第三章 平衡方程及应用
第三章平面力系的合成与平衡
滑轮的受力图如图3.10(c)所示。
为了避免解联立方程,选直角坐标系如图所示,使x、 y轴分别与反力NBC、NAB垂直。
∑Fx=0,-NAB+Tcos60°-TBDcos30°=0 得 NAB=Tcos60°-TBDcos30°=-7.33kN NAB为负值,表示该力的实际指向与受力图中所假设 的指向相反。即杆AB受压力作用。再由
R Rx2 Ry2 ( Fx )2 ( Fy )2
tan Ry Fy
Rx
Fx
上式表明了合力在任一轴上的投影,等于各分 力在同一轴上投影的代数和。我们称之为合力投影 定理。
【例3.3】图3.7所示的吊环上作用有3个共面的拉力,各 力的大小分别是T1=3kN、T2=1kN、T3=1.5kN,方向如图
【解】绳AB作用于桩上的拉力是由绳BD传来的。因此先 取结点D为研究对象求出绳BD的拉力。
作用在结点D上的力有已知力F、绳DE的拉力TDE和 绳BD的拉力TDB,这三个力组成一平面汇交力系。结点D 的受力图如图3.11(b)所示。
选直角坐标系如图,使y轴与TDE垂直。列平衡方程
∑Fy=0,TDBsinα-Fcosα=0 得 TDB=Fcotα=4000N 再取结点B为研究对象。作用在结点B上的力有绳BC、 BD和BA的拉力TBC、TBD、TBA,绳BD给两结点D和B的 作用力应大小相等、方向相反,即有TBD=TDB=4000N。 力TBC、TBD、TBA组成一个平面汇交力系,结点B的受力 图如图3.11(c)所示。
3.1 平面汇交力系 3.1.1 力在坐标轴上的投影
设力F作用于物体的A点,如图3.4所示。
人教版(2019)高一物理必修一 第三章 专题三 共点力平衡的应用 课件(共41张PPT)
核心模型 考点对点练 核心能力提升练
核心模型 考点对点练
提升训练
对点训练
典型考点一 静态平衡问题 1.(多选)如图所示,质量为 m 的木块 A 放在质量为 M 的三角形斜面体 B 上,现用大小不相等、方向相反的水平力 F1、F2 分别推 A 和 B,它们均静 止不动,且 F1<F2,重力加速度为 g,则( )
解析
2. 如图所示,光滑斜面的倾角为 30°,轻绳通过两个滑轮与 A 相连,轻 绳的另一端固定于天花板上,不计轻绳与滑轮的摩擦。物块 A 的质量为 m, 不计滑轮的质量,挂上物块 B 后,当动滑轮两边轻绳的夹角为 90°时,A、 B 恰能保持静止,则物块 B 的质量为( )
2 A. 2 m
B. 2m
核心概念 规律再现
核心模型 考点对点练 核心能力提升练
解析
6.如图所示,硬杆 OA 可绕过 A 点且垂直于纸面的轴进行转动,不计钢 索 OB 和硬杆 OA 的重力,∠AOB 等于 30°,如果钢索 OB 的最大承受拉力 为 2.0×104 N,求:
(1)O 点悬挂物的最大重力; (2)杆 OA 对 O 点的最大支持力。 答案 (1)1.0×104 N (2)1.7×104 N
核心概念 规律再现
核心模型 考点对点练 核心能力提升练
A.A 受到四个力的作用 B.B 对 A 的摩擦力方向一定沿斜面向下 C.地面对 B 的摩擦力方向水平向右,大小为 F2-F1 D.地面对 B 的支持力大小一定等于(M+m)g
答案 CD
核心概念 规律再现
核心模型 考点对点练 核心能力提升练
答案
A.FOA 逐渐增大
C.FOB 逐渐增大 答案 B
B.FOA 逐渐减小 D.FOB 逐渐减小
建筑力学第三章 平面力系的平衡方程
③ FR≠' 0,MO =0,即简化为一个作用于简化中心的合力。这时, 简化结果就是合力(这个力系的合力), FR FR'。(此时
与简化中心有关,换个简化中心,主矩不为零)
重庆大学出版社
建筑力学
④ FR' ≠0,MO ≠0,为最任意的情况。此种情况还可以继续
重庆大学出版社
建筑力学
[例] 已知:Q=7.5kN, P=1.2kN , l=2.5m , a=2m , =30o , 求:
BC杆拉力和铰A处的支座反力?
解:(1)选AB梁为研究对象。
C
(2)画受力图
FAy
FBC
A
FAx
l/2 P
B Q
a
Байду номын сангаас
l
A
l/2 P
B Q
a
l
重庆大学出版社
建筑力学
(3)列平衡方程,求未知量。
静不定问题在材料力学,结构力学,弹性力学中 用变形协调条件来求解。
重庆大学出版社
建筑力学
物系平衡问题的特点: ①物体系统平衡,物系中每个单体也是平衡的。 ②每个单体可列3个(平面任意力系)平衡方程,整个系统
可列3n个方程(设物系中有n个物体)。
解物系问题的一般方法:
机构问题: 个体 个体
个体
“各个击破”
力系中各力对于同一点之矩的代数和。
重庆大学出版社
建筑力学
3.2平面力系的平衡方程及应用
FR=0, MO =0,力系平衡
FR =0 为力平衡
MO =0 为力偶也平衡 平面力系平衡的充要条件为:
理论力学第3章 力系的平衡条件与平衡方程
10
例题二的解答
解:选取研究对象:杆CE(带有销 钉D)以及滑轮、绳索、重物组成 的系统(小系统)受力分析如图, 列平衡方程:
M D (F ) 0 M C (F ) 0 M B (F ) 0
( F C cos ) CD F ( DE R ) PR 0 F Dx DC F ( CE R ) PR 0 F BD F ( DE R ) P ( DB R ) 0 Dy
2012年11月3日星期六
北京邮电大学自动化学院
29
滚动摩擦力偶的性质
滚动摩擦力偶M 具有如下性质(与滑动摩擦力性质类似): ◆ 其大小由平衡条件确定; ◆ 转向与滚动趋势相反; ◆ 当滚子处于将滚未滚的平衡临界状态时, M = M max =δFN
式中:δ —滚动摩擦系数,它的量纲为长度; FN —法向反力(一般由平衡条件确定)。
q (2a b) 2a
2
YA q (2a b)
16
2012年11月3日星期六
北京邮电大学自动化学院
课堂练习3
多跨静定梁由AB梁和BC梁用中间铰B连接而成,支撑和荷 载情况如图所示,已知P = 20kN,q=5kN⋅m,α = 45°。求 支座A、C的反力和中间铰B处的反力。
2012年11月3日星期六
x
xC
x
2012年11月3日星期六
北京邮电大学自动化学院
5
平行分布线载荷的简化
Q
q
1、均布荷载 Q=ql
l 2
l 2
Q
q
2、三角形荷载 Q=ql /2
2l 3
l 3
Q
3、梯形荷载 Q=(q1+q2)l /2 (自己求合力的位置)
《工程力学:第三章-力系的平衡条件和平衡方程》解析
工程力学 1. 选择研究对象。以吊车大梁 AB为研究对象,进行受力分析 (如图所示) 2.建立平衡方程
第三章 力系的平衡条件和平衡方程
FAX FTB cos 0 Fy 0
F
x
0
: (1)
M
FAy FQ FP FTB sin 0
A
(F ) 0
工程力学
第三章 力系的平衡条件和平衡方程
§3.3 考虑摩擦时的平衡问题
3.3.1 滑动摩擦定律
概念:
静摩擦力:F 最大静摩擦力:Fmax 滑动摩擦力: Fd
静摩擦因数:
水平拉力: Fp
Fmax f s FN
fs
工程力学
第三章 力系的平衡条件和平衡方程
3.3.2 考虑摩擦时构件的平衡问题
考虑摩擦力时与不考虑摩擦力时的平衡 解题方法和过程基本相同, 但是要注意摩擦力的方向与运动趋势方向相反;且在滑动之前摩擦 力不是一个定值,而是在一定范围内取值。
l l sin 0
(3)
工程力学
第三章 力系的平衡条件和平衡方程
• 联立方程(1)(2)(3)得:
FAX
FQ FP 3 l x 2
(2)由FTB结果可以看出,当x=L时,即当电动机移动到大梁右 端B点时,钢索所受的拉力最大,最大值为
非静定问题:未知数的数目多于等于独立的平衡方程的数目,不能 解出所有未知量。相应的结构为非静定结构或超静定结构。
会判断静定问题和非静定问题
工程力学
第三章 力系的平衡条件和平衡方程
工程力学
第三章 力系的平衡条件和平衡方程
3.2.2 刚体系统平衡问题的特点与解法
1.整体平衡与局部平衡的概念 系统如果整体是平衡的,则组成系统的每一个局部以及每一个 2.研究对象有多种选择 刚体也必然是平衡的。
第三章力系的平衡介绍
工 程 力 学
§3-2
平面力系的平衡条件
F1 Fn F3
1、平面任意力系的平衡方程 F2 平面任意力系平衡的充要条件是: 力系的主矢和对任意点的主矩都等于零。
0 FR
第 三 章 力 系 的 平 衡
Mo 0
平面任意力系
FR ( Fx ) 2 ( Fy ) 2
M O M O (F )
2
0
F
x
0,
F
y
0,
F
z
0
即:汇交力系的平衡条件是力系中所有各力在各个坐
标轴中每一轴上的投影的代数和分别等于零。
工 程 力 学
三、空间平行力系的平衡方程
第 三 章 力 系 的 平 衡
F
z
0,
M (F ) 0, M (F ) 0
x
y
工 程 力 学
四、空间力偶系的平衡方程
第 三 章 力 系 的 平 衡
工 程 力 学
例:如图所示为一种起吊装置的结构简图。图中尺寸d , 载荷F, <FAD =60均为已知。若不计各杆自重,试求杆AF与杆AD在各 自的约束处所受的约束力。
第 三 章 力 系 的 平 衡
工 程 力 学
第 三 章 力 系 的 平 衡
工 程 力 学
例:滑轮支架系统如图所示。已知G,a,r,θ ,其余物体重 量不计,试求A和B的约束力。
工 程 力 学
3、平面汇交力系的平衡方程
F
x
0,
F
y
0
4、平面力偶系的平衡条件
第 三 章 力 系 的 平 衡
M 0
即:力偶系各力偶力偶矩的代数和等于零。
工 程 力 学
理论力学课件
第三章 力系的平衡方程及其应用3-3在图示刚架中,已知kN/m 3=m q ,26=F kN ,m kN 10⋅=M ,不计刚架自重。
求固定端A 处的约束力。
032242234,0022,0022,01)(1i =∙-∙+--==-==-+=∑∑∑F F F M M MF F Fiy F F F FA FA AY AX x解得m kN 12kN 60⋅===A Ay Ax M F F ,,3-4杆AB 及其两端滚子的整体重心在G 点,滚子搁置在倾斜的光滑刚性平面上,如图所示。
对于给定的θ角,试求平衡时的β角。
B解:解法一:AB 为三力汇交平衡,如图所示ΔAOG 中βs i nl AO =, θ-︒=∠90AOG ,β-︒=∠90OAG ,βθ+=∠AGO 由正弦定理:)90sin(3)sin(sin θβθβ-︒=+l l ,)cos 31)sin(sin θβθβ=+l 即 βθβθθβs i n c o s c o s s i n c o s s i n3+= 即 θβt a n t a n2= )t a n 21a r c t a n(θβ= 解法二::0=∑x F ,0sin R =-θG F A(1)第三章 力系的平衡方程及其应用0=∑y F ,0cos R =-θG F B(2)0)(=∑F A M ,0sin )sin(3R =++-ββθl F lG B (3)解(1)、(2)、(3)联立,得 )t a n 21a r c t a n (θβ=3-5 由AC 和CD 构成的组合梁通过铰链C 连接。
支承和受力如图所示。
已知均布载荷强度kN/m 10=q ,力偶矩m kN 40⋅=M ,不计梁重。
解:取CD 段为研究对象,受力如图所示。
0)(=∑F CM,024=--q M F D ;kN 15=D F取图整体为研究对象,受力如图所示。
0)(=∑F AM ,01682=--+q M F F D B;kN 40=B F 0=∑yF ,04=+-+D BAyF q F F ;kN 15-=Ay F0=∑x F ,0=AxF解得kN 15kN 5kN 40kN 15===-=D C B A F F F F ;;;3-6如图所示,组合梁由AC 和DC 两段铰接构成,起重机放在梁上。
第3章力系平衡方程
F F
2 x y
2
38.822 3.82
(kN) 33
主矢FR′的方向为
tan
F F
y
3.8 32.82
0.1158
6 .6
x
主矢FR′在第四象限内,与x轴的夹角为6.6°。
2019/1/5
(2)求主矩MO 力系对点O的主矩为 MO=∑MO(F) =-F1sin20°· b-F2cos30°· b + F2sin30°· a +m =-20×0.342×10- 30×0.866×10+30×0.5×6+100 =-138(kN· m) 顺时针方向。
图3-5
2019/1/5
【例3-2】图
【解】 (1)建立直角坐标系,计算合力在x轴和y轴 上的投影
FRx Fx F1 cos30 F2 cos60 F3 cos45 F4 cos45
=200×0.866-300×0.5-100×0.707+250×0.707 =129.25N
MO(FR)= MO(F1)+ MO(F2)+…+ MO(Fn) =∑MO(F)
(3-6)
2019/1/5
【例3-5】 如图3-9所示,每1m长挡土墙所受土压 力的合力为FR,如FR=200kN,求土压力FR使挡土墙倾覆的 力矩。 【解】土压力FR可使挡土墙绕 A点倾覆,故求土压力FR使墙倾覆 的力矩,就是求FR对A点的力矩。 由已知尺寸求力臂d比较麻烦,但 如果将FR分解为两个力F1和F2,则 两分力的力臂是已知的,故由式 (3-6)可得
图3-16
力的平移定理
2019/1/5
工程力学3-力系的平衡条件和平衡方程
例1 例1 求图示刚架的约束反力。
解:以刚架为研究对象,受力如图。
F x0:F A xq b0
P a A
q
b
F y0:F A yP0
P
MA(F)0:
MA
MAPa12q b2 0
FAx
A
FAy
q
解之得:
FAx qb
FAy P
MAPa 1 2qb 2
例2 例2 求图示梁的支座反力。
解:以梁为研究对象,受力如图。
坐标,则∑Fx=0自然满足。于是平面 平行力系的平衡方程为:
O
F2
x
F y 0 ; M O ( F ) 0
平面平行力系的平衡方程也可表示为二矩式:
M A ( F ) 0 ; M B ( F ) 0
其中AB连线不能与各力的作用线平行。
[例5] 已知:塔式起重机 P=700kN, W=200kN (最大起重量), 尺寸如图。求:①保证满载和空载时不致翻倒,平衡块
解: 1.分析受力
建立Oxy坐标系。 A处约束力分量为FAx和FAy ;钢 索的拉力为FTB。
解: 2.建立平衡方程
Fx=0
MAF= 0
- F Q 2 l- F W xF T Blsi= n0
FTB= FPlxs+ iF nQ2 l= 2FlWxFQ
FAx F TBco = s0
Fy=0
F A = x 2 F W x l F Q l co= s3 3 F lW 0xF 2 Q
[例1] 已知压路机碾子重P=20kN, r=60cm, 欲拉过h=8cm的障碍物。 求:在中心作用的水平力F的大小和碾子对障碍物的压力。
解: ①选碾子为研究对象 ②取分离体画受力图
第三章流体静力学(流体的平衡)
1.流体的平衡:绝对平衡、相对平衡 2.流体平衡时的压强 3.流体平衡的条件 3.1.平衡的微分方程 ∂ p dx ∂ p dx −∂ p dydz − p dydz = dxdydz ∂x 2 ∂x 2 ∂x 表面力: −∇ p dxdydz d 体积力: f b =∇ p 绝对平衡方程: f x 方向表面力: p −
∫ gy sin dA= g sin ∫ y dA= g y c sin A= P c A
A A
设压力中心坐标为
x D , y D = x C f , y C e ,其中 f 和 e 称为纵向和横向偏心矩。
则总合力对形心坐标轴的力矩:
F e =∫ dF = g sin ∫ y dA F f =∫ dF = g sin ∫ y dA∇ p d r =0
d 考虑到绝对平衡方程,得出等压面的微分方程: f b r = 0 ,即在等压面上体力处处与等压面 垂直。
3.3.流体平衡的必要条件
b =∇× 由绝对平衡方程得 ∇× f 1 −1 ∇ p = 2 ∇ ×∇ p
−1 ∇ p⋅∇ ×∇ p =0 3 ⋅∇ × f =0 流体平衡的必要条件 f b b b⋅∇ × f b = 于是 f
均质流体 =constant
≡0 ∇× f b
−∇ =
1 ∇p
=
−p
非均质流体:正压流体 = p ,如等温或绝热气体 定义压力函数 P p : ∇ P =
=∇ P 由绝对平衡方程得, f b 4.流体静力学基本方程(静力学规律)
由 P =− gz C 得
∇p p ≡0 ,故 f 有势,势函数 =− P p ∇× f b b
第三章.平面力系的合成与平衡
各力首尾相接
§3-1 平面汇交力系的合成与平衡
例4
已知:
系统如图,不计杆、轮自重,忽略滑轮大小,P=20kN; 求:系统平衡时,杆AB、BC受力。 解:AB、BC杆为二力杆, 取滑轮B(或点B),画受力图。
用解析法,建图示坐标系。
F
x
0
FBA F1 cos 60 F2 cos 30 0
Fy F cos F Fx Fy
Fx cos F
Fx
x
O
Fx
F Fx2 Fy2
cos
Fy F
§3-1 平面汇交力系的合成与平衡 3)合力投影定理 平面汇交力系,由三个力组成的力多边形 合力投影定理建立了合力投影与各分力投影的关系
FRx Fix
当 x轴与 y 轴不是正交轴时 :
F Fx Fy
力在坐标轴上的投影不等于力在这个轴上的分量。
§3-1 平面汇交力系的合成与平衡 2、平面汇交力系的解析法 2)力沿坐标轴的分解 当
Fx Fx
x y
y
Fy Fy
B
Fy
Fx F cos
Fy
A
β α
矢量和
θ
P
FNA 11.4kN FNB 10kN
F
FNB
F
θ P FNA
§3-1 平面汇交力系的合成与平衡 2、平面汇交力系的解析法 1)力在坐标轴上的投影 F力在 x 轴上的投影:
Fx F cosθ
Fy
Fx
F力在 y 轴上的投影:
Fy F cosβ
3 FR 2 FR1 F3 Fi i 1
第3章力系平衡方程
M M1 M 2 M n M
(2)平面力偶系的平衡 ∑M=0
2016/12/14
【例3-6】如图3-12所示,某物体受三个共面力偶作 用,已知F1=25kN,d1=2m,F2=50kN,d2=1.5m,M3=- 20kN·m,试求其合力偶。
【解】
M1=F1· d1=25×2=50kN· m
(3)求合力的方向
tan FRy FRx 112.35 0.869 129.25
α=40.99º 由于FRx和FRy均为正,故α应在第一象限,合力FR的 作用线通过力系的汇交点O,如图3-5所示。
2016/12/14
3.平面汇交力系的平衡方程
平面汇交力系平衡的必要和充分条件是:该力系的合 力FR等于零。即:
按其作用线所在的位置:平面力系和空间力系。 平面力系:力系中各力的作用线都在同一平面内。 空间力系:力系中各力的作用线不在同一平面内。 平面力系:平面汇交力系、平面平行力系和平面一般力系。 平面汇交力系:在平面力系中,各力的作用线均汇交于一 点的力系。
1.力在直角坐标轴上的投影
F在x轴上的投影,以Fx表示;F在y轴上的投影,以Fy表示。
作用在刚体上A点的力F,可以平移到同一刚体上的 任一点O,但必须附加一个力偶,其力偶矩等于原来的力 F对新作用点O之矩。
图3-16
力的平移定理
2016/12/14
【例3-8】如图3-17(a)所示,柱子的A点受到吊 车梁传来的集中力F=120kN。求将该力F平移到柱轴上O 点时应附加的力偶矩,其中e=0.4m。 【解】 M=MO(F)=-Fe =-120×0.4=48kN· m 负号表示该附加力 偶的转向是顺时针的。
arctan
第3章力系的平衡条件与平衡方程
第3章 力系的平衡条件与平衡方程3.1 平面力系的平衡条件与平衡方程3.1.1 平面一般力系的平衡条件与平衡方程如果一个平面一般力系的主矢和力系对任一点的主矩同时都等于零,物体将不会移动也不会转动,则该物体处于平衡状态。
力系平衡的充分必要条件:力系的主矢和力系对任一点的主矩都分别等于零,即 110()0i n R i n O O ii F F M M F ==⎫==⎪⎪⎬⎪==⎪⎭∑∑平衡条件的解析式:11100()0nix i niy i n O i i F F M F ===⎫=⎪⎪⎪=⎬⎪⎪=⎪⎭∑∑∑ 或 00()0x y O F F M F ⎫=⎪⎪=⎬⎪=⎪⎭∑∑∑ 平面一般力系的平衡方程该式表明,平面一般力系的平衡条件也可叙述为:力系中各力在任选的坐标轴上的投影的代数和分别等于零,以及各力对任一点的矩的代数和也等于零。
平面汇交力系:平面汇交力系对平面内任意一点的主矩都等于零,即恒满足()0O M F ≡∑物体在平面汇交力系作用下平衡方程:00x yF F ⎫=⎪⎬=⎪⎭∑∑例题3-1 图所示为悬臂式吊车结构图。
其中AB 为吊车大梁,BC为钢索,A 处为固定铰支座,B 处为铰链约束。
已知起重电动机E 与重物的总重量为PF (因为两滑轮之间的距离很小,PF 可视为集中力作用在大梁上)梁的重力为QF 已知角度30θ=。
求:1、电动机处于任意位置时,钢索BC所受的力和支座A处的约束力;2、分析电动机处于什么位置时。
钢索受力最大,并确定其数值。
解:1、选择研究对象以大梁为研究对象,对其作受力分析,并建立图示坐标系。
建立平衡方程 取A 为矩心。
根据()0A M F =∑sin 02Q P TB lF F x F l θ-⨯-⨯+⨯=222sin 2sin30P Q P Q P TB QlF x F F x F l F x F F l l l θ⨯+⨯+===+由xF =∑cos 0Ax TB F F θ-=2()cos303()2Q P P Ax Q F F x F x F F l l =+=+由yF =∑sin 0Ay Q P TB F F F F θ---+=122[()]2Q P Ay Q P TB Q P Q P F F x F F F F F F l F l xF l =--+=--++-=-+由 2P TB QF x F F l =+ 可知当x l =时钢索受力最大, 其最大值为 22P TB Q P QF lF F F F l =+=+在平面力系的情形下,力矩中心应尽量选在两个或多个未知力的交点上,这样建立的力矩平衡方程中将不包含这些未知力;坐标系中坐标轴取向应尽量与多数未知力相垂直,从而这些未知力在这一坐标轴上的投影等于零,这样可减少力的平衡方程中未知力的数目。
3章力系的平衡方程及应用
A
FAx
3m
P
1m
2m
由: 解得:
3 3FAy 3P 4 P 0 1
l
P1
FT 17.33kN FAx 15.01kN FAy 5.33kN
• 结果均为正,表明实际受力方向与假设方向相同。 • 为使平衡方程尽可能包含较少的未知量,避免联立求 解,通常将矩心取在两个未知力的交点。
M A (Fi ) 0 M B (Fi ) 0 M C (Fi ) 0
限制条件:A、B、C矩心不能在同一直线上(共线)。
y
C B A O
FR
因为平衡方程
满足,但不能排除图 示不平衡的情形。
x
3.1 空间任意力系的平衡条件和平衡方程
• 以上三种形式的平衡方程均为平衡的 必要与充分条件。
F X 0
x
F Y 0
y
•两个独立平衡方程,可以求解两个未知数。
3.1 空间任意力系的平衡条件和平衡方程 2. 空间平行力系的平衡方程
z
F1 F2
O x
y
F
iz
0
M x ( Fi ) 0
M y ( Fi ) 0
可以求解三个未知数。
F3
Fn F4
平面平行力系的平衡方程
3.1 空间任意力系的平衡条件和平衡方程
六个方程相互独立。联立,可求解六个未知量。 由平衡条件导出的方程称为平衡方程的基本形式。 • • 空间任意力系平衡方程:基本形式、四矩 应当注意:每一种形式最多只能列6个独立 式、五矩式和六矩式。
平衡方程,解6个未知数,任何多于6个的方程都
是这些方程的线性组合。
y
(Fi ) 0
弹性与塑性力学基础-第3章平衡微分方程及应变协调方程
§3-3 二维极坐标系下的平衡微分方程
3.3.2 二维极坐标系下的平衡微分方程的建立 ➢ 微分体切向平衡方程
ddrdrr
r d(rd)rd
rrdr r ddrd2 rdrd2 Krddr0
➢ 用r代替r ,简化以后,除以rddr,再略去微量,得
1 r rr2rrK0
2 x y 2
2 y x2
2 xy xy
2 y z2
2 z y 2
2 yz yz
➢ 当六个应变分量
2 z x2
2 x z2
2
2 x yz
x
2 xz
zx yz x
xz y
xy z
(3-7)
满足以上应变协 调方程(3-7)时,
2 2 y zx
y
弹性与塑性力学基础
第三章
平衡微分方程及应变协调方程
2020/10/13
弹性与塑性
力 学 基 础 第三章 平衡微分方程及应变协调方程
§3-1 平衡微分方程的概念
3.1.1 平衡微分方程的概念 3.1.2 平衡微分方程的建立
§3-2 二维直角坐标系下的平衡微分方程
3.2.1 平面应力状态 3.2.2 平面应变状态
➢ 通过中心C并平行于z轴的直线为矩轴,力矩平衡方程 MC=0:
xy xxyd x d y1d 2 xxd y y1d 2x
yx y yxd y d x 1d 2 yyd x x 1d 2 y0
将上式除以dxdy,得到ຫໍສະໝຸດ y1 2xyx
dx
=
yx
1 2
yx
x
dy
2020/10/略13 去微量,(亦即dx、dy都趋于零时),得出
理论力学第3章力系平衡方程及应用
a
分布力(均布载荷) 合力作用线位于AB
中点。
3.1 平面力系平衡方程
a
【解】
y M=qa2 a
2qa
F3
C
FAx
A
aFAy
45
B
D
x
2a FB a
F3 2qa
MA 0
q 2 2 a q a a F B 2 a 2 q sa 4 i 3 n a 5 0
FB 2qa
Fx 0 FAx2qcao4s50 FAx qa
C
【解】 F2
构件CGB( 图b)
F2
构件AED
(图c)
C
R
D
45
FC
FD
D
G
45
F1
E
a
F1
E
a
A
B
G 图b
FBy
图c A FAx
MA
FAy
构件CD(图a )
3个未知量 B FBx
4个未知量
F'C
3个独立方程
3个独立方程
【基本思路】
C R
杆CGB受力图计算FCAED受力图
计算A处的反力(偶);CGB受力图计算
3.2 平面物体系平衡问题
q
C
B
30
FC FBy
l
l
【解】 杆CB
FBx
MB 0
FCco3s0l qll/2 0
FC
3 ql 30.5kN/m 2m 0.577kN
3
3
3.2 平面物体系平衡问题
【解】整体
FAy
l
l
l
Fx 0
MA
A
FAx
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
m A F 0
FNB 4 q 4 2 m F sin 6 0
FNB 1 q 4 2 m F sin 6 49.3 kN 4
4.2 平面力系的平衡
例题
例4-2 外伸梁ABC上作用有均布载荷q=10 kN/m,集中力F=20 kN, 力偶矩m=10 kNm,求A、B支座的约束力。
3.2 平面任意力系的平衡 三矩式的平衡方程
3.2.1 平面任意力系平衡方程
M A F 0, M B F 0, M C F 0
条件: A、B、C是平面内 不共线的任意三点
3.2 平面任意力系的平衡 平面汇交力系平衡方程:
4.2.2 平面特殊力系平衡方程
平面汇交力系中,对汇交点建立力矩方程恒为零,所以, 平面汇交力系 平衡的充要条件
Fi Fi , M i M O ( Fi )
(i 1,2,, n)
3.1 平面任意力系的简化
3.1.2 力系简化结果
将平面汇交力系与平面力偶系合成,得到作用 于简化中心O的力矢F'R与力偶矩MO
Fi Fi FR i1 i1 n n M O M i M O ( Fi ) i1 i1
M = r×F = MO(F)
逆过程: 用力的平移定理的逆步骤,亦可把一个力 和一个力偶合成一个力。
3.1 平面任意力系的简化
F1
A1
3.1.2 力系简化结果
y
F2
O
An
A2
F1 M 1 M 2
O
F2
MO
FR
Fn
Fn
Mn
x
O
x
设刚体上作用一平面任意力系F1、F2、…、Fn。 任选一点O称为力系的简化中心。 依据力的平移定理,将力系中诸力向O点平移,得到 作用于O点的一平面汇交力系F 1、F 2、…、F n和一 平面力偶系M1、M2、…、Mn 。
FR
4.1.3 简化结果分析
FR
FR
O
MO
O
O
FR
d
O
d
O
由主矩的定义知:M O M O (Fi ) M O (FR ) M O (Fi ) 所以:
MO d 于是 d M O M O (FR ) FR d FR FR
结论:平面任意力系的合力对作用面内任一点之矩 等于力系中各力对同一点之矩的代数和。即为平面 任意力系的合力矩定理。
解:解除约束,画整体受力图
列平衡方程
M A F 0
FNB AB FT AD r FT DE r 0
FNB FT AD DE 1202 1.5 105 kN AB 4
Fy 0
FAy FNB FT 0
FAy FT FNB 15 kN
用解析法求解时,应适当地选取坐标轴。为避免解
联立方程,可选坐标轴与未知力垂直。根据计算结果
的正负判定假设未知力的指向是否正确。
3.3 物体系统的平衡
•物体系统:由若干个物体通过适当的约束相互连
接而成的系统 。
•静定问题:单个物体或物体系未知量的数目正好 等于它的独立的平衡方程的数目。
•超静定或静不定 :未知量的数目多于独立的平衡
Fx 0, FAx FT 0
FAx FT 120 kN
3.3 物体系统的平衡
例 题
可用
M B F 0 ,验算FAy如下:
M B F 0,
FT DB r FT DE r FAy AB 0
FT DB DE 15 kN AB
根据题意选择研究对象。
分析研究对象的受力情况,正确地画出其受力图。 研究对象与其他物体相互连接处的约束,按约束 的性质表示约束反力; 正确地运用二力杆的性质和三力平衡定理来确定 约束反力的方位;
4.2 平面力系的平衡
例题
两物体之间相互作用的力要符合作用与反作用定律。 用几何法求解时,按比例尺作出闭合的力多边形, 未知力的大小可按同一比例尺在图上量出;
3.2 平面力系的平衡
MA 0
d qd FP d FB 2d FP1 3d 0 2
FAx FAy FB
例题
FB = 21 kN(↑)
MB 0
5d qd FP d FRA 2d FP1 d 0 2
Fx 0
FA y= 15 kN(↑)
FAy
3.3 物体系统的平衡
为求BC杆内力F,取CDE杆连滑轮
FAy FAx FB
例题
例4-1 试求图示两外伸梁的约束力FRA、FRB,其中FP = 10 kN,
以解除约束后的ABC梁为研究对象
2. 根据约束性质分析约束力 A处为固定铰链,约束力为铅垂方向与水平方向的分力FAy 和FAx ;B处为辊轴支座,为铅垂方向的约束力,指向是未 知的,可以假设为向上的FB 。 3. 应用平衡方程确定未知力
例题
例4-3 起重机的自重(平衡重除外)G=400 kN,平衡重W=250 kN。当起重 机由于超载即将向右翻倒时,左轮的反力等与零。因此,为了保证安全工作, 必须使一侧轮(A或B)的向上反力不得小于50 kN。求最大起吊量P为多少? 解:画支座反力FNA与FNB。令FNA=50 kN。 列平衡方程:
M B (F ) 0
G 0.5 W 8 F NA 4 P 10 0
P=200 kN 如为空载,仍应处于平衡状态,故
M A F 0
FNB 4 W 4 G 3.5 0
FNB 100 kN
3.2 平面力系的平衡
例题
要注意的问题:
③ 画受力图时,关键在于正确画出铰链约束力,除二力构件外,
3.3 物体系统的平衡 列平衡方程,求未知量
① 列出恰当的平衡方程,尽量避免在方程中出现不需要求的 未知量。为此可恰当地运用力矩方程,适当选择两个未知力 的交点为矩心,所选的坐标轴应与较多的未知力垂直。 ② 判断清楚每个研究对象所受的力系及其独立方程的个数及 物体系独立平衡方程的总数,避免列出不独立的平衡方程。
3.3 物体系统的平衡
求解过程中应注意以下几点
首先判断物体系统是否属于静定问题
恰当地选择研究对象
在一般情况下,首先以系统的整体为研究 对象,这样则不出现未知的内力,易于解出未 知量。当不能求出未知量时应立即选取单个物 体或部分物体的组合为研究对象,一般应先选 受力简单而作用有已知力的物体为研究对象, 求出部分未知量后,再研究其它物体。
解:以梁为研究对象,画受力图,列平衡方程 FAx F cos 8.94 kN Fx 0 F F cos 0
Ax
Fy 0
FAy q 4 FNB F sin 0
FAy q 4 FNB F sin 8.56 kN
3.2 平面力系的平衡
M
(FR )O ( FR , FR )
FR
+ M
3.1 平面任意力系的简化
3.1.1 力的平移定理
力的平移定理:作用于刚体上的力可以从其作用点平行 移至刚体内任一指定点,欲不改变该力对刚体的作用, 则必须在该力与指定点所决定的平面内附加一力偶(称 为附加力偶),其力偶矩等于原力对指定点的矩。
3.1 平面任意力系的简化 1、主矢和主矩都等于零 此时平面力系平衡。 2、主矢等于零,主矩不等于零
0, M o 0) (FR
3.1.3 简化结果分析
0, M O 0) (FR
此时平面力系简化为一力偶。其力偶矩M 等 于原力系对简化中心的主矩,即 M mO ( F ) 且 此时主矩与简化中心的位置无关。
3.2 平面任意力系的平衡
平面任意力系平衡充要条件:
3.2.1 平面任意力系平衡方程
和对任意 力系的主矢FR 点的主矩 MO 均等于零
FR
0 FR
MO 0
Fx 0 Fy 0
Fx Fy
2
2
0
M O F 0
Fx 0 F y 0 M O ( F ) 0
计算结果的校核
FAx 0
Fy 21 + 15 -FP1 -qd 21 15 20 20 0.8 0
3.2 平面力系的平衡
例题
例4-2 外伸梁ABC上作用有均布载荷q=10 kN/m,集中力F=20 kN, 力偶矩m=10 kNm,求A、B支座的约束力。
解:以梁为研究对象,画受力图,列平衡方程
③ 解题时应从未知力最少的方程入手,避免联立解。
④ 校核。求出全部所需的未知量后,可再列一个不重复的平 衡方程,将计算结果代入,若满足方程,则计算无误。
3.3 物体系统的平衡
例 题
例4-4 图中AD=DB=2 m,CD=DE=1.5 m,Q=120 kN,不 计杆和滑轮的重量。试求支座A和B的约束力和BC杆的内力。
方程的数目.
4.3 物体系统的平衡
静定问题
独立的平衡方程数: 3 未知力数:3 独立的平衡方程数=未 知力数
超静定问题
独立的平衡方程数: 3 未知力数:4 未知力数>独立的平 衡方程数
3.3 物体系统的平衡
静定问题
独立的平衡方程数: 6 未知力数:6 独立的平衡方程数=未 知力数
超静定问题
独立的平衡方程数: 6 未知力数:7 未知力数>独立的平 衡方程数
n n
称为该力系的主矢 FR MO称为该力系对简化中心O的主矩。
3.1 平面任意力系的简化
4.1.2 力系简化结果
结
论
平面任意力系向一点简化的结果为作用于该点的一