尿素生产技术
尿素的生产方法
尿素的生产方法工业上用二氧化碳与氨合成尿素,由于反应物不能完全转化,未反应物需要回收。
回收方式很多,早期有不循环法和部分循环法,现均采用全循环法。
全循环法是尿素合成后,未转化的氨和二氧化碳经多段蒸馏和分离后,以各种不同形式全部返回合成系统循环利用。
无论何种全循环法,尿素生产的基本工艺相同,分为四个基本步骤:1氨与二氧化碳的供应与净化;2氨与二氧化碳合成尿素;3尿素熔融液与未反应物质的分离与回收;4尿素熔融物的加工。
目前,工业上采用水溶液全循环法及气提法。
(l)水溶液全循环法尿素合成的未反应物氨和COz,经减压加热分解分离后,用水吸收成甲铵溶液,然后循环回合成系统称为水溶液全循环法。
该法自20世纪60年代起迅速得到推广,在尿素生产中占有很大的优势,至今仍在完善提高。
典型的有荷兰斯塔米卡本水溶液全循环法、美国凯米科水溶液全循环法及日本三井东压的改良C法及D法等。
我国中小型尿素厂多数采用水溶液全循环法。
水溶液全循环法工艺可靠、设备材料要求不高、投资较低。
缺点是反应热没能充分利用,一段甲铵泵腐蚀严重,甲铵泵的制造、操作、维修比较麻烦;为了回收微量的CO2和氨气,使流程变得过于复杂。
(2)气提法是用气提剂如CO2、氨气、变换气或其他惰性气体,在一定压力下加热并气提合成反应液,促进未转化的甲铵分解。
NH2COONH4=2NH3(g)↑+CO2(g)↑(可以反映)该式是吸热、体积增大的可逆反应,只要有足够的热量,并能降低反应产物中任意组分的分压,甲铵的分解反应就一直向右进行。
气提法就是利用这一原理,当通入co.气时,气相中co.的分压接近于1,而氨的分压趋于O,致使反应不断进行。
同样,用氨气提也有相同的结果。
根据通入气体介质的不同,分为c0.气提法、NH3气提法和变换气气提法等。
气提法工艺是当前尿素合成生产中重要的技术改进,与水溶液全循环法相比,具有流程简化、能耗低、生产费用低、单系列大型化和运转周期长等优点。
无机化工工艺学-尿素
半循环法:将一部 分或大部分未反应的 NH3和CO2返回合成塔 使用,这类循环氨的 利用率为42-73%。
1-二氧化碳压缩机;2-液氨泵;3-尿素合成塔; 4-预分离器;5-高压加热分离器;6-低压加热分 解器;7-高压吸收器;8-氨冷凝器
全循环法(流程附后1.4):将未转化成尿素的NH3和CO2经减压加热 或气提分离后,全部返回合成系统循环利用,构成密闭的循环系统 ,原料的利用最充分,氨利用率高达98%以上。
④气提法 利用一种气体介质在与合成等压的条件下分解甲铵并将分解物返
回系统。 依气提介质的不同分为CO2气提法、NH3气提法、变换气气提法。
优点:热量回收完全,低压NH3和CO2处理量较少,技术经济指标先 进,是尿素发展的方向。
20世纪60年代初期, 斯塔米卡邦与DSM的研究中心一起开发了新的 尿素工艺———二氧化碳气提法,并于1967 年建成工厂投入生产,使尿 素生产的能耗大为降低。
意大利的SnamProgetti 也于1966 年建成了第一个以NH3作为气提 气的氨气提法尿素工厂(日产70 t) ,其设备采用框架式立体布置,而且 NH3直接加入气提塔底部,为第一代氨气提法。70 年代中期SNAM改进 了设计,设备改为平面布置,而且也不直接向气提塔加入气氨,即所谓的 自气提工艺或称为第二代氨气提法工艺。
由于添加的水量不同,又可分为两类:
添加水量较多,分子比近于1,称为碳酸铵盐水溶液全循环法。 添加水量较少,基本上以甲铵溶液返回系统,称为氨基甲酸铵溶
液全循环法。
难度—气液分离的温度不可太高,以免使生成的尿素分解;液体吸收 气体的温度不可太低,以防出现固体结晶;返回系统的水量必须控制 在最少,否则由于有水进入反应器,一次通过的尿素合成率太低,造 成大量溶液循环。
尿素生产安全技术
尿素生产安全技术前言尿素是一种重要的化学品,广泛应用于化肥、塑料、医药等多个领域。
然而,尿素生产过程中存在着很多的安全风险,例如:化学反应中的火灾爆炸、气体泄漏、跑冒滴漏、粉尘爆炸等。
因此,尿素生产企业应当不断提升自身安全生产能力,以确保生产过程中的安全和稳定。
尿素生产的流程和原理尿素的制备流程一般包括以下几个步骤:1.合成氨生产2.氨气与二氧化碳反应生成尿素3.尿素脱水4.晶体化其中,合成氨生产主要是通过气体反应,使空气中的氮气与天然气中的氢气反应生成氨气。
氨气与二氧化碳反应生成尿素的反应式如下:N2 + 3H2 -> 2NH3NH3 + CO2 -> NH2COONH4尿素脱水一般采用真空蒸发或压力脱水的方法,将尿素水溶液中多余的水分去除。
晶体化是将脱水后的尿素蒸发结晶而成。
尿素生产中的安全隐患和对策火灾爆炸尿素生产过程中,常常涉及到高温高压条件下的各种化学反应。
因此,火灾爆炸是一个常见的安全隐患。
此时,企业应当采取以下的措施:1.设计合理的防火防爆措施:如安装消防设施,建立消防管道系统等。
2.采取必要的安全措施:对于含有易燃、易爆等物质的设备采用特殊的防爆设施,确保操作人员的人身安全。
3.加强员工培训:提高员工的安全意识和应急处理能力,切实做好安全防范工作。
气体泄漏尿素生产中,各种气体的泄漏是另一个值得关注的问题。
如氨气、二氧化碳等气体都具有毒性和易燃爆的特性。
以下是针对气体泄漏的安全措施:1.设置气体检测器:安装气体检测器可以及时发现气体泄漏的存在,避免大规模的事故发生。
2.加强气体管道的维护:保持气体管道的完整性,防止管道老化、腐蚀等导致泄漏的情况发生。
3.做好危险化学品的储存和运输:对危险化学品的储存和运输要求严格,防止针对危险品的严重事故发生。
跑冒滴漏和粉尘爆炸尿素生产过程中,跑冒滴漏和粉尘爆炸也是两个需要特别注意的安全隐患。
以下是对应的预防措施:1.对管道、阀门进行定期检查:在生产运营过程中,检查各管道、阀门、连接件等设备是否完好,做好必要的维修保养,优化设备运作效率,防止跑冒滴漏。
尿素生产安全技术
尿素生产安全技术尿素是一种广泛用于农业和工业领域的化学品。
由于它的重要性和广泛应用,尿素的生产安全技术也变得越来越重要。
本文将介绍尿素生产安全技术。
1. 原料质量控制尿素的生产需要用到氨气和二氧化碳两种原料。
氨气通常是通过化学反应从天然气、煤气和石油等化石燃料中生产出来的。
二氧化碳通常是从燃煤和石油中提取的。
为了确保尿素生产的安全和质量,必须对原料质量进行严格控制。
氨气和二氧化碳的纯度、湿度、气体压力和温度等参数必须在特定的范围内控制,否则如果存在偏差,就可能导致化学反应中出现危险情况。
2. 设备安全尿素生产过程中需要使用各种设备,包括压力容器、反应器、加热器、冷却器、过滤器、储罐和管道等。
这些设备必须保证其安全性能,以确保尿素生产过程中不发生危险事故。
为了保证设备安全,必须进行以下方面的工作:(1) 设备的材质、制造和安装必须符合相关的法律法规和标准要求,设备的压力容量和温度应该适合工艺要求;(2) 设备使用前应该进行检查,一旦发现设备有问题,必须及时进行维修和更换;(3) 必须对设备进行定期检查和维护,确保设备的安全性能;(4) 在操作过程中,需要采取必要的安全措施,避免设备损坏和人员伤害。
3. 废气治理尿素生产过程中会产生大量废气,其中包括二氧化碳、氨气、一氧化碳、氮氧化物等危险物质。
这些废气必须经过治理,否则就可能造成环境污染和人员健康问题。
废气治理包括以下措施:(1) 在尿素生产过程中,应该采用环保技术,例如膜分离、吸附剂清洗和催化氧化等;(2) 废气排放必须符合相关的法律法规,定期进行检查和监测;(3) 废气治理设备的维护和管理也非常重要,必须定期进行检查和清理,保证其正常运行。
4. 安全管理尿素生产的安全管理是非常重要的,包括以下方面:(1) 制定严格的安全条例和操作规程,保证工人在操作过程中能够遵守相关的安全规定;(2) 培训操作人员的安全意识和安全技能,提高工人自我保护能力;(3) 组织应急演习,为可能发生的危险事故做好准备;(4) 审查和修改安全管理制度,及时修订和完善安全措施。
尿素的生产工艺流程
尿素的生产工艺流程
尿素是一种常用的无机化合物,广泛应用于化肥、化工、医药等领域。
其生产工艺流程通常包括以下几步:
1. 合成气制备:通过天然气、石油或煤炭等燃料的气化反应,产生合成气(一氧化碳和氢气的混合物)。
2. 氨制备:将合成气经过催化转化反应,生成氨气。
常用的氨合成催化剂是铁、镍、铑的合金。
3. 尿素合成:将氨气与二氧化碳反应生成尿素。
尿素合成反应通常采用一种称为“尿素合成反应”的过程,该过程包括高温高压、催化和再循环等步骤。
4. 氨回收:由于尿素合成反应中的氨气未完全转化为尿素,剩余的氨气需要从尿素产物中回收利用。
常用的回收方法是采用蒸汽脱氨或萃取等工艺。
5. 精制和成品制备:通过混合、结晶、干燥等工艺对尿素进行精制和成品制备。
最终得到的尿素产品可以根据需要进行粒度调整、添加剂等工艺。
需要注意的是,尿素的生产工艺流程可能会根据不同的生产厂家和技术路线有所差异,上述流程仅为一般性描述。
另外,为了提高生产效率和产品质量,尿素生产工艺流程中常常采用先进的自动化控制系统和能源回收装置。
尿素生产技术
主要设备--预分离器6
为解决高负荷生产下出现的中压分解负荷重,一吸 塔热负荷高等“瓶颈”问题,使装置高产,低耗和 平稳运行,增设了预分离器6,进一步提高了装置 的生产能力。
典型操作条件
合成塔:原料液氨、CO2及循环甲铵液自下而上进 入合成塔。压力:20-22MPa,温度:185-190℃, 氨碳比:4-4.5,水碳比:0.6-0.7,氧含量:0.50.8%,停留时间:1h,出口CO2转化率为:6264%。
分解塔:出口液通过三级分解:中压(1.82.5MPa,160 ℃ )、低压(0.2-0.5MPa,150 ℃ )、闪蒸(0.05MPa,75%)
第三章 尿素生产技术
(1)不循环法;
(2)半循环法(部分循环法、高效半循环) ;
(3)全循环法
热气全循环法
全循环法
矿物油全循环法 尾气分离全循环法
水溶液全循环法 发展:改良C、D法,二氧化碳汽提法,氨汽提法及联尿法等。
水溶液全循环法的流程图
惰气洗涤
放空
尿素 合成塔
CO2
过剩氨 冷凝器
氨回 流 液
尿素合成塔内, NH 3/CO2的摩尔比和H2O/ CO2的摩尔比控制在一定的范围内进行反应。
合成后的气液混合物进入预分离器,一段分解, 进行气液分离,将分离气相后的尿液送入二段 分解,进一步将混合物中的气相除去。
净化后的尿液依次进入闪蒸器、一段蒸发、二 段蒸发浓缩,最后得到尿素熔融物,用泵输送 到尿素造粒塔喷洒器,经在空气中沉降冷却固 化成粒状尿素,并通过尿素塔底刮料机用运输 皮带送往储存包装车间。
尿素生产工艺流程简介
尿素生产工艺流程简介
《尿素生产工艺流程简介》
尿素是一种重要的化工产品,广泛用于肥料、塑料、医药等领域。
其生产工艺流程简介如下:
1. 合成氨制备:尿素的生产是从合成氨开始的。
合成氨通常使用哈贝法或泠热法制备,通过高温高压下,将氨气和二氧化碳反应生成脲。
这是尿素合成的第一步。
2. 脲的水解:脲水解是尿素生产的关键步骤之一。
将脲与水加热反应,生成尿素和氨气。
这一步骤通常在高温下进行。
3. 结晶分离:经过水解的混合物中,尿素和未反应的脲被分离出来。
通常采用结晶分离技术,将尿素从溶液中结晶出来。
4. 结晶洗涤:分离得到的尿素晶体需要进行洗涤,以去除杂质和未反应的物料。
洗涤步骤通常采用溶液冲洗或真空沉降等技术。
5. 干燥:洗涤后的尿素晶体需要进行干燥,以去除水分使其达到一定的含水率。
通常采用旋转干燥机或流化床干燥机等设备进行干燥处理。
6. 包装:最后一步是将干燥后的尿素晶体进行包装,以便储存和运输。
以上即是尿素生产过程中的主要工艺流程。
尿素生产工艺因企业技术和规模的差异会有所不同,但总体上包括合成氨制备、脲的水解、结晶分离、结晶洗涤、干燥和包装等步骤。
通过这些步骤的相互配合,能够高效、持续地生产出高质量的尿素产品。
尿素生产技术及三废处理
(3)氧 缺氧就会发生急剧的腐蚀。一般控制原料二氧化 碳中含氧0.75-1.0%已足以使不锈钢得到良好的保护。
(4)温度 温度升高而降低了氧的溶解度,不利于氧化膜 保持完整及修复过程。因此,对不同材料规定了使用 温度,如超低碳Cr-Ni-Mo不锈钢316L<195℃;工业 纯钛<205℃;锆<230℃。
由于Y点具有爆炸危险:
可在气体中保留较多的NH3和CO2。当增加气 体中的NH3量,组成点即沿着YB线移动,这 样可将混合气组成迁移到爆炸限之外。
B.中低压下,可用下式近似估算
L:混合气合格的爆炸限 Li:单一可燃气体的爆炸限 Pi:组分在混合爆炸气中的 体积分数
X点:某尾气吸收塔排出气体组成,经计算,在爆炸范围内; 为防止爆炸,在其中加了氮气惰性气体,组成点移至X’点, 为非爆炸性气体。
12
4、爆炸范围:爆炸性组分含量高于上限或低于 下限,均不会发生爆炸。
•可燃气体在纯氧中的爆炸范围大于空气中的爆炸范围:空 气引入了非爆性的N2、CO2、H2O等 •NH3的爆炸范围小于H2和CO
13
5、判断气体混合物的爆炸性
CO2气提法的合 成塔排出气体的 典型组成
A.高压下
14
经高压洗 涤器将 NH3和 CO2完全 吸收后
操作条件:压力:20-22MPa,温度:185-190℃, 氨碳比:4-4.5,水碳比:0.6-0.7,氧含量:0.50.8%,停留时间:1h,出口CO2转化率为:6264%。
流程:原料液氨、CO2及循环甲铵液自下而上进入 合成塔,出口液通过三级分解:中压(1.82.5MPa)、低压(0.2-0.5MPa)、闪蒸 (0.05MPa)
尿素生产技术
改良C法(日本)
改良C法,是传统水溶液全循环法的改进,生产低缩二 脲含量尿素产品,也生产常规尿素产品。
改良C法--操作条件
合成塔: 温度:190-200℃,压力:23-25MPa,氨碳比:4,水碳比: 0.37,转化率:72%。 合成塔为高径比18的空塔,用钛衬里,耐高温腐蚀。
分解塔:
高压分解(1.7-1.9MPa,165℃:其热量由塔外的热虹吸式
尿素合成塔内, NH 3/CO2的摩尔比和H2O/ CO2的摩尔比控制在一定的范围内进行反应。
合成后的气液混合物进入预分离器,一段分解, 进行气液分离,将分离气相后的尿液送入二段 分解,进一步将混合物中的气相除去。
净化后的尿液依次进入闪蒸器、一段蒸发、二 段蒸发浓缩,最后得到尿素熔融物,用泵输送 到尿素造粒塔喷洒器,经在空气中沉降冷却固 化成粒状尿素,并通过尿素塔底刮料机用运输 皮带送往储存包装车间。
流程:合成塔出口液进预分 离器自然减压进行气液预分 离,它的液相进一段分解塔7。 气体送入一段蒸发器19下部。
主要设备--预分离器6
一段分解塔出口气体也引入预分离器。 预分离器有改造为预精馏塔的,内装填料,
气液逆流接触,可降低出口气体的温度和水 分。 气体送入一段蒸发器19下部,充分利用了预 分离器出口气体的冷凝热,部分气体冷凝并 放出热量,供尿液蒸发用。
第三章 尿素生产技术
(1)不循环法;
(2)半循环法(部分循环法、高效半循环) ;
(3)全循环法
热气全循环法
全循环法
矿物油全循环法 尾气分离全循环法
水溶液全循环法 发展:改良C、D法,二氧化碳汽提法,氨汽提法及联尿法等。
水溶液全循环法的流程图
惰气洗涤
尿素生产安全技术
尿素生产安全技术背景介绍尿素是一种重要的化肥原料,也被广泛用于动物饲料、医药等领域。
尿素生产工艺种类繁多,但无论是传统氨法还是新型煤基合成法,都存在着一定的生产安全隐患。
同时,尿素在储存、运输、使用过程中也需要注意安全问题。
因此,尿素生产安全技术的掌握至关重要,旨在确保生产和使用尿素时的安全性。
氨法生产尿素的安全技术氨法生产尿素是传统的生产工艺,其主要分为两个阶段:氨合成和尿素合成。
在氨法生产尿素中,氨气中毒和高温高压爆炸是主要的安全问题。
氨气中毒的防范氨气是氨法生产尿素的重要原料,但其具有强烈的刺激性气味和高毒性。
在氨合成过程中,如果出现氨气泄露,会对生产工人造成严重威胁。
因此,在氨气使用中,需要采取以下安全技术:•确保储存设施完好,避免氨气泄露;•严格控制氨气使用量,防止超量使用;•配备氨气检测仪器,实时监测氨气浓度,一旦发现异常,及时采取措施维护安全;•建立气体泄漏报警系统,能够自动、及时报警和开启安全系统。
高温高压爆炸的防范在氨法生产尿素的尿素合成环节中,由于高温高压作用,存在极大的爆炸风险。
为了保障生产过程的安全性,需要采取以下措施:•严格检查和维修尿素合成设备,避免设备损坏和渗漏;•采取合适的化学生产自动控制系统,减少工人直接参与,降低事故风险;•配置智能化防爆设施,一旦发生爆炸事故,自动启动安全系统。
同时,设备组成材料也需要具备一定的抗爆性能。
煤基合成法生产尿素的安全技术煤基合成法生产尿素是近年来发展较快的新型工艺,在能源转型中担当重要角色。
该生产工艺主要分为煤制气和氨合成、尿素合成两个阶段,其中煤制气和氨合成环节安全问题较为突出。
煤制气和氨合成环节的安全问题煤制气和氨合成环节安全问题常表现为耐氧性差、容易自燃、压力波动等情况。
为了保证煤制气和氨合成的安全性,需要采取如下措施:•对煤制气反应炉进行全天候实时监测,确保温度、压力等关键参数的稳定;•加强原料供给分析,避免异质物进入反应炉,导致爆炸或自燃;•将自燃、爆炸风险大的物料在离线段进行储存,控制它们对现场生产的干扰;•配置适当的防火、防爆、透明化的设备、防护设施等;尿素合成环节的安全问题在煤基合成法生产尿素的尿素合成环节中,由于高温高压作用,同样存在极大的爆炸风险。
尿素生产工艺
尿素生产工艺尿素生产工艺,是指利用合成氨与二氧化碳在合适的条件下反应,生成尿素的过程。
尿素是一种重要的有机氮化合物,广泛应用于肥料、化工、医药等领域。
本文将介绍尿素生产的基本工艺流程以及关键步骤,旨在向读者提供对尿素生产工艺的初步了解。
一、尿素生产的基本工艺流程尿素生产的基本工艺流程包括氨合成、尿素合成以及尿素精制三个主要步骤。
1. 氨合成:氨合成是尿素生产的第一步骤,其主要目的是将天然气或煤炭等原料转化为合成氨。
氨合成过程采用哈贝法,即将天然气进行蒸汽重整,得到一氧化碳和氢气,再将一氧化碳和氢气在催化剂的作用下反应生成合成氨。
2. 尿素合成:尿素合成是尿素生产的核心步骤,该步骤中,合成氨与二氧化碳在高温高压条件下进行反应生成尿素。
尿素合成工艺主要采用斯特鲁夫法(Streulens法)或布里克尔法(Birkeland-Eyde法)。
在该步骤中,尿素合成塔中的合成氨与二氧化碳进行反应,生成尿素水溶液,并通过连续的蒸发浓缩和结晶等处理工艺,获得固态尿素产品。
3. 尿素精制:尿素精制是尿素生产的最后一个步骤,其目的是提高尿素产品的纯度和质量。
尿素精制通常包括过滤、干燥、冷却和包装等工艺。
在过滤过程中,去除尿素溶液中的杂质,使尿素溶液的纯度得到提高。
然后,通过干燥和冷却等工艺,将尿素溶液转化为固态尿素产品。
最后,将固态尿素产品进行包装,以便储存和运输。
二、尿素生产中的关键步骤在尿素生产过程中,几个关键步骤对整个工艺流程的效果和成品质量有着重要影响。
1. 合成氨的制备:合成氨是尿素生产的关键原料,其制备过程需要注意催化剂的选择和催化剂床的设计,以提高合成氨的产率和纯度。
2. 合成反应条件的控制:尿素合成过程中需要控制的反应条件有温度、压力和催化剂浓度等。
合适的反应温度和压力可提高尿素合成的转化率和选择性,而催化剂浓度的控制可影响尿素的纯度。
3. 尿素合成塔的设计:尿素合成塔是尿素合成的关键设备,其设计需要考虑反应器的材料、结构和操作条件等方面。
尿素生产技术-第一章1027
一、尿素的性质及用途
(二)尿素的化学性质
当加热尿素水溶液温度高于130℃时,尿素会直接水解
为氨和二氧化碳:
CO(NH2)2+H2O =2NH3↑ +CO2↑ 尿素水解的速度与受热温度及加热时间有关。但有氨存 在时,尿素的水解速度可以大大降低,在尿素生产中发 生水解,会减小尿素生产量、增加动力消耗、加大生产
一、尿素的性质及用途
(一)尿素的物理性质
常温下:无色、无味、无臭,针状或斜方棱柱状结晶体。
工业上尿素产品因含有杂质,一般是白色或浅黄色结晶
常压下熔点132.7℃
一、尿素的性质及用途
(一)尿素的物理性质
尿素水溶液的密度和粘度随浓度升高,温度降低而增 大,尿素水溶液的沸点随浓度降低、压力降低而降低。
用生成NH4NO3· CO(NH2)2等络合物,利用这一性质可
制作高效复合肥料。
另外,尿素几乎还能与所有的直链有机化合物,如烃、
醇、醛等作用。尿素不仅可以发生取代反应,而且还有 加成反应,这些性质大大地增加了尿素的用途。
一、尿素的性质及用途
尿素 + 强酸(无机酸)→盐 尿素 + 盐 → 络合物 ——复合肥生产
一、尿素的性质及用途
(一)尿素的物理性质
尿素存在于人和哺乳动物排泄的尿液中——由此得 名“尿素”。人体每天排出尿素20~30g(蛋白质新陈 代谢后元素氮的最终产物)。 尿素,又称脲、碳酰二胺(碳酸的二酰胺),分子式 CH4ON2,结构式CO(NH2)2或 NH2-CO-NH2。尿素
是碳、氢、氧、氮元素组成的有机化合物
一、尿素的性质及用途
(二)尿素的化学性质
熔融态尿素在高温下缓慢放出NH3而可缩合成多种
生产尿素的工艺流程
生产尿素的工艺流程
《生产尿素的工艺流程》
生产尿素是化工行业的重要领域之一,它是一种重要的氮肥和化工原料。
生产尿素的工艺流程主要包括合成氨、尿素合成和尿素结晶,下面我们来详细了解一下生产尿素的工艺流程。
1. 合成氨
合成氨是生产尿素的第一步,通常采用哈伯-波仑法或者气相氨合成法。
在哈伯-波仑法中,氮气和氢气在高温高压条件下反应生成氨气。
而气相氨合成法则是通过催化剂将氮气和氢气在低温低压条件下反应生成氨气。
2. 尿素合成
合成氨后,接下来是将氨气和二氧化碳进行反应生成尿素。
这个过程是通过将氨气和二氧化碳在高压高温条件下经过催化剂的作用进行氨氢化反应,生成脲酰胺。
然后再将脲酰胺经过加热解聚反应生成尿素。
3. 尿素结晶
尿素合成后,需要进行结晶处理。
首先是通过蒸馏将残余的氨气和脲酰胺分离,然后将尿素溶液进行结晶,得到尿素晶体。
最后对尿素晶体进行干燥处理,得到成品尿素。
以上就是生产尿素的工艺流程,包括合成氨、尿素合成和尿素结晶。
这个工艺流程不仅需要高温高压的条件,还需要催化剂
的作用和精确的操作技术。
因此,生产尿素是一个复杂而又重要的工艺过程,在化工行业中有着广泛的应用。
生产尿素的几种工艺及方法
2.中压分解与回收
从气提塔底部出来的含有低残留量二氧化碳的溶液减压至1.765兆帕,进人中压分解分离器顶部,减压释放出的气体和溶液在此进行分离。溶液中残留的甲铵在底部分解器分离。
在合成塔顶部出气中除氨、二氧化碳外,还有氧、氮、氢、惰性气体等,送人高压洗涤器。高压洗涤器下部是直立管壳式浸没冷凝器,器内充满液体,气体鼓泡向上通过,上部为鼓泡段。液体出鼓泡段,一部分从内溢流管返回浸没冷凝段底部,一部分外流出去进入喷射泵的吸入口。出口甲铵液的温度保持在160℃,为了防止冷却过度,管外用热水冷却,热水在一个封闭的加压系统中用循环水泵循环。从高压洗涤器顶部出来还含氨、二氧化碳气的惰性气进入吸收塔,被冷凝液吸收后放空。送入吸收塔的冷凝液是从氨水贮槽分别用解吸塔给料泵及升压泵经过顶部加料冷却器送人吸收塔的上段填料层,用闪蒸槽冷凝液泵将闪蒸槽冷凝液送人下段填料层,在塔底所得的稀甲铵液,部分返回下段填料层循环吸收,部分送人低压洗涤器中吸收从低压甲铵冷凝器出来的氨和二氧化碳。最终甲铵液从低压洗涤器或吸收器液位槽底部进入高压甲铵泵,升压后经高压洗涤器返回甲铵冷凝器。
回流氨送入顶部塔板,除去出塔气体中的微量二氧化碳和水。
回流液氨经氨升压泵从液氨贮槽抽出送往中压吸收塔顶部。中压吸收塔出塔的溶液经高压碳铵液泵再经高压碳铵预热器预热后,返回到合成回收。
含有惰性气体的氨气离开中压吸收塔顶部在氨冷凝器中冷凝,冷凝的液氨和含有氨的惰气进人液氨贮槽,由氨回收塔出来的氨和惰性气体则送往中压氨洗涤吸收塔,与逆流冷凝液进行接触洗涤,将气氨回收。从中压氨洗涤吸收塔底部出来的氨水溶液经离心泵返回到中压吸收塔。
尿素生产安全技术
尿素生产安全技术尿素(H2NCONH2), 又称脲或碳酰胺, 白色晶体, 相对分子质量在60. 055。
尿素大量存在于人类和哺乳动物的尿液中。
尿素溶于水、乙醇和苯, 几乎不溶于乙醚和氯仿。
尿素含氮量居固体氮肥之首, 达46%以上为中性速效肥料, 施于土壤中不残留使土壤恶化的酸根, 而且分解出来的二氧化碳也可为植物所汲取。
尿素在工业上的用途亦很广泛, 可用于制造脲醛树脂、聚胺酯等高聚物的原料, (用作塑料、喷漆、粘合剂)。
还可作多种用途的添加剂(用作油墨材料、黏结油等), 尿素还可用于医药、林业、制革、动物饲料、石油产品精制等方面。
第一座以氨和二氧化碳为原料生产尿素的工业装置是德国法本(I•G•Farben)公司于1922年建成投产的, 采纳热混合气压缩循环。
1932年美国杜邦公司(Du pont)用直接合成法治取尿素氨水, 并在1935年开始生产固体尿素, 未反应物以氨基甲酸铵水溶液形式返回合成塔, 是现今水溶液全循环法的雏形。
中国的尿素工业发展始于1958年, 先由南京永利宁厂建成日产10吨尿素的半循环生产法装置, 其后又在上海吴泾化工厂建成年产1.5万吨的半循环法装置。
1975年中国第一套二氧化碳汽提法装置亦在上海吴泾化工厂建成投产。
20世纪70年代以来, 我国兴建年产30万吨合成氨、52~60万吨尿素联合生产装置的大型化肥生产厂。
至今已建成30余套大化肥生产装置, 成为我国主要生产尿素的基地。
这些尿素生产厂都以石油化工成品或半成品为原料, 因而大都隶属于石油化工行业。
由于合成氨一尿素生产的紧密相关性, 其生产工艺过程分别介绍如下。
1. 合成氨生产氮肥生产的主要过程主要环节是制取氢, 而合成氨所需要的氮则直接或间接地来源于空气。
目前世界上大多数的氮肥厂均采纳石化原料或其副产品来制取氢或一氧化碳, 只有少数厂家采纳电解水法治取氢, 由于此法受电力成本制约, 难以形成大规模的工业化生产。
用石化原料制取氢和一氧化碳的过程均为化学过程, 从其反应类型上来看, 大致可分为烃类一蒸汽催化转化法和烃类部分氧化法。
尿素—尿素的生产方法
3
NH3汽提法: 20世纪70年代实 现工业化,现在发 展比较快,有后来 居上的趋势。
4
Hale Waihona Puke 素生产技术的改进改进方向:一方面,对于应用广泛的工艺,其专利商针对自己工艺的 缺点继续进行改进;另一方面,尿素生产工艺的改进主要围绕如何提 高二氧化碳的转化率,减少循环量,降低能量和原料消耗即提高产品 质量来进行。 ①提高二氧化碳转化率; ②采用氨气提或双气提法; ③降低能量消耗; ④尿素造粒技术的改进。
尿素的生产方法
一、尿素的生产方法
目前工业化由NH3和CO22种原料合成尿素,总反应:
2NH3 CO2 CO(NH 2 )2 H 2O
生产工艺流程简图:
二氧化碳
液氨
加压
压缩 预热
合成
氨和二氧化碳的回收 未反应物的分解
蒸发
结晶和造粒
尿素
2
二、尿素的生产 方法与发展
尿素最先由鲁爱尔于1773 年在蒸发人尿时发现。 1828年佛勒在实验室首先 用氨和氰酸合成尿素: HCON+NH3=CO(NH2)2 次后,出现氨基甲酸氨、 碳酸氨及氰胺基等为原料 合成尿素。
1922年,德国法本公司实 现以NH3和CO2直接合成 尿素:2NH3+CO2CO(NH2)2+H2O 该法奠定了现代工业尿素 的基础。
3
三、尿素生产方法与发展
目前工业化尿素生产工艺
1
水溶液全循环法: 20世纪60年代经 典生产工艺,我国 仍在大范围使用。
2
CO2汽提法: 20世纪60年代后 期开发的工艺,目 前世界应用最广泛 的生产方法。
5
尿素工艺流程
尿素工艺流程
《尿素工艺流程》
尿素是一种重要的化肥原料,其生产工艺流程复杂且技术要求高。
尿素的工艺流程主要包括合成氨、尿素合成和尿素精制三个主要步骤。
首先是合成氨。
合成氨是尿素生产的原料,通常采用哈勃-波仑法来进行合成氨反应。
在高温高压下,氮气和氢气通过催化剂反应生成氨气。
接下来是尿素合成。
尿素合成一般采用尿素压力法,即在高温高压下,氨气和二氧化碳通过催化剂反应生成尿素。
这个过程中需要进行多次反应和分离,以获得高纯度的尿素产物。
最后是尿素精制。
尿素精制是将合成的尿素产物经过干燥、结晶、分级等工艺步骤,去除杂质和水分,获得商业级的尿素产品。
除了上述主要的工艺步骤外,尿素生产中还需要进行废气处理、废水处理等环保措施,以确保生产过程的环保和安全性。
通过以上工艺步骤,尿素可以被生产成为高质量的化肥原料,为农业生产提供了重要的支持。
在未来,随着技术的不断进步,尿素工艺流程也将不断完善和改进,以满足市场需求并提高生产效率。
尿素生产工艺及技术特点
尿素生产工艺及技术特点3.1 概述当代尿素生产,不论是采用哪种流程,基本由六个工艺单元,即原料供应、尿素的高压合成、含尿素溶液的分离过程、未反应氨和二氧化碳的回收、尿素溶液的浓缩、造粒与产品输送和工艺冷凝液处理,其基本过程如图3-1所示。
原料CO 2和NH 3被加压送到高压合成圈,反应生成尿素,二氧化碳转化率在50%~75%范围,此过程被称为合成工序;分离过程与未反应物回收单元承担着把未转化为尿素的氨和二氧化碳从溶液中分离出来,并回收返回合成工序,因此这两个单元被统称为循环工序;最后在真空蒸发和造粒设备中把70%~75%的尿素溶液经浓缩加工为固体产品,称为最终加工工序。
尽管尿素生产的基本过程相似,但在具体的流程、工艺条件、设备结构等方面,不同工艺存在一定的差异。
迄今世界各地的尿素工厂,绝大多数都是由几家工程设计公司所开发设计的,已形成几种典型的工艺流程,典型的有荷兰斯太米卡邦(Stamicarbon )公司的水溶液全循环CO 2气提法、意大利斯那姆(Snamprogetti)公司的氨气提法和蒙特爱迪生集团公司的等压双循环工艺(IDR)、日本三井东亚—东洋工程公司的全循环改良“C”法和改良“D”法及ACES 法、美国尿素技术公司UTI 的热循环法尿素工艺(HR)等。
但不论是哪种工艺流程,生产过程中主要原料NH 3和CO 2的消耗基本上是相同的,其流程的先进与否主要表现在公用工程即水、电、汽的消耗上。
尿素生产流程的改进过程,实质就是公用工程消耗降低的过程。
图3-1 尿素生产基本流程目前国内建有尿素装置200多套,规模分为大型(48万吨/年以上)、中型(11万吨/年以上)、小型 (4万吨/年以上)。
中、小型尿素装置均采用国内的水溶液全循环技术,大型装置多采用国外引进工艺技术。
在国内的大型尿素装置工艺技术中,多数采用CO 2气提工艺和氨气提工艺。
目前设计的采用CO 2气提工艺和氨气提工艺的尿素装置,其尿素氨耗基本接近于理论水平,公用工程消耗更低,相对于传统的设计,其投资更低。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主要设备--一段吸收塔10
在一段吸收塔中,若液氨中混有少量的CO2,则 会生成氨基甲酸铵结晶而堵塞设备和管道,因此 一段吸收塔要保证CO2被完全吸收。
在原料返回时,氨以纯氨和甲铵液形式,CO2以 甲铵液形式返回,甲铵液肯定会带一定量的水, 水是反应不希望的。所以应减少CO2返回量---尽 量提高CO2的转化率。
吸收工段:从一段分解、二段分解出来的 气相含有未反应的氨和二氧化碳,分别进 入一段吸收和二段吸收,氨和二氧化碳被 后面闪蒸、一段蒸发、二段蒸发工段冷凝 下来的冷凝水吸收混合形成水溶液,用泵 送入尿素合成塔;
一段吸收后剩余的气体进入惰洗器稀释后 ,与二段吸收的残余气体混合进入尾气吸 收塔,与一段蒸发、二段蒸发工段气相冷 凝除去水后残余的气体混合后放空。
水溶液全循环法的缺点
①能量利用率低; 合成系统总反应是放热的,但因加入大量过剩氨 以调节反应温度,反应热没有加以利用;另外, 一段、二段甲铵冷凝器均需用水冷却,不但冷凝 热得不到利用,反而需要消耗大量的冷却水。 ② 一段甲铵泵腐蚀严重,制造、操作、维修都较 麻烦; ③ 流程过于复杂:三段分解,三段吸收。
尿素生产技术
2020年7月10日星期五
(1)不循环法;
(2)半循环法(部分循环法、高效半循环) ;
(3)全循环法
热气全循环法
全循环法
矿物油全循环法 尾气分离全循环法
水溶液全循环法 发展:改良C、D法,二氧化碳汽提法,氨汽提法及联尿法等。
水溶液全循环法的流程图
惰气洗涤
过剩氨 冷凝器
中压 吸收塔
回流液 氨
流程:合成塔出口液进预分 离器自然减压进行气液预分 离,它的液相进一段分解塔7 。气体送入一段蒸发器19下 部。
主要设备--预分离器6
一段分解塔出口气体也引入预分离器。 预分离器有改造为预精馏塔的,内装填料,气
液逆流接触,可降低出口气ห้องสมุดไป่ตู้的温度和水分。 气体送入一段蒸发器19下部,充分利用了预
分离器
二段蒸发加热器
A1 Ls
分离器
A2
140℃
○
99.7% ○
斗提升机
造粒塔
电振筛
○
成品去包装 粗料返回系统
○
水溶液全循环法的工艺流程图
主要设备-- 合成塔5
20世纪50年代以前:双套筒式。外壳碳钢承受压力,内有 两个不锈钢套筒,内筒不受压力。液氨从外壳与外筒及外 筒与内筒之间的两个环隙,再进入内筒,与CO2反应,这 样外筒不与腐蚀介质接触。
缺点:容积利用率低,且不锈钢耗量大。 目前:衬里的高压容器。外筒为多层卷焊受压容器,内部
衬有一层耐腐蚀的不锈钢板,隔离尿素甲铵腐蚀介质,外 壳保温,防止热量外散。 优点:容积利用率高,耐腐蚀材料用量少,操作方便
主要设备-- 合成塔5
衬里式尿素合成塔最初采用空塔,不设内件,塔的高径 比较大。
高径比小的衬里合成塔,通常设混合器或筛板等内件, 以减少返混的影响。
三股物料从合成塔底部进入,呈 气液两相混合物的形式自下而上 ,边反应边流动,不断生成尿素 ,尿素浓度不断上升。反应后的 熔融物从塔顶排出。
主要设备--预分离器6
为解决高负荷生产下出现的中压分解负荷重,一吸 塔热负荷高等“瓶颈”问题,使装置高产,低耗和 平稳运行,增设了预分离器6,进一步提高了装置 的生产能力。
蒸发:一段(0.033MPa,95%),二段( 0.0033MPa,99.7%)
工艺流程简述
造气炉产生的半水煤气脱碳后,其中大部分的二氧化碳 由脱碳液吸收、解吸后,经油水分离器,除去二氧化碳 气体中携带的脱碳液,进入二氧化碳压缩机系统,由压 缩机出来的二氧化碳气体进入尿素合成塔。
从合成氨车间氨库来的液氨进入氨储罐,经过氨升压泵 加压进入高压液氨泵,经过预热后进入甲胺喷射器作为 推动液,将来自甲胺分离器的甲胺溶液增压后混合一起 进入尿素合成塔。
改良C法(日本)
改良C法,是传统水溶液全循环法的改进,生产低缩二 脲含量尿素产品,也生产常规尿素产品。
改良C法--操作条件
合成塔: 温度:190-200℃,压力:23-25MPa,氨碳比:4,水碳 比:0.37,转化率:72%。 合成塔为高径比18的空塔,用钛衬里,耐高温腐蚀。
分解塔:
高压分解(1.7-1.9MPa,165℃:其热量由塔外的热虹吸
吸收液
放空
尾气 吸收塔
低压 吸收塔
解吸塔 水排放
冷凝液
低压 分解气
中压 分解气
尿素 合成塔
CO2
中压 分解塔
低压 分解塔
尿液 蒸发器
水溶液全循环法尿素生产原则流程
尿素 造粒塔
尿素成品
尿素蒸发造粒系统工艺流程图
Ls
Ls
冷凝器 冷凝器
Ls
分解塔底 来﹙7475%尿液 )
○ 105℃
闪蒸槽
一段蒸发加热器
分离器出口气体的冷凝热,部分气体冷凝并放 出热量,供尿液蒸发用。
主要设备--一段吸收塔10
分两段。下段为鼓泡段,上段为精洗段。
在鼓泡段,气液混合物利用低压循环来的稀甲铵液吸收 ,在此将气体中绝大多数CO2和几乎全部水蒸气及部分 氨气吸收下来转入液相。
在精洗段,未被吸收的气体在塔内上升,与由液氨缓冲 槽2来的回流液氨和清洗液与其配成的浓氨水逆流接触 ,使气体中CO2和水蒸气完全得到吸收,纯的气态氨进 入氨冷凝器12,冷凝下来的液氨流入液氨缓冲槽2
尿素合成塔内, NH 3/CO2的摩尔比和H2O/ CO2的摩尔比控制在一定的范围内进行反应。
合成后的气液混合物进入预分离器,一段分解 ,进行气液分离,将分离气相后的尿液送入二 段分解,进一步将混合物中的气相除去。
净化后的尿液依次进入闪蒸器、一段蒸发、二 段蒸发浓缩,最后得到尿素熔融物,用泵输送 到尿素造粒塔喷洒器,经在空气中沉降冷却固 化成粒状尿素,并通过尿素塔底刮料机用运输 皮带送往储存包装车间。
典型操作条件
合成塔:原料液氨、CO2及循环甲铵液自下而上进 入合成塔。压力:20-22MPa,温度:185-190℃ ,氨碳比:4-4.5,水碳比:0.6-0.7,氧含量: 0.5-0.8%,停留时间:1h,出口CO2转化率为: 62-64%。
分解塔:出口液通过三级分解:中压(1.82.5MPa,160 ℃ )、低压(0.2-0.5MPa,150 ℃ )、闪蒸(0.05MPa,75%)