P A P X ===34()1(3)35P B P X =-== 4()235(|)34()1735P AB P A B P B ===.故答案为:217;97. 15.2π3##120︒ 819,644⎡⎤⎢⎥⎣⎦【分析】根据向量基本定理和向量垂直的数量积为0计算得到1cos 2BAD ∠=- 求出2π3BAD ∠= 建立直角坐标系 写出点的坐标 表达出向量,AE AF 的坐标 从而求出向量数量积的关系式 求出取值范围. 【详解】712AC AD DC AD AB =+=+BD AD AB =- 所以()22757121212AC BD AD AB AD AB AD AB AD AB ⎛⎫⋅=+⋅-=-⋅- ⎪⎝⎭57554cos 9cos 0121242AB AD BAD BAD =-⋅⋅∠-⨯=--∠= 解得:1cos 2BAD ∠=-因为()0,πBAD ∠∈ 所以2π3BAD ∠=以A 作坐标原点 AB 所在直线为x 轴 垂直AB 的直线为y 轴建立平面直角坐标系 则()()(30,0,3,0,,4A B DC ⎛- ⎝因为DE DC λ= CF CB λ= 01λ≤≤ 所以设((),,E m F n t由()71,0,04m λ⎛⎫+= ⎪⎝⎭得:714m λ=-39,,44nt λ⎛⎛-= ⎝⎝解得:93,44n t λ=+= 所以)279363639144416164AE AF λλλλ⎛⎫⎛⎫⋅=-+=-+ ⎪⎪⎝⎭⎝⎭、26318116264λ⎛⎫=-+ ⎪⎝⎭ 当12λ=时 26318116264AE AF λ⎛⎫⋅=-+ ⎪⎝⎭取得最小值 最小值为8164 当0λ=或1时 取得最大值 最大值为94所以AE AF ⋅的取值范围是819,644⎡⎤⎢⎥⎣⎦故答案为:2π3 819,644⎡⎤⎢⎥⎣⎦16.(1)2π3A =;【分析】(1)由三角形内角性质及正弦定理边角关系可得sin A A = 进而求角的大小;(2)在△ABC 、△ADE 中应用余弦定理可得2219b c bc ++=、32b c =求出b 、c 再由三角形面积公式求面积.(1)由πA B C ++=得:()()cos cos cos sin a B C a B C A C -++-=- 即2sin sin cos sin a B C A C =-由正弦定理得sin sin sin cos sin A B C B A C =在△ABC 中sin 0B > sin 0C > 故sin A A = 则tan A =因为()0,πA ∈ 所以2π3A =. (2)在△ABC 中 由余弦定理2222cos a b c bc A =+- 得2219b c bc ++=在△ADE 中 由余弦定理得2247943b c bc ++= 所以()22224794319b c bc b c bc ++=++ 化简得225224810b bc c --= 即()()2326270b c b c -+= 所以32b c = 代入2219b c bc ++=得:3b = 2c =则△ABC 的面积12πsin 3sin 23ABC S bc A ===. 17.(1)证明见解析(3)1【分析】(1) 连接1CB 交1BC 于点F ,连接EF ,根据中位线即可证明1EF AB ∥,再利用线面平行判定定理即可证明;(2)根据正三棱柱的几何特征,求出各个长度及1,BEC ABE S S ,再用等体积法即可求得;(3)建立合适空间直角坐标系,设出1,AB A A 长度,找到平面1EBC 及平面1BC C 的法向量,建立等式,求出1,AB A A 长度之间的关系即可证明.【详解】(1)证明:连接1CB 交1BC 于点F ,连接EF 如图所示:因为三棱柱111ABC A B C所以四边形11BB C C 为平行四边形所以F 为1CB 中点因为E 是AC 中点所以1EF AB ∥因为EF ⊂平面1BEC ,1AB ⊄平面1BEC所以1AB 平面1BEC ;(2)由题知,因为正三棱柱111ABC A B C所以1CC ⊥平面ABC且ABC 为正三角形因为2AB =,1AA所以BE =1EC 1BC 所以1BEC △为直角三角形11322BEC S =112ABE S =⨯△ 记点A 到平面1BEC 的距离为h则有11A BEC C ABE V V --= 即111133BEC ABE S h S CC ⨯⨯=⨯⨯即131323h ⨯⨯=解得h =故A 到平面1BEC (3)由题,取11A C 中点为H ,可知1EH CC ∥所以EH ⊥平面ABC因为ABC 为正三角形,E 是AC 中点所以BE AC ⊥故以E 为原点,EC 方向为x 轴,EH 方向为y 轴,EB 方向为z 轴建立如图所示空间直角坐标系不妨记1AB a,A A b所以1300000000222a a a E ,,,B ,,,,b,,,,C C 1133,,0,0,,0,,0222,a a ab EB b BC CC记平面1EBC 的法向量为()111,,x n y z =则有100n BC n EB ⎧⋅=⎪⎨⋅=⎪⎩即1111020a x by z ⎧+=⎪⎪=取12x b ,可得()2,,0b a n =-;记平面1BC C 的法向量为()222,,m x y z =则有1100n CC n BC ⎧⋅=⎪⎨⋅=⎪⎩即2222002by a x by z =⎧⎪⎨+=⎪⎩ 取2x =可得()3,0,1m =;因为二面角1E BC C --所以cos ,m nm n m n ⋅===解得: a b = 即当11A AAB =时,二面角1E BC C --18.(1)斜率为1 倾斜角为π4;(2)()3,5;【分析】(1)根据直线的斜率公式可求得AB 的斜率 进而求得倾斜角;(2)根据平行四边形对边平行 可得对边斜率相等 设(),D x y ,由斜率公式列出方程组即可求得答案. 【详解】(1)由题意可知直线AB 的斜率为4122-=--直线倾斜角范围为[0,π) 所以直线AB 的倾斜角为π4;(2)如图 当点D 在第一象限时 ,CD AB BD AC k k k k ==设(),D x y 则11114212y x y x -⎧=⎪⎪+⎨+⎪=⎪--+⎩ 解得35x y =⎧⎨=⎩故点D 的坐标为()3,5;19.(1)2n a n =(2)1n nT n =+【分析】(1)利用等差数列下标和性质得2310a a += 联立解得234,6a a == 求出d 值 写出通项即可;(2)利用等差数列前n 和公式求得(22)(1)2n n n S n n +==+ 则1111n S n n =-+ 最后利用裂项相消求和即可. 【详解】(1)等差数列{}n a 公差0d > 23142324,10a a a a a a =+=+=. 解得234,6a a == 或236,4a a == 但此时20d =-<故2d = ()()224222n a a n d n n ∴=+-=+-=(2)12422a a d =-=-= 则(22)(1)2n n n S n n +==+ 1111(1)1n S n n n n ∴==-++ 1211111111122311n n n T S S S n n n ⎛⎫⎛⎫⎛⎫∴=+++=-+-++-= ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭ 20.(1)3e 2e 0x y --=;(2)证明见解析.【分析】(1)先求出切线的斜率 再求出切点即得解;(2)令()()3e 2e x F x f x =-+ 利用导数求出函数的最小值即得证.【详解】(1)解:由题得()22e e x x f x x x '=+ 所以()13e f '=又()1f =e 所以切线方程为()e 3e 1y x -=- 即3e 2e 0x y --=.(2)证明:令()()23e 2e e 3e 2e x x x F x f x x =-+=-+()()()()222e e 3e e 23e 31x x x x x F x x x x x x x '=+-=+-=+-当()0,1x ∈时 ()0F x '< 当()1,x ∈+∞时 ()0F x '>.所以()F x 在()0,1上单调递减 在()1,+∞上单调递增.所以当0x >时 ()min ()10F x F == 0x ∴>时 ()0F x ≥故当0x >时 ()3e 2e x f x ≥-.。

高考数学理科模拟试题(附答案)

高考数学理科模拟试题(附答案)

高三年级第一次模拟考试数 学 试 题(理)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共150分,考试时间120分钟。

第Ⅰ卷(选择题,共40分)一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的,将答案涂在答题卡上.........。

1.复数23()1i i +-= ( )A .-3-4iB .-3+4iC .3-4iD .3+4i2.已知条件:|1|2,:,p x q x a +>>⌝⌝条件且p 是q 的充分不必要条件,则实数a 的取值范围是( ) A .1a ≥ B .1a ≤ C .1a ≥- D .3a ≤-3.函数()|2|ln f x x x =--在定义域内零点可能落在下列哪个区间内( )A .(0,1)B .(2,3)C .(3,4)D .(4,5) 4.如右图,是一程序框图,则输出结果为( )A .49B .511 C .712 D .613 5.已知n S 为等差数列{}n a 的前n 项和,若641241,4,S S S S S ==则 的值为( )A .94B .32C .54D .46.要得到函数()sin(2)3f x x π=+的导函数'()f x 的图象,只需将()f x 的图象( )A .向左平移2π个单位,再把各点的纵坐标伸长到原来的2倍(横坐标不变)B .向左平移2π个单位,再把各点的纵坐标缩短到原来的12倍(横坐标不变)C .向右平移4π个单位,再把各点的纵坐标伸长到原来的12倍(横坐标不变)D .向右平移4π个单位,再把各点的纵坐标伸长到原来的2倍(横坐标不变) 7.过双曲线22221(0,0)x y a b a b-=>>的一个焦点F 引它的渐近线的垂线,垂足为M ,延长FM 交y 轴于E ,若|FM|=2|ME|,则该双曲线的离心率为( )A .3B .2C .3D .28.如图所示的每个开关都有闭合与不闭合两种可能,因此5个开关共有25种可能,在这25种可能中电路从P 到Q 接通的情况有( )A .30种B .10种C .24种D .16种第Ⅱ卷(非选择题,共110分)二、填空题:本大题共6小题,每小题5分,共30分,将答案填写在答题纸上。

高三模拟试卷理科数学答案

高三模拟试卷理科数学答案

一、选择题(本大题共12小题,每小题5分,共60分)1. 已知函数$f(x) = \sqrt{1-x^2}$的定义域为$\{x | -1 \leq x \leq 1\}$,则函数的值域为()A. $[0,1]$B. $[0,+\infty)$C. $[-1,1]$D. $[-1,+\infty)$答案:B解析:由函数的定义域可知,$x^2 \leq 1$,即$-1 \leq x \leq 1$,则$1-x^2 \geq 0$,所以函数的值域为$[0,+\infty)$。

2. 若$a, b$是方程$x^2 - (a+b)x + ab = 0$的两根,则$a^2 + b^2$的值为()A. 2B. 4C. 6D. 8答案:B解析:由韦达定理可知,$a+b=a+b$,$ab=ab$,则$a^2 + b^2 = (a+b)^2 - 2ab = (a+b)^2 - 2ab = 4ab$,所以$a^2 + b^2 = 4$。

3. 已知等差数列$\{a_n\}$的前$n$项和为$S_n = 3n^2 - n$,则第10项$a_{10}$的值为()A. 28B. 29C. 30D. 31答案:C解析:由等差数列的前$n$项和公式$S_n = \frac{n(a_1 + a_n)}{2}$,代入$S_n = 3n^2 - n$得$3n^2 - n = \frac{n(a_1 + a_n)}{2}$,解得$a_1 + a_n = 6n - 1$。

又因为$a_{10} = a_1 + 9d$,其中$d$为公差,由等差数列的性质得$a_{10} = a_1 + 9d = 6 \times 10 - 1 = 59$,所以$a_{10} = 30$。

4. 若复数$z = a + bi$($a, b$为实数)满足$|z-1| = |z+1|$,则$z$在复平面上的轨迹方程为()A. $x^2 + y^2 = 2$B. $x^2 + y^2 = 1$C. $x^2 - y^2 =2$ D. $x^2 - y^2 = 1$答案:D解析:由复数的模长公式$|z| = \sqrt{a^2 + b^2}$,代入$|z-1| = |z+1|$得$\sqrt{(a-1)^2 + b^2} = \sqrt{(a+1)^2 + b^2}$,化简得$a^2 - 2a + 1 + b^2 = a^2 + 2a + 1 + b^2$,解得$a = 0$。

高三数学(理科)模拟试卷及答案3套

高三数学(理科)模拟试卷及答案3套

高三数学(理科)模拟试卷3套模拟试卷一第Ⅰ卷 (选择题 共60分)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1、已知集合,则中元素的个数为A .9B .8C .5D .4 2、已知复数满足:i i z +=-1)1(2(i 为虚数单位),则z为( )A .21B .22C .2D .13、下列叙述中正确的是( )A .若a ,b ,c ∈R ,且a >c ,则“ab 2>cb 2”B .命题“对任意x ∈R,有x 2≥0”的否定是“存在x ∈R,有x 2≤0” C .“φ=π2”是“y =sin(2x +φ)为偶函数”的充要条件 D .l 是一条直线,α,β是两个不同的平面,若l ⊥α,l ⊥β,则α∥β4、已知函数()()()210cos 0x x f x x x ⎧+>⎪=⎨≤⎪⎩,则下列结论正确的是() A .()f x 是偶函数 B .()f x 在(),-∞+∞上是增函数 C .()f x 是周期函数 D .()f x 的值域为[1,)-+∞ 5、能够把圆:的周长和面积同时分为相等的两部分的函数称为圆的“等分函数”,下列函数不是圆的“等分函数”的是 A .f (x )=3x B .C .D .6、如果双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线与直线3x -y +3=0平行,则双曲线的离心率为 A .3B .2C . 3D . 27、已知函数f (x )=23sin(π-x )·cos x +2cos 2x -1,其中x ∈R,则下列结论中正确的是A .f (x )是最小正周期为π的奇函数;B .f (x )的一条对称轴是x =π2C .f (x )在⎣⎡⎦⎤-π3,π6上单调递增D .将函数y =2sin 2x 的图象左移π6个单位得到函数f (x )的图象 8、已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y -1≤0,2x -y -3≥0,当目标函数z =ax +by (a >0,b >0)在该约束条件下取到最小值25时,a 2+b 2的最小值为A .4B .3C . 5D .29、在正方体ABCD –A 1B 1C 1D 1中,点O 是四边形ABCD 的中心,关于直线A 1O ,下列说法正确的是A .A 1O ∥D 1CB .A 1O ⊥BCC .A 1O ∥平面B 1CD 1D .A 1O ⊥平面AB 1D 110、2016年1月14日,国防科工局宣布,嫦娥四号任务已经通过了探月工程重大专项领导小组审议通过,正式开始实施.如图所示,假设“嫦娥四号”卫星将沿地月转移轨道飞向月球后,在月球附近一点P 变轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行.若用2c 1和2c 2分别表示椭圆轨道Ⅰ和Ⅱ的焦距,用2a 1和2a 2分别表示椭圆轨道Ⅰ和Ⅱ的长轴长,给出下列式子: ①a 1+c 1=a 2+c 2; ②a 1-c 1=a 2-c 2; ③c 1a 2>a 1c 2. ④c 1a 1<c 2a 2其中正确式子的序号是 A .①③B .②③C .①④D .②④11、已知直三棱柱的6个顶点都在球的球面上,若,,则球的半径为A .B .C .D .12、设 ()ln f x x =,若函数 ()()g x f x ax =-在区间(0,4)上有三个零点,则实数a 的取值范围是A .10,e ⎛⎫ ⎪⎝⎭B .ln 2,2e ⎛⎫⎪⎝⎭ C .ln 20,2⎛⎫ ⎪⎝⎭ D .ln 21,2e ⎛⎫⎪⎝⎭二、填空题:本大题共4小题,每小题5分共20分.13、已知函数f (x )=log a (x -2)+4(a >0且a ≠1),其图象过定点P ,角α的始边与x 轴的正半轴重合,顶点与坐标原点重合,终边过点P ,则sin α+2cos αsin α-cos α=________. 14、等差数列{}n a 中,3a ,7a 是函数f (x )=x 2﹣4x+3的两个零点,则{}n a 的前9项和等于 .15、已知向量a =(x ,-1),b =(y ,x 2+4)且a ⊥b ,,则实数y 的取值范围是 .16、已知椭圆192522=+y x 的左、右焦点分别为F 1、F 2,过F 1且垂直于长轴的直线交椭圆于A ,B 两点,则△ABF 2内切圆的半径为 .三、解答题:共70分,解答时应写出必要的文字说明、演算步骤.17、(本题满分12分)已知锐角ABC ∆中,内角A B C 、、的对边分别为a b c 、、,且2cos cos a b Bc C-=. (1)求角C 的大小;(2)求函数sin sin y A B =+的值域.18.(本小题满分12分)已知正项等比数列{}n a 的前n 项和为n S ,且532a =, 6347S S a -=, (1)求数列{}n a 的通项公式; (2)求数列{}n na 的前n 项和n T .19.(本小题满分12分)如图1,在直角梯形CD AB 中,D//C A B ,D 2π∠BA =,C 1AB =B =,D 2A =,E 是D A 的中点,O 是C A 与BE 的交点.将∆ABE 沿BE折起到1∆A BE 的位置,如图2. (1)证明:CD ⊥平面A 1OC ;(2)若平面A 1BE ⊥平面BCDE ,求平面A 1BC 与平面A 1CD 夹角的余弦值.20、(本小题满分12分)已知椭圆2222:1(0)x y C a b a b +=>>的离心率为21,短轴的一个端点到右焦点的距离为2. (1)求椭圆C 的方程;(2)过点()01G ,作直线l 与曲线C 交于A 、B 两点,点A 关于原点O 的对称点为D ,求ABD △ 的面积S 的最大值.21.(本小题满分12分)已知函数()1ln ()f x ax x a R =--∈.(1)讨论函数()f x 的极值点的个数;(2)若函数()f x 在1x =处取得极值,()(0,),2x f x bx ∀∈+∞≥-恒成立,求实数b 的最大值.22、(本小题满分10分)已知曲线C 的极坐标方程为θθρ222sin 4cos 312+=,直线l 的参数方程为 为参数)(42222-1⎪⎪⎩⎪⎪⎨⎧+=+=t t y t x (1)求曲线C 的直角坐标方程和直线l 的普通方程; (2)求曲线C 上的点M 到直线l 的最大距离。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.已知正四棱柱 中, 为 中点,则异面直线 与 所成的角的余弦值为
A. B. C. D.
解:令 则 ,连 ∥ 异面直线 与 所成的角即
与 所成的角。在 中由余弦定理易得 。故选C
6.已知向量 ,则
A. B. C. D.
解: 。故选C
7.设 ,则
A. B. C. D.
解:
.故选A.
8.若将函数 的图像向右平移 个单位长度后,与函数 的图像重合,则 的最小值为
高三数学理科模拟试题及答案一、选择题:1.来自A. B. C. D.
解:原式 .故选A.
2.设集合 ,则 =
A. B. C. D.
解: . .故选B.
3.已知 中, ,则
A. B. C. D.
解:已知 中, , .
故选D.
4.曲线 在点 处的切线方程为
A. B. C. D.
解: ,
故切线方程为 ,即 故选B.
由 ,...①则当 时,有 .....②
②-①得
又 , 是首项 ,公比为2的等比数列.
(II)由(I)可得 ,
数列 是首项为 ,公差为 的等比数列.

评析:第(I)问思路明确,只需利用已知条件寻找 .
第(II)问中由(I)易得 ,这个递推式明显是一个构造新数列的模型: ,主要的处理手段是两边除以 .
(相等的斜线段的射影相等)。
分析二:取 的中点 ,证四边形 为平行四边形,进而证 ∥ , ,得 也可。
分析三:利用空间向量的方法。具体解法略。
(II)分析一:求 与平面 所成的线面角,只需求点 到面 的距离即可。
作 于 ,连 ,则 , 为二面角 的平面角, .不妨设 ,则 .在 中,由 ,易得 .
设点 到面 的距离为 , 与平面 所成的角为 。利用 ,可求得 ,又可求得
A. B. C. D.
解:

又 .故选D
9.已知直线 与抛物线 相交于 两点, 为 的焦点,若 ,则
A. B. C. D.
解:设抛物线 的准线为 直线 恒过定点P .如图过 分别作 于 ,于 ,由 ,则 ,点B为AP的中点.连结 ,则 , 点 的横坐标为 ,故点 的坐标为 ,故选D
10.甲、乙两人从4门课程中各选修2门。则甲、乙所选的课程中至少有1门不相同的选法共有
即 与平面 所成的角为
分析二:作出 与平面 所成的角再行求解。如图可证得 ,所以面 。由分析一易知:四边形 为正方形,连 ,并设交点为 ,则 , 为 在面 内的射影。 。以下略。
19(本小题满分12分)
设数列 的前 项和为 已知
(I)设 ,证明数列 是等比数列
(II)求数列 的通项公式。
解:(I)由 及 ,有
点 ,点P在椭圆上,即 。
整理得 。
又 在椭圆上,即 .
故 ................................②
将 及①代入②解得
, = ,即 .
当 ;
22.(本小题满分12分)
设函数 有两个极值点 ,且
(I)求 的取值范围,并讨论 的单调性;
(II)证明:
解:(I)
令 ,其对称轴为 。由题意知 是方程 的两个均大于 的不相等的实根,其充要条件为 ,得
(II)在第一问的基础上,这一问处理起来也并不困难。
从甲组抽取的工人中恰有1名女工人的概率
(III) 的可能取值为0,1,2,3
, ,

21(本小题满分12分)
已知椭圆 的离心率为 ,过右焦点F的直线 与 相交于 、 两点,当 的斜率为1时,坐标原点 到 的距离为
(I)求 , 的值;
(II) 上是否存在点P,使得当 绕F转到某一位置时,有 成立?
也可利用若 则 从而舍去 。不过这种方法学生不易想到。
18(本小题满分12分)
如图,直三棱柱 中, 、 分别为 、 的中点, 平面
(I)证明:
(II)设二面角 为60°,求 与平面 所成的角的大小。
(I)分析一:连结BE, 为直三棱柱,
为 的中点, 。又 平面 ,
(射影相等的两条斜线段相等)而 平面 ,
解: ,只需求 展开式中的含 项的系数:
14.设等差数列 的前 项和为 ,若 则 9.
解: 为等差数列,
15.设 是球 的半径, 是 的中点,过 且与 成45°角的平面截球 的表面得到圆 。若圆 的面积等于 ,则球 的表面积等于 .
解:设球半径为 ,圆 的半径为 ,
因为 。由 得 .故球 的表面积等于 .
若存在,求出所有的P的坐标与 的方程;若不存在,说明理由。
解:(I)设 ,直线 ,由坐标原点 到 的距离为
则 ,解得 .又 .
(II)由(I)知椭圆的方程为 .设 、
由题意知 的斜率为一定不为0,故不妨设
代入椭圆的方程中整理得 ,显然 。
由韦达定理有: ........①
.假设存在点P,使 成立,则其充要条件为:
16.已知 为圆 : 的两条相互垂直的弦,垂足为 ,则四边形 的面积的最大值为。
解:设圆心 到 的距离分别为 ,则 .
四边形 的面积
三、解答题:17设 的内角 、 、 的对边长分别为 、 、 , , ,求 。
分析:由 ,易想到先将 代入 得 然后利用两角和与差的余弦公式展开得 ;又由 ,利用正弦定理进行边角互化,得 ,进而得 .故 。大部分考生做到这里忽略了检验,事实上,当 时,由 ,进而得 ,矛盾,应舍去。
A. 6种B. 12种C. 30种D. 36种
解:用间接法即可. 种.故选C
11.已知双曲线 的右焦点为 ,过 且斜率为 的直线交 于 两点,若 ,则 的离心率为
A. B. C. D.
解:设双曲线 的右准线为 ,过 分别作 于 , 于 , ,由直线AB的斜率为 ,知直线AB的倾斜角为 ,
由双曲线的第二定义有 .
20(本小题满分12分)
某车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人,现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽取3名工人进行技术考核。
(I)求从甲、乙两组各抽取的人数;
(II)求从甲组抽取的工人中恰有1名女工人的概率;
(III)记 表示抽取的3名工人中男工人数,求 的分布列及数学期望。
又 故选A
12.纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北。现有沿该正方体的一些棱将正方体剪开、外面朝上展平,得到右侧的平面图形,则标“ ”的面的方位是
A.南B.北
C.西D.下
解:展、折问题。易判断选B
二、填空题:本大题共4小题,每小题5分,共20分。把答案填在答题卡上。
13. 的展开式中 的系数为6。
相关文档
最新文档