电路理论基础(哈尔滨工业大学陈希有第3版)10

合集下载

电路理论教程答案陈希有

电路理论教程答案陈希有

电路理论教程答案陈希有【篇一:《电路理论基础》(第三版陈希有)习题答案第一章】电路电流的参考方向是从a指向b。

当时间t2s时电流从a流向b,与参考方向相同,电流为正值;当t2s时电流从b流向a,与参考方向相反,电流为负值。

所以电流i的数学表达式为2a t?2s? i??-3at?2s ?答案1.2解:当t?0时u(0)?(5?9e0)v??4v0其真实极性与参考方向相反,即b为高电位端,a为低电位端;当t??时u(?)?(5?9e??)v?5v0其真实极性与参考方向相同,即a为高电位端,b为低电位端。

答案1.3解:(a)元件a电压和电流为关联参考方向。

元件a消耗的功率为pa?uaia则ua?pa10w??5v ia2a真实方向与参考方向相同。

(b) 元件b电压和电流为关联参考方向。

元件b消耗的功率为pb?ubib则ib?pb?10w1a ub10v真实方向与参考方向相反。

(c) 元件c电压和电流为非关联参考方向。

元件c发出的功率为pc?ucic则uc?pc?10w10v ic1a真实方向与参考方向相反。

答案1.4解:对节点列kcl方程节点③: i4?2a?3a?0,得i4?2a?3a=5a节点④: ?i3?i4?8a?0,得i3??i4?8a?3a节点①: ?i2?i3?1a?0,得i2?i3?1a?4a节点⑤: ?i1?i2?3a?8a?0,得i1?i2?3a?8a??1a若只求i2,可做闭合面如图(b)所示,对其列kcl方程,得 i28a-3a+1a-2a0解得i2?8a?3a?1a?2a?4a答案1.5解:如下图所示(1)由kcl方程得节点①:i1??2a?1a??3a节点②:i4?i1?1a??2a节点③:i3?i4?1a??1a节点④:i2??1a?i3?0若已知电流减少一个,不能求出全部未知电流。

(2)由kvl方程得回路l1:u14?u12?u23?u34?19v回路l2:u15?u14?u45?19v-7v=12v回路l3:u52?u51?u12??12v+5v=-7v回路l4:u53?u54?u43?7v?8v??1v若已知支路电压减少一个,不能求出全部未知电压。

电路理论基础(陈希有)习题解答10-14

电路理论基础(陈希有)习题解答10-14

uC (0 ) uC (0 ) 24V iL (0 ) iL (0 ) 2A
由 KVL 得开关电压:
6
6 3
Ri
u(0 ) uC (0 ) 8 iL (0 ) (24 8 2)V 8V
(b)
答案 10.3 解: t 0 时电容处于开路, i 0 ,受控源源电压 4i 0 ,所以 等 效 电 阻
由换路定律得:
t0
4 4
时 电 感 处 于 短 路 , 故
Ri
(b)
8
3 i L (0 ) 9A 3A ,由换路定律得: 63 iL (0 ) iL (0 ) 3A
求等效电阻的电路如图(b)所示。 ,
等效电阻
Ri (4 // 4) // 8 1.6
时间常数
求稳态值的电路如图(b)所示。 i ( ) 2 2 10V 3 3 4 Ri iL ( ) 4 2 2
(b) (c)
(b)
Ri (
时间常数
6 3 3 1.5 )k 3k 6 3 3 1.5
3 6 3
答案 10.13
解:当 t 0 , r 列 KVL 方程得:
-1-
答案 10.1
解: t
0 时,电容处于开路,故 uC (0 ) 10mA 2k 20V
t 0 时,求等效电阻的电路如图(b)所示。
i 6 3 4i

iL (t ) iL (0 )e t / 3e 2t A (t 0)
电感电压
由换路定律得:
u1 (t ) L
由换路定律得
L / Ri 0.5s
由三要素公式得: 解 得 A 答案 10.9 解:当 t 原始值

陈希有电路理论教程答案

陈希有电路理论教程答案

陈希有电路理论教程答案【篇一:电路理论基础课后答案(哈工大陈希有)第12章】图题12.1解:分别对节点①和右边回路列kcl与kvl方程:?iq?ir?ilc?c??u???u?q/clc将各元件方程代入上式得非线性状态方程:??q?f(?)?f(q/c)12???q/c方程中不明显含有时间变量t,因此是自治的。

题12.2图示电路,设u,列出状态方程。

?f(q),u?f(q)111222r图题12.2r4解:分别对节点①、②列kcl方程:节点①:??i?(u?u)/ri1?q 1s123节点②:??(u?u)/r?u/ri2?q 212324将u?f(q),u?f(q)111222代入上述方程,整理得状态方程:?q??f(q)/r?f(q)/r?i?1113223s??q?f(q)/r?f(q)(r?r)/(rr)2113223434?题12.322出电路的状态方程。

uu1解:分别对节点①列kcl方程和图示回路列kvl方程得:图题12.3?qiu (1)?1?2?3/r3????u?u(2)?2s3u3为非状态变量,须消去。

由节点①的kcl方程得:u?u3u31?i?i?i??i?0 2342rr34解得u?(u?ri)r/(r?r)?[f(q)?rf()]r/(r?r) 314233411422334将?及u3代入式(1)、(2)整理得:?q??f(q)/(r?r)?f()r/(r?r)?1113422334????f(q)r/(r?r)?f()rr/(r?r)?u211334223434s????题12.4,试分别写出用前向欧拉法、后向欧拉法和梯形法计算响?sin(?t) us图题12.4l解:由kvl列出电路的微分方程:ul?d???ri?u??)??sin(?t) sdt前向欧拉法迭代公式:????h[?)??sin(?t)]k?1kkk后向欧拉法迭代公式:????h[?)??sin(?t)]k?1kk?1k?1梯形法迭代公式:????0.5[)??(?t))??sin(?t)]k?1kkkk?1k?1题12.5?1f,u(0)?7v,u?10v电路及非线性电阻的电压电流关系如图所示。

《电路理论基础》(第三版 陈希有)习题答案第八章

《电路理论基础》(第三版  陈希有)习题答案第八章

答案8.1解:)/1()(T t A t f -= T t <<0⎰⎰-==T T dt T t A T dt t f T A 000)/1(1)(1A T t t T A T5.0]2[02=-=⎰-=Tk dtt k T t A T a 0)cos()/1(2ω0)sin(2)]sin()/1(2[020=+⨯-=⎰T T dt t k T k A t k Tk T t A ωωωω ⎰-=Tk dtt k T t A T b 0)sin()/1(2ωπωωωωωk A kT A dt t k T k A t k Tk T t A T T==-⨯--=⎰2)cos(2)]cos()/1(2[020 所以∑∞=+=1sin 5.0)(k t k k AA t f ωπ频谱图如图(b)所示。

.0答案8.2解:电流i 的有效值57.1)2/13.0()2/67.0()2/57.1(12222≈+++=I A只有基波电流与正弦电压形成平均功率,故二端电路输入的平均功率为:95.73)]90(90cos[257.122.94=︒--︒-⨯=P W 注释:非正弦周期量分解成傅里叶级数后,其有效值等于直流分量和不同频率交流分量有效值平方和的平方根。

答案8.3解:对基波︒∠=0100m(1)U V , A 010m(1)︒∠=I 由Ω==-+=10)1(j )1(m )1(m )1(I U C L R Z ωω求得Ω=10R , 01=-CL ωω (1)对三次谐波︒-∠=3050m(3)U V , A 755.1im(3)ψ-∠=I又由Ω+︒-∠==-+=)30(5.28)313(j m(3)m(3))3(i I U C L R Z ψωω (2)所以2225.28)313(=-+CL R ωω (3)将式(1)代入式(3), 解得mH 9.31=L将mH 9.31=L 代入式( 1 ),求得F 3.318μ=C再将C L R 、、值代入式(2),有Ω︒-∠=Ω+=3028.5j26.7)10(i )3(ψZ 解得︒=45.99i ψ答案8.4解: (1) 电压有效值:V 01.80)225()250()2100(222=++=U电流有效值58.74mA )210()220()280(222=++=I (2) 平均功率 kW 42.345cos 210250cos 22050)45cos(280100=︒⨯+︒⨯+︒-⨯=PΩ︒∠=︒∠︒∠=Ω=︒∠︒∠=Ω︒-∠=︒∠︒-∠=k 455.2mA010V 4525k 5.2mA 020V 050k 4525.1mA 080V45100)3()3()2()1(Z Z Z 注释:非正弦周期量分解成傅里叶级数后,某端口的平均功率等于直流分量和不同频率交流分量单独作用产生的平均功率之和。

电路理论基础(哈尔滨工业大学陈希有第3版) 第1章-第5章

电路理论基础(哈尔滨工业大学陈希有第3版) 第1章-第5章

a 电位: 任选一点p作为电位参考点,电路中某点与参考点之间的电压称为该点的电 位,用 表示。有了电位的概念,两点之间的电压便等于这两点的电位之差。
uab Ec dl
a A
(a)
a A
(b)
u ab
u ba
A
(c)
a uA

b
b
b
电压参考方向的表示法
一个元件上的电压和电流的参考方向取成相同的,并称为关联参考方向。

2 基尔霍夫电流定律
基尔霍夫电流定律(Kirchhoff's Current Law,简称KCL)表述为:在集中 参数电路中,任一时刻流出(或流入)任一节点的支路电流代数和等于零, 即
i
k
0
( ik 表示第 k 条支路电流)
规定: ik 参考方向为流出节点时, ik 前面 取“+”号; 流入节点时, ik 前面取“-”号。
i1
A
i2
1、在集中参数电路中,任一时刻流出(或流入) 任一闭合边界 S 的支路电流代数和等于零。
KCL的其它表述
2、任一时刻,流出任一节点(或闭合边界)电 流的代数和等于流入该节点电流的代数和。
根据右图,列写KCL方程 1)基本表述方 式——对节点
3 i3

S
4 i4 i6 7 i7 ③
节点① :
① u1 1
u
电压降
= u电压升
6 ③ u6 l1 5 u5 l2 7 u7 ⑤ 基尔霍夫电压定律示例
u2
l3 ②
2
说明:平面电路网孔上的KVL方程是一组独立方程。设电路有b个支路n个节 点,可以证明:平面电路的网孔数即独立KVL方程的个数等于b-(n-1)。当然 取网孔列方程只是获得独立KVL方程的充分条件,而不是必要条件。

《电路理论基础》(第三版_陈希有)习题答案第七章

《电路理论基础》(第三版_陈希有)习题答案第七章

答案7.1解:设星形联接电源电路如图(a)所示,对称星形联接的三相电源线电压有效值倍,相位上超前前序相电压30︒。

即AB 3030)V=538.67cos()V u t t ωω=-︒+︒BC 538.67cos(120)V u t ω=-︒CA 538.67cos(240)V u t ω=-︒各相电压和线电压的相量图可表达如图(b)所示。

AB CN(a)&U &(b)U-&答案7.2解:题给三个相电压虽相位彼此相差120o ,但幅值不同,属于非对称三相电压,须按KVL 计算线电压。

设AN 127V U =& BN 127240V=(-63.5-j110)V U =∠︒& CN135120V=(-67.5+j116.9)V U =∠︒& 则ABANBNBC BN CN CA CN AN(190.5j 110)V 22030V (4j226.9)V 226.989V (194.5j 116.9)V 226.9149V UU U U U U U U U =-=+=∠︒=-=-=∠-︒=-=-+=∠︒&&&&&&&&& 即线电压有效值分别为220V ,226.9V ,226.9V 。

答案7.3设负载线电流分别为A B C i i i 、、,由KCL 可得A B C0I I I =&&&++。

又A B C 10A I I I ===,则A B C i i i 、、的相位彼此相差120︒,符合电流对称条件,即线电流是对称的。

但相电流不一定对称。

例如,若在三角形负载回路存在环流0I &(例如,按三角形联接的三相变压器),则负载相电流不再对称,因为CA CA 0BC BC 0AB AB ',','I I I I I I I I I &&&&&&&&&+=+=+=不满足对称条件。

《电路理论基础》(第三版 陈希有)习题答案第六章

《电路理论基础》(第三版 陈希有)习题答案第六章

答案6.22解:对图(a)电路做戴维南等效,如图(b)所示。

OC U inZ (b)i j 1/(j )Z L C ωω=+ (1)SOC j I U Cω=(2) 由图(b)可知,当i 0Z =时,电阻两端电压U 与电阻R 无关,始终等于OC (0)U R ≠。

由式(1)解得1/100rad/s ω== 将式(3)代入式(2)得OC 1100A 1090V j100rad/s 0.01FU U ==∠︒⨯=∠-︒⨯90V u t ω=-()答案6.23解:先对图(a)电路ab 端左侧电路作戴维南等效,如图(b)所示。

U iZ (b)令32000rad/s 210H 4L X L ω-==⨯⨯=Ω得等效阻抗i 4j48//8//j42(1j)4j4Z Ω⨯Ω=ΩΩΩ==+ΩΩ+Ω由OCi 1j U i Z R Cω=++知,欲使电流i 有效值为最大,电容的量值须使回路阻抗虚部为零,即:012]j 1Im[=-=++CC R Z i ωω 等效后电路如图(b)所示。

解得1250μF 2C ω==答案6.24解:应用分压公式,输出电压o U 可表示为o n1n 2U U U =-i i 1j 12j U C U R Cωω=-⨯+ i i i j 121j 2(j 1)U U CR U CR CR ωωω-=-=++ 当 0=R , o U 超前于i U 180;当 1R Cω=,o U 超前于i U ︒90;当 ∞→R , o U 与i U 同相位。

即当R 由零变到无穷时,o U 超前于i U 相位差从180到0变化。

答案6.25解:图示电路负载等效导纳为22221j j()j ()()R LY C C R L R L R L ωωωωωω=+=+-+++ (1) 22222222222)()(21)()(C L R LC L R L C L R R Yωωωωωωω++-=⎥⎥⎦⎤⎢⎢⎣⎡+-+⎥⎥⎦⎤⎢⎢⎣⎡+= (2) 由式(2)可见:当)2/(12LC =ω时,Y C ω=与R 无关,电流有效值CU U Y I ω==不随R 改变。

《电路理论基础》(第三版--陈希有)习题答案第十章Word版

《电路理论基础》(第三版--陈希有)习题答案第十章Word版

答案10.1解:0<t 时,电容处于开路,故V 20k 2m A 10)0(=Ω⨯=-C u由换路定律得:V 20)0()0(==-+C C u u换路后一瞬间,两电阻为串联,总电压为)0(+C u 。

所以m A 5k )22()0()0(1=Ω+=++C u i再由节点①的KCL 方程得:m A 5m A )510()0(m A 10)0(1=-=-=++i i C答案10.2解:0<t 时电容处于开路,电感处于短路,Ω3电阻与Ω6电阻相并联,所以A 3)363685(V45)0(=Ω+⨯++=-i ,A 2)0(366)0(=⨯+=--i i L V 24)0(8)0(=⨯=--i u C 由换路定律得:V 24)0()0(==-+C C u u ,A 2)0()0(==-+L L i i 由KVL 得开关电压:V 8V )2824()0(8)0()0(-=⨯+-=⨯+-=+++L C i u u答案10.3解:0<t 时电容处于开路,0=i ,受控源源电压04=i ,所以V 6.0V 5.1)69(6)0()0()0(1=⨯Ω+Ω===--+u u u C C0>t 时,求等效电阻的电路如图(b)所示。

等效电阻Ω=++-==5)36(4i ii i i u R时间常数s 1.0i ==C R τ0>t 后电路为零输入响应,故电容电压为:V e 6.0e )0()(10/t t C C u t u --+==τΩ6电阻电压为:V e 72.0)d d (66)(101t Ctu Ci t u -=-⨯Ω-=⨯Ω-=)0(>t答案10.4解:0<t 时电感处于短路,故A 3A 9363)0(=⨯+=-L i ,由换路定律得: A 3)0()0(==-+L L i i求等效电阻的电路如图(b)所示。

(b)等效电阻Ω=+⨯+=836366i R ,时间常数s 5.0/i ==R L τ 0>t 后电路为零输入响应,故电感电流为A e 3e )0()(2/t t L L i t i --+==τ)0(≥t电感电压V e 24d d )(21t L tiL t u --==)0(>tΩ3电阻电流为 A e 23632133t L u i u i --=Ω+⨯Ω=Ω=Ω3电阻消耗的能量为:W 3]e 25.0[1212304040233=-==Ω=∞-∞-∞Ω⎰⎰t t dt e dt i W答案10.5解:由换路定律得0)0()0(==-+L L i i ,达到稳态时电感处于短路,故A 54/20)(==∞L i求等效电阻的电路如图(b)所示。

电路理论基础(哈尔滨工业大学陈希有第3版)13共44页文档

电路理论基础(哈尔滨工业大学陈希有第3版)13共44页文档
2
5 3
6 ② 1
两个子图


4
3
2
6

(a)
③①
4

6

(b)
有向图:图中的所有支路都指定了方向,则称为有向图;反之为无向图
回 路: 从图中某一节点出发,经过若干支路和节点(均只许经过一次)又 回到出发节点所形成的闭合路径称为回路。 割 集: 连通图的割集是一组支路集合,并且满足:
(1)如果移去包含在此集合中的全部支路(保留支路的两个端点),则 此图变成两个分离的部分。
单树支割集
4
5
3
4
5
3
c1
1
2
6
c2 1
2
6
1
(a)
(b)
(c)
基本割集:每取一个树支作一个单树支图割基本集割,集称为基本割集。
基本割集的方向规定为所含树支的方向。
基本割集的性质 图中3个基本割集 KCL方程是(独立):
c1
i1i5i6 0
c 2 i2i4i5i60
1 3 . 1 网 络 的 图 树
基本要求:掌握网络的图、子图、连通图、割集和树等概念。
1 网络的图
图( graph) :由“点” 和“线”组成。 • “点”也称为节点或顶点(vertex),“线”也称为支路或
边(edge)。 • 图通常用符号G来表示。
图 (a) 电路只含二端元件,对应的图如图 (b)所示。
用点表示王宫,用线表示王宫间的 道路,便抽象成图。问题变成该图 是否为平面图?
4 四色定理
四色问题:只须4种不同颜色,就能使平面地图上任何两个相 邻的国家的颜色不同。
图论问题:用点表示国家,用边表示国家直接相邻。证明只 须4种颜色就可使所有相邻顶点具有不同颜色。

《电路理论基础》(第三版 陈希有)习题答案第五章

《电路理论基础》(第三版  陈希有)习题答案第五章

解:(1)图(b)电压随时间分段连续,可描述为01s ()11s 2s 32s 3s t t u t t t t <≤⎧⎪=<≤⎨⎪-<≤⎩(1)图(a)电容电流与电压为关联参考方向,其关系可表示为d d d d u u i C t t== 将式(1)代入,可得1A 01s ()01s 2s1A 2s 3s t i t t t <≤⎧⎪=<≤⎨⎪-<≤⎩()i t 的变化规律如图(d)所示。

t /s 图 (d)(2)在关联参考方向下,电容上电压与电流关系又可表示为1()()d t u t i C ξξ-∞=⎰ 图(c)所示电流可描述为1A 01s 01s<2s ()0.5A 2s 3s3s t t i t t t <≤⎧⎪≤⎪=⎨-<≤⎪⎪>⎩已知(0)0.5C q =由q Cu =可求得(0)(0)0.5V q u C==当 3.5s t =时,电容上的电压取决于电流在此刻前的历史,即0123 3.5012311111()()d 1Ad 0d (0.5A)d 0d (0)(100.50)V 1V u t i C C C C C u ξξξξξξ-∞=+++-+=++-+=⎰⎰⎰⎰⎰解:(1)根据电容串、并联等效关系,可得ab 234110.060.1F 11520C C C C =+=+=++ eq 1ab 110.08F 11 2.510C C C ===++ (2)当电容原未充电时,各电容上的电压分别为ab 11ab 0.15010V 0.10.4C U U C C =⨯=⨯=++, 2140V U U U =-= 432340.05408V 0.20.05C U U C C =⨯=⨯=++,42332V U U U =-= 则各电容储存的电场能量为2C111120J 2W C U ==,2C222148J 2W C U ==, 2C3331 6.4J 2W C U ==,2C444125.6J 2W C U == 注释:只有对联接到电路前均未充电的电容,才可按电容分压来计算串联电容的电压。

电路理论基础(哈尔滨工业大学陈希有第3版) 第6章-第10章

电路理论基础(哈尔滨工业大学陈希有第3版) 第6章-第10章
m
例题
6.2
分别写出代表正弦量的相量
i3 5cos t 60) ( , 解 i1 I1m 30 A
( , i1 3cos t , i2 4cos t 150) i4 6sin( t 30) .
i2 I 2m 4 150 A 5120 A I i3 5 cos t 60 ) 5 cos( t 60 180 ) ( 3m i4 6 sin( t 30) 6 cos( t 30 90) I 4m 6 60 A
m

当u和ψ的参考方向符合右螺旋定则时 d
u dt
根据正弦量的相量表示的惟一性和微分规则,与上述微分关系 对应的相量关系式为
U m j m 或
1 m Um j
6.3
基尔霍夫定律的相量形式
基本要求:透彻理解相量形式的基尔霍夫定律方程,比较与线性直流电路相应方 程的异同。
2 2
U 3 j4 V 490 V
u3 4 2 cos t 90 ) (
关于相量说明
1. 相量是复值常量,而正弦量是时间的余弦函数,相量只是代表正弦量,而不 等于正弦量。 +j I m1 2. 复平面上一定夹角的有向线段 初 I m2 ——相量图6.7所示 振 相
m1 m2
充要条件为
(2) 线性性质
Am1 Am2
(3) 微分规则 正弦量(角频率为 ) 时间导数 的相量等于表示原正弦量的相 量乘以因子 j 即设 f (t ) Re[ Am e jt ] ,则 d f (t ) Re[ jAm e jt ] dt

N个同频率正弦量线性组合 (具有实系数)的相量等于 各个正弦量相量的同样的线 性组合。设 f k (t ) Re[ Amk e j t ] ( bk 为实数),则

电路理论基础(哈尔滨工业大学陈希有第3版)10

电路理论基础(哈尔滨工业大学陈希有第3版)10
∞ 2 C ∞
t O τ1 τ 2 τ 3
不同 τ 值对应的 u C 变化规律
1 2 1 2 1 2 We (0+ ) = CuC (0+ ) = CuC (0− ) = CU0 2 2 2 电容的原始储能
2 RL电路的零输入响应 KVL方程
I0
R
+ uR
iL

iL
di uL + uR = L L + RiL = 0 dt 特征方程
uL
I0
O
t
O
(a)
− RI 0
t
(b)
换路时电感两 端可能出现很 高的瞬间电压
iL 和 uL 的变化曲线
τ
=L/R
L越大
2 wL = LiL / 2
τ 越大
R越小
2 p = Ri L
电感储能越多
电阻消耗功率越小
放电时间越长
例题
10.2
S (t = 0)
+ uk −
R2

图示电路,已知US=35V,R1=5Ω,R1=5kΩ, L=0.4H。t<0时电路处于直流稳态。 t=0时开关断 US 开。求t>0时的电流iL及开关两端电压uk 。 iL的初始值及时间常数分别为
换路定律
Ψ (0+ ) =Ψ (0− )
iL (0+ ) = iL (0− )
2 除uC 、 iL之外各电压电流初始值的确定 依据电路的结构约束和元件约束,在t=0+瞬间有: KVL KCL
∑u(0 ) = 0 ∑i(0 ) = 0
+ +
= Gu 电阻元件 uR (0+ ) = Ri R (0+ ) 或 iR (0+ ) =GuR (0+ )

电路理论基础(陈希有)课后题答案

电路理论基础(陈希有)课后题答案

答案13.1解: (1)、(4)是割集,符合割集定义。

(2)、(3)不是割集,去掉该支路集合,将电路分成了孤立的三部分。

(5)不是割集,去掉该支路集合,所剩线图仍连通。

(6)不是割集,不是将图分割成两孤立部分的最少支路集合。

因为加上支路7,该图仍为孤立的两部分。

答案13.2解:选1、2、3为树支,基本回路的支路集合为 {1,3,4},{2,3,5},{1,2,6}; 基本割集的支路集合为 {1,4,6},{2,5,6},{3,4,5}。

答案13.3 解:(1) 由公式l t I B I T t =,已知连支电流,可求得树支电流A 1595111011010654321⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡i i i i i i (2) 由公式t t U B U -=l ,已知树支电压,可求得连支电压V 321321100111110654⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡u u u (3) 由矩阵B 画出各基本回路,如图(a)~(c)所示。

将各基本回路综合在一起得题中所求线图,如图13.3(d)所示。

(a)(b)(c)(d)答案13.4解:连支电流是一组独立变量,若已知连支电流,便可求出全部支路电流。

因此除将图中已知电流支路作为连支外,还需将支路3或4作为连支。

即补充支路3或4的电流。

若补充3i ,则得A 11=i ,A 22-=i ,34A 3-i i -=;若补充4i ,则得A 11=i ,A 22-=i ,43A 3-i i -=答案13.5解:树支电压是一组独立变量,若已知树支电压,便可求出全部支路电压。

除将图中已知支路电压作为树支外,还需在支路1、2、3、4、5中任选一条支路作为树支。

即在1u 、2u 、3u 、4u 、5u 中任意给定一个电压便可求出全部未知支路电压。

电路理论教程答案陈希有

电路理论教程答案陈希有

电路理论教程答案陈希有【篇一:《电路理论基础》(第三版陈希有)习题答案第一章】电路电流的参考方向是从a指向b。

当时间t2s时电流从a流向b,与参考方向相同,电流为正值;当t2s时电流从b流向a,与参考方向相反,电流为负值。

所以电流i的数学表达式为2a t?2s? i??-3at?2s ?答案1.2解:当t?0时u(0)?(5?9e0)v??4v0其真实极性与参考方向相反,即b为高电位端,a为低电位端;当t??时u(?)?(5?9e??)v?5v0其真实极性与参考方向相同,即a为高电位端,b为低电位端。

答案1.3解:(a)元件a电压和电流为关联参考方向。

元件a消耗的功率为pa?uaia则ua?pa10w??5v ia2a真实方向与参考方向相同。

(b) 元件b电压和电流为关联参考方向。

元件b消耗的功率为pb?ubib则ib?pb?10w1a ub10v真实方向与参考方向相反。

(c) 元件c电压和电流为非关联参考方向。

元件c发出的功率为pc?ucic则uc?pc?10w10v ic1a真实方向与参考方向相反。

答案1.4解:对节点列kcl方程节点③: i4?2a?3a?0,得i4?2a?3a=5a节点④: ?i3?i4?8a?0,得i3??i4?8a?3a节点①: ?i2?i3?1a?0,得i2?i3?1a?4a节点⑤: ?i1?i2?3a?8a?0,得i1?i2?3a?8a??1a若只求i2,可做闭合面如图(b)所示,对其列kcl方程,得 i28a-3a+1a-2a0解得i2?8a?3a?1a?2a?4a答案1.5解:如下图所示(1)由kcl方程得节点①:i1??2a?1a??3a节点②:i4?i1?1a??2a节点③:i3?i4?1a??1a节点④:i2??1a?i3?0若已知电流减少一个,不能求出全部未知电流。

(2)由kvl方程得回路l1:u14?u12?u23?u34?19v回路l2:u15?u14?u45?19v-7v=12v回路l3:u52?u51?u12??12v+5v=-7v回路l4:u53?u54?u43?7v?8v??1v若已知支路电压减少一个,不能求出全部未知电压。

电路理论基础(哈尔滨工业大学陈希有第3版)9

电路理论基础(哈尔滨工业大学陈希有第3版)9

9.2
设计 RLC 带通滤波器电路,已知总电阻为R=20Ω,要求谐振 频率为 f0 =104Hz,带宽为 ∆f =103Hz,,求电感L和电容C的值以及 低频截止频率和高频截止频率。
1 1 1 和 ω =ω 1 + 由公式 ωc1 = ω0 − +1 c2 0 2Q + 4Q2 +1 2 4Q 2Q
9.4
并联谐振电路
基本要求:掌握GCL并联谐振电路的条 件和特点并与RLC串联谐振加以对比。
1 GCL并联谐振电路 并联谐振电路 GCL并联电路的导纳为:
Y = G + j(ωC −1/ωL) = G + jB
实现谐振的条件是导纳的虚部为零,
+ & U −
& I
G
& IG
jωC
& & IC IL
1/jωL
使用不同电路还可以实现具有下列特性的网络
| H( jω) |
1
| H( jω) |
| H( jω) |
O
1
2 ω /ω
0
O
1
2 ω /ω
0
O
1
ω / ω0
高通网络
带通网络
带阻网络
例题
9.1
求图示电路的网络函数
& & H( jω) = U2 / U1
+ & U −
C
1
L
R
+ & U −
2

& U H( jω) = & U
解 (1)谐振频率和品质因数分别为
f0 = 1 1 = = 990×103 Hz 2π LC 2π 0.26×10−3 H×100×10−12 F

哈工大电气工程电路教材

哈工大电气工程电路教材

2012年硕士研究生入学考试大纲考试科目名称:电路与数字电子技术考试科目代码:[827] 一、考试要求 要求考生全面系统地掌握电路和数字电子技术的基本概念及基本定律,并且能灵活运用,具备较强的分析、设计与解决电路与数字电子电路问题的能力。

二、考试内容 (一)电路部分(60%) 1 直流电路 (1) 基本概念和电路元件:参考方向,电功率和电能量,基尔霍夫定律。

电阻、电容、电感、电压源、电流源和受控源,理想变压器、互感等元件的特性及其电压电流关系。

(2) 星-三角等效变换,支路电流法,回路电流法,节点电压法。

(3) 叠加定理,齐性定理,戴维南和诺顿定理,最大功率传输定理,特勒根定理。

2 交流电路 (1) 正弦电路中有效值、瞬时值,正弦量的相量,相量图,电路元件电压电流关系的相量形式、阻抗和导纳,正弦电流电路的分析计算,含互感电路的计算(互感电压、同名端、串联、并联、互感消去),有功功率、无功功率和复功率,功率表的使用,最大功率传输定理。

(2) 非正弦周期量的有效值,平均功率, 非正弦周期电流电路的计算。

(3) 串联谐振和并联谐振条件、特点,谐振电路的分析计算。

(4) 三相电路的连接方式,对称三相电路线电压、线电流、相电压、相电流及功率的计算, 简单不对称三相电路的计算。

3 暂态电路 (1) 线性电路的时域分析:换路定则,阶跃函数和冲激函数,零输入响应,零状态响应和全响应,用三要素法求一阶电路的全响应,一阶电路的冲激响应的计算。

(2) 线性电路的复频域分析:复频域中的电路模型,用拉氏变换求解电路暂态过程,复频域中的网络函数。

4 二端口网络: (1) 二端口网络四种参数(阻抗、导纳、传输、混合)方程的计算 (2) 二端口网络的T型和型等效电路,二端口网络的联接。

(3) 二端口网络(包括有载二端口、有源二端口)端口电压、电流的计算。

(二)数字电子技术部分(40%) 1 逻辑代数基础 (1) 逻辑代数中的基本概念:逻辑变量、逻辑运算和逻辑函数等; (2) 逻辑代数的基本定律、形式定理和基本规则; (3) 最小项与最大项的定义和性质; (4) 逻辑函数的逻辑式、真值表、逻辑图和卡诺图表示法; (5) 采用代数法和卡诺图法化简逻辑函数。

电路理论基础(陈希有)课后题答案

电路理论基础(陈希有)课后题答案

答案15.1解: 波阻抗Ω500400102003c =⨯==++i u Z终端反射系数133c 2c 22=+-=Z R Z R N故负载承受的电压V k 15.24610200)1331(32222=⨯⨯+=+=++u N u u 答案15.2解:终端反射系数31c c 2=+-=Z Z Z Z N L L始端反射系数1cS cS 1-=+-=Z Z Z Z N这是一个多次反射过程,反射过程如图题15.2所示。

其中v l t d /= 当vlt 20<<时,反射波未达到始端,只有入射波。

mA 30500V 15c 11=Ω===+Z u i i 当vlt v l 42<<时,反射波到达始端, mA 101010302121=--=+-=+++i N N i N i i 当vlt v l 64<<时 ,始端电流为: mA 67.1631031010103022212212121=++--=+-+-=+++++i N N i N N i N N i N i i 达到稳态时mA 15)(211==∞R u i 所以⎪⎩⎪⎨⎧<<<<<<=v l t l/v v l t l/v v l t t i /64 16.67mA /42 10mA /20 mA30)(1 mA 15)(211==∞R u i图题15.2答案15.3解:波从始端传到中点所用的时间为:μs 10s 1010310325831==⨯⨯==-v l t (1)当μs 100<<t 时,入射波从始端发出,尚未到达中点所以 0)(=t i 。

(2)μs 30μs 10<<t 时,入射波已经过中点,但在终端所产生的反射波还没有到达中点。

A 2.0600600240)(c S S 1=+=+==+Z R U i t i(3) μs 60μs 30<<t 时,在终端所产生的反射波已经过中点,并于μs 40=t 时 刻到达始端。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

R2
US
t0
R
i
C
uC
US
t0
R1
u2
(a)
(b)
•动态电路
uC
•换路
直 接 跃 变
u2
•电阻电路
US
O t
R2U S R1 R2
O
t
稳态
暂态
(a)
稳态
稳态
稳态
(b)
无过渡过程
图示电路换路后的KVL方程为
Ri (t ) uC (t ) U S , t 0
式中 代入上式,得
由换路定律得 iL (0 ) iL (0 ) 1.2A
uC (0 ) uC (0 ) 7.2V
1 1 12V ( )u1 (0 ) i L (0 ) 4 2 4 uL (0 ) u1 (0 ) uC (0 ) 4.8V 根据KVL和KCL求得 u1 (0 ) 2.4V uC ( 0 ) iC (0 ) iL (0 ) i2 (0 ) iL (0 ) 0 6
uC
iC
U0
U0 R
t
t
O
O
(a)
(b)
uC 和 iC 的变化曲线
可见uC和iC的衰减速率取决于RC之积 。令
RC
t
uC(t) 0 U0 对放电时间的影响
时间常数 (单位s)

2
3
4
5
0.007U0
… …

0
0.368U0 0.135U0 0.05U0 0.018U0
对放电时间的影响——经过 35 的时间,放电基本结束。
本章目次
1 动态电路的暂态过程 2 电路量的初值 3 一阶电路的零输入响应 4 阶跃函数和冲激函数
6 一阶电路的全响应 7 求一阶电路暂态过程解的三要素公式 8 卷积积分 9 二阶电路的暂态过程
5 一阶电路的零状态响应
10 状态变量分析法
10.1
动态电路的暂态过程
基本要求:了解动态电路暂态过程及时域分析的基本概念。
电阻消耗功率越小
例题
10.2
S (t 0 )
uk R2

图示电路,已知US=35V,R1=5,R1=5k, L=0.4H。t<0时电路处于直流稳态。 t=0时开关断 US 开。求t>0时的电流iL及开关两端电压uk 。

R1 iL
u2
L
iL的初始值及时间常数分别为
iL (0 ) iL (0 ) US 7A R1

t O 1 2 3
不同 值对应的 u C 变化规律
1 2 1 2 1 We (0 ) CuC (0 ) CuC (0 ) CU 02 2 2 2 电容的原始储能
2 RL电路的零输入响应
KVL方程
I0
R
uR
iL

iL
di uL uR L L RiL 0 dt 特征方程
1单位阶跃函数
S (t 0 )
R
2
US
1
R u
(a)
等效为
C
iC
uC
C
u U S ( t )
(c)
u(t)的波形
u (t )
(t)
若幅值为1
单位阶跃函数
1 O t
US
(d)
O
(b)
t
阶跃函数
0 (t ) 1
(t 0) (t 0)
2单位脉冲函数
(t t 0 )
u L (0 )

iC (0 )
L
iL
iL (0 )
uC (0 )
12 V
C
i2
uC

12V 2
u1 (0 ) 6

i2 (0 )

(a)
(b)
开关在接通之前,电路是直流稳态。于是求得 12V iL (0 ) 1.2A uC (0 ) 6 iL (0 ) 7.2V (4 6)
t ( )d (t ) t ( t1 )d (t t1 )
d (t ) (t ) (t ) dt (t t ) d (t t ) (t t ) 1 1 1 dt
时间常数的理解 C越大
2 wC CuC / 2
越大

R越大
2 p uR / R
iC
R
C
uR
uC

电容储能越多 放电时间越长
电阻消耗功率越小
RC电路的零输入响应
uC
放电过程中的能量传递 电阻所消耗的能量
U0
0.368U 0
t

0
U 0 RC 2 1 2 p R (t )dt iC (t ) Rdt ( e ) Rdt CU 02 0 0 R 2
10.5
一阶电路的零状态响应
基本要求:掌握一阶电路的零状态响应的计算;理解强制分量与自由分量、稳态分 量与暂态分量的含义;掌握单位阶跃特性与单位冲激特性的计算及其相互关系。
电路中储能元件的原始储能为零[即uC(0+)=0,iL(0+)=0],仅由独立电 源作用引起的响应称为零状态响应(zero-state response)。 uR

于是电路将成为电阻电路,可用分析直流电路的各种方法来求解。
例题
10.1
图(a)所示电路,在t<0时处于稳态, t=0时开关接通。求初始值iL(0+) 、 uC(0+) 、 u1(0+) 、 uL(0+)及 iC(0+) 。
4
uL
S (t 0 ) 6 2 u1

iC

4

du (t ) i (t ) C C dt duC RC uC U S dt
US
t0
R
i
C
uC
RC充电电路
初始值u(0+)、i(0+) 、q(0+) 、 (0+)
换路之后,电路量将从其初始值开始变动。
时域分析法(time domain analysis) 以时间为主变量列写电路的微分方程并确定初始条件,通过求解微分方

L L 8 10 5 s R R1 R2
断开含电感的电路 时,开关可能承受 很高的电压。
根据 再由KVL求得
iL (t ) iL (0 )et / I 0et / (t 0)
i L i L (0 ) e
t /

7e
1.25104 t
A
(t 0)
pt
Ae
t /
iL (t ) iL (0 )e t / I 0e t /
(t 0)
L R 时间常数(单位:s)

u L Ri L L
diL RI 0e t / dt
(t 0)
iL (t ) iL (0 )e
t /
I 0e
iL
t0 t 0
4.单位冲激函数的性质
(t ) (t ) (t t1 ) (t1 t )
f (t ) (t )dt f (0) f (t ) (t t1 )dt f (t1 )
f (t ) (t ) f (0) (t ) f (t ) (t t1 ) f (t1 ) (t t1 )
uR
R
iC
C
du u R uC RiC uC RC C uC 0 dt
特征方程
RCp 1 0
uC

RC电路的零输入响应
特征根
p 1 RC
t uC duC U 0 RC iC C e R dt R
(t 0)
通解
uC Ae Ae
t /
(t 0)
diL uL RiL L RI 0 et / (t 0) dt
uL
I0
O
t
O
(a)
RI 0
t
(b)
换路时电感两 端可能出现很 高的瞬间电压
iL 和 uL 的变化曲线

=L/R
L越大
2 wL LiL / 2
越大
R越小
2 p Ri L
电感储能越多 放电时间越长
4 1.25104 t
uk U S u2 U S R2iL (35 3.5 10 e
t0+时,
)V (t 0)
uk (0 ) (35 3.5 104 )V 3.5 104 V
10.4
阶跃函数和冲激函数
基本要求:掌握单位阶跃函数与单位冲激函数的定义及其相互关系。
Lp R 0
S (t 0 )
L
uL
t>0
R
L
uL
特征根
R p L
(a) (b) RL电路的零输入响应 换路定律
i L (0 ) i L (0 ) I 0
iL (0 ) Ae 0 A I 0
R t L
通解
iL (t ) Ae Ae
程获得电压、电流的时间函数(变化规律)。
10.2
电路量的初始值
基本要求:熟练计算电路量的初始值。
1 电容电压uC和电感电流iL初始值的确定 设在线性电容上电压和电流参考方向相同,则有
q(t ) CuC (t ) iC ( )d
相关文档
最新文档