刚体的定轴转动习题解答
大学物理习题册及解答_第二版_第四章_刚体的定轴转动
第四章 刚体定轴转动(一)
一.选择题
1.几个力同时作用在一个具有光滑固定转轴的刚体上,如果这几 个力的矢量和为零,则此刚体 (A) 必然不会转动. (B) 转速必然不变. (C) 转速必然改变. (D) 转速可能不变,也可能改变.
(1 )m m / 2 T mg m m m/2
k 1 k 2 2 1 2
4.质量为M,长为l的均匀细杆,可绕A端的水平轴自由转动,当 杆自由下垂时,有一质量为m的小球,在离杆下端的距离为a处垂 直击中细杆,并于碰撞后自由下落,而细杆在碰撞后的最大偏角 为,试求小球击中细杆前的速度。 解:球与杆碰撞瞬间,系统所受合外力矩为零,系 统碰撞前后角动量守恒
m (l a) J
1 J Ml 3
2
杆摆动过程机械能守恒
1 l J Mg (1 cos ) 2 2
2
解得小球碰前速率为
Ml 2 gl sin m(l a ) 3 2
5.一轻绳绕过一半径R,质量为M/4的滑轮。质量为M的人抓住绳 子的一端,而绳子另一端系一质量为M/2的重物,如图。求当人相 对于绳匀速上爬时,重物上升的加速度是多少? 解:选人、滑轮、与重物为系统,系统所受对滑轮轴的 外力矩为 1
1 d 13 即 MgR ( MR MRu) 2 dt 8
该题也可在地面参考系中分别对人和物体利用牛顿第二定 律,对滑轮应用转动定律求解。
一选择题
第四章 刚体定轴转动(二)
【大题】工科物理大作业04-刚体定轴转动
【大题】工科物理大作业04-刚体定轴转动 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN0404 刚体定轴转动班号 学号 姓名 成绩一、选择题(在下列各题中,均给出了4个~5个答案,其中有的只有1个是正确答案,有的则有几个是正确答案,请把正确答案的英文字母序号填在题后的括号内)1.某刚体绕定轴作匀变速转动,对刚体上距转轴为r 处的任一质元来说,在下列关于其法向加速度n a 和切向加速度τa 的表述中,正确的是:A .n a 、τa 的大小均随时间变化;B .n a 、τa 的大小均保持不变;C .n a 的大小变化,τa 的大小保持恒定;D .n a 的大小保持恒定,τa 大小变化。
(C )[知识点]刚体匀变速定轴转动特征,角量与线量的关系。
[分析与题解] 刚体中任一质元的法向、切向加速度分别为 r a n 2ω=,r a τβ=当β = 恒量时,t βωω+=0 ,显然r t r a n 202)(βωω+==,其大小随时间而变,ra τβ=的大小恒定不变。
2. 两个均质圆盘A 和B ,密度分别为ρA 和ρB ,且B ρρ>A ,但两圆盘的质量和厚度相同。
若两盘对通过盘心且与盘面垂直的轴的转动惯量分别为A I 和B I ,则 A .B I I >A; B. B I I <A ;C .B I I =A ; D. 不能确定A I 和B I 的相对大小。
(B )[知识点]转动惯量的计算。
[分析与题解] 设A 、B 两盘厚度为d ,半径分别为R A 和R B ,由题意,二者质量相等,即B B A A d R d R ρπρπ22=因为B A ρρ>, 所以22B A R R < 且转动惯量221mR I =,则B A I I <3.在下列关于刚体的表述中,不正确的是:A .刚体作定轴转动时,其上各点的角速度相同,线速度不同;B .刚体定轴转动的转动定律为βI M =,式中β,,I M 均对同一条固定轴而言的,否则该式不成立;C .对给定的刚体而言,它的质量和形状是一定的,则其转动惯量也是唯一确定的;D .刚体的转动动能等于刚体上各质元的动能之和。
第3章 刚体的定轴转动 习题答案
1
1 v r 78 . 5 1 78 . 5 m s (3) 解:
an r 78.5 1 6162 .2 m s
2 2
2
a r 3.14 m s
2
3-13. 如图所示,细棒长度为l,设转轴通过棒上距中心d的一 点并与棒垂直。求棒对此轴的转动惯量 J O ',并说明这一转 动惯量与棒对质心的转动惯量 J O之间的关系。(平行轴定理)
n0
J 2 2 n 收回双臂后的角动能 E k J n 0 2 J 0 n
1 2 2 1 2
Ek 0 J
1 2
2 0
3-17. 一人张开双臂手握哑铃坐在转椅上,让转椅转动起来, 此后无外力矩作用。则当此人收回双臂时,人和转椅这一系 统的转速、转动动能、角动量如何变化?
解:首先,该系统的角动量守恒。
设初始转动惯量为 J ,初始角速度为 0 收回双臂后转动惯量变为 J n , 由转动惯量的定义容易知,n 1 由角动量守恒定理容易求出,收回双臂后的角速度 初始角动能
M t J
代入数据解得:M 12.5 N m
3-4. 如图所示,质量为 m、长为 l 的均匀细杆,可绕过其一 端 O 的水平轴转动,杆的另一端与一质量为m的小球固定在 一起。当该系统从水平位置由静止转过 角时,系统的角
速度、动能为?此过程中力矩所做的功?
解: 由角动能定理得:
解:设该棒的质量为m,则其
线密度为 m l
1 l d 2 1 l d 2
O
d O'
J O'
0
r dr
2
3
0
r dr
大学物理第四章 刚体的转动部分的习题及答案
第四章 刚体的转动一、简答题:1、简述刚体定轴转动的角动量守恒定律并给出其数学表达式?答案:刚体定轴转动时,若所受合外力矩为零或不受外力矩,则刚体的角动量保持不变。
2、写出刚体绕定轴转动的转动定律文字表达与数学表达式?答案:刚体绕定轴转动的转动定律:刚体绕定轴转动时,刚体的角加速度与它所受的合外力矩成正比,与刚体的转动惯量成反比。
表达式为:αJ M =。
3、写出刚体转动惯量的公式,并说明它由哪些因素确定?答案:dm r J V⎰=2①刚体的质量及其分布;②转轴的位置;③刚体的形状。
二、选择题1、在定轴转动中,如果合外力矩的方向与角速度的方向一致,则以下说法正确的是 ( A )A.合力矩增大时,物体角速度一定增大;B.合力矩减小时,物体角速度一定减小;C.合力矩减小时,物体角加速度不一定变小;D.合力矩增大时,物体角加速度不一定增大2、关于刚体对轴的转动惯量,下列说法中正确的是 ( C ) A.只取决于刚体的质量,与质量的空间分布和轴的位置无关; B.取决于刚体的质量和质量的空间分布,与轴的位置无关; C.取决于刚体的质量,质量的空间分布和轴的位置;D.只取决于转轴的位置,与刚体的质量和质量的空间分布无关;3、有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动, 转动惯量为J ,开始时转台以匀角速度0ω转动,此时有一质量为m 的人站住转台中心,随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为 ( A ) A.()2mR J J +ω B.()2Rm J J +ω C.20mR J ω D.0ω4、均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示。
今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的? ( A )A.角速度从小到大,角加速度从大到小.B.角速度从小到大,角加速度从小到大.C.角速度从大到小,角加速度从大到小.D.角速度从大到小,角加速度从小到大.5、一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度( C )A.增大B.不变C.减小 (D) 、不能确定6、在地球绕太阳中心作椭圆运动时,则地球对太阳中心的 ( B ) A.角动量守恒,动能守恒 B.角动量守恒,机械能守恒 C.角动量不守恒,机械能守恒 D.角动量守恒,动量守恒7、有两个半径相同,质量相等的细圆环A 和B ,A 环的质量分布均匀,B 环的质量分布不均匀,它们对通过环心并与环面垂直的轴的转动惯量分别为A J 和B J ,则 ( C )A.B A J J >;B.B A J J <;C.B A J J =;D.不能确定A J 、B J 哪个大。
刚体定轴转动练习题及答案
刚体定轴转动练习题一、选择题1、一刚体以每分钟60转绕Z 轴做匀速转动(ωϖ沿Z 轴正方向)。
设某时刻刚体上一点P 的位置矢量为k j i r ϖϖϖϖ543++=,其单位为m 210-,若以s m /102-为速度单位,则该时刻P 点的速度为:( ) A υϖ=94.2i ϖ+125.6j ϖ+157.0k ϖ; B υϖ=34.4k ϖ; C υϖ=-25.1i ϖ+18.8j ϖ; D υϖ=-25.1i ϖ-18.8j ϖ;2、一均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示。
今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的?( )A 角速度从小到大,角加速度从大到小。
B 角速度从小到大,角加速度从小到大。
C 角速度从大到小,角加速度从大到小。
D 角速度从大到小,角加速度从小到大。
3、刚体角动量守恒的充分而必要的条件是:( )A 刚体不受外力矩的作用B 刚体所受合外力矩为零C 刚体所受的合外力和合外力矩均为零D 刚体的转动惯量和角速度均保持不变4、某刚体绕定轴做匀变速转动时,对于刚体上距转轴为r 出的任一质元m ∆来说,它的法向加速度和切向加速度分别用n a 和t a 来表示,则下列表述中正确的是 ( )(A )n a 、t a 的大小均随时间变化。
(B )n a 、t a 的大小均保持不变。
(C )n a 的大小变化, t a 的大小恒定不变。
(D )n a 的大小恒定不变, t a 的大小变化。
5、有两个力作用在一个有固定转轴的刚体:(1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3)当这两个力的合力为零时,它们对轴的合力矩也一定是零;(1) 当这两个力对轴的合力矩为零时,它们的合力也一定是零。
A 只有(1)是正确的。
B (1),(2)正确,(3),(4)错误。
05刚体的定轴转动习题解答.
第五章刚体的定轴转动一选择题1. 一绕定轴转动的刚体,某时刻的角速度为ω,角加速度为α,则其转动加快的依据是:()A. α > 0B. ω > 0,α > 0C. ω < 0,α > 0D. ω > 0,α < 0解:答案是B。
2. 用铅和铁两种金属制成两个均质圆盘,质量相等且具有相同的厚度,则它们对过盘心且垂直盘面的轴的转动惯量。
()A. 相等;B. 铅盘的大;C. 铁盘的大;D. 无法确定谁大谁小解:答案是C。
简要提示:铅的密度大,所以其半径小,圆盘的转动惯量为:2/2Mr J =。
3. 一圆盘绕过盘心且与盘面垂直的光滑固定轴O 以角速度ω 按图示方向转动。
若将两个大小相等、方向相反但不在同一条直线的力F 1和F 2沿盘面同时作用到圆盘上,则圆盘的角速度ω的大小在刚作用后不久 ( )A. 必然增大B. 必然减少C. 不会改变D. 如何变化,不能确定解:答案是B 。
简要提示:力F 1和F 2的对转轴力矩之和垂直于纸面向里,根据刚体定轴转动定律,角加速度的方向也是垂直于纸面向里,与角速度的方向(垂直于纸面向外)相反,故开始时一选择题3图定减速。
4. 一轻绳绕在半径为r 的重滑轮上,轮对轴的转动惯量为J ,一是以力F 向下拉绳使轮转动;二是以重量等于F 的重物挂在绳上使之转动,若两种情况使轮边缘获得的切向加速度分别为a 1和a 2,则有: ( )A. a 1 = a 2B. a 1 > a 2C. a 1< a 2D. 无法确定解:答案是B 。
简要提示:(1) 由刚体定轴转动定律,1αJ Fr =和11αr a =,得:J Fr a /21= (2) 受力分析得:⎪⎩⎪⎨⎧===-2222ααr a J Tr ma T mg ,其中m 为重物的质量,T 为绳子的张力。
得:)/(222mr J Fr a +=,所以a 1 > a 2。
5. 一半径为R ,质量为m 的圆柱体,在切向力F 作用下由静止开始绕轴线作定轴转动,则在2秒内F 对柱体所作功为: ( )A. 4 F 2/ mB. 2 F 2 / mC. F 2 / mD. F 2 / 2 m解:答案是A 。
《刚体定轴转动》答案
第2章 刚体定轴转动一、选择题1(B),2(B),3(A),4(D),5(C),6(C),7(C),8(C),9(D),10(C) 二、填空题(1). v ≈15.2 m /s ,n 2=500 rev /min (2). 62.5 1.67s (3). g / l g / (2l ) (4). 5.0 N ·m (5). 4.0 rad/s (6). 0.25 kg ·m 2(7). Ma 21(8). mgl μ21参考解:M =⎰M d =()mgl r r l gm l μμ21d /0=⎰(9).()212mRJ mr J ++ω(10). l g /sin 3θω=三、计算题1. 有一半径为R 的圆形平板平放在水平桌面上,平板与水平桌面的摩擦系数为μ,若平板绕通过其中心且垂直板面的固定轴以角速度ω0开始旋转,它将在旋转几圈后停止?(已知圆形平板的转动惯量221mR J =,其中m 为圆形平板的质量)解:在r 处的宽度为d r 的环带面积上摩擦力矩为总摩擦力矩 mgR M M R μ32d 0==⎰故平板角加速度 ? =M /J设停止前转数为n ,则转角 ? = 2?n由 J /Mn π==422θβω可得 g R MJ n μωωπ16/342020=π=2. 如图所示,一个质量为m 的物体与绕在定滑轮上的绳子相联,绳子质量可以忽略,它与定滑轮之间无滑动.假设定滑轮质量为M 、半径为R ,其转动惯量为221MR ,滑轮轴光滑.试求该物体由静止开始下落的过程中,下落速度与时间的关系. 解:根据牛顿运动定律和转动定律列方程对物体: mg -T =ma ① 对滑轮: TR = J ? ②运动学关系: a =R ? ③ 将①、②、③式联立得a =mg / (m +21M )∵ v 0=0,∴ v =at =mgt / (m +21M )3. 为求一半径R =50 cm 的飞轮对于通过其中心且与盘面垂直的固定转轴的转动惯量,在飞轮上绕以细绳,绳末端悬一质量m 1=8 kg 的重锤.让重锤从高2 m 处由静止落下,测得下落时间t 1=16 s .再用另一质量m 2=4 kg 的重锤做同样测量,测得下落时间t 2=25 s .假定摩擦力矩是一个常量,求飞轮的转动惯量.解:根据牛顿运动定律和转动定律,对飞轮和重物列方程,得 TR -M f =Ja / R ① mg -T =ma ②h =221at ③则将m 1、t 1代入上述方程组,得a 1=2h /21t =0.0156 m / s 2 T 1=m 1 (g -a 1)=78.3 N J =(T 1R -M f )R / a 1 ④ 将m 2、t 2代入①、②、③方程组,得a 2=2h /22t =6.4×10-3 m / s ? T 2=m 2(g -a 2)=39.2 NJ = (T 2R -M f )R / a 2 ⑤由④、⑤两式,得 J =R 2(T 1-T 2) / (a 1-a 2)=1.06×103 kg ·m 24. 一转动惯量为J 的圆盘绕一固定轴转动,起初角速度为?0.设它所受阻力矩与转动角速度成正比,即M =-k ? (k 为正的常数),求圆盘的角速度从?0变为021ω时所需的时间.解:根据转动定律: ?????????????? ???? J d ? / d t = -k ??????????????????????????????????????????????????∴ t J kd d -=ωω两边积分: ⎰⎰-=t t J k02/d d 100ωωωω得 ln2 = kt / J ∴ t =(J ln2) / k5. 某人站在水平转台的中央,与转台一起以恒定的转速n 1转动,他的两手各拿一个质量为m 的砝码,砝码彼此相距l 1 (每一砝码离转轴21l 1),当此人将砝码拉近到距离为l 2时(每一砝码离转轴为21l 2),整个系统转速变为n 2.求在此过程中人所作的功.(假定人在收臂过程中自身对轴的转动惯量的变化可以忽略)解:(1) 将转台、砝码、人看作一个系统,过程中人作的功W 等于系统动能之增量:W =?E k =212210222204)21(214)21(21n ml J n ml J π+-π+2这里的J 0是没有砝码时系统的转动惯量. (2) 过程中无外力矩作用,系统的动量矩守恒:2?(J 0+2121ml ) n 1 = 2? (J 0+2221ml ) n 2∴ ()()1222212102n n n l n l m J --=(3) 将J 0代入W 式,得 ()2221212l l n mn W -π= 6. 一质量均匀分布的圆盘,质量为M ,半径为R ,放在一粗糙水平面上(圆盘与水平面之间的摩擦系数为?),圆盘可绕通过其中心O 的竖直固定光滑轴转动.开始时,圆盘静止,一质量为m 的子弹以水平速度v 0垂直于圆盘半径打入圆盘边缘并嵌在盘边上,求 (1) 子弹击中圆盘后,盘所获得的角速度. (2) 经过多少时间后,圆盘停止转动.(圆盘绕通过O 的竖直轴的转动惯量为221MR ,忽略子弹重力造成的摩擦阻力矩)解:(1) 以子弹和圆盘为系统,在子弹击中圆盘过程中,对轴O 的角动量守恒.m v 0R =(21MR 2+mR 2)?(2) 设?表示圆盘单位面积的质量,可求出圆盘所受水平面的摩擦力矩的大小 为 ⎰π⋅=Rf r rg r M 0d 2σμ=(2 / 3)??σgR 3=(2 / 3)?MgR设经过?t 时间圆盘停止转动,则按角动量定理有-M f ??t =0-J ?=-(21MR 2+mR 2)?=- m v 0R∴ ()Mg m MgR R m M R m t fμμ2v 33/2v v 000===∆ 7.一匀质细棒长为2L ,质量为m ,以与棒长方向相垂直的速度v 0在光滑水平面内平动时,与前方一固定的光滑支点O 发生完全非弹性碰撞.碰撞点位于棒中心的一侧L 21处,如图所示.求棒在碰撞后的瞬时绕O 点转动的角速度?.(细棒绕通过其端点且与其垂直的轴转动时的转动惯量为231ml ,式中的m 和l 分别为棒的质量和长度.)解:碰撞前瞬时,杆对O 点的角动量为式中?为杆的线密度.碰撞后瞬时,杆对O 点的角动量为 因碰撞前后角动量守恒,所以∴ ? = 6v 0 / (7L)8. 长为l 的匀质细杆,可绕过杆的一端O 点的水平光滑固定轴转动,开始时静止于竖直位置.紧挨O 点悬一单摆,轻质摆线的长度也是l ,摆球质量为m .若单摆从水平位置由静止开始自由摆下,且摆球与细杆作完全弹性碰撞,碰撞后摆球正好静止.求: (1) 细杆的质量.(2) 细杆摆起的最大角度?.解:(1) 设摆球与细杆碰撞时速度为v 0,碰后细杆角速度为?,系统角动量守恒 得:J ? = m v 0l由于是弹性碰撞,所以单摆的动能变为细杆的转动动能2202121ωJm=v代入J=231Ml,由上述两式可得M=3m(2) 由机械能守恒式mglm=221v及()θωcos121212-=MglJ并利用(1) 中所求得的关系可得31arccos=θ四研讨题1. 计算一个刚体对某转轴的转动惯量时,一般能不能认为它的质量集中于其质心,成为一质点,然后计算这个质点对该轴的转动惯量?为什么?举例说明你的结论。
大学物理AⅠ刚体定轴转动习题答案及解法
《大学物理A Ⅰ》2010 刚体定轴转动习题、答案及解法一.选择题1.两个匀质圆盘A 和B 相对于过盘心且垂直于盘面的轴的转动惯量分别为A J 和B J ,若A B J J >,但两圆盘的的质量和厚度相同,如两盘的密度各为A ρ和B ρ,则( A )(A )B A ρρ> (B )B A ρρ<(C )B A ρρ= (D )不能确定B A ρρ的大小参考答案: B B A Ah R h R M ρπρπ22== A A A h M MR J ρπ222121== BB B h M MR J ρπ222121== 2.有两个半径相同、质量相等的细圆环。
1环的质量分布均匀。
2环的质量分布不均匀,它们对通过圆心并与环面垂直的轴的转动惯量分别为A J 和B J ,则( C )(A )21J J > (B )21J J <(C )21J J = (D )不能确定21J J 的大小 参考答案:∵ ⎰=Mdm r J 2 ∴ 21J J =3.一圆盘绕过圆心且于盘面垂直的光华固定轴O 以角速度1ω按图所示方向转动,将两个大小相等,方向相反的力F 沿盘面同时作用到圆盘上,则圆盘的角速度变为2ω,那么( C )(A )21ωω> (B )21ωω=(C )21ωω< (D )不能确定如何变化 参考答案:()12ωωJ J t r R F -=∆⋅- ()12ωω+∆⋅-=t r R JF4.均匀细棒OA 的质量为m 。
长为L ,可以绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图2所示,今使棒从水平位置由静止开始自由下落,在棒摆到竖直位置的过程中,下述说法那一种是正确的[ A ](A )合外力矩从大到小,角速度从小到大,角加速度从大到小。
(B )合外力矩从大到小,角速度从小到大,角加速度从小到大。
(C )合外力矩从大到小,角速度从大到小,角加速度从大到小。
(D )合外力矩从大到小,角速度从大到小,角加速度从小到大。
刚体的定轴转动(带答案)
刚体的定轴转动一、选择题1、(本题3分)0289关于刚体对轴的转动惯量,下列说法中正确的是[ C ] (A)只取决于刚体的质量,与质量的空间分布和轴的位置无关。
(B)取决于刚体的质量和质量的空间分布,与轴的位置无关。
(C)取决于刚体的质量、质量的空间分布和轴的位置。
(D)只取决于转轴的位置,与刚体的质量和质量的空间分布无关。
2、(本题3分)0165均匀细棒OA可绕通过某一端O而与棒垂直的水平固定光滑轴转动,如图所示,今使棒从水平位置由静止开始自由下降,在棒摆到竖直位置的过程中,下述说法哪一种是正确的?(A)角速度从小到大,角加速度从大到小。
(B)角速度从小到大,角加速度从小到大。
(C)角速度从大到小,角加速度从大到小。
(D)角速度从大到小,角加速度从小到大。
3.(本题3分)5640一个物体正在绕固定的光滑轴自由转动,则[ D ](A)它受热或遇冷伸缩时,角速度不变.(B)它受热时角速度变大,遇冷时角速度变小.(C)它受热或遇冷伸缩时,角速度均变大.(D)它受热时角速度变小,遇冷时角速度变大.4、(本题3分)0292一轻绳绕在有水平轴的定滑轮上,滑轮质量为m ,绳下端挂一物体,物体所受重力为P ,滑轮的角加速度为β,若将物体去掉而以与P 相等的力直接向下拉绳子,滑轮的角加速度β将 [ C ] (A )不变 (B )变小 (C )变大 (D )无法判断 5、(本题3分)5028如图所示,A 、B 为两个相同的绕着 轻绳的定滑轮,A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且F=Mg ,设A 、B 两滑轮的角加速度分别为βA 和βB ,不计滑轮轴的摩擦, 则有 [ C ] (A )βA =βB (B )βA >βB(C )βA <βB (D )开始时βA =βB ,以后βA <βB 6、(本题3分)0294刚体角动量守恒的充分而必要的条件是[ B ] (A )刚体不受外力矩的作用。
(B )刚体所受合外力矩为零。
第5章 刚体的定轴转动 习题解答
对飞轮,由转动定律,有 式中负号表示摩擦力的力矩方向与角速度 方向相反。
联立解得
以 F 100 N 等代入上式,得
Fr R 2 (l1 l2 ) F J mRl1
5-1
第 5 章 刚体的定轴转动
2 0.40 (0.50 0.75) 40 100 rad s 2 60 0.25 0.50 3 t
由以上诸式求得角加速度
(2)
Rm1 rm2 g I m1 R 2 m2 r 2 0.2 2 0.1 2
1 1 10 0.202 4 0.102 2 0.202 2 0.102 2 2
9.8 6.13 rad s 2
T2 m2 r m2 g 2 0.10 6.13 2 9.8 20.8N T1 m1 g m1 R 2 9.8 2 0.2. 6.13 17.1N v 2a1h 2 Rh 2 6.13 0.2 2 2.21 m s 1
M M f J 1
t1
。移去力矩 M 后,根据转动定律,有
M f J 2
2
联立解得此转轮的转动惯量
0 t2
J
M 20 17.36 kg m 2 1 1 1 100 2 1 60 10 100 t1 t2
v0
6(2 3 3m M l J l 1M (1 2 ) (1 ) 2 ml 2 3m 12 m
(2) 由①式求得相碰时小球受到的冲量为:
I Fdt mv mv mv0
负号说明所受冲量的方向与初速度方向相反。
大学物理习题册及解答 第二版 刚体的定轴转动
Z
R
由平行轴定理,关于刀口的转动惯量为 J zo J zc MR 2 2MR 2
(2)由垂直轴定理有: J J 1 J MR2
由平行轴定理有:
J
xC
J
yC
2
MR2
zC
3
2 MR 2
PP
xC
(3)复摆的摆动周期为 T 2π J
2
mgl
T 2 2R T 2 3R
T1 4 1.1547
2.力矩的定义式为_M_____r__F_.
在力矩作用下,一个绕轴转动的物体作_变__角__动_量_运动. 若系统所受的合外力矩为零,则系统的____角__动_量_____守恒.
3 质量为20 kg、边长为1.0 m的均匀立方物体,放在水平地面 上.有一拉力F作用在该物体一顶边的中点,且与包含该顶边的 物体侧面垂直,如图所示.地面极粗糙,物体不可能滑动.若 要使该立方体翻转90°,则拉力F不能小于___
(A) 动量守恒.
(B) 机械能守恒.
(C) 对转轴的角动量守恒.
(D) 动量、机械能和角动量都守恒.
(E) 动量、机械能和角动量都不守恒.
7.花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,
转动惯量为J0,角速度为0,然后她将两臂收回,使转动惯量减少
为J0
/3,这时她转动的角速度变为
(A) 1 (B) 1
分析:
2as
2 0
2 02
a r
0 r0
s
r
N
2
13.3圈
02 0.024rad / s2 2
4.一轻绳跨过一具有水平光滑轴、质量为M的定滑轮,绳的两端 分别悬有质量为m1和m2的物体(m1 >m2).绳与轮之间无相对滑 动.若某时刻滑轮沿逆时针方向转动,则绳中的张力
刚体定轴转动的功和能
《大学物理》练习题 刚体定轴转动的功和能班级 ___________ 学号 __________ 姓名 _________ 成绩 ________基本要求:(1) 掌握力矩的功、转动动能、动能定理、含刚体的机械能守恒定律及应用内容提要: 1. 力矩的功:⎰=θMd A2 转动动能:刚体的转动惯量与角速度平方乘积的一半。
221ωJ E k =3 刚体定轴转动的动能定理:合外力矩对定轴转动刚体所做的功等于刚体转动动能的增量21222121ωωJ J A -=若在刚体转动过程中,只有重力做功,其他非保守内力不做功,则刚体在重力场中机械能守恒.常量=+=C mgh J E 221ω一、选择题1. 如图所示, 一匀质细杆可绕通过其一端的水平光滑轴在竖直平面内自由转动. 杆长 l = (5/3)m,今使杆从与竖直方向成60°角的位置由静止释放(g 取10m/s 2), 则杆的最大角速度为 [ ] (A) 3rad/s.(B) rad/s (C) 9 rad/s.60° 图(D)3rad/s.2.一人站在旋转平台的中央,两臂侧平举,整个系统以2rad/s 的角速度旋转,转动惯量为.如果将双臂收回则系统的转动惯量变为.此时系统的转动动能与原来的转动动能之比E k / E k0为[ ] (A)2.(B) 2. (C) 3. (D) 3.3.如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴旋转,初始状态为静止悬挂。
现有一个小球自左方水平打击细杆.设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统 [ ] (A) 只有机械能守恒.(B) 只有动量守恒.(C) 只有对转轴O 的角动量守恒. (D) 机械能、动量角和动量均守恒. 二.填空题1.一匀质细杆AB,长为l ,质量为m . A 端挂在一光滑的固定水平轴上, 细杆可以在竖直平面内自由摆动.杆从水平位置由静止释放开始下摆,当下摆 时,杆的角速度为 .2.将一质量为m 的小球, 系于轻绳的一端, 绳的另一端穿过光滑水平桌面上的小孔用手拉住, 先使小球以角速度1在桌面上做半径为r 1的园周运动, 然后缓慢将绳下拉, 使半径缩小为r 2, 在此过程中小球的动能增量是 .○· O 图三.计算题1.有一质量为m 1、长为l 的均匀细棒,静止平放在滑动摩擦系数为的水平桌面上,它可绕通过其端点O 且与桌面垂直的固定光滑轴转动. 另有一水平运动的质量为m 2的小滑块,从侧面垂直于棒与棒的另一端A 相撞,设碰撞时间极短,已知小滑块在碰撞前后的速度分别为v 1和v 2,如图所示. 求碰撞后从细棒开始转动到停止转动的过程所需的时间 (以知棒绕O 点的转动惯量J=m 1l 2/3).2.一长l=0.4m 的均匀木棒,质量M=1.0kg ,可绕水平轴O 在竖直内转动,开始时棒自然地竖直悬垂,今有质量m=8g 的子弹以s m v 200 地速率从A 点射入棒中,假定A 点与O 点的距离为43l ,求:(1)、棒开始运动时的角速度; (2)、棒的最大偏转角。
大学物理-刚体的定轴转动-习题和答案
第4章 刚体的定轴转动 习题及答案1.刚体绕一定轴作匀变速转动,刚体上任一点是否有切向加速度?是否有法向加速度?切向和法向加速度的大小是否随时间变化?答:当刚体作匀变速转动时,角加速度β不变。
刚体上任一点都作匀变速圆周运动,因此该点速率在均匀变化,v l ω=,所以一定有切向加速度t a l β=,其大小不变。
又因该点速度的方向变化,所以一定有法向加速度2n a l ω=,由于角速度变化,所以法向加速度的大小也在变化。
2. 刚体绕定轴转动的转动定律和质点系的动量矩定理是什么关系?答:刚体是一个特殊的质点系,它应遵守质点系的动量矩定理,当刚体绕定轴Z 转动时,动量矩定理的形式为zz dL M dt=,z M 表示刚体对Z 轴的合外力矩,z L 表示刚体对Z 轴的动量矩。
()2z i i L m l I ωω==∑,其中()2i i I m l =∑,代表刚体对定轴的转动惯量,所以()z z dL d d M I I I dt dt dtωωβ====。
既 z M I β=。
所以刚体定轴转动的转动定律是质点系的动量矩定理在刚体绕定轴转动时的具体表现形式,及质点系的动量矩定理用于刚体时在刚体转轴方向的分量表达式。
3.两个半径相同的轮子,质量相同,但一个轮子的质量聚集在边缘附近,另一个轮子的质量分布比较均匀,试问:(1)如果它们的角动量相同,哪个轮子转得快?(2)如果它们的角速度相同,哪个轮子的角动量大?答:(1)由于L I ω=,而转动惯量与质量分布有关,半径、质量均相同的轮子,质量聚集在边缘附近的轮子的转动惯量大,故角速度小,转得慢,质量分布比较均匀的轮子转得快;(2)如果它们的角速度相同,则质量聚集在边缘附近的轮子角动量大。
4.一圆形台面可绕中心轴无摩擦地转动,有一玩具车相对台面由静止启动,绕轴作圆周运动,问平台如何运动?如小汽车突然刹车,此过程角动量是否守恒?动量是否守恒?能量是否守恒?答:玩具车相对台面由静止启动,绕轴作圆周运动时,平台将沿相反方向转动;小汽车突然刹车过程满足角动量守恒,而能量和动量均不守恒。
大学物理 刚体的定轴转动 习题及答案
第4章 刚体的定轴转动 习题及答案1.刚体绕一定轴作匀变速转动,刚体上任一点是否有切向加速度?是否有法向加速度?切向和法向加速度的大小是否随时间变化?答:当刚体作匀变速转动时,角加速度β不变。
刚体上任一点都作匀变速圆周运动,因此该点速率在均匀变化,v l ω=,所以一定有切向加速度t a l β=,其大小不变。
又因该点速度的方向变化,所以一定有法向加速度2n a l ω=,由于角速度变化,所以法向加速度的大小也在变化。
2. 刚体绕定轴转动的转动定律和质点系的动量矩定理是什么关系?答:刚体是一个特殊的质点系,它应遵守质点系的动量矩定理,当刚体绕定轴Z 转动时,动量矩定理的形式为zz dL M dt=,z M 表示刚体对Z 轴的合外力矩,z L 表示刚体对Z 轴的动量矩。
()2z i i L m l I ωω==∑,其中()2i i I m l =∑,代表刚体对定轴的转动惯量,所以 ()z z dL d d M I I I dt dt dtωωβ====。
既 z M I β=。
所以刚体定轴转动的转动定律是质点系的动量矩定理在刚体绕定轴转动时的具体表现形式,及质点系的动量矩定理用于刚体时在刚体转轴方向的分量表达式。
3.两个半径相同的轮子,质量相同,但一个轮子的质量聚集在边缘附近,另一个轮子的质量分布比较均匀,试问:(1)如果它们的角动量相同,哪个轮子转得快?(2)如果它们的角速度相同,哪个轮子的角动量大?答:(1)由于L I ω=,而转动惯量与质量分布有关,半径、质量均相同的轮子,质量聚集在边缘附近的轮子的转动惯量大,故角速度小,转得慢,质量分布比较均匀的轮子转得快;(2)如果它们的角速度相同,则质量聚集在边缘附近的轮子角动量大。
4.一圆形台面可绕中心轴无摩擦地转动,有一玩具车相对台面由静止启动,绕轴作圆周运动,问平台如何运动?如小汽车突然刹车,此过程角动量是否守恒?动量是否守恒?能量是否守恒?答:玩具车相对台面由静止启动,绕轴作圆周运动时,平台将沿相反方向转动;小汽车突然刹车过程满足角动量守恒,而能量和动量均不守恒。
《理论力学》第六章 刚体的基本运动习题全解
第六章 刚体的基本运动 习题全解[习题6-1] 物体绕定轴转动的运动方程为334t t -=ϕ(ϕ以rad 计,t 以s 计)。
试求物体内与转动轴相距m r 5.0=的一点,在00=t 与s t 11=时的速度和加速度的大小,并问物体在什么时刻改变它的转向? 解:角速度: 2394)34(t t t dt ddt d -=-==ϕω 角加速度:t t dtddt d 18)94(2-=-==ωα速度: )94(2t r r v -==ω)/(2)094(5.0|20s m r v t =⨯-⨯===ω)/(5.2)194(5.0|21s m v t -=⨯-⨯==切向加速度:rt t r a t 18)18(-=-==ρα法向加速度:22222)94()]94([t r rt r v a n -=-==ρ 加速度: 422222222)94(324])94([)18(t t r t r rt n a a n t -+=-+-=+=)/(8165.0)094(0324|24220s m r a t =⨯=⨯-+⨯== )/(405.1581.305.0)194(1324|24221s m r a t =⨯=⨯-+⨯== 物体改变方向时,速度等于零。
即:0)94(2=-=t r v )(667.0)(32s s t ==[习题6-2] 飞轮边缘上一点M,以匀速v=10m/s运动。
后因刹车,该点以)/(1.02s m t a t =作减速运动。
设轮半径R=0.4m,求M点在减速运动过程中的运动方程及t=2s时的速度、切向加速度与法向加速度。
解:t dtd a t 1.04.022-===ϕρα (作减速运动,角加速度为负)t dt d 25.022-=ϕ12125.0C t dtd +-=ϕ2130417.0C t C t ++-=ϕ12124.005.0)125.0(4.0C t C t dtd R v +-=+-⨯==ϕ104.0005.0|120=+⨯-==C v t图题46-251=C0000417.0|2130=+⨯+⨯-==C C t ϕ 02=C ,故运动方程为: t t 250417.03+=ϕt t t t R s 100167.0)250417.0(4.033+-=+-==ϕ速度方程:1005.02+-=t v)/(8.910205.0|22s m v t =+⨯-== 切向加速度:)/(2.021.01.0|22s m t a t t -=⨯-=-== 法向加速度:222)25125.0(4.0+-⨯==t a n ρω)/(1.240)252125.0(4.0|2222s m a t n =+⨯-⨯==[习题6-3] 当起动陀螺罗盘时,其转子的角加速度从零开始与时间成正比地增大。
《刚体定轴转动》选择题解答与分析
2 刚体定轴转动转动惯量1. 关于刚体对轴的转动惯量,下列说法中正确的是 (A )只取决于刚体的质量,与质量的空间分布和轴的位置无关. (B )取决于刚体的质量和质量的空间分布,与轴的位置无关. (C )取决于刚体的质量、质量的空间分布和轴的位置. (D )只取决于转轴的位置,与刚体的质量和质量的空间分布无关. 答案:(C ) 参考解答:首先明确转动惯量的物理意义,从转动定律与牛顿第二定律的对称关系可以看出,与质量m 是平动惯性大小的量度相对应,转动惯量I 则是刚体转动惯性大小的量度。
从转动惯量的的公式∑=∆=ni i i r m I 12可以看出,其大小除了与刚体的形状、大小和质量分布有关外,还与转轴的位置有关。
凡选择回答错误的,均给出下面的进一步讨论:1. 计算一个刚体对某转轴的转动惯量时,一般能不能认为它的质量集中于其质心,成为一质点,然后计算这个质点对该轴的转动惯量?为什么?举例说明你的结论。
参考解答:不能.因为刚体的转动惯量∑∆i i m r 2与各质量元和它们对转轴的距离有关.如一匀质圆盘对过其中心且垂直盘面轴的转动惯量为221mR ,若按质量全部集中于质心计算,则对同一轴的转动惯量为零.2. 一刚体由匀质细杆和匀质球体两部分构成,杆在球体直径的延长线上,如图所示.球体的半径为R ,杆长为2R ,杆和球体的质量均为m .若杆对通过其中点O 1,与杆垂直的轴的转动惯量为J 1,球体对通过球心O 2的转动惯量为J 2,则整个刚体对通过杆与球体的固结点O 且与杆垂直的轴的转动惯量为 (A) J =J 1+J 2. (B) J =mR 2+mR 2.(C) J =(J 1+mR 2)+(J 2+mR 2).(D) J =[J 1+m (2R )2]+[J 2+m (2R )2]. 答案:(C) 参考解答:根据转动惯量具有叠加性,则整个刚体对通过杆与球体的固结点0且与杆垂直的轴的转动惯量为细杆和球体分别对该轴转动惯量之合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
- 第五章 刚体的定轴转动一 选择题1. 一绕定轴转动的刚体,某时刻的角速度为,角加速度为,则其转动加快的依据是:( )A. > 0B. > 0,> 0C. < 0,> 0D.> 0,< 0解:答案是B 。
2. 用铅和铁两种金属制成两个均质圆盘,质量相等且具有相同的厚度,则它们对过盘心且垂直盘面的轴的转动惯量。
( )A. 相等;B. 铅盘的大;C. 铁盘的大;D. 无法确定谁大谁小解:答案是C 。
简要提示:铅的密度大,所以其半径小,圆盘的转动惯量为:2/2Mr J =。
3. 一轻绳绕在半径为r 的重滑轮上,轮对轴的转动惯量为J ,一是以力F向下拉绳使轮转动;二是以重量等于F 的重物挂在绳上使之转动,若两种情况使轮边缘获得的切向加速度分别为a 1和a 2,则有: ( )A. a 1 = a 2B. a 1 > a 2C. a 1< a 2D. 无法确定解:答案是B 。
简要提示:(1) 由定轴转动定律,1αJ Fr =和11αr a =,得:J Fr a /21=(2) 受力分析得:⎪⎩⎪⎨⎧===-2222ααr a J Tr ma T mg ,其中m 为重物的质量,T 为绳子的力。
得:)/(222mr J Fr a +=,所以a 1 > a 2。
4. 一半径为R ,质量为m 的圆柱体,在切向力F 作用下由静止开始绕轴线- 作定轴转动,则在2秒F 对柱体所作功为: ( )A. 4 F 2/ mB. 2 F 2 / mC. F 2 / mD. F 2 / 2 m解:答案是A 。
简要提示:由定轴转动定律: α221MR FR =,得:mRF t 4212==∆αθ 所以:m F M W /42=∆=θ5. 一电唱机的转盘正以 0的角速度转动,其转动惯量为J 1,现将一转动惯量为J 2的唱片置于转盘上,则共同转动的角速度应为: ( )A .0211ωJ J J +B .0121ωJ J J +C .021ωJ JD .012ωJ J 解:答案是A 。
简要提示:角动量守恒6. 已知银河系中一均匀球形天体,现时半径为R ,绕对称轴自转周期为T ,由于引力凝聚作用,其体积不断收缩,假设一万年后,其半径缩小为r ,则那时该天体的:( )A. 自转周期增加,转动动能增加;B. 自转周期减小,转动动能减小;C. 自转周期减小,转动动能增加;D. 自转周期增加,转动动能减小。
解:答案是C 。
简要提示: 由角动量守恒,ωω2025252Mr MR =,得转动角频率增大,所以转动周期减小。
转动动能为22k 2020k 5221,5221ωωMr E MR E ==可得E k > E k0。
7. 绳子通过高处一固定的、质量不能忽略的滑轮,两端爬着两只质量相等的猴子,开始时它们离地高度相同,若它们同时攀绳往上爬,且甲猴攀绳速度为乙猴的两倍,则 ( )A. 两猴同时爬到顶点B. 甲猴先到达顶点C. 乙猴先到达顶点- D. 无法确定谁先谁后到达顶点解:答案是B 。
简要提示:考虑两个猴子和滑轮组成的系统,滑轮所受的外力(重力和支撑力)均通过滑轮质心,由于甲乙两猴的重量(质量)相等,因此在开始时系统对于通过滑轮质心并与轮面垂直的转轴的合外力矩为零,而在两猴攀绳过程中,系统受到的合外力矩始终保持为零,因此系统的角动量守恒。
设滑轮关于上述转轴的转动角速度为ω ,乙猴相对于绳子的向上速率为v 0,绳子向甲这一边运动的速率为v ,则甲相对绳子向上运动的速率为2v 0,因此甲和乙相对地面向上运动的速率分别为(2v 0 - v )和(v 0 + v )。
根据系统的角动量守恒定律,有0)2()(00=--++R m R m J v v v v ω式中221mR J =,ω = v / R ,这样可解出052v v =。
故甲猴和乙猴相对于地面的速率分别为2 v 0 - v =8 v 0/5和v 0 + v =7 v 0/5,故甲猴先到达顶点。
二 填空题1. 半径为30cm 的飞轮,从静止开始以0.5rad ⋅ s –2的角加速度匀加速转动,则飞轮边缘上一点在转过2400时的切向加速度为 ;法向加速度为 。
解:答案是 0.15 m ⋅ s –2; 0.4m ⋅ s –2。
简要提示:1τs m 15.0-⋅==αr a 。
由221t αθ=,t αω=,得:22n s m 4.0-⋅==πωr a2. 一质量为0.5 k g 、半径为0.4 m 的薄圆盘,以每分钟1500转的角速度绕过盘心且垂直盘面的轴的转动,今在盘缘施以0.98N 的切向力直至盘静止,则所需时间为 s 。
解:答案是 16 s 。
简要提示:由定轴转动定律,α221MR FR =,t αω=, 得: s 1698.024.05.0502=⨯⨯⨯==πωF mr t- 3 . 一长为l ,质量不计的细杆,两端附着小球m 1和m 2(m 1>m 2),细杆可绕通过杆中心并垂直杆的水平轴转动,先将杆置于水平然后放开,则刚开始转动的角加速度应为 。
解:答案是 l m m g m m )()(22121+-。
简要提示:由定轴转动定律,α4)(2)(22121l m m l g m g m +=- 得: lm m g m m )()(22121+-=α 4. 如图所示,质量为M ,半径为r 的绕有细线的圆柱可绕固定水平对称轴无摩擦转动,若质量为m 的物体缚在线索的一端并在重力作用下,由静止开始向下运动,当m 下降h 的距离时,m 的动能与M 的动能之比为 。
解:答案是 Mm 2。
简要提示:由r ω=v ,22k 2k 2121,21ωMr E m E M m ==v , 得:M m E E M m 2k k =5. 如图所示,一质量为m 的匀质细杆AB ,A 端靠在光滑的竖直墙壁上,B 端置于粗糙水平地面上静止,杆身与竖直方向成角,则A 端对墙壁的压力为 。
解:答案是 θtan 21mg 。
简要提示: 受力分析如图所示,由刚体平衡条件得: θθsin 2cos 1l mg l N = 所以:m 1 l m 2填空题3图 rM m填空题4图 计算题5图 θAB计算题5图θ A B mg N 2 N 1- θtan 211mg N =6. 一位转动惯量为J 0的花样滑冰运动员以角速度0自转,其角动量为 ;转动动能为 。
当其收回手臂使转动惯量减为J 0 /3时,则其角动量变为 ;转动动能变为 。
解:答案是J 00; 2/200ωJ ; 30; 2/3200ωJ简要提示:角动量守恒7. 一圆形转台可绕中心轴无摩擦的转动,台上有一辆玩具小汽车相对台面由静止启动,当其绕轴作顺时针圆周运动时,转台将作 转动;当汽车突然刹车停止转动的过程中,系统的 守恒;而 和 不守恒。
解:答案是逆时针;角动量;动量;机械能三 计算题1. 一细杆绕其上端在竖直平面摆动,杆与竖直方向的夹角t 2cos 4ππθ=。
求:(1) 杆摆动的角速度和角加速度;(2) 距上端0.5m 处的一点的速度和加速度。
解:(1) t t 2sin 8d d 2ππθω-==; t t 2cos 16d d 3ππωα-== (2) t l 2sin 162ππω-==v ;t l a 2cos 323τππα-==;t l a 2sin 128242n ππω==2. 如图所示,半径r A = 0.1 m 的A 轮通过皮带B 与半径rC = 0.25 m 的C 轮连在一起。
已知A 轮以0.5 rad ⋅ s –2的角加速度由静止匀加速转动,皮带不滑动,求:(1) C 轮达到每分钟100转所需的时间;(2) 此时两轮边缘上一点的速度、加速度分别为多少?解:(1) 皮带不滑动,所以C C A A r r ωω=;1s rad 3/102-⋅==ππνωC r A r C ACB计算题2图- 得: 1s rad 3/25)/(-⋅==πωωC A C A r r ,s 7.16/==αωA t(2) 1s m 6.2-⋅===C A A A r v v ω;2ττs m 16.0-⋅===αA C A r a a ;22n s m 5.68-⋅==A A A r a ω;22n s m 4.27-⋅==C C C r a ω3. 一块匀质长方形薄板ABCD ,边长分别为a 、b ,质量为M ,建立如图所示的直角坐标系,求:(1) 薄板对x 和y 轴的转动惯量;(2) 薄板对边长AB 的转动惯量;(3) 薄板对z 轴的转动惯量。
解:薄板的质量面密度为S =M/ab(1) x b x J S x d d 2ρ= 所以:12/d 22/2/2Ma x b x J a a S x ==⎰-ρ 同理: y a y J S y d d 2ρ=所以: 12/d 22/2/2Mb y b y J b b S y ==⎰-ρ (2) 由平行轴定理: 3/)2(22Mb b M J J y AB =+= (3) 由薄板垂直轴定理: 12/)(22b a M J J J y x z +=+=4. 在质量为M ,半径为R 的均质圆盘上挖出两个半径为r 的圆孔,圆孔中心在半径R 的中点,如图所示,求剩余部分对过大圆盘中心且与盘面垂直的轴线的转动惯量。
解:由补偿法: J MR J '-=22/2由平行轴定理: 22)2(21R m mr J +=' 其中: 222/R Mr r m S ==πρ得: 2222224222/))(2(/2/)(R r R r R M R Mr r R M J +-=--=R r r 计算题4图 ABC D oy x 计算题3图- 5. 如图所示,半径为r ,转动惯量为J 的定滑轮A 可绕水平光滑轴o 转动,轮上缠绕有不能伸长的轻绳,绳一端系有质量为m 的物体B ,B 可在倾角为的光滑斜面上滑动,求B 的加速度和绳中力。
解:物体B 运动的动力学方程 ma T mg =-θsin 定滑轮A 的定轴转动方程 αJ Tr =及 αr a = 联立解得B 的加速度θsin 22g Jmr mr a +=方向沿斜面向下。
绳中力为 θsin 2mg Jmr J T +=6. 如图所示,质量为m 1的物体可在倾角为的光滑斜面上滑动。
m 1的一边系有劲度系数为k 的弹簧,另一边系有不可伸长的轻绳,绳绕过转动惯量为J ,半径为r 的小滑轮与质量为m 2(>m 1)的物体相连。
开始时用外力托住m 2使弹簧保持原长,然后撤去外力,求m 2由静止下落h 距离时的速率及m 2下降的最大距离。
解:在m 2由静止下落h 距离的过程中机械能守恒,因此有 θωsin 2121)(211222212gh m kh J m m gh m ++++=v 式中r v =ω,解得m 2由静止下落h 距离时的速率 221212/)sin (2r J m m kh gh m m ++--=θv 2m 下降到最低时,1m 、2m 速率为零,代入上式,得到m 2下降的最大距离g m m kh )sin (212max θ-= 计算题5图 B A J , ro θk m 1 θ J m 2 计算题6图-7. 质量为M 长为L 的均匀直杆可绕过端点o 的水平轴转动,一质量为m的质点以水平速度v 与静止杆的下端发生碰撞,如图所示,若M = 6 m ,求质点与杆分别作完全非弹性碰撞和完全弹性碰撞后杆的角速度大小。