热释电红外报警器报告
红外警报技术实验报告(3篇)
第1篇一、实验目的1. 了解红外警报技术的原理和组成。
2. 掌握红外警报系统的安装、调试和操作方法。
3. 通过实验验证红外警报系统的性能和可靠性。
二、实验原理红外警报技术是一种利用红外线传输信息的技术,通过发射和接收红外信号来实现警报功能。
实验中,我们采用红外发射器发射特定频率的红外线,当红外线被红外接收器接收后,触发警报器发出警报声。
三、实验器材1. 红外发射器2. 红外接收器3. 警报器4. 连接线5. 电源6. 实验台四、实验步骤1. 准备工作(1)将红外发射器和红外接收器分别安装在实验台上,保持两者之间的距离在5米以内。
(2)将警报器与红外接收器连接,并接通电源。
2. 安装调试(1)检查红外发射器和红外接收器的安装位置,确保两者之间的视线无遮挡。
(2)调整红外发射器的角度,使发射的红外线能够准确照射到红外接收器。
(3)调整红外接收器的灵敏度,使接收器能够接收并触发警报器。
3. 实验操作(1)接通电源,开启红外发射器。
(2)在红外发射器和红外接收器之间放置障碍物,观察警报器是否能够正常触发。
(3)在红外发射器和红外接收器之间进行移动,观察警报器是否能够及时触发。
(4)在红外接收器附近进行移动,观察警报器是否能够及时触发。
4. 实验结果分析通过实验,我们发现红外警报系统在以下情况下能够正常工作:(1)红外发射器和红外接收器之间的视线无遮挡。
(2)红外发射器和红外接收器之间的距离在5米以内。
(3)红外接收器的灵敏度调整得当。
五、实验结论1. 红外警报技术具有成本低、安装方便、反应速度快等优点,适用于各种场景的警报需求。
2. 通过实验验证,红外警报系统在正常使用条件下能够可靠地发出警报。
3. 在实际应用中,应根据具体场景调整红外发射器和红外接收器的安装位置和灵敏度,以提高警报系统的性能。
六、实验心得1. 通过本次实验,我对红外警报技术有了更深入的了解,掌握了红外警报系统的安装、调试和操作方法。
2. 实验过程中,我学会了如何分析实验结果,发现问题并及时调整,提高了自己的实验技能。
热释电红外线报警系统测试报告
基于《AT89S52的家庭防盗报警器》的设计摘要家庭防盗报警器,采用MCU微控制器。
AM ,ROM,CPU构成,定时,计数和多种接口于一体的微控制器。
它体积小,成本低,功能强,广泛应用于智能产业和工业自动化上。
而51系列单片机是各单片机中最为典型和最有代表性的一种。
该设计由控制器,显示系统,传感器,电源等,四大部分组成。
控制器采用目前以应用非常成熟的AT8S52单片机作为控制核心器件,显示系统采用以为数码管显示,传感器是热释电红外线传感器,和集成稳压电源。
关键字:报警系统,数码管显示,热释电红外线传感器,集成运放引言目前,智能化小区建设在全国范围内迅速开展起来,利用现代科技力量,为小区居民住户提供保安、生活、消费、信息等多种服务,提供一个安全、舒适的生活环境,已经被众多房地产开发商所认识。
在激烈的房地产市场中,加大小区住宅科技含量,建设适用的“智能化”小区,满足新形势下市场要求,已经成为房地产建设中一道亮丽的风景线,成为房地产销售中新的卖点。
在顺应时代的脚步中,我们设计的家庭报警器应运而生,目前市场上已有无数的报警器,能适应各种环境,通过市场调查,我们发现市场上很多报警器都存在诸多不足,我们在综合市场的情况和确定消费人群的情况只下,制定了该的家庭报警器,本系统能够实现精准报警,准确率高达99.5%,并且价格便宜,适应各类消费人群。
该系统采用AT89S52单片机作为核心控制器件,能够有效的减少外围电路,实现小型化,传感器采用D203S热释电红外线传感器,属于非接触式传感器,能够很好的隐蔽。
该系统采用MCU微控制器和热释电红外线传感器具有很好的发展前景和开发价值。
一.系统设计1.1方案比较1.2.1显示模块方案一:采用点阵式液晶显示器(LCD)显示。
虽然其功能强大,可显示各种字体的数字、汉字,图像,还可以自定义显示内容,但是编程复杂,需要完成大量的显示工作。
方案二:采用发光二极管(LED)显示。
虽只能显示非常有限的符号和数码字,但可完全满足本设计数字显示的要求,且编程简单,价格便宜。
热释电人体红外报警器设计开题报告
本科毕业设计(论文)开题报告题目单片机红外热释电家庭防盗报警器的设计学院专业学生姓名学生学号指导教师二零一二年三月毕业设计开题报告一、论文选题的目的和意义红外线防盗报警器是当前使用比较普遍的报警器之一,它以其灵敏度高、价格实惠,受到了广大用户的欢迎。
但是使用每一种红外线传感器都有其不足之处,如抗干扰能力弱、误报漏报现象严重等,可靠性不够高。
目前市面上装备主要有压力触发式防盗报警器、开关电子防盗报警器和压力遮光触发式防盗报警器等各种报警器,但这几种比较常见的报警器都存在一些缺点[5,6]。
本课题基于单片机设计一种简易的红外报警器。
此热释红外报警器安装在禁区,根据检测人体自身的热量,检测到有人时,自动发出报警信息,并且能够自动或手动取消报警。
设计的系统采用了热释电红外传感器,它的制作简单、成本低,安装比较方便,而且防盗性能比较稳定,抗干扰能力强、灵敏度高、安全可靠。
这种防盗器安装隐蔽,不易被盗贼发现。
同时它的信号经过单片机系统处理后方便和PC机通信,便于时时更新报警的设置[7,8]。
二、国内外的发展状况1800年英国物理学家F·W·赫胥尔从热的观点来研究各种色光时,发现了红外线。
开始了人类历史上红外技术的研究,从此红外技术的发展应用不断走向成熟。
红外线的波长在0.76-100 um之间,按波长范围可分为近红外、中红外、远红外、极远红外四类,它在电磁波连续频谱中的位置处于无线电波与可见光之间的区域。
红外技术最初的发展应用是红外光谱仪,随着红外探测材料技术的发展应用,红外技术目前已广泛应用于环境监测、分子类型和结构判定、石油勘探与分析、地质矿物的籀定、质量检测、交通运输、安全报警、医疗保健等一系列领域。
其方法和原理目益成熟,各类红外器件层出不穷,仪器的精度也不断地提高。
虽然早在19世纪就有了红外探测器,而且在第一次世界大战期间红外探测器已用于军事目的,但只是到了第二次世界大战期间有了PbS探测器以后,红外探测器技术才受到了人们广泛的重视并得到了迅速的发展。
热释电人体感应红外报警器设计制作2
3.1制作过程
(略)
3.2硬件调试及调试中遇到的问题
第一步为目测,单片机应用系统电路全部手工焊接在洞洞板上,因此对每一个焊点都要进行仔细的检查。检查它是否有虚焊、是否有毛剌等。
第二步为万用表测试,先用万用表复核目测中认为可疑的连线或接点,查看它们的通断状态是否与设计规定相符,再检查各种电源线与地线之间是否有短路现象。
--
输出延迟时间Tx的调节端
4
RC1
--
输出延迟时间Tx的调节端
5
RC2
--
触发封锁时间Ti的调节端
6
RR2
--
触发封锁时间Ti的调节端
7
VSS
--
工作电源负端,一般接0V
8
VRF
I
参考电压及复位输入端。通常接VCC,当接“0”时可使定时器复位
9
VC
I
触发禁止端。当Vc>VR时允许触发(VR≈0.2VDD)
2.3.3按键控制电路
本电路的设计就是为了控制电路中布防和紧急状态下不同的工作形式,当按下布防按键后, 5秒后进入监控状态,当有人靠近时,热释红外感应到信号,传回给单片机,单片机马上进行报警。当遇到特殊紧急情况时,可按下紧急报警键,蜂鸣器进行报警。如图3-8所示。
图3-8按键部分
2.3.4指示灯和报警电路
二、技术方案的详细设计(实施
2.1本系统的设计方案
系统设计简介
本系统采用了热释电红外线传感器,它的制作简单、成本低,安装比较方便,而且防盗性能比较稳定、抗干扰能力强、灵敏度高、安全可靠。这种防盗器安装隐蔽,不易被盗贼发现,便于多用户统一管理和用户操作。
为了探测移动人体,通常使用双元件型热释电红外线传感器,在这种传感器内部,两个灵敏元件反相连接,当人体静止时两元件极化程度相同,互相抵消。但人体移动时,两元件极化程度不同,净输出电压不为0,从而达到了探测移动人体的目的。
热释电红外报警器课程设计报告.
学号11780113实习报告(生产实习)起止日期:2014 年 6 月16 日至2014 年7 月11 日学生姓名罗燊杰班级11电信科1班成绩指导教师(签字)计算机与信息工程学院2014年7 月11 日天津城建大学生产实习任务书2013—2014学年第2学期设计题目:热释电传感器报警系统设计完成期限:自2014 年 6 月23 日至2014 年7 月 3 日共 2 周设计依据、要求及主要内容:一.实习的目的1.进一步熟悉和掌握单片机系统设计和编程原理。
2.掌握单片机的接口技术及相关外围芯片的外特性、控制方法。
3.通过设计,掌握以单片机核心的电路设计的基本方法和技术。
4.通过实际程序设计和调试,掌握模块化程序设计方法和调试技术。
5.通过完成一个包括电路设计和程序开发的完整过程,了解开发单片机应用系统的全过程,为今后从事相应开发打下基础。
二.实习的基本要求1.认真认识设计的意义,掌握设计工作程序,学会使用工具书和技术参考资料,并培养科学的设计思想和良好的设计作风。
2.提高模型建立和设计能力,学会应用相关设计资料进行设计计算的方法。
3.提高独立分析、解决问题的能力,逐步增强实际应用训练。
4.设计的说明书要求简洁、通顺,电路图内容完整、清楚、规范。
三.实习主要内容a) 设计实现功能STC12C5A60S2(引脚排序及基本功能同AT89S51)作为主控芯片,设计利用热释电红外传感器HC-SR501作为信息采集器的报警通信系统,系统要求:每次有人经过传感器,则单片机向上位机发出报警信息,驱动上位机发出蜂鸣报警及继电器动作。
b) 原理图设计1.原理图设计要符合项目的工作原理,连线要正确。
2.图中所使用的元器件要合理选用,电阻、电容等器件的参数要正确标明。
3.原理图要完整,CPU、外围器件、外扩接口、输入/输出装置要一应俱全。
c) 程序调计1.根据要求,将总体功能分解成若干个子功能模块,每个功能模块完成一个特定的功能。
热释电传感器报警器设计--模电课设报告
摘要随着近几年我国电子技术的不断发展,许多原先的高端电子产品也逐渐步入人们的生活。
现在低廉的价格热释电红外传感器得到了很大的普及。
原本用于感应门的热释电红外传感器也进入了人们的生活安全保障中。
本次实验模拟设计了热释电传感器报警器。
由于热释电传感器专业芯片无法购得,故采用热敏电阻替代。
热敏电阻感受到的温度越高其电阻越小,光敏电阻感受到了光亮越少电阻越大。
在设计的电路中通过分压使热敏电阻阻值小到一定程度,光敏电阻阻值大到一定程度时,都往CD4011与非门芯片输入高电平,此时CD4011芯片输出低电平触发555定时器,使输出一个高电平,点亮LED灯。
经过分析,准备,调试后,本次的电路设计达到了课程设计的要求。
关键字:热敏、光敏、报警、555目录第一章系统组成及工作原理 (1)1.1 热释电传感器报警器设计要求: (1)1.2 系统设计方案选择 (1)1.2.1方案一: (1)1.2.2方案二 (2)第二章电路设计 (3)2.1光敏电路 (3)2.2热敏电路 (3)2.3与非门电路 (4)2.4 NE555单稳态延时电路 (4)2.5 报警电路 (5)第四章实验调试 (8)第五章结论 (9)参考文献 (10)附录一元件清单 (11)第一章系统组成及工作原理1.1 热释电传感器报警器设计要求(1)可实现非法入侵报警;(2)使用光敏电阻控制,白天不报警,晚上自动开始工作;(3)当有人靠近时报警,热释电传感器报警,没有人靠近时不报警1.2 系统设计方案选择1.2.1方案一:热释电传感器传感器报警电路主要由信号探测电路、开关电路、信号控制电路和报警电路等几部分组成。
其系统框图如图1.2.1所示。
图1.2.1 系统框图该方案使用热释电传感器作热控,当有人经过时,其可视为一1mV,1Hz 的小电源,经过二级放大及二极管得到一低电平触发555电路使LED发光,但在调试中发现在没有专业芯片过滤放大的情况下,热释电传感器受干扰严重,且无法达到放大效果,故弃置不用。
热释电红外报警器
Page 28
项目:热释电红外报警器
开始
4.
应
用
系统初始化
主
电
程
子
序
技
检测外部有
工
术
无信号输入
N
作
专
Y
流
业
启动声光报警电路开始报警
程
教
图
学
资
声光报警是
源
否持续10秒
N
库
Y
声光报警结束
Y
是否还有检测
信号等待下次
报警 N
结束
Page 29
5.Proteus仿真图 应 用 电 子 技 术 专 业 教 学 资 源 库
双源很难产生信号输出。
Page 13
项目:热释电红外报警器
应
用
电
子
技
术
专
业
教 学
径向移动反应最不敏感,
资 源
而对于横切方向 (即与半径垂直的方向)移
库 动则最为敏感.
在现场选择合适的安装位置是避免红 外探头误报、求得最佳检测灵敏度极为重 要的一环。
Page 14
重要概念
项目:热释电红外报警器
应 在该探测技术中,所谓“被动”是指探测
技
术 专
个明区和暗区,使进入探测区域的
业 教
移动物体能以温度变化的形式在PIR
学
资 源
上产生变化的热释红外信号。
库
Page 23
项目:热释电红外报警器
菲涅尔镜片的原理和应用
应 用
下图是常用三区多段镜片区段划分、垂直和平
电 子
面感应图。
技
术
专
热释电红外感应报警器
设计要求:
本设计要求利用热释电红外线传感器和光敏传感器设计制 作一套防盗报警系统,使之适用于家庭、商场、仓库的夜 晚自动值守防盗保护。经过分析,有如下要求: (1)可实现非法入侵报警; (2)使用光敏电阻控制,白天不报警,晚上自动开始工作; (3)当有人靠近时热释电传感器报警,无人靠近时不报警。
工作框图:
总电路图:
课程设计总结:
通过这个课程设计,让我了解到对于自己学过的知识需要学以致用,不能只是背书本上的知识, 在实践的时候要能真正的用在需要的地方。同时我也发现只是这样的学习如果不去加以利用是 不能熟练掌握精髓的,对于自己不知道的,要用合理的方式去学习到自己的脑,需要很多信号处理的知识。本次设计中需要将传感器输出的信号中包含的 50Hz工频干扰和低频噪声滤除,以防止这些信号干扰报警电路动作。因此,进过查阅资料,选 择了低通滤波器,它能将高于截止频率的信号有效的滤除,经过多次实验确定参数和仿真,本 次设计的滤波器可以满足要求的精度。说到光敏电阻,经过与老师交流和网上查阅资料,得到 了光敏电阻的正确用法,用它来控制电路在不同时间的开启与关闭,实现了电路的自动化控制、 运行。根据设计要求,本次需要用大功率报警器,因此选用了220V集成式的声光报警器,能够 有效将报警信号发出,另外还加入了手动报警开关以防止突发的意外情况。在设计过程中需要 考虑很多实际应用中的问题,因此需要全面考虑。
热释电红外感应报警器
学生:樊志宇 导师:李斌
设计原理:
热释电红外传感器是一种非常有应用潜力的传感器。它能检测人或某些动物发射的红外线并转换成电 信号输出。早在1938年,有人就提出利用热释电效应探测红外辐射,但并未受到重视。直到六十年代, 随着激光、红外技术的迅速发展,才又推动了对热释电效应的研究和对热释电晶体的应用开发。近年 来,伴随着集成电路技术的飞速发展,以及对该传感器的特性的深入研究,相关的专用集成电路处理 技术也迅速增长。 目前国内、外使用的各类防盗、安保报警器大多采用的是以超声波、主动式红外发射/接收以及微波等 技术为基础。它们均采用的是监测接收到的经反射回来的信号有无异常来判断有无入侵者。识别效率 低,容易误报警,而热释电红外传感器(简称PIR)是80年代发展起来的一种新型高灵敏度探测元件。它 能以非接触形式检测出人体辐射的红外线能量的变化,并将其转换成电压信号输出。将这个电压信号 加以放大,便可驱动各种控制电路,如作电源开关控制、防盗防火报警、自动览测等。 热释电红外传感器主要是由一种高热电系数的材料,如锆钛酸铅系陶瓷、钽酸锂、硫酸三甘钛等制成 尺寸为2*1mm的探测元件。在每个探测器内装入一个或两个探测元件,并将两个探测元件以反极性串联, 以抑制由于自身温度升高而产生的干扰。由探测元件将探测并接收到的红外辐射转变成微弱的电压信 号,经装在探头内的场效应管放大后向外输出。为了提高探测器的探测灵敏度以增大探测距离,一般 在探测器的前方装设一个菲涅尔透镜,该透镜用透明塑料制成,将透镜的上、下两部分各分成若干等 份,制成一种具有特殊光学系统的透镜,它和放大电路相配合,可将信号放大70分贝以上,这样就可 以测出10~20米范围内人的行动。
热释电红外报警器88888
3.3.3.数码管显示电路
图8数码管显示电路
数码管LED1(A-G)与CPU的P0.0-P0.6口一一对应
数码管LED2(A-G)与CPU的P2.7-P2.1口一一对应
因为本次用的数码管比较少,所以直接用三极管驱动,并且接口直接接到I/O上,利用多余的口来实现数码管的显示。
3.3.4.功放电路
uchar code table1[]={0x9f,0x25,0x0d,0x99,0x03};
sbit L0=P1^0;
sbit L1=P1^1;
sbit L2=P1^2;
sbit L3=P1^3;
sbit buz=P1^4;
sbit key=P3^0;
2.延时程序
void delay500(uint p)//延时500us
本学期我们学习了单片机原理及应用这门课程。在此基础之上我们又开展了关于单片机的课程设计,我们小组设计的是基于单片机控制的红外热释电报警系统。基于对课题的理解,本次设计要求我们完成一个基于单片机控制的红外热释电报警的完整系统,即当有人闯入时,热释电便会采集到红外信号,并对信号进行放大,然后通过调理电路,有LED亮对信号输入进行提示并将其转化为适合单片机处理的低电平;通过单片机的处理,判断当某一路有信号输入时,相应的LED数码管会显示房间号同时启动报警器,以实现报警的效果。
图2
图3
图4
具体方案设计:
系统总体设计图如图5所示,整个系统是在系统软件控制下工作的。设置在监测点上的红外探头将辐射的红外光谱变换成脉冲电信号,经过调理电路,送出TTL电平至电平转换电路,转换后的信号送AT89C52单片机。在单片机内,经软件查询及识别判决等环节实时发出人侵报警状态控制信号。驱动电路将控制信号放大并推动功放报警设备完成相应动作。若是检测到有人走动的情况,就会产生报警信号,持续5秒,要是偶尔有人路过,持续五秒后自动停止,要是一直有人在走动,则报警器会一直持续响,直到监控人员通过按键手动解除,并通数码管显示报警位置而且在上位机中显示。鉴于本次试验仅仅是实验,所以并没有做的更复杂,及多增加传感器模块和电平转换模块,本实验只用了两个传感器模块和电平转换模块已实现更多的功能,如果需要可以继续增加,灵活性较高。
红外线防盗报警器设计报告
《电子技术综合设计》设计报告设计题目:红外线防盗报警器组长姓名:宋树森学号: 04131405 专业与班级:信电学院信息13-4班姓名:伍勇学号: 04131409 专业与班级:信电学院信息13-4班时间: 2015 ~ 2016 学年第(1)学期指导教师:袁小平成绩:日期: 2016-1-2红外防盗报警器成员:伍勇宋树森专业班级:信息13-4班一、设计要求(1)该设计包括硬件和软件设计两个部分。
模块划分为数据采集、键盘控制、报警等模块子函数。
(2)本红外线防盗报警系统由热释电红外传感器、报警器、单片机控制电路、LED 控制电路及相关的控制管理软件组成。
用户终端完成信息采集、处理、数据传送、功能设定、本地报警等功能。
终端由中央处理器、输入模块、输出模块、通信模块、功能设定模块等部分组成。
(3)系统可实现功能。
当人员外出时,可把报警系统设置在外出布防状态,探测器工作起来,当有人闯入时,热释电红外传感器将探测到动作,设置在监测点上的红外探头将人体辐射的红外光谱变换成电信号,经放大电路、比较电路送至门限开关,打开门限阀门送出TTL 电平至AT89C51单片机,经单片机处理运算后驱动执行报警电路使警号发声。
二、方案设计2.1 总体设计思路方案一:利用模拟电子电路构成被动红外线报警器。
系统主要有红外线传感器,信号放大电路,电压比较器,开机延时,音响报警延时和12V电源组成。
被动红外线感应报警器的红外感应源采用热释电原件,这种元件在接收到人体红外线辐射温度发生变化时就会失去电荷平衡,向外释放电荷,后续电路经检测处理后就能产生报警信号。
方案二:利用模拟构成主动红外线入侵报警器。
主要由发射机和接收机组成,发射机是由电源,发光源和化学系统组成。
接收机是由光学系统,光感传感器,放大器,信号处理器等组成。
主动红外线报警器是当有人侵入该警戒时,红外线束被遮挡,接收机收到的红外线信号发生变化,提取这一变化,经放大和适当处理,控制器发出的报警信号。
热释电红外传感器探测实验报告
本文旨在介绍热释电红外传感器的检测实验,详述热释电红外传感器检测实验的相关知识,并就实验过程中可能出现的问题提出解决方案。
一、热释电红外传感器检测实验简介热释电红外传感器检测实验是一项检测热释电红外传感器功能的实验,它利用热释电红外传感器检测热释电红外传感器的范围、灵敏度和响应时间等参数,以及在不同温度下的输出特性。
二、热释电红外传感器检测实验原理热释电红外传感器检测实验的原理是利用热释电红外传感器的变化特性,它的输出电压与温度成反比。
当温度上升时,热释电红外传感器的输出电压就会下降,反之亦然。
热释电红外传感器检测实验能够测量从一定温度到另一定温度的变化,从而确定热释电红外传感器的范围、灵敏度和响应时间等参数。
三、热释电红外传感器检测实验过程1.实验前准备:(1)校准测温仪,使其精度能达到0.1℃;(2)准备温度控制器,通过调节温度控制器来控制热释电红外传感器的温度;(3)准备热释电红外传感器,使其能够正确接入温度控制器和测温仪;(4)准备电路,使其能够正确接入热释电红外传感器,并使电路能够正确地控制热释电红外传感器的输出。
2.实验过程:(1)在温度控制器上设定起始温度,然后使用测温仪检测热释电红外传感器的输出;(2)调节温度控制器,使热释电红外传感器输出的温度持续升高,并在每个温度点记录热释电红外传感器的输出值;(3)实验结束时,对所收集的数据进行处理,以确定热释电红外传感器的范围、灵敏度和响应时间等参数。
四、热释电红外传感器检测实验可能出现的问题及解决方案(1)测温仪精度不足:可以通过校准测温仪来提高精度;(2)温度控制器不准确:可以通过调整温度控制器的设置,以确保温度的准确性;(3)热释电红外传感器的输出受干扰:可以通过屏蔽电磁波等外界因素,以确保热释电红外传感器的输出准确。
五、结论热释电红外传感器检测实验是一项重要的技术检测,它可以帮助我们了解热释电红外传感器的功能特性,从而为后续的应用提供参考。
红外光电报警器实训报告
一、实训目的通过本次实训,使学生了解红外光电报警器的基本原理、工作流程和安装方法,掌握红外光电报警器的调试与维护技巧,提高学生对红外光电报警器实际应用能力的培养。
二、实训内容1. 红外光电报警器原理及分类2. 红外光电报警器结构及组成3. 红外光电报警器安装与调试4. 红外光电报警器故障分析与处理三、实训过程1. 红外光电报警器原理及分类红外光电报警器是一种利用红外线进行探测的报警设备,主要分为主动红外报警器和被动红外报警器两种。
(1)主动红外报警器:由发射机和接收机组成。
发射机发射一束红外光,当红外光遇到障碍物时,部分光线会被反射回来,接收机接收反射回来的红外光,当红外光强度发生变化时,报警器发出警报。
(2)被动红外报警器:利用热释电红外传感器检测人体发出的红外线,当人体进入报警区域时,红外传感器检测到红外线强度发生变化,报警器发出警报。
2. 红外光电报警器结构及组成红外光电报警器主要由以下几部分组成:(1)红外发射器:发射红外光,一般采用红外发光二极管。
(2)红外接收器:接收红外光,一般采用光敏二极管或光敏三极管。
(3)报警控制器:对红外光信号进行处理,当检测到异常信号时,发出警报。
(4)电源:为报警器提供工作电压。
3. 红外光电报警器安装与调试(1)安装:根据实际需求,选择合适的安装位置,将红外发射器和接收器固定在对应位置。
注意,红外发射器和接收器之间的距离不宜过远,以免影响探测效果。
(2)调试:将报警器接入电源,打开报警器,调整红外发射器和接收器的角度,使它们之间的红外光束对准。
调整报警器的灵敏度,确保在正常情况下,报警器不会误报,在有人进入报警区域时,能够及时发出警报。
4. 红外光电报警器故障分析与处理(1)故障现象:报警器无法正常工作。
故障原因及处理方法:1)电源故障:检查电源是否正常接入,如电源电压不稳定,更换电源。
2)红外发射器或接收器损坏:检查红外发射器或接收器是否损坏,如损坏,更换新的红外发射器或接收器。
红外人体报警器设计报告
红外人体报警器设计报告一、课题意义随着社会的发展,科学技术的进步和安全防范意识的增强,人们越来越注重自身所处的环境是否安全。
当家中无人或者仅有老人孩子在家时,必须考虑家庭成员生命和财产的绝对安全。
目前,许多住宅小区的安防主要依靠安装防盗窗、防盗门以及人工防范。
这样不仅有碍美观,不符合防火的要求,而且不能有效地防止坏人的侵入。
关于电子防盗报警设备,目前市面上主要有压力触发式防盗报警器、开关电子防盗报警器和压力遮光触发式防盗报警器等,但这几种比较常见的报警器都存在一些缺陷。
本课题研究一种热释电人体红外报警器,它制作简单、成本低,安装比较方便,而且防盗性能比较稳定,抗干扰能力强、灵敏度高、安全可靠。
这种防盗器安装隐蔽,不易被盗贼发现,具有较高的应用价值。
二、热释电效应原理热释电传感器是一种将热量变化转换为电量变化的能量转换器件。
因红外线具有很强的热效应,当交互变化的红外线照射到晶体表面时,晶体温度迅速变化,这时会发生电荷的变化,从而形成一个明显的外电场,这种现象称为热释电效应。
热释电红外传感器内部的热释电晶体的极化,随着温度的变化而变化。
当恒定的红外辐射照射在探测器探头上时,热释电晶体温度不变,晶体对外呈电中性,探测器没有电信号输出,因而恒定的红外辐射不能被检测到。
另外热释电晶体输出的是电信号,不能直接使用,需要用电阻将其转换为电压形式,该电阻阻抗高达104M欧,故引入N 沟道结型场效应管接成共漏形式来完成阻抗变换。
热释电红外线元件是一种典型的热量传感器,常用红外光发射能量作为整个防盗报警装置中检测入侵者及其活动的手段。
三、被动式热释电传感器防盗报警工作原理热释电人体红外线传感器是上世纪80年代末期出现的一种新型传感器件,现在电子防盗报警设备研制中已得到广泛的应用。
通常我们采用的热释电传感器防盗报警电路,是利用该电路检测到有人进入防范区时通过能量变化导致产生电信号,最终电声报警。
其工作原理如下:一般人体体温是37℃,所以会发出波长10um左右的红外线,被动式红外传感器探头就是靠探测人体发射的10um 左右的红外线进行工作的。
热释电红外报警实验
热释电红外报警实验一、实验目的了解热释电红外传感器的工作原理及热释电效应,了解热释电红外报警器的的电路设计方法和调试,掌握热释电红外传感器的使用。
二、实验原理1、热释电效应原理当已极化的热电晶体薄片受到辐射热时候,薄片温度升高,极化强度p下降,表面电荷减少,相当于“释放”一部s分电荷,所以起名叫热释电。
释放的电荷通过一系列的放大,转化成输出电压。
如果继续照射,晶体薄片的温度升高到Tc(居里温度)值时,自发极化突然消失。
不再释放电荷,输出信号为零, 热释电效应原理如图1-11所示。
1-11热释电效应因此,热释电探测器只能探测交流的斩波式的辐射(红外光辐射要有变化量)。
当面积为A的热释电晶体受到调制加热,而使其温度T发生微小变化时,就有热释电电流。
dt dTAP i ,A 为面积,P 为热电体材料热释电系数,dtdT 是温度的变化率。
2、热释电红外报警实验原理热释电红外报警电路,由传感器、检测放大电路、比较输出电路、驱动延时电路、继电器等组成,实验原理图如图1-12所示。
传感器及放大滤波部分:D 为电压输入端,允许输入电压1-15V 。
S 为信号输出端,与后级电路连接。
G 为接地端。
因其输出形式为电压信号且非常微弱,故需要进行阻抗变换和信号放大。
R2作为热释电传感器的负载,通过C2耦合到前级放大器A1,A1的增益为27倍,且由C4,R6组成了滤波网络对采集信号进行放大滤波。
同理A2组成一个低通反馈放大器,增益150倍。
经此两极放大滤波后信号被放大到4000倍以上。
其中R1,C1为退耦电路,R3,R5为偏置电路。
A1输出后的信号经C5耦合到后级放大器A2,A2在静态输出时约为4.5V 。
C3,C9为退耦电容。
比较输出部分:A3组成比较电路,当无报警信号输入时,其反向端电压大于同向端电压,比较器输出负电压,不能驱动后级电路产生报警信号,当有人入侵,有报警信号产生,比较器翻转输出正电压,驱动后级电路报警。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程设计说明书(2010/2011学年第二学期)课程名称:单片机原理题目:红外热释电报警系统设计专业班级:学生:学号:指导教师:设计周数: 2周设计成绩:2011年 6 月 15日目录一课题概述 (2)二设计目的 (2)三设计正文3.1 系统分析 (3)3.2 设计方案 (3)3.3 硬件模块设计3.3.1.热释电传感器 (8)3.3.2.电平转换电路 (9)3.3.3.数码管显示电路 (10)3.3.4.功放电路 (10)3.3.5.串口电路 (11)3.4软件设计3.4.1程序设计思想 (12)3.4.2重要程序设计 (13)四课程设计总结 (17)一、课题概述目前,随着科技的不断进步,电子技术的快速发展,人们的生活水平得到了很大的改善,、手机、空调等高科技产品的使用越来越成为家庭生活的主旋律。
但是,除了环境因素外,科学技术的发展也给人们的生活、财产带来不安定因素,利用社会进步创造出来的技术产品达到个人犯罪目的的事情时有发生。
这就为监控设备在居家安全、政府文件等领域的研究提供了必要的前提,当然,纯粹用于自然环境所带来的一些必要的监控处理方面的设计也是很广泛的。
如何进行安全监控成了一个热点。
本学期我们学习了单片机原理及应用这门课程。
在此基础之上我们又开展了关于单片机的课程设计,我们小组设计的是基于单片机控制的红外热释电报警系统。
基于对课题的理解,本次设计要求我们完成一个基于单片机控制的红外热释电报警的完整系统,即当有人闯入时,热释电便会采集到红外信号,并对信号进行放大,然后通过调理电路,有LED亮对信号输入进行提示并将其转化为适合单片机处理的低电平;通过单片机的处理,判断当某一路有信号输入时,相应的LED数码管会显示房间号同时启动报警器,以实现报警的效果。
二、设计目的理论学习固然重要,但仅仅止于纸上谈兵是没有意义的,只有实践才是检验真理的唯一标准。
因此为了进一步深入地学习单片机技术,将实践动手能力与课堂上学习的理论知识有机的结合起来,从而开展了此次单片机的课程设计。
我们小组设计的课题为基于单片机控制的红外热释电报警系统。
这从硬件和软件两个方面锻炼了我们的实际动手能力和编程能力,目的是为了考查:1.能够读懂并分析技术资料2.巩固、加深和扩大单片机应用的知识面,提高综合及灵活运用所学知识解决实际应用的能力3.了解红外热释电传感器的组成及其工作原理4.如何将采集到的信号送入单片机处理5.定时程序、延时程序、显示程序、功放、循环、串口程序的编写6.学会设计热释电红外报警系统的电路7.学会课题设计方案的分析、选择、比较、熟悉单片机用系统开发、研制的过程,软硬件设计的方法、容及步骤。
三、热释电红外报警系统的设计3.1 系统分析本系统是由红外热释电传感器模块、电平转换模块、显示模块、串口模块、报警模块五部分组成。
热释电红外探测器探测人体的红外辐射信号,经过调理电路,将人体的移动信号转为电信号输入到单片机中,电平转换模块则是对电平信号进行处理,使其能够适合单片机读取信号。
通过单片机查询后驱动报警电路并且在数码管和上位机上显示从而达到报警的目的。
系统框图如图1:图1 系统框图3.2 设计方案本系统根据上面框图共设计了三套方案,第一套方案如图2,在刚接到设计题目和要求的时候,通过查找相关的资料,设计出第一套方案。
第二套方案如图3,第二套方案是在拿到单片机试验板以后设计出来的简单的实现电路。
第三套方案(如图4)是在第二套方案的基础上进行了进一步的改进,使其更加合理化。
三种方案的比较:第一种方案是这样设计的,传感器在检测到人体移动信号以后,产生相应的电压脉冲信号,通过后边对电压信号的两次放大,窗口比较以后,使电压脉冲信号转换成TTL电平,然后通过单片机的查询来实现相应的现实报警操作。
第二种方案是在拿到实验板和热释电传感器模块后设计的,因为热释电模块中含有了脉冲到TTL电平转换的电路,所以可以精简了这部分。
第三种方案,除了第二种方案的功能以外,需要根据报警的方向和位置使数码管循环显示,而且需要灵活增加相应的模块和上位机显示一样,所以选取两个数码管,并且采用暂停按键模式。
使系统更加的人性化,合理化。
所以最后选择了第三种方案。
图2图 3图 4具体方案设计:系统总体设计图如图5所示,整个系统是在系统软件控制下工作的。
设置在监测点上的红外探头将辐射的红外光谱变换成脉冲电信号,经过调理电路,送出TTL电平至电平转换电路,转换后的信号送AT89C52单片机。
在单片机,经软件查询及识别判决等环节实时发出人侵报警状态控制信号。
驱动电路将控制信号放大并推动功放报警设备完成相应动作。
若是检测到有人走动的情况,就会产生报警信号,持续5秒,要是偶尔有人路过,持续五秒后自动停止,要是一直有人在走动,则报警器会一直持续响,直到监控人员通过按键手动解除,并通数码管显示报警位置而且在上位机中显示。
鉴于本次试验仅仅是实验,所以并没有做的更复杂,及多增加传感器模块和电平转换模块,本实验只用了两个传感器模块和电平转换模块已实现更多的功能,如果需要可以继续增加,灵活性较高。
如图5所示,是本次设计的系统框图,亦即红外热释电报警系统的这个工作流程图图 53.3 硬件模块设计3.3.1.热释电传感器热释电红外传感器的部的热电元由高热电系数的铁钛酸铅汞瓷以及钽酸锂、硫酸三甘铁等配合滤光镜片窗口组成,其极化随温度的变化而变化。
为了抑制因自身温度变化而产生的干扰该传感器在工艺上将两个特征一致的热电元反向串联或接成差动平衡电路方式,因而能以非接触式检测出物体放出的红外线能量变化并将其转换为电信号输出。
热释电红外传感器在结构上引入场效应管的目的在于完成阻抗变换。
由于热电元输出的是电荷信号,并不能直接使用因而需要用电阻将其转换为电压形式该电阻阻抗高达104MΩ,故引入的N沟道结型场效应管应接成共漏形式,源极跟随器来完成阻抗变换。
热释电红外传感器由传感探测元、干涉滤光片和场效应管匹配器三部分组成。
设计时应将高热电材料制成一定厚度的薄片并在它的两面镀上金属电极,然后加电对其进行极化,这样便制成了热释电探测元。
由于加电极化的电压是有极性的,因此极化后的探测元也是有正、负极性的。
图3是一个双探测元热释电红外传感器的结构示意图。
使用时漏极接电源正极,源极为信号输出。
该传感器将两个极性相反、特性一致的探测元串接在一起,目的是消除因环境和自身变化引起的干扰。
它利用两个极性相反、大小相等的干扰信号在部相互抵消的原理来使传感器得到补偿。
对于辐射至传感器的红外辐射,热释电传感器通过安装在传感器前面的菲涅尔透镜将其聚焦后加至两个探测元上,从而使传感器输出电压信号。
制造热释电红外探测元的高热电材料是一种广谱材料,它的探测波长围为0.2~20μm。
为了对某一波长围的红外辐射有较高的敏感度,该传感器在窗口上加装了一块干涉滤波片。
这种滤波片除了允许某些波长围的红外辐射通过外,还能将灯光、和其它红外辐射拒之门外。
它由瓷氧化物或压电晶体元件组成,元件两个表面做成电极,当传感器监测围温度有ΔT的变化时,热释电效应会在两个电极上会产生电荷ΔQ,即在两电极之间产生一微弱电压ΔV。
由于它的输出阻抗极高,所以传感器中有一个场效应管进行阻抗变换。
热释电效应所产生的电荷ΔQ会跟空气中的离子所结合而消失,当环境温度稳定不变时,ΔT=0,传感器无输出。
当人体进入检测区时,因人体温度与环境温度有差别,产生ΔT,则有信号输出;若人体进入检测区后不动,则温度没有变化,传感器也没有输出,所以这种传感器能检测人体或者动物的活动传感器主要有外壳、滤光片、热释电元件PZT、场效应管FET等组成。
图 6 热释红外传感器人体都有恒定的体温,一般在37度左右,所以会发出波长约10WM左右的红外线,被动式红外探头就是靠探测人体发射的10WM左右的红外线而进行工作的。
人体发射的10WM左右的红外线通过菲涅尔滤光片增强后聚集到红外感应源上。
红外感应源通常采用热释电元件,这种元件在接收到人体红外辐射温度变化时就会失去电荷平衡,向外释放电荷,后续电路经检测处理后就能产生报警信号。
系统采用LN - 206P 热释电型红外温度传感器。
硅窗是探测器的窗口。
可使小于6μm 左右的辐射不能进入窗口,避免太或白炽灯及其反射光的干扰。
3.3.2.电平转换此电平转换电路是这样设计的,因为从传感器模块过来的信号为0V或3V,所以为了使单片机能够识别到人体移动带来的高电平,采取是电平做相反转换。
当有高电平通过基极的时候,高电平信号与三极管集电极的高电平抵消,从而产生需要的低电平,同理,当有低电平通过基极的时候,三极管的集电极输出为所需要的高电平。
图7 电平转换3.3.3.数码管显示电路图8 数码管显示电路数码管LED1(A-G)与CPU的P0.0-P0.6口一一对应数码管LED2(A-G)与CPU的P2.7-P2.1口一一对应因为本次用的数码管比较少,所以直接用三极管驱动,并且接口直接接到I/O上,利用多余的口来实现数码管的显示。
3.3.4.功放电路3脚输入端接10K电阻用来调节音量。
1,8脚之间接10uf的电解电容可以使放大倍数为200,电源端加一个滤波电容。
此电路为驱动喇叭发出想要的声音的驱动电路。
图9 功放电路3.3.5.串口电路串口电路是一个重要的部分,我们利用串口和PC机或其他微处理器进行通信。
RS-232规定的电平与一般微处理器的逻辑电平不一致,必须进行逻辑电平转换,所以用MAX232来完成这个工作,来满足与PC机的通信。
这里有两个发送和接受,我们只用了其中一个。
注意接收与发送和PC机的接法。
具体接法如图10所示.图10 3.4软件设计 3.4.1程序设计思想首先将子程序进行调试,将功放,串口,数码管显示,数据采集这几部分进行分别调试,将这几部分调试成功以后,再将这几部分进行整合,以得到最后的结果。
程序框图:总框图1 扬声器报警模块框图2检查信号 检查是否有电平变化? 数码管显示位置扬声器报警上位机显示 是否产生500hz 和1khz 交替变化的一个音频信号按键是否按下?暂停报警否是数码管显示框图3 串口发送框图43.4.2重要程序设计 1.初始化程序uchar code table[]={0xF9,0xA4,0xB0,0x99,0xC0};//显示位置 uchar code table1[]={0x9f,0x25,0x0d,0x99,0x03}; sbit L0=P1^0; sbit L1=P1^1; sbit L2=P1^2; sbit L3=P1^3; sbit buz=P1^4; sbit key=P3^0; 2.延时程序void delay500(uint p)//延时500us{unsigned char i;for(;p>0;p--){for(i=250;i>0;i--){_nop_;}}}3.扬声器程序void buz0(void) //响铃{uint k;if(key==0){ while(1){buz=0;}}else{for(k=0;k<200;k--){for(count=200;count>0;count--) {buz=~buz;delay500(1);}for(count=200;count>0;count--) {buz=~buz;delay500(1);delay500(1);}}}}4.串口程序void chuankou(uchar temp)//与上位机通信,波特率为1200bit/s { uchar table1[]={1,2,3,4};uchar m;//uchar temp=0;PCON=0x00;SCON=0x50;TMOD=0x20;TH1=0xE6;TL1=0xE6;TR1=1;for(m=0;m<2;m++){SBUF=table1[temp];while(TI==0);TI=0;}}5.主程序的重要部分程序void main(void){while(1){ P0=table[4];if(L0!=1){if((L0|L1)!=1){P2=table1[0];chuankou(0);buz0();P2=table1[1];chuankou(1);buz0();}else if((L0|L2)!=1) {P2=table1[0];chuankou(0);buz0();P2=table1[2];chuankou(2);buz0();}else if((L0|L3)!=1) {P2=table1[0];chuankou(0);buz0();P2=table1[3];chuankou(3);buz0();}else{P2=table1[0]; chuankou(0); buz0();}}else P2=table1[4];}. . . . . .}四、课程设计总结在这次课程设计的整个过程中,我们做了一次全面、较规的设计练习,全面地温习了以前所学过的知识,用理论联系实际并结合单片机原理课程和解决实际问题,巩固、加深和扩展了有关单片机设计方面的知识。