七年级数学下册相交线练习题
七年级数学下册第五章 相交线与平行线试卷(5套)
abM P N 123B EDA CF87654321DCBA第五章相交线与平行线单元测试题(一)姓名: 分数:一、选择题(每题3分,共30分)1、如图1,直线a ,b 相交于点O ,若∠1等于40°,则∠2等于( )A .50°B .60°C .140°D .160°图1 图2 图3 2、如图2,已知AB ∥CD ,∠A =70°,则∠1的度数是( )A .70°B .100°C .110°D .130°3、如图3,AB CD ⊥,垂足为O ,EF 为过点O 的一条直线,则1∠ 与2∠的关系一定成立的是( )A .相等B .互余C .互补D .互为对顶角4、如图4,AB DE ∥,65E ∠=,则B C ∠+∠=( )A .135B .115C .36D .65图4 图5 图6 5、如图5,小明从A 处出发沿北偏东60°方向行走至B 处,又沿北偏西20方向行走至C 处,此时需把方向调整到与出发时一致,则方向的调整应是( )A .右转80°B .左转80°C .右转100°D .左转100° 6、如图6,如果AB ∥CD ,那么下面说法错误的是( )A .∠3=∠7;B .∠2=∠6C 、∠3+∠4+∠5+∠6=1800D 、∠4=∠87、如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30 ,那么这两个角是( ) A . 42138 、 B . 都是10 C . 42138 、或4210、 D . 以上都不对 8、下列语句:①三条直线只有两个交点,则其中两条直线互相平行;②如果两条平行线被第三条截,同旁内角相等,那么这两条平行线都与第三条直线垂直;③过一点有且只有一条直线与已知直线平行,其中( )A .①、②是正确的命题;B .②、③是正确命题;C .①、③是正确命题 ;D .以上结论皆错 9、下列语句错误的是( )A .连接两点的线段的长度叫做两点间的距离;B .两条直线平行,同旁内角互补C .若两个角有公共顶点且有一条公共边,和等于平角,则这两个角为邻补角D .平移变换中,各组对应点连成两线段平行且相等 10、如图7,a b ∥,M N ,分别在a b ,上,P 为两平行线间一点,那么123∠+∠+∠=( ) A .180B .270C .360D .540图7二、填空题(每题4分,共24分)11、如图8,直线a b ∥,直线c 与a b ,相交.若170∠= ,则2_____∠=.12、如图9,已知170,270,360,∠=︒∠=︒∠=︒则4∠=______︒.13、如图10,已知AB ∥CD ,BE 平分∠ABC ,∠CDE =150°,则∠C =______图8 图9 图10 14、如图11,已知a b ∥,170∠=,240∠=,则3∠= . 15、如图12所示,请写出能判定CE ∥AB 的一个条件 . 16、如图13,已知AB CD //,∠α=____________DBAC1ab1 2OABCDEF21 O1 2bacbac d1234BCDEABCab1 2 3A BE图11 图12 三、解答题(共46分) 17、推理填空:(共8分)如图:①若∠1=∠2,则 ∥ ( )若∠DAB+∠ABC=1800,则 ∥ ( )②当 ∥ 时,∠ C+∠ABC=1800 ( ) 当 ∥ 时,∠3=∠C ()18、如图,∠1=30°,AB ⊥CD ,垂足为O ,EF 经过点O .求∠2、∠3的度数. ( 8分)19、已知:如图AB ∥CD ,EF 交AB 于G ,交CD 于F ,FH 平分∠EFD ,交AB 于H ,∠AGE=500,求:∠BHF 的度数.(8分)20、(10分)观察如图所示中的各图,寻找对顶角(不含平角):(1)如图a ,图中共有___________对对顶角;(2)如图b ,图中共有___________对对顶角; (3)如图c ,图中共有___________对对顶角.(4)研究(1)~(3)小题中直线条数与对顶角的对数之间的关系,若有n 条直线相交于一点,则可形成_________________________________对对顶角。
人教版七年级下学期数学-5.1相交线(练习题)
人教版七年级下学期数学-5.1相交线练习题一、单选题1.如图,河道的同侧有、两地,现要铺设一条引水管道,从地把河水引向、两地.下列四种方案中,最节省材料的是()A.B.C.D.2.如图,直线AB、CD相交于O,且∠AOC=2∠BOC,则∠AOD的度数为()A.30°B.45°C.60°D.75°3.如图,直线AB,CD相交于点O,,OF平分,则的大小为()A.40°B.50°C.65°D.70°4.如图,在中,,,垂足为点D,那么点A到直线的距离是线段()的长.A.B.C.D.5.如图,直线AB,CD,EO相交于点O,已知OA平分∠EOC,若∠EOC:∠EOD=2:3,则∠BOD 的度数为()A.40°B.37°C.36°D.35°6.如图所示,与∠α构成同位角的角的个数为()A.1B.2C.3D.47.在下列语句中,正确的是().A.在平面上,一条直线只有一条垂线;B.过直线上一点的直线只有一条;C.过直线上一点且垂直于这条直线的直线有且只有一条;D.垂线段的长度就是点到直线的距离8.平面上三条直线两两相交最多能构成对顶角的对数是().A.7B.6C.5D.49.如图所示,OA⊥OC,OB⊥OD,下面结论中,其中说法正确的是()①∠AOB=∠COD;②∠AOB+∠COD=90°;③∠BOC+∠AOD=180°;④∠AOC-∠COD =∠BOC.A.①②③B.①②④C.①③④D.②③④10.如图,下列6种说法:①∠1与∠4是内错角;②∠1与∠2是同位角;③∠2与∠4是内错角;④∠4与∠5是同旁内角;⑤∠2与∠4是同位角;⑥∠2与∠5是内错角.其中正确的有()A.1个B.2个C.3个D.4个二、填空题11.已知直线AB与直线CD相交于点O,∠AOC:∠BOC=2:1,射线OE⊥CD,则∠AOE的度数为.12.如图,直线AB、CD、EF相交于点O,若∠1+∠2=150°,则∠3=°.13.如图,直线AB、CD相交于点O,OE平分,OF平分.若,则的度数为°.14.若与是对顶角,与互余,且,则的度数为°.15.如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM.若∠AOM=35°,则∠CON的度数为.三、计算题16.如图,O为直线AB上一点,OC⊥AB,并且∠AOD=130°.求∠COD的度数.17.如图所示,直线AB、CD、EF相交于点O,CD⊥AB,∠AOE:∠AOD=3:5,求∠BOF与∠DOF的度数.四、综合题18.如图,在所标注的角中.(1)对顶角有对,邻补角有对;(2)若,,求与的度数.19.如图,点在直线外,点在直线上,连接.选择适当的工具作图.(1)在直线上作点,使,连接;(2)在的延长线上任取一点,连接;(3)在,,中,最短的线段是,依据是.20.如图,直线、相交于点,且平分,平分.(1)求证:平分;(2)求的度数.答案解析部分1.【答案】D【解析】【解答】解:依据垂线段最短,以及两点之间,线段最短,可得最节省材料的是:故答案为:D.【分析】利用垂线段最短,以及两点之间线段最短求解即可。
七年级下数学相交线练习题含答案
9.如图,与 是同旁内角的角有()
A. 个B. 个C. 个D. 个
10.如图,直线 、 被直线 所截,则 与 是()
A.同位角B.同旁内角C.内错角D.对顶角
11.如图, , ,若 ,则 ________.
12.如图, , 为垂足, , 为垂足,那么点 到 的距离是线段________的长,点 到 的距离是线段________的长,点 到 的距离是线段________的长, 的依据是________.
【解答】
此题暂无解答
24.
【答案】
解: , ,
.
与 是对顶角,
.
, ,
,
,
,
.
,
.
【考点】
邻补角
对顶角
【解析】
此题暂无解析
【解答】
此题暂无解答
25.
【答案】
解:如图:
【考点】
同位角、内错角、同旁内角
【解析】
此题暂无解析
【解答】
此题暂无解答
26.
【答案】
∵ = , = ,
∴ = = ,
∴ = = ,
∴ = = .
(1)当五条直线相交时交点最多会有多少个?
(2)猜想 条直线相交时最多有几个交点?(用含 的代数式表示)
(3)算一算,同一平面内 条直线最多有多少个?
(4)平面上有 条直线,无任何 条交于一点( 条以上交于一点也无),也无重合,它们会出现 个交点吗?如果能给出一个画法;如果不能请说明理由.
39.如图所示,某自来水厂计划把河流 中的水引到蓄水池 中,问从河岸 的何处开渠,才能使所开的渠道最短?画图表示,并说明设计的理由.
【考点】
人教版七年级下册数学第五章《相交线与平行线》单元练习题(含答案)
人教版七年级下册数学第五章《相交线与平行线》单元练习题(含答案)一、单选题1.如图,AB CD ∥ ,点E 在CA 的延长线上若50BAE ∠=︒,则ACD ∠的大小为( )A .100°B .120°C .130°D .110°2.如图,要修建一条公路,从A 村沿北偏东75°方向到B 村,从B 村沿北偏西25°方向到C 村.若要保持公路CE 与从A 村到B 村的方向一致,则应顺时针转动的度数为( )A .50°B .75°C .100°D .105°3.如图,直线AB ∥CD ,如果∠1=70°,那么∠BOF 的度数是( )A .70°B .100°C .110°D .120°4.具有下列关系的两角:①互为补角;②同位角;③对顶角;④内错角;⑤邻补角;⑥同旁内角.其中一定有公共顶点的两角的对数为( )A .1对B .2对C .3对D .4对5.如图,将三角板与直尺贴在一起,使三角板的直角顶点C (∠ACB =90°)在直尺的一边上,若∠2=65°,则∠1的度数是( )A .15°B .25°C .35°D .65°6.下列命题中,真命题是( )A .一条直线截另外两条直线所得到的同位角相等B .两个无理数的和仍是无理数C .有公共顶点且相等的两个角是对顶角D .等角的余角相等7.如图,AB ∥CD ,AE 平分∠CAB 交CD 于点E ,若∠C=70°,则∠AED=( )A .55°B .125°C .135°D .140°8.如图,12l l //,点O 在直线1l 上,若90AOB ︒∠=,135︒∠=,则2∠的度数为()A .65°B .55°C .45°D .35°9.下列命题是真命题的是( )A .如果一个数的相反数等于这个数本身,那么这个数一定是0B .如果一个数的倒数等于这个数本身,那么这个数一定是1C .如果一个数的平方等于这个数本身,那么这个数一定是0D .如果一个数的算术平方根等于这个数本身,那么这个数一定是010.如图,直线AB ∥ CD ,∠ B=50°,∠ C=40°,则∠E 等于( )A .70°B .80°C .90°D .100°二、填空题 11.如图,AD ∥BC ,EF ∥BC ,BD 平分∠ABC ,图中与∠ADO 相等的角有_______ 个,分别是___________.因为AB ∥CD ,EF ∥AB ,根据_____________________________,所以_____________.12.如图,在正方形网格中,三角形DEF 是由三角形ABC 平移得到的,则点C 移动了________格.13.如图,在ABC ∆中,4AB =,6BC =,60B ∠=︒,将ABC ∆沿射线BC 的方向平移2个单位后,得到A B C '''∆,连结A C ',则A B C ∆''的周长为______.14.下面三个命题: ①若是方程组的解,则或; ②函数通过配方可化为; ③最小角等于的三角形是锐角三角形. 其中正确命题的序号为 .15.设圆上有n 个不同的点,连接任两点所得线段,将圆分成若干个互不重合的区域,记()f n 为区域数的最大值,则(5)_________f =,(6)________f =.16.如图,已知AB ∥ED,∠ABC=300,∠EDC=400,则∠BCD 的度数是 .17.点M ,N 在线段AB 上,且MB =6cm ,NB =9cm ,且N 是AM 的中点,则AB =___cm ,AN =____cm .18.把命题“三个角都相等的三角形是等边三角形”改写成“如果……,那么……”的形式是_____;该命题的条件是_____,结论是_____.三、解答题19.如图,已知点A 是射线OP 上一点.(1)过点A 画OQ 的垂线,垂足为B ;过点B 画OP 的平行线BC ;(2)若50POQ ∠=,求ABC ∠的度数.20.(1)问题背景:已知:如图①-1,//AB CD ,点P 的位置如图所示,连结,PA PC ,试探究APC ∠与PAB ∠、PCD ∠之间有什么数量关系,并说明理由.(将下面的解答过程补充完整,括号内写上相应理由或数学式)解:(1)APC ∠与PAB ∠、PCD ∠之间的数量关系是:360APC PAB PCD ∠+∠+∠=︒(或360()APC PAB PCD ∠=︒∠+∠只要关系式形式正确即可)理由:如图①-2,过点P 作//PE AB .∵//PE AB (作图),∴180PAB APE ∠+∠=︒( ),∴//AB CD (已知)//PE AB (作图),∴//PE _______( ),∴CPE PCD ∠+∠=_______( ),∴180180360PAB APE CPE PCD ∠+∠+∠+∠=+︒=︒(等量代换)又∵APE CPE APC ∠+∠=∠(角的和差),∴360APC PAB PCD ∠+∠+∠=︒(等量代换)总结反思:本题通过添加适当的辅助线,从而利用平行线的性质,使问题得以解决.(2)类比探究:如图②,//AB CD ,点P 的位置如图所示,连结PA 、PC ,请同学们类比(1)的解答过程,试探究APC ∠与PAB ∠、PCD ∠之间有什么数量关系,并说明理由.(3)拓展延伸:如图③,//AB CD ,ABP ∠与CDP ∠的平分线相交于点1P ,若128P ∠=︒,求P ∠的度数,请直接写出结果,不说明理由.21.如图,抛物线y =ax 2+bx ﹣3与x 轴交于A (﹣1,0),B (3,0),与y 轴交于点C ,顶点为D .(1)求抛物线的解析式及点D的坐标.(2)在线段BC下方的抛物线上,是否存在异于点D的点E,使S△BCE=S△BCD?若存在,求出点E的坐标;若不存在,请说明理由.(3)点M3,2m⎛⎫- ⎪⎝⎭在抛物线上,点P为y轴上一动点,求2MP+2PC的最小值.22.如图,在96⨯网格中,已知△ABC,请按下列要求画格点三角形A' B' C'(三角形的三个顶点都是小正方形的顶点).(1)在图①中,将△ABC平移,使点O落在△ABC的边AB(不包括点A和点B)上;(2)在图②中,将△ABC平移,使点O落在△ABC的内部.23.如图.一次函数y=12x+1的图象L1交y轴于点A,一次函数y=﹣x+3的图象L2交x轴于点B,L1与L2交于点C.(1)求点A与点B的坐标;(2)求△ABC的面积.24.在如图所示的方格纸中,每个小正方形的边长为1,每个小正方形的顶点都叫做格点.△ABC的顶点A、B、C都在格点上.(1)过B作AC的平行线BD.(2)作出表示B到AC的距离的线段BE.(3)线段BE与BC的大小关系是:BE BC(填“>”、“<”、“=”).(4)△ABC的面积为.25.如图,点E在直线DF上,点B在直线AC上,若∠1=∠2,∠3=∠4,则∠A=∠F,请说明理由.解:∵∠1=∠2(已知)∠2=∠DGF∴∠1=∠DGF(____________)∴BD∥CE∴∠3+∠C=180°( )又∵∠3=∠4(已知)∴∠4+∠C=180°∴∥(同旁内角互补,两直线平行)∴∠A=∠F( ).26.如图,所有小正方形的边长都为1,A、B、C都在格点上.(1)过点C画直线AB的平行线(不写画法,下同);(2)过点A画直线BC的垂线,并注明垂足为G;过点A画直线AB的垂线,交BC于点H.(3)线段_____的长度是点A到直线BC的距离;(4)线段AG、AH的大小关系为AG_____AH.(填“>”或“<”或“=”),理由________.27.如图,AB∥CD,∠1=∠2,求证:AM∥CN参考答案1.C2.C3.C4.B5.B6.D7.B8.B9.A10.C11.4 ∠DOF、∠EOB、∠ABD、∠DBC平行于同一直线的两条直线平行CD∥EF 12.513.1214.②③15.16;3116.70°17. 12 318.如果一个三角形的三个角都相等,那么这个三角形是等边三角形一个三角形的三个角都相等这个三角形是等边三角形19.(2)40°20.(1)∠APC+∠PAB+∠PCD=360°,理由见解析;两直线平行,同旁内角互补;CD,如果两条直线都和第三条直线平行,那么这两条直线也互相平行;180°,两直线平行,同旁内角互补;(2)∠APC=∠PAB+∠PCD,(3)∠P=56°.21.(1)y=x2﹣2x﹣3,D的坐标为(1,﹣4);(2)存在异于点D的点E,使S△BCE=S△BCD,点E的坐标为(2,﹣3);(3)最小值为23.(1)A(0,1),B(3,0);(2)5 324. (3) <;(4) 9 26.(3)AG;(4)<.。
人教版数学七年级下册第五章《相交线与平行线》周练习含答案
人教版数学七年级下册第五章《相交线与平行线》周练习第五章相交线与平行线周周测1一选择题1. 如图:下列四个判断中,正确的个数是().①的内错角只有②的同位角是③的同旁内角是..④图中的同位角共有个A. 个B. 个C. 个D. 个2.如图,已知于点,点..在同一直线上,且,则为().A.B.C.D.3.如图,直线相交于点 ,射线平分 , ,若,则的度数为().A.B.C.D.4.如图,直线.被直线所截,则的同旁内角是()A.B.C.D.5.如图,与是内错角的是()A.B.C.D.6.如图,与是()A. 对顶角B. 同位角C. 内错角D. 同旁内角7.已知两条平行线被第三条直线所截,则以下说法不正确的是()A. 一对同位角的平分线互相平行B. 一对内错角的平分线互相平行C. 一对同旁内角的平分线互相平行D. 一对同旁内角的平分线互相垂直8.如图,直线相交于点,于,若,则不正确的结论是()A.B.C.D.9.如果点在直线上,也在直线上,但不在直线上,且直线..两两相交符合以上条件的图形是()A.B.C.D.10.如图两条非平行的直线被第三条直线所截,交点为,那么这条直线将所在平面分成()A. 个部分B. 个部分C. 个部分D. 个部分11.如图,若两条平行线,与直线,相交,则图中共有同旁内角的对数为()A.B.C.D.12.若点到直线的距离为,点到直线的距离为,则线段的长度为()A.B.C. 或D. 至少13.如图,在平面内,两条直线,相交于点,对于平面内任意一点,若,分别是点到直线,的距离,则称为点的“距离坐标”.根据上述规定,“距离坐标”是的点共有()个.A. 个B. 个C. 个D. 个14.如图,两条直线,交于点,射线是的平分线,若,则等于()A.B.C.D.15.如图,点是直线外的一点,点在直线上,且,垂足是,,则下列不正确的语句是()A. 线段的长是点到直线的距离B. 线段的长是点到直线的距离C. 三条线段中,最短D. 线段的长是点到直线的距离二填空题16.如图,与相交于点,,,则度.17.如图,在菱形中,点是对角线上的点,于点,若,则到的距离为.18.如图,标有角号的个角中共有对内错角,对同位角,对同旁内角.19.四条直线两两相交,至多会有个交点.20.如图,,,,则度.三解答题21.如图,图中共有多少对同位角,多少对内错角,多少对同旁内角.22.如图,用数字标出的八个角中,同位角.内错角.同旁内角分别有哪些?请把它们一一写出来.23.如图,直线..两两相交,射线平分,已知,,求的度数.第五章相交线与平行线周周测1 参考答案与解析一、选择题1.C2.B3.C4.C5.D6.B7.C8.C9.D 10.C 11.D 12.D13.D 解析:依题意,作与l1平行且距离为2的直线两条,作与l2平行且距离为1的直线两条,两组平行线的交点即为所求,共4个点符合题意.14.C 15.B二、填空题16.36 17.3 18.4 2 4 19.6 20.55三、解答题21.解:有6对同位角,4对内错角,4对同旁内角.22.解:同位角:∠2与∠8,∠3与∠7,∠4与∠6;内错角:∠1与∠4,∠2与∠6,∠3与∠5,∠4与∠8,;同旁内角:∠2与∠4,∠2与∠5,∠3与∠6,∠4与∠5.23.解:∵BE平分∠ABD,∠2=75°,∴∠ABE=∠2=75°,∴∠1=180°-∠ABE=∠2=180°-75°-75°=30°.∵∠1=3∠3,∴∠3=25°.∵∠3与∠4是对顶角,∴∠4=∠3=25°.第五章相交线与平行线周周测2一选择题1.如图,已知直线a,b被直线所截,那么的同位角是()A.B.C.D.2. 如图,已知三条直线,,相交于一点,则等于().A. °B. °C. °D. °3.将一副三角板按图中方式叠放,则角的度数是().A.B.C.D.4.如图,下列叙述正确的是().A. 和是内错角B. 和是同位角C. 和是同位角D. 和是同旁内角5.如图,直线,被直线所截,则的同旁内角是()A.B.C.D.6.如图:下列四个判断中,正确的个数是().①的内错角只有②的同位角是③的同旁内角是,,④图中的同位角共有个A. 个B. 个C. 个D. 个7.甲.乙.丙.丁四个学生在判断时钟的分针与时针互相垂直的时,他们每个人都说两个时间,说对的是()A. 丁说时整和时整B. 丙说时整和时分C. 乙说点分和点分D. 甲说时整和点分8.如图,直线相交于点,于,若,则不正确的结论是()A.B.C.D.9.如图,若两条平行线,与直线,相交,则图中共有内错角的对数为()A.B.C.D.10.如图,能表示点到直线的距离的线段共有()A. 条B. 条C. 条D. 条11.在一个平面上任意画条直线,最多可以把平面分成的部分是()A.B.C.D.12.如图,点是直线外的一点,点在直线上,且,垂足是,,则下列不正确的语句是()A. 线段的长是点到直线的距离B. 线段的长是点到直线的距离C. 三条线段中,最短D. 线段的长是点到直线的距离二填空题13.如图,与相交于点,,,则度.14.如图,,于,图中共有_______个直角,图中线段______的长表示点到的距离,线段_________的长表示点到的距离.15.如图,的内错角有个.16.如图,,,,则度.三解答题17.如图,图中共有多少对同位角,多少对内错角,多少对同旁内角.18.如图,用数字标出的八个角中,同位角.内错角.同旁内角分别有哪些?请把它们一一写出来.19.如图,直线,,相交于点,平分,,.求的度数.第五章相交线与平行线周周测2 参考答案与解析一、选择题1.A2.C3.D4.A5.C6.C7.A8.C9.D 10.D 11.C 12.B二、填空题13.36 14.3 CD AC 15.3 16.55三、解答题17.解:有6对同位角,4对内错角,4对同旁内角.18.解:同位角:∠2与∠8,∠3与∠7,∠4与∠6;内错角:∠1与∠4,∠2与∠6,∠3与∠5,∠4与∠8,;同旁内角:∠2与∠4,∠2与∠5,∠3与∠6,∠4与∠5.19.解:∵,,∴∠DOE=180°-∠1-∠2=180°-30°-45°=105°.∵∠DOE与∠COF是对顶角,∴∠COF=105°.∵平分,∴∠3=∠FOG=105°÷2=52.5°.第五章相交线与平行线周周测3一选择题1. 如图,已知∠1=∠2,则下列结论一定成立的是()A.AB//CD B.AD//BC C.∠B=∠D D.∠3=∠42. 下列图形中,能由∠1=∠2得到AB//CD的是()A.B. C.D.3. 如图,能判定的条件是()A.B.C.D.4. 对于图中标记的各角,下列条件能推理得到a∥b的是()A.∠1=∠2 B.∠2=∠4 C.∠3=∠4 D.∠1+∠4=180°5. 如图,下列条件中:(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.能判定AB∥CD的条件个数有()A.1个B.2个C.3个D.4个6. 如图,下列条件中,不能判断直线∥的是()A.∠1=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°7. 如图,已知∠1=70°,要使AB∥CD,则须具备另一个条件()A.∠2=70° B.∠2=100° C.∠2=110° D.∠3=110°8. 如图,用两个相同的三角板按照如图方式作平行线,能解释其中道理的定理是()A.同位角相等两直线平行B.同旁内角互补,两直线平行C.内错角相等两直线平行D.平行于同一条直线的两直线平行9. 如图,能判定EC∥AB的条件是()A.∠B=∠ACE B.∠A+∠ACD=180°C.∠ACE=∠DCE D.∠A=∠ACE10. 如图,下列能判定AB∥CD的条件有().(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.A.1个B.2个C.3个D.4个11. 过一点画已知直线的平行线,则( )A.有且只有一条B.有两条C.不存在D.不存在或只有一条12. 如图,能判断直线AB∥CD的条件是()A.∠1=∠2 B.∠3=∠4 C.∠1+∠3=180 o D.∠3+∠4=180 o二填空题13. 如图,两直线a.b被第三条直线c所截,若∠1=50°,∠2=130°,则直线a.b的位置关系是____________ .14. 在同一平面内,_____________________叫作平行线.15. 如图,直线a、b被直线c所截,若满足,则a、b平行(写出一个即可).16. 已知为平面内三条不同直线,若,,则与的位置关系是.三解答题17. 看图填空:如图,∠1的同位角是,∠1的内错角是,如果∠1=∠BCD,那么,根据是;如果∠ACD=∠EGF,那么,根据是.18. 如图,已知∠1=∠2,AC平分∠DAB,试说明DC∥AB.19.已知:如图,∠A=∠F,∠C=∠D.求证:BD∥CE.20.如图,已知:∠B=∠D+∠E,试说明:AB∥CD.第五章相交线与平行线周周测3 参考答案与解析一、选择题1.B2.D3.D4.D5.C6.B7.C8.C9.D 10. C 11.D 12.D二、填空题13.平行14.不相交的两条直线15.∠1=∠2(答案不唯一)16.平行三、解答题17.∠EFG ∠BCD,∠AED DE∥BC 内错角相等,两直线平行CD∥GF 同位角相等,两直线平行18. 解:∵AC平分∠DAB,,∴∠1=∠CAB.∵∠1=∠2,∴∠CAB=∠2,∴DC∥AB.19. 证明:∵∠A=∠F,∴AC∥DF,∴∠C=∠CEF.∵∠C=∠D,∴∠D=∠CEF,∴BD∥CE.20..解:过点E向右作EM//CD,则∠D=∠DEM.∵∠B=∠D+∠E,第五章相交线与平行线周周测4一选择题1.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,内错角相等12第1题图第2题图第3题图2.如图,梯子的各条横档互相平行,若∠1=70°,则∠2的度数是()A.80°B.110°C.120°D.140°3.如图所示,点E 在AC 的延长线上,下列条件中能判断AB ∥CD 的是( ) A .∠3=∠4B .∠1=∠2C .∠D =∠DCE D .∠D +∠ACD =180°4.一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,那么两次拐弯的角度是( )A .第一次右拐50°,第二次左拐130°B .第一次左拐50°,第二次右拐130°C .第一次左拐50°,第二次左拐130°D .第一次右拐50°,第二次左拐50° 5.如图,下列说法中,正确的是( ) A .因为∠A +∠D =180°,所以AD ∥BC B .因为∠C +∠D =180°,所以AB ∥CD C .因为∠A +∠D =180°,所以AB ∥CDD .因为∠A +∠C =180°,所以AB ∥CD 第5题图 二 填空题6.在同一平面内,如果直线b 和c 都与直线a 垂直,那么直线b 和c的位置关系是 . 7.如图,已知∠1=∠2,由此可得 ∥ .第7题图 第8题图8.如图,已知直线、被直线所截,∠1=60°, 则当∠2= °时,∥. 9.如图,小明利用两块相同的三角板,分别在三角板的边缘画直线和,这是根据________________,两直线平行.第9题图 第10题图10.如图,直线a 、b 与直线c 相交,给出下列条件:①∠1=∠2; ②∠4=∠6; ③∠4+∠7=180°; ④∠5+∠3=180°.其中能判断a ∥b 的条件是 (只填序号). 三 解答题11.如图,已知∠1=70°,∠2=110°,请用三种方法判定AB ∥DE.a b c a b AB CD12.已知:如图,CE平分∠ACD,∠1=∠2.求证:AB∥CD.第五章相交线与平行线周周测4 参考答案与解析一、选择题1.A2.B3.B4.D5.C二、填空题6.平行7.AD BC8.1209.内错角相等10.①③④三、解答题11. 解:(1)∵∠1=70°,∴∠AFC=180°-70°=110°.∵∠2=110°,∴∠AFC=∠2,∴AB//DE.(2)∵∠1=70°,∴∠BFD=180°-70°=110°.∵∠2=110°,∴∠BFD=∠2,∴AB//DE.(3)∵∠1=70°,∴∠AFD=70°.∵∠2=110°,∴∠AFD+∠2=180°,∴AB//DE.12.证明:∵CE平分∠ACD,,∴∠2=∠DCE.∵∠1=∠2,∴∠DCE=∠1,∴AB ∥CD.第五章 相交线与平行线周周测5一 选择题1.如果相等的两个角的一边在一条直线上,另一边互相平行,那么这两个角( ) A.相等 B.互补 C.相等或互补 D.不能确定2.如图,∠1和∠2互补,那么图中平行的直线是( ) A.b a // B.d c // C.e d // D.e c //第2题图 第4题图3.下列条件中,能得到互相垂直的是( )A.对顶角的平分线B.邻补角的平分线C.平行线的内错角的平分线D.平行线的同位角的平分线 4.如图,n m //,那么∠1.∠2.∠3的关系是( )A.∠1+∠2+∠3=360°B.∠1+∠2-∠3=180°C.∠1-∠2+∠3=180°D.∠1+∠2+∠3=180°5.一辆汽车在直路上行驶,两次拐弯后,仍按原来的方向行驶,那么这两次拐弯时( ) A.第一次向右拐30°,第二次向右拐30°B.第一次向右拐30°,第二次向右拐150°C.第一次向左拐30°,第二次向右拐150°D.第一次向左拐30°,第二次向右拐30° 6.下列命题中,是假命题的是( )A.同旁内角互补B.对顶角相等C.直角的补角仍然是直角D.两点之间,线段最短7.如图,在三角形ABC中,BC=5,∠A=70°,∠B=75°,把三角形ABC沿直线BC的方向平移到三角形DEF的位置.若CF=3,则下列结论中错误的是 ( ) A.DF=5 B.∠F=35°C.BE=3 D.AB∥DE8.如图,将周长为10个单位的三角形ABC沿边BC向右平移2个单位得到三角形DEF,则四边形ABFD周长为()A.12B.14C.16D.18第8题图第9题图第10题图9.如图是一块长方形ABCD的场地,AB=102m,AD=51m,从A.B两处入口中的路宽都为1m,两小路汇合处路宽为2m,其余部分种植草坪,则草坪的面积为()A.5050m2B.4900m2C.5000m2D.4998m210.如图,O是正六边形ABCDEF的中心,下列图形:三角形OCD;三角形ODE;三角形OEF;三角形OAF;三角形OAB.其中可由三角形OBC平移得到的有()A.1个B.2个C.3个D.4个二填空题11.如图,将三角形ABC沿BC方向平移2cm得到三角形DEF,若三角形ABC周长为16cm,则四边形ABFD周长为.第13题图第14题图第15题图12.如图,长方形ABCD的边AB=10,BC=6,则图中四个小长方形的周长和为.13.如图,在长方形ABCD中,AB=10cm,BC=6cm,若此长方形以2cm/s的速度沿着A→B方向移动,则经过 s,平移后的长方形与原来长方形重叠部分的面积为24 . 14.如图,AB∥EF∥CD,EG平分∠BEF,∠B+∠BED+∠D=192°,∠B-∠D=24°,则∠GEF= .15.“两数之和始终是正数”是________命题(填“真”或“假”).16.把命题“平行于同一条直线的两条直线互相平行”改写成“如果……,那么……”的形式为_______________________________________________.17.如图,是我们生活中经常接触的小刀,刀片的外形是一个直角梯形,刀片上.下是平行的,转动刀片时会形成∠1和∠2,则∠1+∠2=度.第17题图第18题图18.如图,AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=40°,则下列结论:①∠BOE=70°;②OF平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF.其中正确结论有(只填序号).三解答题19.如图,点A在直线MN上,且MN//BC.求证:∠BAC+∠B+∠C=180°.M A NB C20.如图,M,N,T和P,Q,R分别在同一直线上,且∠1=∠3,∠P=∠T.求证:∠M=∠R.21.如图,直线m⊥l,n⊥l,∠1=∠2.求证:∠3=∠4.22.已知,如图,DE⊥AC,∠AGF=∠ABC,∠1+∠2=180°,试判断BF与AC的位置关系,并说明理由.第五章相交线与平行线周周测5 参考答案与解析一、选择题1.C2.D3.D4.B5.D6.A7.A8.B9.C 10.B二、填空题11.20 12.32 13.3 14.30°15.假16.如果两条直线平行于同一条直线,那么这两条直线互相平行17. 90 18.①②③三、解答题19.证明:∵MN∥BC,∴∠B=∠MAB,∠C=∠NAC.∵∠BAC+∠MAB+∠NAC=180°,∴∠BAC+∠B+∠C=180°.20.证明:∵∠1=∠3,∠1=∠2,∴∠2=∠3,∴PN∥QT,∴∠T=∠MNP.∵∠P=∠T,∴∠P=∠MNP,∴PR∥MT,∴∠M=∠R..21.证明:∵m⊥l,n⊥l,∴m∥n,∴∠1=∠4,∠,2=∠3.∵∠1=∠2,∴∠3=∠4.22.解:BF⊥AC.理由如下:∵∠AGF=∠ABC,∴FG∥BC,∴∠1=∠3.∵∠1+∠2=180°,∠3+∠2=180°,∴BF∥DE,∴∠BFC=∠DEC.∵DE⊥AC,∴∠DEC=90°,∴∠BFC=90°,∴BF⊥AC.第五章相交线与平行线周周测6一选择题1. 下列命题正确的是( )A.两直线与第三条直线相交,同位角相等B.两直线与第三条直线相交,内错角相等C.两直线平行,内错角相等D.两直线平行,同旁内角相等2.如图,小聪把一块含有60°角的直角三角板的两个顶点放在直尺的对边上,并测得∠1=23°,则∠2的度数是()A.23°B.22°C.37°D.67°3.如图,AB∥CD,点E在CB的延长线上.若∠ABE=70°,则∠ECD的度数为()A.20°B.70°C.100°D.110°4.如图,∠B=∠C,AD∥BC,∠BAC=100°,则∠CAD的度数是()A.30°B.35°C.40°D.50°5.如图,已知AB∥CD,EA是∠CEB的平分线,若∠BED=40°,则∠A的度数是()A.40°B.50°C.70°D.80°6.如图,把一块等腰直角三角板的直角顶点放在直尺的一边上,如果∠1=40°,那么∠2=()A.40°B.45°C.50°D.60°7.如图,已知AC∥BD,∠CAE=30°,∠DBE=45°,则∠AEB等于()A.30°B.45°C.60°D.75°8. 如图,已知a∥b,∠1=130°,∠2=90°,则∠3=()A.70°B.100°C.140°D.170°9.如图,AB∥CD,则根据图中标注的角,下列关系中成立的是()A.∠1=∠3 B.∠2+∠3=180°C.∠2+∠4<180°D.∠3+∠5=180°10.如图,已知AB∥CD,CE平分∠ACD,当∠A=120°时,∠ECD的度数是()A.45°B.40°C.35°D.30°11. 如图,点D是三角形ABC的边AB的延长线上一点,BE∥AC.若∠C=50°,∠DBE=60°,则∠CBD的度数等于()A.120°B.110°C.100°D.70°12.如图,AB∥ED,则∠A+∠C+∠D=( )A.180°B.270°C.360°D.540°二填空题13. 如图,已知AB//DE,∠ABC=75°,∠CDE=150°,则∠BCD的度数为.14.如图,已知AD∥BE,∠DAC=29°,∠EBC=45°,则∠ACB= °.15.如图,已知AB∥CD,∠1=130°,则∠2= .16.如图,AB∥CD,∠1=64°,FG平分∠EFD,则∠EGF= °.三解答题17. 如图,BD平分∠ABC,F在AB上,G在AC上,FC与BD相交于点H. ∠GFH+ ∠BHC=180°.求证:.18.如图,已知∠B=∠C,AD∥BC,求证:AD平分∠CAE.19.如图,已知AB//CD,分别写出下列四个图形中,∠P与∠A,∠C的关系,请你从所得的四个关系中任选一个加以证明.20.如图,点E在直线DF上,点B在直线AC上,若∠1=∠2,∠3=∠4,则∠A=∠F,请说明理由.解:∵∠1=∠2(已知),∠2=∠DGF(),∴∠1=∠DGF,∴BD∥CE(),∴∠3+∠C=180º().又∵∠3=∠4(已知),∴∠4+∠C=180º,∴∥DF(同旁内角互补,两直线平行),∴∠A=∠F().第五章相交线与平行线周周测6 参考答案与解析一、选择题1.C2.C3.D4.C5.C6.C7.D8.C9.D 10.D 11.B 12.C二、填空题13.45°14.74 15.50°16.32三、解答题17.证明:∵BD平分∠ABC,∴∠2=∠ABD.∵∠GFH+∠BHC=180°,∠FHD=∠BHC,∴∠GFH+∠FHD=180°,∴FG∥BD,∴∠1=∠ABD.∵∠2=∠ABD,∴∠1=∠2.18.证明:∵AD∥BC,∴∠2=∠B,∠1=∠C.∵∠B=∠C,∴∠1=∠2,∴AD平分∠CAE.19.解:(1)∠P=360°-∠A-∠C.(2)∠P=∠A+∠C.(3)∠P=∠C-∠A.(4)∠P=∠A-∠C.若选(3),证明如下:过点P向左作PQ∥AB,则∠A=∠APQ.∵AB∥CD,∴PQ∥CD,∴∠C=∠CPQ,∴∠CPA=∠CPQ-∠APQ=∠C-∠A.20.对顶角相等同位角相等,两直线平行两直线平行,同旁内角互补AC 两直线平行,内错角相等第五章相交线与平行线周周测7一选择题1.将图①所示的图案通过平移后可以得到的图案是()A B C D 图①2.在5×5方格纸中将图①中的图形N平移后的位置如图②所示,那么下面平移中正确的是()A. 先向下移动1格,再向左移动1格B. 先向下移动1格,再向左移动2格C. 先向下移动2格,再向左移动1格D. 先向下移动2格,再向左移动2格第2题图第3题图3.如图,已知三角形ABC的面积为8,将三角形ABC沿BC的方向平移到三角形A’B’C’的位置,使B’和C重合,连结AC’交A’C于D,则三角形CAC’的面积为()A.4B.6C.8D.164.四根火柴棒形成如图所示的“口”字,平移火柴棒后,原图形能变成的汉字是()5.如图,面积为12cm²的三角形ABC沿BC方向平移至三角形DEF的位置,平移的距离是边BC的2倍,则图中四边形ACFD的面积为()A.24cm²B.36cm²C.48cm²D.60cm²第5题图第6题图6.如图,小明从家到学校有①②③三条路可走,每条路的长分别为a,b,c,则()A. B. C. D.7.从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图所示的零件,则这个零件的表面积是()A.20 B.22 C.24 D.26第7题图第8题图8.如图,将网格中的三条线段沿网格线平移后组成一个首尾相接的三角形,至少需要移动()A.8格B.9格C.11格D.12格二填空题9.如图,将三角形ABC沿BC方向平移2cm得到三角形DEF,若三角形ABC周长为16cm,则四边形ABFD周长为.第9题图第10题图第11题图10.如图,将三角形ABC沿射线AC平移得到三角形DEF.若AF=17,DC=7,则AD= .11.如图,边长为8cm的正方形ABCD先向上平移4cm,再向右平移2cm,得到正方形A′B′C′D′,此时阴影部分的面积为_________.12.某小区的一块长26米,宽15米的草坪内要修一条如图所示宽度相同的通道.当通道的宽度为2米时,剩下的草坪面积是通道面积的倍.第12题图第13题图第14题图13.鑫都大酒店在装修时,准备在主楼梯(如图)上铺上红地毯,已知这种地毯每平方米售价35元.楼梯宽2米,则购买这种地毯至少需元.14.如图,把直角梯形ABCD沿AD方向平移到梯形EFGH,HG=24cm,WG=8cm,WC=6cm,求阴影部分的面积为cm2.三解答题15.如图,已知,AB∥CD,直线EF分别交AB,CD于点E,F,EG平分∠AEF,∠1=40°,求∠2的度数.16.如图①是长方形纸带,将纸带沿EF折叠成图②,再沿BF折叠成图③.(1)若图①中∠DEF=20°,则图③中∠CFE的度数是多少?(2)若图①中∠DEF=α,把图③中∠CFE的度数用α表示是多少?17.如图,DB∥FG∥EC,∠ABD=60°,∠ACE=36°,AP平分∠BAC.求∠PAG的度数.第五章相交线与平行线周周测7 参考答案与解析一、选择题1.A2.C3.C4.B5.C6.C7.C8.A二、填空题9.20 10.5 11.24cm²12.4 13.630 14.168三、解答题15.解:∵AB∥CD,∠1=40°,∴∠AEG=∠1=40°.∵EG平分∠AEF,,∴∠AEF=2∠AEG=80°,∴∠2=180°-∠AEF=180°-80°=100°.16.解:图①中,∵AD∥BC,∴∠DEF=∠BFE,∴∠CFE=180°-∠DEF.图②中,由折叠得∠CEF=180°-∠DEF,∴∠CFB=∠CEF-∠BFE=180°-2∠DEF.图③中,由折叠得∠CFB=180°-2∠DEF,∴∠CFE=∠CFB-∠BFE=180°-3∠DEF.(1)若图①中∠DEF=20°,则图③中∠CFE=180°-3×20°=120°.(2)若图①中∠DEF=α,则图③中∠CFE=180°-3α.17.解:∵DB∥FG∥EC,∠ABD=60°,∠ACE=36°,∴∠BAG=∠ABD=60°,∠CAG=∠ACE=36°,∴∠BAC=∠BAG+∠CAG=60°+36°=96°.∵AP平分∠BAC,∴∠PAC=12∠BAC=12×96°=48°,∴∠PAG=∠PAC-∠CAG=48°-36°=12°.第五章相交线与平行线周周测8一选择题1.下列选项中能由左图平移得到的是()A. B. C. D.2.在四边形ABCD中,下列各图中∠1与∠2相等的是()3.如图,在铁路旁有一李庄,现要建一火车站,为了使李庄人乘车最方便,请你在铁路线上选一点来建火车站,应建在()A.A点B.B点C.C点D.D点4.将命题“对顶角相等”写成“如果……,那么……”的形式,正确的是()A.如果两个角相等,那么它们是对顶角B.如果两个角是对顶角,那么它们相等C.如果对顶角,那么相等D.如果两个角不是对顶角,那么这两个角不相等5.如图,与∠1是同旁内角的是()A.∠2B.∠3C.∠4D.∠56.如图,AB//CD,∠AGE=128°,HM平分∠EHD,则∠MHD的度数是()A.46°B.23°C.26°D.24°7.如图,下列条件中,不能判断直线l1∥l2的是()A.∠1=∠3B.∠4=∠5C.∠2=∠3D.∠2+∠4=180°8.如图,直线l1∥l2,若∠1=140°,∠2=70°,则∠3的度数是()CA.60°B.65°C.70°D.80°9.如图,已知AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC=()A.30°B.60°C.90°D.120°10.如图,已知AB∥DE,∠ABC=70º,∠CDE=140º,则∠BCD的值为( )A.70ºB.50ºC.40ºD.30º二填空题11.如图,将三角形ABC沿BC’方向平移4cm,得到三角形A’B’C’,那么CC’= cm.12.将一个直角三角板和一把长方形直尺按如图放置,若∠α=54°,则∠β的度数是______.13.如图,把矩形ABCD沿EF对折后使两部分重合,若∠1=40°,则∠AEF=.14.如图,直线a∥b,三角板的直角顶点A落在直线a上,两条直角边分别交直线b于B,C两点.若∠1=42°,则∠2的度数是.15.如图,AB∥CD,∠B=160°,∠D=120°,则∠E=_________16.如图①:MA1∥NA2,图②:MA1∥NA3,图③:MA1∥NA4,图④:MA1∥NA5,…,则第n个图中的∠A1+∠A2+∠A3+…+∠A n+1= °(用含n的代数式表示).三解答题17.完成下面的证明:已知,如图,AB∥CD∥GH,EG平分∠BEF,FG平分∠EFD.求证:∠EGF=90°.证明:∵HG∥AB(已知),∴∠1=∠3(______ ).又∵HG∥CD(已知),∴∠2=∠4.∵AB∥CD(已知),∴∠BEF+______=180°(______ ).又∵EG平分∠BEF(已知),∴∠1=∠______.又∵FG平分∠EFD(已知),∴∠2=∠______,∴∠1+∠2=(______ ),∴∠1+∠2=90°,∴∠3+∠4=90°(______ ),即∠EGF=90°.18.如图是一个汉字“互”字,其中,∥,∠1=∠2,∠=∠.求证:∠=∠.19.如图,CD⊥AB于D,点F是BC上任意一点,FE⊥AB于E,且∠1=∠2,∠3=80°. (1)证明:∠B=∠ADG;(2)求∠BCA的度数.20.如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.21.如图,已知DC∥FP,∠1=∠2,∠FED=28º,∠AGF=80º,FH平分∠EFG.(1)证明:DC∥AB;(2)求∠PFH的度数.22.如图,已知AB∥CD,C在D的右侧,BM平分∠ABC,DN平分∠ADC,BM,DN所在直线交于点E,∠ADC =70°.(1)求∠EDC的度数;(2)若∠ABC =n°,求∠BED的度数(用含n的代数式表示);(3)将线段BC沿DC方向平移,使得点B在点A的右侧,其他条件不变,画出图形并判断∠BED的度数是否改变,若改变,求出它的度数(用含n的式子表示);若不改变,请说明理由.第五章相交线与平行线周周测8参考答案与解析一、选择题1.C2.B3.A4.B5.A6.C7.C8.C9.B 10.D二、填空题11.4 12.36° 13.110° 14.48° 15.40° 16.180n三、解答题17.两直线平行,内错角相等∠EFD 两直线平行,同旁内角互补 BEF EFD ∠BEF+∠EFD 等量代换18.证明:如图,延长交于点.∵∥,∴∠1=∠3.又∵∠1=∠2,∴∠2=∠3,∴∥HN,∴∠=∠.又∵∠=∠,∴∠=∠.19.(1)证明:∵CD⊥AB,FE⊥AB,∴CD∥EF,∴∠2=∠BCD.∵∠1=∠2,∴∠1=∠BCD,∴BC∥DG,∴∠B=∠ADG.(2)解:∵DG∥BC,∴∠3=∠BCA.∵∠3=80°,∴∠BCA=80°.20.解:∵EF∥AD,AD∥BC,∴EF∥BC,∴∠ACB+∠DAC=180°.∵∠DAC=120°,∴∠ACB=60°.又∵∠ACF=20°,∴∠FCB=∠ACB﹣∠ACF=40°.∵CE平分∠BCF,∴∠BCE=20°.∵EF∥BC,∴∠FEC=∠BCE=20°.21.(1) 证明:∵∠1=∠2,∴AB∥FP.∵DC∥FP,∴DC∥AB.(2)解:∵DC∥FP,∴∠EFP=∠FED=28º.∵AB∥FP,∴∠GFP=∠AGF=80º.∴∠EFG=∠EFP+∠GFP=28°+80°=108°.∵FH平分∠EFG,∴∠EFH=∠EFG=×108°=54°,∴∠PFH=∠EFH-∠EFP=54°-28°=26 º.22.解:(1)∵DE平分∠ADC,∠ADC=70°,∴∠EDC=∠ADC=×70°=35°.(2)如图,过点E向左作EF∥AB.∵AB∥CD,∴AB∥CD∥EF,∴∠ABE=∠BEF,∠CDE=∠DEF.∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°,∴∠ABE=∠ABC=n°,∠CDE=∠ADC=35°,∴∠BED=∠BEF+∠DEF=n°+35°.(3)如图①,过点E向左作EF∥AB.∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°,∴∠ABE=∠ABC=n°,∠CDE=∠ADC=35°.∵AB∥CD,∴AB∥CD∥EF,∴∠BEF=180°-∠ABE=180°-n°,∠CDE=∠DEF=35°,∴∠BED=∠BEF+∠DEF=180°-n°+35°=215°-n°.图①图②如图②,过点E向左作EF∥AB.∵BM平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°,∴∠ABM=∠ABC=n°,∠CDE=∠ADC=35°.∵AB∥CD,∴AB∥CD∥EF,∴∠BEF=∠ABM=n°,∠CDE=∠DEF=35°,∴∠BED=∠BEF-∠DEF=n°-35°.综上所述,∠BED的度数发生了改为,改变为215°-n°或n°-35°.第五章相交线与平行线周周测9一选择题1.点P为直线l外一点,点A,B,C为直线l上三点,P A=4cm,PB=5cm,PC=3cm,则点P到直线l的距离为()A.4cm B.5cmC.小于3cm D.不大于3cm2.如图,点E,F分别是AB,CD上的点,点G是BC的延长线上一点,且∠B=∠DCG=∠D,则下列判断中,错误的是()A.∠AEF=∠EFC B.∠A=∠BCFC.∠AEF=∠EBC D.∠BEF+∠EFC=180°第2题图第3题图3.如图,∠AOB的一边OA为平面镜,∠AOB=37°36′,在OB上有一点E,从E点射出一束光线经OA上一点D反射,反射光线DC恰好与OB平行,且∠ODE与∠ADC相等,则∠DEB的度数是()A.75°36′ B.75°12′ C.74°36′ D.74°12′4.下列图形中,可以由其中一个图形通过平移得到的是()5.如图①~④,其中∠1与∠2是同位角的有()A.①②③④B.①②③C.①③D.①第5题图第6题图6.如图,能判断直线AB∥CD的条件是()A.∠1=∠2 B.∠3=∠4C.∠1+∠3=180° D.∠3+∠4=180°7.有下列命题:①对顶角相等;②在同一平面内,垂直于同一条直线的两直线平行;③相等的角是对顶角;④内错角相等.其中假命题有()A.①②B.①③C.②④D.③④8.若∠1与∠2是对顶角且互补,则它们两边所在的直线()A.互相垂直B.互相平行C.既不垂直也不平行D.不能确定9.如图,BD∥AC,BE平分∠ABD,交AC于点E.若∠A=50°,则∠1的度数为() A.65° B.60° C.55° D.50°第9题图第10题图10.已知直线m∥n,将一块直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上.若∠1=20°,则∠2的度数为()A.20° B.30°C.45° D.50°二填空题11.如图,当剪刀口∠AOB增大21°时,∠COD增大________°.第11题图第12题图12.如图,平行线AB,CD被直线AE所截,∠1=50°,则∠A=________°.13.如图,在线段AC,BC,CD中,线段________最短,理由是____________________.第13题图第14题图14.如图,直线AB,CD相交于点O,OE⊥AB,∠COE=68°,则∠BOD的度数为________.15.如图,直线l1∥l2,∠1=20°,则∠2+∠3=________°.第15题图第17题图16.平移变换不仅与几何图形有着密切的联系,而且在一些特殊结构的汉字中,也有平移变换的现象,如:“日”“朋”“森”等,请你再写两个具有平移变换现象的汉字_____ ___.17.如图是超市里购物车的侧面示意图,扶手AB与车底CD平行,∠2比∠3大10°,∠1是∠2的1911倍,则∠2的度数是________.18.以下三种沿AB折叠纸带的方法:(1)如图①,展开后测得∠1=∠2;(2)如图②,展开后测得∠1=∠2且∠3=∠4;(3)如图③,测得∠1=∠2.其中能判定纸带两条边线a,b互相平行的是________(填序号).三解答题19.如图,直线AB,CD相交于O,OE是∠AOD的平分线,∠AOC=28°,求∠AOE的度数.20.如图,在方格纸中,每个小方格的边长均为1个长度单位,三角形ABC的三个顶点和点P都在小方格的顶点上.要求:①将三角形ABC平移,使点P落在平移后的三角形内部;②平移后的三角形的顶点在方格的顶点上.请你在图甲和图乙中分别画出符合要求的一个示意图,并写出平移的方法.21.如图,已知AE⊥BC,FG⊥BC,∠1=∠2.求证:AB∥CD.22.如图,直线AB,CD相交于点O,OE把∠BOD分成两部分.(1)直接写出图中∠AOC的对顶角为________,∠BOE的邻补角为________;(2)若∠AOC=70°,且∠BOE∶∠EOD=2∶3,求∠AOE的度数.23.如图,现有以下3个论断:①AB∥CD;②∠B=∠C;③∠E=∠F.请以其中2个论断为条件,另一个论断为结论构造命题.(1)你构造的是哪几个命题?(2)你构造的命题是真命题还是假命题?请选择其中一个真命题加以证明.24.如图,已知AB∥CD,CE,BE的交点为E,现作如下操作:第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1,第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3……第n次操作,分别作∠ABE n-1和∠DCE n-1的平分线,交点为E n.(1)如图①,求证:∠BEC=∠B+∠C;(2)如图②,求证:∠BE2C=14∠BEC;(3)猜想:若∠E n=b°,求∠BEC的度数.第五章相交线与平行线周周测9 参考答案与解析一、选择题1.D2.C3.B4.B5.C6.D7.D8.A9.A 10.D二、填空题11.21 12.50 13.CD 垂线段最短14.22°15.20016.林晶(答案不唯一)17.55°18.①②三、解答题19.解:∵∠AOC=28°,∴∠AOD=180°-∠AOC=180°-28°=152°.∵OE是∠AOD的平分线,∴∠AOE=12∠AOD=12×152°=76°.20.解:如图,共有3种情况:图甲图乙图丙图甲:将三角形ABC向右平移4个单位长度;图乙:将三角形ABC先向右平移4个单位长度,再向上平移1个单位长度;图丙:将三角形ABC先向右平移3个单位长度,再向上平移1个单位长度.21.证明:∵AE⊥BC,FG⊥BC,∴AE∥FG,∴∠1=∠A.∵∠1=∠2,∴∠2=∠A,∴AB∥CD.22.解:(1)∠BOD ∠AOE(2)∵∠AOC=70°,∴∠BOD=70°.∵∠BOE∶∠EOD=2∶3,∴∠BOE=25∠BOD=25×70°=28°,∴∠AOE=180°-∠BOE=180°-28°=152°.23.解:(1)命题一:如果AB∥CD,∠B=∠C,那么∠E=∠F.命题二:如果AB∥CD,∠E=∠F,那么∠B=∠C.命题三:如果∠B=∠C,∠E=∠F,那么AB∥CD.(2)三个命题都是真命题.若选择命题(1),证明如下:∵AB∥CD,∴∠B=∠CDF.∵∠B=∠C,∴∠CDF=∠C,∴AC∥BD,∴∠E=∠F.24.(1)证明:过点E向左作EF∥AB.∵AB∥CD,∴AB∥CD∥EF,∴∠BEC=∠B,∠CEF=∠C,∴∠BEC=∠BEF+∠CEF=∠B+∠C.(2)证明:同(1)理,可证∠BE1C=∠ABE1+∠DCE1,∠BE2C=∠ABE2+∠DCE2.∵∠ABE和∠DCE的平分线交于点E1,∠ABE1和∠DCE1交于点E2,∴∠ABE1=12∠ABE,∠DCE1=12∠DCE,∠ABE2=12∠ABE1,∠DCE2=12∠DCE1,∴∠BE1C=12∠ABE+12∠DCE=12∠BEC,∴∠BE2C=12×12∠ABE+12×12∠DCE=14∠BEC.(3)由(1)(2)知∠BE1C=12∠BEC,∠BE2C=14∠BEC,∴∠∠BE n C=12n⎛⎫⎪⎝⎭∠BEC,∴若∠E n=b°,∠BEC=2n。
人教版七年级数学下册第五章相交线与平行线单元检测卷(共6套)
第五章相交线与平行线单元检测卷一、选择题1.如图,三条直线相交于点O,则∠1+∠2+∠3等于( )A.90°B.120°C.180°D.36002. 如图,下列能判定AB∥CD的条件有()个.(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.A.1 B.2 C.3 D.43. 如图,∠1=70°,∠2=70°,∠3=60°,则∠4的度数等于( )A.80°B.70°C.60°D.50°4.下列图形中,能将其中一个三角形平移得到另一个三角形的是A. B.C. D.5.如图,直线AB,CD相较于点O,OE⊥AB于点O,若∠BOD=40°,则下列结论不正确的是( )A.∠AOC=40°B.∠COE=130°C.∠EOD=40°D.∠BOE=90°6.如图,直线a,b被c,d所截,且a∥b,则下列结论中正确的是( )A.∠1=∠2 C.∠3+∠4=180°B.∠3=∠4 D.∠1+∠4=180°7.如图,点A在直线BG上,AD∥BC,AE平分∠GAD,若∠CBA=80°,则( )A.60°B.50°C.40°D.30°8.下列各图中,∠1与∠2互为邻补角的是( )9.对于图中标记的各角,下列条件能推理得到a∥b的是()A.∠1=∠2 B.∠2=∠4 C.∠3=∠4 D.∠1+∠4=18010.下列说法正确的是( )A.一个角的补角一定比这个角大B.一个角的余角一定比这个角小C.一对对顶角的两条角平分线必在同一条直线上D.有公共顶点并且相等的两个角是对顶角二、填空题11.如图,直线AB,CD相交于点O, EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为______.12. 如图是由五个形状、大小完全相同的三角形组成的图案,三角形的三个角分别为36°,72°,72°,则图中共有_____对平行线.13.如图,,则的度数等于14.如图,点0是直线AB上一点平分,图中与互余的角有______ .图中与互补的角有______ .15. 说明命题“x>-4,则x2>16”是假命题的一个反例可以是x=____________.16.如图,现要从村庄A修建一条连接公路PQ的最短小路,过点A作AH⊥PQ于点H,沿AH修建公路,则这样做的理由是三、解答题17.如图,直线AB,CD 相交于点O,∠AOD=3∠BOD+20°.(1)求∠BOD的度数;(2)以O为端点引射线OE,OF ,射线OE平分∠BOD,且∠EOF= 90°,求∠BOF的度数.18.已知:如图,AB∥CD,∠1=∠2,∠3=∠4.(1)求证:AD∥BE;(2)若∠B=∠3=2∠2,求∠D的度数.19.如图,D,E,F是线段AB的四等分点.(1)过点D画DH∥BC交于点H,过点E画EG∥BC交AC于点G,过点F画FM∥BC交AC 于点M;(2)量出线段AH,HG,GM,MC的长度,你有什么发现?(3)量出线段HD,EG,FM,BC的长度,你又有什么发现?20.请写出命题“两直线平行,同位角相等”的题设和结论:题设:,结论:.21.观察下图,寻找对顶角:(1)如图1,图中共有对对顶角(2)如图2,图中共有对对顶角(3)如图3,图中共有对对顶角(4)若有n条直线相交于一点,则可形成多少对对顶角?22.如图,已知直线AB∥DF,∠D+∠B=180°.(1)试说明DE∥BC;(2)若∠AMD=75°,求∠AGC的度数.【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
2019-2020年人教版七年级数学下册 5.1 相交线 同步训练(解析版)
2019-2020学年人教版七年级数学下册5.1 相交线同步训练一.选择题(共8小题)1.平面上4条直线两两相交,交点的个数是()A.1个或4个B.3个或4个C.1个、4个或6个D.1个、3个、4个或6个2.如图,直线a,b相交于点O,若∠1等于30°,则∠2等于()A.60°B.70°C.150°D.170°3.下列各图中,∠1=∠2一定成立的是()A.B.C.D.4.如图,OA⊥OB,若∠1=55°30′,则∠2的度数是()A.34°B.34°30′C.35°D.35°30′5.能解释:“用两个钉子就可以把木条固定在墙上”,这实际问题的数学知识是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.在同一平面内,过一点有且只有一条直线与已知直线垂直6.若直线l上一点P和直线l外一点Q的距离为8cm,则点Q到直线l的距离是()A.等于8cm B.小于或等于8cmC.大于8cm D.以上三种都有可能7.如图,下列说法正确的是()A.∠A与∠B是同旁内角B.∠1与∠2是对顶角C.∠2与∠A是内错角D.∠2与∠3是同位角8.如图,与∠B互为同旁内角的角有()个A.2B.3C.4D.5二.填空题(共6小题)9.观察图形,并阅读相关的文字,回答:如有9条直线相交,最多有交点.10.如图,直线AB、CD相交于点O,OE平分∠BOD;OF平分∠COE,若∠AOC=82°,则∠BOF =°.11.如图,已知直线AB和CD相交于点O,射线OE在∠COB内部,OE⊥OC,OF平分∠AOE,若∠BOD=40°,则∠COF=度.12.如图所示,想在河的两岸搭建一座桥,搭建方式最短的是(用字母表示).13.如图,AH⊥BC,若AB=3cm、AC=4.5cm、AH=2cm,则点A到直线BC的距离为.14.如图,图中,∠B的同旁内角除了∠A还有.三.解答题(共4小题)15.如图,直线AB,CD相交于点O,OA平分∠EOC;(1)请你数一数,图中有个小于平角的角;(2)若∠EOC=80°,求∠BOD的度数.16.如图,直线AB与CD相交于点O,OE是∠COB的平分线,OE⊥OF.(1)图中∠BOE的补角是;(2)若∠COF=2∠COE,求∠BOE的度数;(3)试判断OF是否平分∠AOC,并说明理由;请说明理由.17.如图,AB、CD、NE相交于点O,OM平分∠BOD,∠MON=90°,∠AOC=50°(1)线段的长度表示点M到NE的距离;(2)比较MN与MO的大小(用“<”号连接):,并说明理由:;(3)求∠AON的度数.18.如图所示,把一根筷子一端放在水里,一端露出水面,筷子变弯了,它真的弯了吗?其实没有,这是光的折射现象,光从空气中射入水中,光的传播方向发生了改变.(1)请指出与∠1是同旁内角的有哪些角?请指出与∠2是内错角的有哪些角?(2)若∠1=115°,测得∠BOM=145°,从水面上看斜插入水中的筷子,水下部分向上折弯了多少度?请说明理由.2019-2020学年人教版七年级数学下册5.1 相交线同步训练参考答案与试题解析一.选择题(共8小题)1.平面上4条直线两两相交,交点的个数是()A.1个或4个B.3个或4个C.1个、4个或6个D.1个、3个、4个或6个【分析】4条直线相交,有3种位置关系,画出图形,进行解答.【解答】解:若4条直线相交,其位置关系有3种,如图所示:则交点的个数有1个,或4个,或6个.故选:C.【点评】本题主要考查了直线相交时交点的情况,关键是画出图形.2.如图,直线a,b相交于点O,若∠1等于30°,则∠2等于()A.60°B.70°C.150°D.170°【分析】因∠1和∠2是邻补角,且∠1=30°,由邻补角的定义可得∠2=180°﹣∠1=180°﹣30°=150°.【解答】解:∵∠1+∠2=180°,且∠1=30°,∴∠2=150°.故选:C.【点评】此题主要考查了对顶角和邻补角的特征和应用,要熟练掌握,解答此题的关键是要明确:①有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.②邻补角互补,即和为180°.3.下列各图中,∠1=∠2一定成立的是()A.B.C.D.【分析】根据对顶角相等,判断C组中的两个角是对顶角,前提均不是对顶角,而D只有两直线平行同位角相等,当两条直线不平行时,这两个不相等.【解答】解:根据对顶角相等可知,C选项是正确的,故选:C.【点评】考查对顶角的意义及性质,正确判断对顶角是判断的关键.4.如图,OA⊥OB,若∠1=55°30′,则∠2的度数是()A.34°B.34°30′C.35°D.35°30′【分析】由图象可知,∠1与∠2互余,根据∠1的度数,可求出∠2得度数,做出选择.【解答】解:∵OA⊥OB,∴∠AOB=90°∵∠1=55°30′,∴∠2=90°﹣55°30′=34°30′,故选:B.【点评】考查互相垂直、互为余角的意义以及角度的计算,掌握互余的意义是前提.5.能解释:“用两个钉子就可以把木条固定在墙上”,这实际问题的数学知识是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.在同一平面内,过一点有且只有一条直线与已知直线垂直【分析】根据直线的性质解答即可.【解答】解:用两个钉子就可以把木条固定在墙上”,这实际问题的数学知识是两点确定一条直线,故选:B.【点评】此题主要考查了直线的性质,关键是掌握两点确定一条直线.6.若直线l上一点P和直线l外一点Q的距离为8cm,则点Q到直线l的距离是()A.等于8cm B.小于或等于8cmC.大于8cm D.以上三种都有可能【分析】根据点到直线的距离的定义与垂线段最短的性质,易得答案.【解答】解:根据题意,点P到l的距离为P到直线l的垂线段的长度,其垂足是P到直线l上所有点中距离最小的点;而不能明确PQ与l是否垂直,则点P到l的距离应小于等于PQ的长度,即不大于8cm.故选:B.【点评】本题考查了点到直线的距离,关键是根据点到直线的距离的定义及垂线段最短的性质解答.7.如图,下列说法正确的是()A.∠A与∠B是同旁内角B.∠1与∠2是对顶角C.∠2与∠A是内错角D.∠2与∠3是同位角【分析】根据同位角、内错角以及同旁内角的定义进行解答.【解答】解:A、∠A与∠B是同旁内角,故说法正确;B、∠2与∠1是邻补角,故说法错误;C、∠A与∠2是同位角,故说法错误;D、∠2与∠3是内错角,故说法错误;故选:A.【点评】本题考查了同位角、内错角以及同旁内角的定义.同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.8.如图,与∠B互为同旁内角的角有()个A.2B.3C.4D.5【分析】根据同旁内角的定义,结合图形进行寻找即可.【解答】解:与∠B互为同旁内角的角有∠AOB,∠BAO,∠BCD,∠BAD共4个.故选:C.【点评】此题考查了同旁内角的定义,属于基础题,关键是掌握互为同旁内角的两个角的位置特点.二.填空题(共6小题)9.观察图形,并阅读相关的文字,回答:如有9条直线相交,最多有交点36.【分析】根据题意,结合图形可猜想,n条直线相交,最多有1+2+3+…+(n﹣1)=n(n﹣1)个交点.【解答】解:∵3条直线相交最多有3个交点,4条直线相交最多有6个交点,5条直线相交最多有10个交点,而3=×2×3,6=×3×4,10=1+2+3+4=×4×5,∴n条直线相交,最多有1+2+3+…+(n﹣1)=n(n﹣1)个交点,∴当n=9时,n(n﹣1)=×8×9=36.故答案为:36.【点评】此题主要考查了相交线,着重培养学生的观察、实验和猜想、归纳能力,掌握从特殊向一般猜想的方法.10.如图,直线AB、CD相交于点O,OE平分∠BOD;OF平分∠COE,若∠AOC=82°,则∠BOF =28.5°.【分析】根据对顶角相等求得∠BOD的度数,然后根据角的平分线的定义求得∠EOD的度数,则∠COE即可求得,再根据角平分线的定义求得∠EOF,最后根据∠BOF=∠EOF﹣∠BOF求解.【解答】解:∵∠BOD=∠AOC=82°,又∵OE平分∠BOD,∴∠DOE=∠BOD=×82°=41°.∴∠COE=180°﹣∠DOE=180°﹣41°=139°,∵OF平分∠COE,∴∠EOF=∠COE=×139°=69.5°,∴∠BOF=∠EOF﹣∠BOF=69.5°﹣41°=28.5°.故答案是:28.5.【点评】本题考查了角平分线的定义,以及对顶角的性质,理解角平分线的定义是关键.11.如图,已知直线AB和CD相交于点O,射线OE在∠COB内部,OE⊥OC,OF平分∠AOE,若∠BOD=40°,则∠COF=25度.【分析】根据对顶角相等的性质可得∠AOC=∠BOD=40°,根据垂直的定义可得∠COE=90°,根据角的和差关系得出∠AOE的度数,再根据角平分线的定义求出∠AOF的度数,再根据角的和差关系计算即可.【解答】解:∠AOC=∠BOD=40°,∵OE⊥OC,∴∠COE=90°,∴∠AOE=∠AOC+∠COE=130°,∵OF平分∠AOE,∴∠AOF=,∴∠COF=∠AOF﹣∠AOC=65°﹣40°=25°.故答案为:25【点评】此题主要考查了对顶角的性质,角平分线的性质以及垂直的定义,正确利用角平分线的性质分析是解题关键.12.如图所示,想在河的两岸搭建一座桥,搭建方式最短的是PM(用字母表示).【分析】根据垂线段最短的性质填写即可.【解答】解:∵PM⊥MN,∴由垂线段最短可知PM是最短的,故答案为:PM.【点评】本题主要考查垂线段的性质,掌握垂线段最短是解题的关键.13.如图,AH⊥BC,若AB=3cm、AC=4.5cm、AH=2cm,则点A到直线BC的距离为2cm.【分析】根据点到直线的距离的定义解答即可.【解答】解:点A到直线BC的距离是线段AH的长度,AH=2,∴点A到直线BC的距离为2cm.故答案为:2cm【点评】此题考查点到直线的距离,关键是根据点到直线的距离的概念解答.14.如图,图中,∠B的同旁内角除了∠A还有∠ACB,∠ECB.【分析】直接利用同旁内角的定义化简得出答案.【解答】解:∠B的同旁内角除了∠A还有:∠ACB,∠ECB.故答案为:∠ACB,∠ECB.【点评】此题主要考查了同旁内角的定义,正确掌握定义是解题关键.三.解答题(共4小题)15.如图,直线AB,CD相交于点O,OA平分∠EOC;(1)请你数一数,图中有8个小于平角的角;(2)若∠EOC=80°,求∠BOD的度数.【分析】(1)根据角的定义,平角的定义得到;(2)根据角平分线定义得到∠AOC=∠EOC=×80°=40°,然后根据对顶角相等得到∠BOD=∠AOC=40°.【解答】解:(1)小于平角的角有:∠AOC,∠AOE,∠EOD,∠BOD,∠BOC,∠EOC,∠AOD,∠EOB,共有8个,故答案为:8;(2)∵OA平分∠EOC,∴∠AOC=∠EOC=×80°=40°,∴∠BOD=∠AOC=40°.【点评】考查了角的计算,角平分线的定义和对顶角的性质.解题的关键是明确角平分线的定义和对顶角的性质,1直角=90°;1平角=180°.16.如图,直线AB与CD相交于点O,OE是∠COB的平分线,OE⊥OF.(1)图中∠BOE的补角是∠AOE;(2)若∠COF=2∠COE,求∠BOE的度数;(3)试判断OF是否平分∠AOC,并说明理由;请说明理由.【分析】(1)根据平角的意义,依据图形可直接得出答案;(2)根据互余和∠COF=2∠COE,可求出∠COF、∠COE,再根据角平分线的意义可求答案;(3)根据互余,互补、角平分线的意义,证明∠FOA=∠COF即可.【解答】解:(1)∵∠AOE+∠BOE=∠AOB=180°,∴∠BOE的补角是∠AOE,故答案为:∠AOE;(2)∵OE⊥OF.∠COF=2∠COE,∴∠COF=×90°=60°,∠COE=×90°=30°,∵OE是∠COB的平分线,∴∠BOE=∠COE=30°;(3)OF平分∠AOC,∵OE是∠COB的平分线,OE⊥OF.∴∠BOE=∠COE,∠COE+∠COF=90°,∵∠BOE+∠EOC+∠COF+∠FOA=180°,∴∠COE+∠FOA=90°,∴∠FOA=∠COF,即,OF平分∠AOC.【点评】考查互为余角、互为补角、角平分线的意义,通过图形直观,得到各个角之间的关系式解决问题的关键.17.如图,AB、CD、NE相交于点O,OM平分∠BOD,∠MON=90°,∠AOC=50°(1)线段MO的长度表示点M到NE的距离;(2)比较MN与MO的大小(用“<”号连接):MO<MN,并说明理由:垂线段最短;(3)求∠AON的度数.【分析】(1)根据点到直线的距离解答即可;(2)根据垂线段最短解答即可;(3)根据垂直的定义和角之间的关系解答即可.【解答】解:(1)线段MO的长度表示点M到NE的距离;(2)比较MN与MO的大小为:MO<MN,是因为垂线段最短;(3)∵∠BOD=∠AOC=50°,OM平分∠BOD,∴∠BOM=25°,∴∠AON=180°﹣∠BOM﹣∠MON=180°﹣25°﹣90°=65°.故答案为:MO;MO<MN;垂线段最短.【点评】本题考查的是点到直线的距离,掌握点到直线的距离是解题的关键18.如图所示,把一根筷子一端放在水里,一端露出水面,筷子变弯了,它真的弯了吗?其实没有,这是光的折射现象,光从空气中射入水中,光的传播方向发生了改变.(1)请指出与∠1是同旁内角的有哪些角?请指出与∠2是内错角的有哪些角?(2)若∠1=115°,测得∠BOM=145°,从水面上看斜插入水中的筷子,水下部分向上折弯了多少度?请说明理由.【分析】(1)根据同位角、内错角的定义(两条直线被第三条直线所截,处于两条直线的同旁,位于第三条直线的一侧的两个角叫同位角,处于两条直线之间,处于第三条直线两侧的两个角叫内错角)逐个判断即可.(2)根据平行线的性质解答即可.【解答】解:(1)与∠1是同旁内角的有∠AOE,∠MOE,∠ADE;与∠2是内错角的有∠MOE,∠AOE;(2)∵AB∥CD,∴∠BOE=∠1=115°,∵∠BOM=145°,∴∠MOE=∠BOM﹣∠BOE=145°﹣115°=30°,∴向上折弯了30°.【点评】本题考查了对同位角定义,内错角定义的应用,主要考查学生的理解能力,题目是一道比较好的题目,难度适中.。
完整)人教版七年级数学下册练习题
完整)人教版七年级数学下册练习题1.七年级数学第五章《相交线与平行线》班级: ___________ 姓名: ___________ 坐号: ___________成绩: ___________一、选择题(每小题3分,共30分)1、如图所示,∠1和∠2是对顶角的是()A、12.B、1 2.C、1 2.D、1 22、如图AB∥CD可以得到()A、∠1=∠2.B、∠2=∠3.C、∠1=∠4.D、∠3=∠43、直线AB、CD、EF相交于O,则∠1+∠2+∠3=()A、90°。
B、120°。
C、180°。
D、140°4、如图所示,直线a、b被直线c所截,现给出下列四种条件:①∠2=∠6.②∠2=∠8.③∠1+∠4=180°。
④∠3=∠8。
其中能判断是a∥b的条件的序号是()A、①②。
B、①③。
C、①④。
D、③④5、某人在广场上练驾驶汽车,两次拐弯后,行驶方向与原来相同,这两次拐弯的角度可能是()A、第一次左拐30°,第二次右拐30°B、第一次右拐50°,第二次左拐130°C、第一次右拐50°,第二次右拐130°D、第一次向左拐50°,第二次向左拐130°6、下列哪个图形是由左图平移得到的()第2题)。
(第三题)。
(第4题)7、如图,在一个有4×4个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD面积的比是()ABA、3:4.B、5:8.C、9:16.D、1:2第7题)8、下列现象属于平移的是()①打气筒活塞的轮复运动,②电梯的上下运动,③钟摆的摆动,④转动的门,⑤汽车在一条笔直的马路上行走A、③。
B、②③。
C、①②④。
D、①②⑤9、下列说法正确的是()A、有且只有一条直线与已知直线平行B、垂直于同一条直线的两条直线互相垂直C、从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离。
七年级数学(下)《相交线与平行线》复习测试题 含答案
七年级数学(下)《相交线与平行线》复习测试题一、选择题(每小题3分,共30分)1.如图,直线AB、CD相交于点O,所形成的∠1,∠2,∠3,∠4中,属于对顶角的是( )A.∠1和∠2B.∠2和∠3C.∠3和∠4D.∠2和∠42.如图,直线AB、CD被直线EF所截,则∠3的同旁内角是( )A.∠1B.∠2C.∠4D.∠53.如图,已知AB⊥CD,垂足为点O,图中∠1与∠2的关系是( )A.∠1+∠2=180°B.∠1+∠2=90°C.∠1=∠2D.无法确定4.如图,梯子的各条横档互相平行,若∠1=80°,则∠2的度数是( )A.80°B.100°C.110°D.120°5.在下列图形中,哪组图形中的右图是由左图平移得到的?( )6.命题:①对顶角相等;②过一点有且只有一条直线与已知直线平行;③相等的角是对顶角;④同位角相等.其中假命题有( )A.1个B.2个C.3个D.4个7.平面内三条直线的交点个数可能有( )A.1个或3个B.2个或3个C.1个或2个或3个D.0个或1个或2个或3个8.下列图形中,由AB∥CD,能得到∠1=∠2的是( )9.如图,直线a∥b,直线c分别与a、b相交于点A、B.已知∠1=35°,则∠2的度数为( )A.165°B.155°C.145°D.135°10.如图,点E在CD的延长线上,下列条件中不能判定AB∥CD的是( )A.∠1=∠2B.∠3=∠4C.∠5=∠BD.∠B+∠BDC=180°二、填空题(每小题4分,共20分)11.将命题“两直线平行,同位角相等”写成“如果……那么……”的形式是____________________.12.两条平行线被第三条直线所截,同旁内角的度数之比是2∶7,那么这两个角的度数分别是__________.13.如图,AB,CD相交于点O,AC⊥CD于点C,若∠BOD=38°,则∠A等于__________.14.如图,BC⊥AE,垂足为点C,过C作CD∥AB.若∠ECD=48°,则∠B=__________.15.如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3=__________度.三、解答题(共50分)16.(7分)如图,已知AB⊥BC,BC⊥CD,∠1=∠2.试判断BE与CF的位置关系,并说明你的理由.解:BE∥CF.理由:∵AB⊥BC,BC⊥CD(已知),∴∠__________=∠__________=90°(垂直的定义).∵∠1=∠2(已知),∴∠ABC-∠1=∠BCD-∠2,即∠EBC=∠BCF.∴BE∥CF(____________________).17.(9分)如图,直线AB、CD相交于点O,P是CD上一点.(1)过点P画AB的垂线段PE;(2)过点P画CD的垂线,与AB相交于F点;(3)说明线段PE、PO、FO三者的大小关系,其依据是什么?18.(10分)如图,O是直线AB上一点,OD平分∠AOC.(1)若∠AOC=60°,请求出∠AOD和∠BOC的度数;(2)若∠AOD和∠DOE互余,且∠AOD=13∠AOE,请求出∠AOD和∠COE的度数.19.(12分)如图,∠1+∠2=180°,∠A=∠C,DA平分∠BDF.(1)AE与FC平行吗?说明理由;(2)AD与BC的位置关系如何?为什么?(3)BC平分∠DBE吗?为什么?20.(12分)如图,已知AB∥CD,分别探究下面四个图形中∠APC和∠PAB、∠PCD的关系,请从你所得四个关系中选出任意一个,说明你探究的结论的正确性.结论:(1)____________________;(2)____________________;(3)____________________;(4)____________________.选择结论:____________________,说明理由.参考答案变式练习1.C2.∵∠AOC=70°,∴∠BOD=∠AOC=70°.∵∠BOE∶∠EOD=2∶3,∴∠BOE=223×70°=28°.∴∠AOE=180°-28°=152°.3.C4.121°5.C6.8 复习测试1.D2.B3.B4.B5.C6.C7.D8.B9.C 10.A11.如果两直线平行,那么同位角相等12.40°,140°13.52°14.42°15.8016.ABC BCD 内错角相等,两直线平行17.(1)(2)图略;(3)PE<PO<FO,依据是垂线段最短.18.(1)∵OD平分∠AOC,∠AOC=60°,∴∠AOD=12×∠AOC=30°,∠BOC=180°-∠AOC=120°.(2)∵∠AOD和∠DOE互余,∴∠AOE=∠AOD+∠DOE=90°.∵∠AOD=13∠AOE,∴∠AOD=13×90°=30°.∴∠AOC=2∠AOD=60°.∴∠COE=90°-∠AOC=30°.19.(1)AE∥FC.理由:∵∠1+∠2=180°,∠2+∠CDB=180°, ∴∠1=∠CDB.∴AE∥FC.(2)AD∥BC.理由:∵AE∥CF,∴∠C=∠CBE.又∠A=∠C,∴∠A=∠CBE.∴AD∥BC.(3)BC平分∠DBE.理由:∵DA平分∠BDF,∴∠FDA=∠ADB.∵AE∥CF,AD∥BC,∴∠FDA=∠A=∠CBE,∠ADB=∠CBD.∴∠CBE=∠CBD.∴BC平分∠DBE.20.(1)∠PAB+∠APC+∠PCD=360°(2)∠APC=∠PAB+∠PCD(3)∠APC=∠PCD-∠PAB(4)∠APC=∠PAB-∠PCD(1)过P点作EF∥AB,∴EF∥CD,∠PAB+∠APF=180°.∴∠PCD+∠CPF=180°.∴∠PAB+∠APC+∠PCD=360°.。
最新人教版七年级数学下册《相交线》典型例题
典型例题1.如图,直线AB、CD、EF相交于点O,则∠AOF的对顶角是( )A.∠BCD B.∠EOB C.∠COE D.∠AOC答案:B说明:∠AOF的两边为AO和FO,AO的反向延长线为OB,FO的反向延长线为OE,所以∠AOF的对顶角是∠EOB,答案为B.2.下列说法中正确的是( )A.不相等的角一定不是对顶角B.互补的两个角是邻补角C.两条直线相交所成的角是对顶角D.互补且有一条公共边的两个角是邻补角答案:A说明:因为对顶角是相等的,所以如果两个角不相等,则一定不会是对顶角,选项A正确;由互补的概念可知只要两个角之和为180º,而对这两个角的位置没有任何限制,因此,互补的两个角不一定是邻补角,选项B错;两条直线相交所成的角并不仅仅是对顶角,还有邻补角,选项C错;互补且有一条公共边,同时另一边要互为反向延长线的两个角才是邻补角,图中的两角就满足互补且有一条公共边,但它们不是邻补角,选项D错;答案为A.3.在同一平面内,下列说法:①如果两条直线垂直,那么它们所成的四个角都是直角;②如果两条直线相交所成的四个角中有两个角相等,那么这两条直线互相垂直;③如果两条线段不相交,那么它们不能互相垂直;④过直线上一点不能作这条直线的垂线;⑤过直线外一点作这条直线的垂线时,只能作出一条;⑥连接直线外一点和这条直线的中点的线段的长度,是这点到这条直线的距离;其中正确的有( )A.5个 B.4个 C.3个 D.2个答案:D说明:①因为两条直线互相垂直时,它们所构成的四个角中至少有一个是直角,再根据对顶角、邻补角的性质可得另外三个角也都是直角,所以①正确;当两条直线相交时,已有两对角相等、四对邻补角互补,所以两对角相等或四对角互补不足以说明两条直线互相垂直,②错;两条线段垂直,是指它们所在的直线互相垂直,因此两条线段即使不相交也可能垂直,③错;由垂线的性质可知,无论点在直线上还是点在直线外,过这点都有且只有一条直线垂直于已知直线,所以④错,⑤正确;点到直线的距离这一概念中,垂线段和长度两者缺一不可,并且距离只能度量不能作出,所以⑥错;只有①、⑤正确,答案为D.4.直线AB、CD相交于点O,如图:①写出∠AOD、∠EOC的对顶角;②写出∠AOC、∠EOB的邻补角;③已知∠AOC = 50º,求∠BOD、∠COB的度数;④若∠EOD+∠COF = 240º,求∠EOC.答案:①∠AOD的对顶角是∠BOC,∠EOC的对顶角是∠FOD②∠AOC的邻补角是∠AOD或∠BOC,∠EOB的邻补角是∠EOA或∠BOF③∠BOD = 50º,∠COB = 130º④∠EOC = 60º。
七年级下册数学相交线练习题
七年级下册数学相交线练习题课堂学习检测一、填空题1.如果两个角有一条______边,并且它们的另一边互为____________,那么具有这种关系的两个角叫做互为邻补角.2.如果两个角有______顶点,并且其中一个角的两边分别是另一个角两边的___________________,那么具有这种位置关系的两个角叫做对顶角.3.对顶角的重要性质是_________________.4.如图,直线AB、CD相交于O点,∠AOE=90°.(1)∠1和∠2叫做______角;∠1和∠4互为______角;∠2和∠3互为_______角;∠1和∠3互为______角;∠2和∠4互为______角.(2)若∠1=20°,那么∠2=______;∠3=∠BOE-∠______=______°-______°=______°;∠4=∠______-∠1=______°-______°=______°.5.如图,直线AB与CD相交于O点,且∠COE=90°,则(1)与∠BOD互补的角有________________________;(2)与∠BOD互余的角有________________________;(3)与∠EOA互余的角有________________________;(4)若∠BOD=42°17′,则∠AOD=__________;∠EOD=______;∠AOE=______.二、选择题6.图中是对顶角的是( ).7.如图,∠1的邻补角是( ).(A)∠BOC (B)∠BOC 和∠AOF (C)∠AOF(D)∠BOE 和∠AOF8.如图,直线AB 与CD 相交于点O ,若AOD AOC ∠=∠31,则∠BOD 的度数为( ). (A)30° (B)45° (C)60°(D)135°9.如图所示,直线l 1,l 2,l 3相交于一点,则下列答案中,全对的一组是( ).(A)∠1=90°,∠2=30°,∠3=∠4=60° (B)∠1=∠3=90°,∠2=∠4=30° (C)∠1=∠3=90°,∠2=∠4=60° (D)∠1=∠3=90°,∠2=60°,∠4=30° 三、判断正误10.如果两个角相等,那么这两个角是对顶角.( ) 11.如果两个角有公共顶点且没有公共边,那么这两个角是对顶角. ( ) 12.有一条公共边的两个角是邻补角.( ) 13.如果两个角是邻补角,那么它们一定互为补角. ( ) 14.对顶角的角平分线在同一直线上.( ) 15.有一条公共边和公共顶点,且互为补角的两个角是邻补角.( )综合、运用、诊断一、解答题16.如图所示,AB ,CD ,EF 交于点O ,∠1=20°,∠BOC =80°,求∠2的度数.17.已知:如图,直线a,b,c两两相交,∠1=2∠3,∠2=86°.求∠4的度数.18.已知:如图,直线AB,CD相交于点O,OE平分∠BOD,OF平分∠COB,∠AOD∶∠DOE=4∶1.求∠AOF的度数.19.如图,有两堵围墙,有人想测量地面上两堵围墙内所形成的∠AOB的度数,但人又不能进入围墙,只能站在墙外,请问该如何测量?拓展、探究、思考20.如图,O是直线CD上一点,射线OA,OB在直线CD的两侧,且使∠AOC=∠BOD,试确定∠AOC与∠BOD是否为对顶角,并说明你的理由.21.回答下列问题:(1)三条直线AB,CD,EF两两相交,图形中共有几对对顶角(平角除外)?几对邻补角?(2)四条直线AB,CD,EF,GH两两相交,图形中共有几对对顶角(平角除外)?几对邻补角?(3)m条直线a1,a2,a3,…,a m-1,a m相交于点O,则图中一共有几对对顶角(平角除外)?几对邻补角?。
七年级下册数学同步练习题库:相交线(填空简答题:容易)
相交线(填空简答题:容易)1、已知∠A=43°,则∠A的补角等于度.2、当两条不同的直线有一个公共点时,我们就称这两条直线___________,这个公共点叫做它们的___________.3、若点P在线段AB的垂直平分线上,PA=5,则PB=______.4、命题“对顶角相等”的逆命题为________.5、如图,直线AB,CD相交于点O,OE⊥AB,∠BOD=20°,则∠COE等于度.6、如图,直线a和直线b相交于点O,∠1=50°,则∠2=.7、如图,想在河堤两岸搭建一座桥,图中搭建方式中,最短的是PB,理由是__________.8、如图,已知直线AB与CD交于点O,ON平分∠DOB,若∠BOC=110°,则∠DON为___度.9、如图所示,已知直线AB、CD交于点O,OE⊥AB于点O,且∠1比∠2大20°,则∠AOC=__________ 。
10、.如图,直线a、b相交于点O,∠1=50°,则∠2= 度.11、如果∠A=70°,那么它的余角是度.12、若点P在线段AB的垂直平分线上,PA=5,则PB= .13、如图,直线a、b相交于点O,∠1=50°,则∠2= 度.14、如图是一把剪刀,其中∠1=40°,则∠2= 度,其理由是。
15、如图,直线a、b相交于点O,∠1=50°,则∠2= 度.16、已知∠A=43°,则∠A的补角等于______度.17、两条直线相交,有_____对对顶角,三条直线两两相交,有_____对对顶角.18、已知∠A=40°,则∠A的余角的度数是19、两条平行线间的所有________线段都相等。
20、把命题“对顶角相等”写成“如果…,那么…”的形式为:如果,那么.21、如果一个角的补角是120°,那么这个角的余角是22、命题“相等的角是对顶角”的逆命题是.23、若∠α=42°,则∠α的余角的度数是24、如图,直线AB、CD、EF相交于点O,若∠DOF=30°,∠AOE=20°,则∠BOC=_____.25、若一个角的余角是它的2倍,这个角的补角为 _________ .26、如图,直线AB,CD相交于点O,OE⊥AB,∠BOD=20°,则∠COE等于度.27、把命题“对顶角的平分线在同一直线上”改写成“如果……那么……”的形式﹒28、已知∠α=13°,则∠α的余角大小是______.29、已知∠α=13°,则∠α的余角大小是.30、若∠α=70°,则它的补角是.31、一个角的余角是30°,则这个角的补角为___ ___。
人教版七年级数学下册《相交线与平行线》专项练习题-附含答案
人教版七年级数学下册《相交线与平行线》专项练习题-附含答案一.选择题(共9小题满分18分每小题2分)1.(2分)(2022秋•丹东期末)若将一副三角板按如图所示的方式放置则下列结论正确的是()A.∠1=∠2 B.如果∠2=30°则有AC∥DEC.如果∠2=45°则有∠4=∠D D.如果∠2=50°则有BC∥AE解:∵∠CAB=∠DAE=90°∴∠1=∠3 故A错误.∵∠2=30°∴∠1=∠3=60°∴∠CAE=90°+60°=150°∴∠E+∠CAE=180°∴AC∥DE故B正确∵∠2=45°∴∠1=∠2=∠3=45°∵∠E+∠3=∠B+∠4∴∠4=30°∵∠D=60°∴∠4≠∠D故C错误∵∠2=50°∴∠3=40°∴∠B≠∠3∴BC不平行AE故D错误.故选:B.2.(2分)(2022春•宜州区期中)如图AB∥CD BF交CD于点E AE⊥BF∠CEF=35°则∠A是()A.35°B.45°C.55°D.65°解:∵AE⊥BF∴∠AEF=90°∴∠AEC=90°﹣∠CEF=90°﹣35°=55°∵AB∥CD∴∠A=∠AEC=55°.故选:C.3.(2分)(2022春•江汉区校级月考)如图给出了过直线外一点作已知直线的平行线的方法其依据是()A.同位角相等两直线平行B.内错角相等两直线平行C.同旁内角互补两直线平行D.对顶角相等两直线平行解:如图给出了过直线外一点作已知直线的平行线的方法其依据是同位角相等两直线平行.故选:A.4.(2分)(2022春•新罗区期中)如图将一个宽度相等的纸条沿AB折叠一下若∠1=140°则∠2的值为()A.100°B.110°C.120°D.130°解:如图:∵宽度相等的纸条沿AB折叠一下∴纸条两边互相平行∴2∠3=∠1 ∠2+∠3=180°∵∠1=140°∴∠3=∠1=70°∴∠2=180°﹣∠3=110°故选:B.5.(2分)(2022春•温江区期末)将一副直角三角板如图放置已知∠B=60°∠F=45°AB∥EF则∠CGD=()A.45°B.60°C.75°D.105°解:∵∠B=60°∴∠A=30°∵EF∥BC∴∠FDA=∠F=45°∴∠CGD=∠A+∠FDA=45°+30°=75°.故选:C.6.(2分)(2022春•牡丹江期中)如图AB∥CD F为AB上一点FD∥EH且FE平分∠AFG过点F作FG ⊥EH于点G且∠AFG=2∠D则下列结论:①∠D=30°;②2∠D+∠EHC=90°;③FD平分∠HFB;④FH平分∠GFD.其中正确结论的个数是()A.1个B.2个C.3个D.4个解:延长FG交CH于I.∵AB∥CD∴∠BFD=∠D∠AFI=∠FIH∵FD∥EH∴∠EHC=∠D∵FE平分∠AFG∴∠FIH=2∠AFE=2∠EHC∴3∠EHC=90°∴∠EHC=30°∴∠D=30°∴2∠D+∠EHC=2×30°+30°=90°∴①∠D=30°;②2∠D+∠EHC=90°正确∵FE平分∠AFG∴∠AFI=30°×2=60°∵∠BFD=30°∴∠GFD=90°∴∠GFH+∠HFD=90°可见∠HFD的值未必为30°∠GFH未必为45°只要和为90°即可∴③FD平分∠HFB④FH平分∠GFD不一定正确.故选B.7.(2分)(2019秋•淮阴区期末)如图将长方形ABCD沿线段EF折叠到EB'C'F的位置若∠EFC'=100°则∠DFC'的度数为()A.20°B.30°C.40°D.50°解:由翻折知∠EFC=∠EFC'=100°∴∠EFC+∠EFC'=200°∴∠DFC'=∠EFC+∠EFC'﹣180°=200°﹣180°=20°故选:A.8.(2分)(2021春•奉化区校级期末)如图AD∥BC∠D=∠ABC点E是边DC上一点连接AE交BC的延长线于点H.点F是边AB上一点.使得∠FBE=∠FEB作∠FEH的角平分线EG交BH于点G若∠DEH =100°则∠BEG的度数为()A.30°B.40°C.50°D.60°解:设FBE=∠FEB=α则∠AFE=2α∠FEH的角平分线为EG设∠GEH=∠GEF=β∵AD∥BC∴∠ABC+∠BAD=180°而∠D=∠ABC∴∠D+∠BAD=180°∴AB∥CD∠DEH=100°则∠CEH=∠FAE=80°∠AEF=180°﹣∠FEG﹣∠HEG=180°﹣2β在△AEF中 80°+2α+180﹣2β=180°故β﹣α=40°而∠BEG=∠FEG﹣∠FEB=β﹣α=40°故选:B.9.(2分)(2022春•大观区校级期末)如图AB∥CD P为AB上方一点H、G分别为AB、CD上的点∠PHB、∠PGD的角平分线交于点E∠PGC的角平分线与EH的延长线交于点F下列结论:①EG⊥FG;②∠P+∠PHB=∠PGD;③∠P=2∠E;④若∠AHP﹣∠PGC=∠F则∠F=60°.其中正确的结论有()个.A.1 B.2 C.3 D.4解:∵GF平分∠PGC GE平分∠PGD∴∠PGF=∠PGC∠PGE=∠PGD∴∠EGF=∠PGF+∠PGE=(∠PGC+∠PGD)=即EG⊥FG故①正确;设PG与AB交于M GE于AB交于N∵AB∥CD∴∠PMB=∠PGD∵∠PMB=∠P+∠PHM∴∠P+∠PHB=∠PGD故②正确;∵HE平分∠BHP GE平分∠PGD∴∠PHB=2∠EHB∠PGD=2∠EGD∵AB∥CD∴∠PMB=∠PGD∠ENB=∠EGD∴∠PMB=2∠ENB∵∠PMB=∠P+∠PHB∠ENB=∠E+∠EHB∴∠P=2∠E故③正确;∵∠AHP﹣∠PMC=∠P∠PMH=∠PGC∠AHP﹣∠PGC=∠F∴∠P=∠F∵∠FGE=90°∴∠E+∠F=90°∴∠E+∠P=90°∵∠P=2∠E∴3∠E=90解得∠E=30°∴∠F=∠P=60°故④正确.综上正确答案有4个故选:D.二.填空题(共10小题满分20分每小题2分)10.(2分)(2022秋•宁强县期末)将一张长方形纸片按如图所示的方式折叠BD、BE为折痕若∠ABE=20°则∠DBC为70 度.解:根据翻折的性质可知∠ABE=∠A′BE∠DBC=∠DBC′又∵∠ABE+∠A′BE+∠DBC+∠DBC′=180°∴∠ABE+∠DBC=90°又∵∠ABE=20°∴∠DBC=70°.故答案为:70.11.(2分)(2022春•新乐市校级月考)如图直线EF CD相交于点O OA⊥OB垂足为O且OC平分∠AOF.(1)若∠AOE=40°则∠DOE的度数为70°;(2)∠AOE与∠BOD的数量关系为∠AOE=2∠BOD.解:(1)∵OA⊥OB∴∠AOB=90°∵∠AOF+∠AOE=180°∠AOE=40°∴∠AOF=140°∵OC平分∠AOF∴∠AOC=∠COF=70°∵∠BOD+∠AOB+∠AOC=180°∴∠DOE=∠COF=70°.故答案为:70°;(2)∵∠AOE+∠AOF=180°∠AOC=∠COF∴∠AOC=(180°﹣∠AOE)=90°﹣∠AOE∵∠BOD+∠AOB+∠AOC=180°∴∠BOD=180°﹣90°﹣∠AOC=90°﹣(90°﹣∠AOE)=﹣∠AOE∴∠AOE=2∠BOD.故答案为:∠AOE=2∠BOD.12.(2分)(2022春•环翠区期末)如图AB∥EF∠C=90°则α、β和γ的关系是α+β﹣γ=90°.解:过点C作CM∥AB过点D作DN∥EF则:∠BCM=∠ABC=α∠EDN=∠DEF=γ∵AB∥EF∴CM∥DN∴∠DCM=∠CDN∵∠BCM+∠DCM=90°∠CDN+∠EDN=β∴α+(β﹣γ)=90°∴α+β﹣γ=90°.故答案为:α+β﹣γ=90°.13.(2分)(2022春•绍兴期末)如图已知直线AB∥CD点M、N分别在直线AB、CD上点E为AB、CD 之间一点且点E在MN的右侧∠MEN=128°.若∠BME与∠DNE的平分线相交于点E1∠BME1与∠DNE1的平分线相交于点E2∠BME2与∠DNE2的平分线相交于点E3……依此类推若∠ME n N=8°则n的值是 4 .解:过E作EH∥AB E1G∥AB∵AB∥CD∴EH∥CD E1G∥CD∴∠BME=∠MEH∠DNE=∠NEH∴∠BME+∠DNE=∠MEH+∠NEH=∠MEN=128°同理∠ME1N=∠BME1+∠DNE1∵ME1平分∠BME NE1平分∠DNE∴∠BME1+∠DNE1=(∠BME+∠DNE)=∠MEN∴∠ME1N=∠MEN同理∠ME2N=∠ME1N=∠MEN∠ME3N=∠ME2N=∠MEN•∴∠ME n N=∠ME n﹣1N=∠MEN若∠ME n N=8°则∠MEN=×128°=8°∴n=4.故答案为:4.14.(2分)(2022春•镜湖区校级期末)有长方形纸片E F分别是AD BC上一点∠DEF=x(0°<x<45°)将纸片沿EF折叠成图1 再沿GF折叠成图2.(1)如图1 当x=32°时∠FGD′=64 度;(2)如图2 作∠MGF的平分线GP交直线EF于点P则∠GPE=2x.(用x的式子表示).解:(1)由折叠可得∠GEF=∠DEF=32°∵长方形的对边是平行的∴∠DEG=∠FGD′∴∠DEG=∠GFE+∠DEF=64°∴∠FGD′=∠EGD=64°∴当x=32°时∠GFD′的度数是64°.故答案为:64;(2)∠GPE=2∠GEP=2x.由折叠可得∠GEF=∠DEF∵长方形的对边是平行的∴设∠BFE=∠DEF=x∴∠EGB=∠BFE+∠D′EF=2x∴∠FGD′=∠EGB=2x由折叠可得∠MGF=∠D′GF=2x∵GP平分∠MGF∴∠PGF=x∴∠GPE=∠PGF+∠BFE=2x∴∠GPE=2∠GEP=2x.故答案为:∠GPE=2x.15.(2分)(2022春•诸暨市期末)从汽车灯的点O处发出的一束光线经灯的反光罩反射后沿CO方向平行射出已知入射光线OA的反射光线为AB∠OAB=∠COA=72°.在如图中所示的截面内若入射光线OD经反光罩反射后沿DE射出且∠ODE=27°.则∠AOD的度数是45°或99°.解:∵DE∥CF∴∠COD=∠ODE.(两直线平行内错角相等)∵∠ODE=27°∴∠COD=27°.在图1的情况下∠AOD=∠COA﹣∠COD=72°﹣27°=45°.在图2的情况下∠AOD=∠COA+∠COD=72°+27°=99°.∴∠AOD的度数为45°或99°.故答案为:45°或99°.16.(2分)(2022春•九龙坡区校级期中)如图将长方形ABCD沿EF翻折再沿ED翻折若∠FEA″=105°则∠CFE=155 度.解:由四边形ABFE沿EF折叠得四边形A′B′FE∴∠A′EF=∠AEF.∵∠A′EF=∠A′ED+∠DEF∠AEF=180°﹣∠DEF.∴∠A′ED+∠DEF=180°﹣∠DEF.由四边形A′B′ME沿AD折叠得四边形A″B″ME∴∠A′ED=∠A″ED.∵∠A″ED=∠A″EF+∠DEF=105°+∠DEF∴∠A′ED=105°+∠DEF.∴105°+∠DEF+∠DEF=180°﹣∠DEF.∴∠DEF=25°.∵AD∥BC∴∠DEF=∠EFB=25°.∴∠CFE=180°﹣∠EFB=180°﹣25°=155°.故答案为:155.17.(2分)(2022春•东湖区校级月考)如图直线EF上有两点A、C分别引两条射线AB、CD∠DCF=60°∠EAB=70°射线AB、CD分别绕A点C点以1度/秒和3度/秒的速度同时顺时针转动在射线CD转动一周的时间内使得CD与AB平行所有满足条件的时间=5秒或95秒.解:∵∠EAB=70°∠DCF=60°∴∠BAC=110°∠ACD=120°分三种情况:如图①AB与CD在EF的两侧时∠ACD=120°﹣(3t)°∠BAC=110°﹣t°要使AB∥CD则∠ACD=∠BAC即120°﹣(3t)°=110°﹣t°解得t=5;②CD旋转到与AB都在EF的右侧时∠DCF=360°﹣(3t)°﹣60°=300°﹣(3t)°∠BAC=110°﹣t°要使AB∥CD则∠DCF=∠BAC即300°﹣(3t)°=110°﹣t°解得t=95;③CD旋转到与AB都在EF的左侧时∠DCF=(3t)°﹣(180°﹣60°+180°)=(3t)°﹣300°∠BAC=t°﹣110°要使AB∥CD则∠DCF=∠BAC即(3t)°﹣300°=t°﹣110°解得t=95∴此情况不存在.综上所述当时间t的值为5秒或95秒时CD与AB平行.故答案为:5秒或95秒.18.(2分)(2022春•沙坪坝区校级月考)已知如图AD∥BC BD∥AE DE平分∠ADB且ED⊥CD若∠AED+∠BAD=127.5°则∠BCD﹣∠EAB=37.5 度.解:设∠ADE=x∵DE平分∠ADB∴∠EDB=∠ADE=x又ED⊥CD∴∠EDC=90°∴∠BDC=90°﹣x∵AD∥BC∴∠DBC=∠ADB=2x∠BCD=180°﹣(90°﹣x+2x)=90°﹣x∵BD∥AE∴∠AED=∠EDB=x∵∠AED+∠BAD=127.5°∴∠BAD=127.5°﹣x∠EAB=180°﹣(127.5°﹣x+2x)=52.5°﹣x∴∠BCD﹣∠EAB=(90°﹣x)﹣(52.5°﹣x)=37.5°.故答案为:37.5.19.(2分)(2022春•渭滨区期末)把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G D、C分别在M、N的位置上若∠EFG=49°则∠2﹣∠1=16°.解:∵AD∥BC∴∠2=∠DEG∠EFG=∠DEF=49°∵长方形纸片ABCD沿EF折叠后ED与BC的交点为G∴∠DEF=∠GEF=49°∴∠2=2×49°=98°∴∠1=180°﹣98°=82°∴∠2﹣∠1=98°﹣82°=16°.故答案为16°.三.解答题(共9小题满分62分)20.(6分)(2022秋•丹东期末)如图已知∠1=∠BDC∠2+∠3=180°.(1)求证:AD∥CE;(2)若DA平分∠BDC DA⊥FE于点A∠FAB=55°求∠ABD的度数.(1)证明:∵∠1=∠BDC∴AB∥CD∴∠2=∠ADC∵∠2+∠3=180°∴∠ADC+∠3=180°∴AD∥CE;(2)解:∵CE⊥AE于E∴∠CEF=90°由(1)知AD∥CE∴∠DAF=∠CEF=90°∴∠ADC=∠2=∠DAF﹣∠FAB∵∠FAB=55°∴∠ADC=35°∵DA平分∠BDC∠1=∠BDC∴∠1=∠BDC=2∠ADC=70°∴∠ABD=180°﹣70°=110°.21.(6分)(2019春•本溪期中)已知如图AB∥CD①由图(1)易得∠B、∠BED、∠D的关系∠BED=∠B+∠D(直接写结论).由图(2)易得∠B、∠BED、∠D的关系∠BED=360°﹣(∠B+∠D)(直接写结论).②从图(1)图(2)任选一个图形说明①中其中一个结论成立的理由.[延伸拓展]利用上面(1)(2)得出的结论完成下题③已知AB∥CD∠ABE与∠CDE两个角的角平分线相交于点F.若∠E=60°求∠BFD的度数.解:①由图(1)易得∠B、∠BED、∠D的关系∠BED=∠B+∠D.由图(2)易得∠B、∠BED、∠D的关系∠BED=360°﹣(∠B+∠D).故答案为:∠BED=∠B+∠D;∠BED=360°﹣(∠B+∠D);②如图(1)所示:过点E作EM∥AB∵AB∥CD EM∥AB∴EM∥CD∥AB∴∠B=∠BEM∠MED=∠D∴∠BED=∠BEM+∠MED=∠B+∠D∴∠BED=∠B+∠D;如图(2)所示:过点E作EM∥AB∵AB∥CD EM∥AB∴EM∥CD∥AB∴∠B+∠BEM=180°∠MED+∠D=180°∴∠BED=∠BEM+∠MED=360°﹣(∠B+∠D);③如图(3)过点E作EN∥AB∵BF、DF分别是∠ABE和∠CDE的平分线∴∠EBF=∠ABE∠EDF=∠CDE∵AB∥CD∴∠ABE+∠BEN=180°∵AB∥CD AB∥NE∴NE∥CD∴∠CDE+∠NED=180°∴∠ABE+∠E+∠CDE=360°∵∠E=60°∴∠ABE+∠CDE=300°∴∠EBF+∠EDF=150°∴∠BFD=360°﹣60°﹣150°=150°.22.(6分)(2022•衡东县校级开学)如图1 AB∥CD∠PAB=124°∠PCD=120°求∠APC的大小.小明的解题思路:过点P作PM∥AB通过平行线的性质来求∠APC.(1)按小明的解题思路可求得∠APC的大小为116 度;(2)如图2 已知直线m∥n直线a b分别与直线m n相交于点B、D和点A、C.点P在线段BD上运动(不与B、D两点重合)记∠PAB=α∠PCD=β问∠APC与αβ之间有何数量关系?判断并说明理由;(3)在(2)的条件下若把“线段BD”改为“直线BD”请求出∠APC与αβ之间的数量关系.解:(1)过P作PM∥AB如图:∴∠APM+∠PAB=180°∴∠APM=180°﹣124°=56°∵AB∥CD∴PM∥CD∴∠CPM+∠PCD=180°∴∠CPM=180°﹣120°=60°∴∠APC=56°+60°=116°;故答案为:116;(2)∠APC=∠α+∠β理由如下:过P作PE∥AB交AC于E如图:∵AB∥CD∴AB∥PE∥CD∴∠α=∠APE∠β=∠CPE∴∠APC=∠APE+∠CPE=∠α+∠β;(3)当P在线段BD延长线时∠APC=∠α﹣∠β;理由如下:过P作PE∥AB如图:∵AB∥CD∴AB∥PE∥CD∴∠α=∠APE∠β=∠CPE∵∠APC=∠APE﹣∠CPE∴∠APC=∠α﹣∠β;当P在DB延长线时∠APC=∠β﹣∠α;理由如下:过P作PE∥AB如图:∵AB∥CD∴AB∥PE∥CD∴∠α=∠APE∠β=∠CPE∵∠APC=∠CPE﹣∠APE∴∠APC=∠β﹣∠α综上所述当P在线段BD延长线时∠APC=∠α﹣∠β;当P在DB延长线时∠APC=∠β﹣∠α;当P在线段BD上时∠APC=∠α+∠β.23.(6分)(2022春•鹿邑县月考)如图已知AB∥CD∠ABE与∠CDE的平分线相交于点F.(1)如图1 若∠E=70°求∠BFD的度数;(2)如图2 若∠ABM=∠ABF∠CDM=∠CDF写出∠M和∠E之间的数量关系并证明你的结论.解:(1)如图1 过点E作EN∥AB∵EN∥AB∴∠ABE+∠BEN=180°∵AB∥CD AB∥NE∴NE∥CD∴∠CDE+∠NED=180°∴∠ABE+∠E+∠CDE=360°∵∠E=70°∴∠ABE+∠CDE=290°∵∠ABE与∠CDE的平分线相交于点F∴∠ABF+∠CDF=(∠ABE+∠CDE)=145°过点F作FG∥AB∵FG∥AB∴∠ABF=∠BFG∵AB∥CD FG∥AB∴FG∥CD∴∠CDF=∠GFD∴∠BFD=∠ABF+∠CDF=145°;(2)结论:∠E+6∠M=360°证明:∵设∠ABM=x∠CDM=y则∠FBM=2x∠EBF=3x∠FDM=2y∠EDF=3y由(1)得:∠ABE+∠E+∠CDE=360°∴6x+6y+∠E=360°∵∠M+∠EBM+∠E+∠EDM=360°∴6x+6y+∠E=∠M+5x+5y+∠E∴∠M=x+y∴∠E+6∠M=360°.24.(6分)(2022秋•绿园区期末)【问题情景】如图1 若AB∥CD∠AEP=45°∠PFD=120°.过点P 作PM∥AB则∠EPF=105°;【问题迁移】如图2 AB∥CD点P在AB的上方点E F分别在AB CD上连接PE PF过P点作PN∥AB问∠PEA∠PFC∠EPF之间的数量关系是∠PFC=∠PEA+∠FPE请在下方说明理由;【联想拓展】如图3所示在(2)的条件下已知∠EPF=36°∠PFA的平分线和∠PFC的平分线交于点G过点G作GH∥AB则∠EGF=18°.解:(1)∵AB∥PM∴∠1=∠AEP=45°∵AB∥CD∴PM∥CD∴∠2+∠PFD=180°∵∠PFD=120°∴∠2=180°﹣120°=60°∴∠1+∠2=45°+60°=105°.即∠EPF=105°故答案为:105°.(2)∠PFC=∠PEA+∠EPF.理由:∵PN∥AB∴∠PEA=∠NPE∵∠FPN=∠NPE+∠FPE∴∠FPN=∠PEA+∠FPE∵PN∥AB AB∥CD∴PN∥CD∴∠FPN=∠PFC∴∠PFC=∠PEA+∠FPE故答案为:∠PFC=∠PEA+∠FPE.(3)∵GH∥AB AB∥CD∴GH∥AB∥CD∴∠HGE=∠AEG∠HGF=∠CFG又∵∠PEA的平分线和∠PFC的平分线交于点G∴由(2)可知∠CFP=∠FPE+∠AEP∴∠HGF=(∠FPE+∠AEP)∴∠EGF=∠HGF﹣∠HGE=(36°+∠AEP)﹣∠HGE=18°.故答案为:18°.25.(8分)(2022春•富县期末)如图AD∥BC∠BAD的平分线交BC于点G∠BCD=90°.(1)求证:∠BAG=∠BGA;(2)如图②线段AG上有一点P满足∠ABP=3∠PBG过点C作CH∥AG.若在直线AG上有一点M使∠PBM=∠DCH求的值.(1)证明:∵AD∥BC∴∠GAD=∠BGA∵AG平分∠BAD∴∠BAG=∠GAD∴∠BAG=∠BGA;(2)解:有两种情况:①当M在BP的下方时如图设∠ABC=4x∵∠ABP=3∠PBG∴∠ABP=3x∠PBG=x∵AG∥CH∴∠BCH=∠AGB==90°﹣2x ∵∠BCD=90°∴∠DCH=∠PBM=90°﹣(90°﹣2x)=2x ∴∠ABM=∠ABP+∠PBM=3x+2x=5x∠GBM=2x﹣x=x∴∠ABM:∠GBM=5x:x=5;②当M在BP的上方时如图同理得:∠ABM=∠ABP﹣∠PBM=3x﹣2x=x ∠GBM=2x+x=3x∴∠ABM:∠GBM=x:3x=.综上的值是5或.26.(8分)(2022春•武汉期末)已知点E F分别在直线AB CD上点P在直线AB上方.问题探究:(1)如图1 ∠CFP+∠EPF=∠AEP证明:AB∥CD;问题拓展:(2)如图2 AB∥CD∠AEP的角平分线EK所在的直线和∠DFP的角平分线FR所在的直线交于Q点请写出∠EPF和∠EQF之间的数量关系并证明.问题迁移:(3)如图3 AB∥CD直线MN分别交AB CD于点M N若点H在线段MN上且∠MEF=α请直接写出∠HFE∠MEH和∠EHF之间满足的数量关系(用含α的式子表示).(1)证明:如图∵∠AEP是△PEH的外角∴∠AEP=∠EPF+∠EHP∵∠CFP+∠EPF=∠AEP∴∠EHP=∠CFP∴AB∥CD;(2)解:如图 2∠Q+∠P=180°理由如下:∵AB∥CD∴∠AEK=∠CME∠EHF=∠PFD∵EK平分∠AEP∴∠AEK=∠KEP∴∠AEK=∠KEP=∠CME设∠AEK=∠KEP=∠CME=x则∠QMF=x∠AEP=2x∴∠PEH=180°﹣2x∵FR平分∠PFD∴∠PFR=∠DFR设∠PFR=∠DFR=y则∠MFQ=y∠EHF=2y∴∠Q=180°﹣∠QMF﹣∠MFQ=180°﹣x﹣y∵∠EHF是△EHP的外角∴∠EHF=∠PEH+∠P∴∠P=∠EHF﹣∠PEH=2y﹣(180°﹣2x)=2x+2y﹣180°∴2∠Q+∠P=180°;(3)解:如图∵∠MEF=α∴∠HEF=α﹣∠MEH∵∠HEF+∠EHF+∠HFE=180°∴α﹣∠MEH+∠EHF+∠HFE=180°∴∠EHF+∠HFE﹣∠MEH=180°﹣α∴∠HFE∠MEH和∠EHF之间满足的数量关系是∠EHF+∠HFE﹣∠MEH=180°﹣α.27.(8分)(2022春•建邺区校级期末)【探究结论】(1)如图1 AB∥CD E为形内一点连结AE、CE得到∠AEC则∠AEC、∠A、∠C的关系是∠AEC =∠A+∠C(直接写出结论不需要证明):【探究应用】利用(1)中结论解决下面问题:(2)如图2 AB∥CD直线MN分别交AB、CD于点E、F EG1和EG2为∠BEF内满足∠1=∠2的两条线分别与∠EFD的平分线交于点G1和G2求证:∠FG1E+∠G2=180°.(3)如图3 已知AB∥CD F为CD上一点∠EFD=60°∠AEC=3∠CEF若8°<∠BAE<20°∠C的度数为整数则∠C的度数为42°或41°.(1)解:过点E作EF∥AB∴∠A=∠1∵AB∥CD EF∥AB∴EF∥CD∴∠2=∠C.∵∠AEC=∠1+∠2∴∠AEC=∠A+∠C(等量代换)故答案为:∠AEC=∠A+∠C;(2)证明:由(1)可知:∠EG2F=∠1+∠DFG2∵FG2平分∠MFD∴∠EFG2=∠DFG2∵∠1=∠2∴∠EG2F=∠2+∠EFG2∵∠EG1F+∠2+∠EFG2=180°∴∠FG1E+∠G2=180°;(3)由(1)知:∠AEF=∠BAE+∠DFE设∠CEF=x则∠AEC=3x∵∠EFD=60°∴x+3x=∠BAE+60°∴∠BAE=4x﹣60°又∵8°<∠BAE<20°∴8°<4x﹣60°<20°解得17°<x<20°又∵∠DFE是△CEF的外角∴∠C=∠DFE﹣∠CEF=∠DFE﹣x∵∠C的度数为整数∴x=18°或19°∴∠C=60°﹣18°=42°或∠C=60°﹣19°=41°故答案为:42°或41°.28.(8分)(2022春•颍州区期末)(1)问题背景:如图1 已知AB∥CD点P的位置如图所示连结PA PC试探究∠APC与∠A、∠C之间的数量关系并说明理由.解:(1)∠APC与∠A、∠C之间的数量关系是:∠APC=∠A+∠C.理由:如图1 过点P作PE∥AB∴∠APE=∠A∵AB∥CD∴PE∥CD∴∠CPE=∠C∴∠APE+∠CPE=∠A+∠C∴∠APC=∠A+∠C.总结:本题通过添加适当的辅助线从而利用平行线的性质使问题得以解决.(2)类比探究:如图2 已知AB∥CD线段AD与BC相交于点E点B在点A右侧.若∠ABC=40°∠ADC=80°求∠AEC的度数.(3)拓展延伸:如图3 若∠ABC与∠ADC的角平分线相交于点F请直接写出∠BFD与∠AEC之间的数量关系∠BFD=∠AEC.解:(2)如图2 过E点作EM∥AB∴∠BEM=∠ABC∵AB∥CD∴CD∥EM∴∠MED=∠ADC∴∠AEC=∠BED=∠BEM+∠MED=∠ABC+∠ADC=40°+80°=120°;(3)由(2)知:∠AEC=∠ABC+∠ADC如图3 过F点作FN∥AB∴∠ABF=∠BFN∵AB∥CD∴CD∥FN∴∠NFD=∠FDC∴∠BFD=∠ABF+∠FDC∵BF平分∠ABC DF平分∠ADC∴∠ABF=∠ABC∠FDC=∠ADC∴∠BFD=(∠ABC+∠ADC)=∠AEC.即∠BFD=∠AEC.故答案为∠BFD=∠AEC第31页共31。
人教版七年级下册数学相交线练习题(含答案)
人教版七年级下册数学5.1相交线练习题(含答案)一、单选题1.如图,直线AB⊥CD于点O,直线EF经过点O,若⊥1=25°,则⊥2的度数是()A.25°B.65°C.55°D.64°2.下列图形中,⊥1与⊥2是对顶角的是()A.B.C.D.3.如图,下列各角与⊥A是同位角的是()A.⊥1B.⊥2C.⊥3D.⊥44.如图,已知AC⊥BC,CD⊥AB,垂足分别是C,D,其中AC=6,BC=8,AB=10,CD=4.8,那么点B到AC的距离是()A.6B.8C.10D.4.85.如图,直线AB、CD相交于点O,下列描述:①⊥1和⊥2互为对顶角;②⊥1和⊥2互为邻补角;③⊥1=⊥2,④∠1=∠3,其中正确的是()A .①③B .②④C .②③D .①④6.如图,要把河中的水引到村庄A ,小凡先作AB ⊥CD ,垂足为点B ,然后沿AB 开挖水渠,就能使所开挖的水渠最短,其依据是( )A .两点确定一条直线B .两点之间线段最短C .在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D .连结直线外一点与直线上各点的所有线段中,垂线段最短7.如图,射线OC 的端点O 在直线AB 上,设⊥1的度数为x ,⊥2的度数为y ,且x 比y 的2倍多10°,则列出的方程组正确的是( )A .{x +y =180x =y +10B .{x +y =180x =2y +10C .{x +y =180x =10−2yD .{x +y =90y =2x −108.如图,若⊥1+⊥2=220°,则⊥3的度数为( )A .70°B .60°C .65°D .50°9.如图,直线 AB 、直线 CD 交于点 E , EF ⊥AB ,则 ∠CEF 与 ∠BED 的关系是( )A .互余B .相等C .对顶角D .互补10.如图所示,下列判断正确的是( )A.图(1)中∠1和∠2是一组对顶角B.图(2)中∠1和∠2是一组对顶角C.图(4)中∠1和∠2互为邻补角D.图(3)中∠1和∠2是一对邻补角11.如图,直线a,b被c所截,则∠1与∠2是()A.同位角B.内错角C.同旁内角D.邻补角12.两直线被第三条直线所截,⊥1与⊥2是同旁内角,且⊥1=30° ,则⊥2的度数为()A.150°B.30°C.30° 或150°D.无法确定二、填空题13.如果⊥A=135°,那么⊥A的邻补角的度数为°.14.如图,直线AB与CD相交于点O,过点O作OE⊥AB,若⊥EOC=55°,则⊥AOD=°.15.如图,直线AB,CD,EF相交于点O,若∠AOE:∠COE=1:2,AB⊥CD,则∠COF=度.16.如图,已知直线AB、CD相交于点O,EO⊥AB,若∠1=32°,则∠2=,∠4=.17.如图,在公园绿化时,需要把管道l中的水引到A,B两处.工人师傅设计了一种又快又节省材料的方案如下:画法:如图,⊥连接AB;⊥过点A画线段AC⊥直线l于点C,所以线段AB和线段AC即为所求.请回答:工人师傅的画图依据是.18.如图,已知直线AB和CD相交于点O,射线OE在∠COB内部,OE⊥OC,OF平分∠AOE,若∠BOD=40∘,则∠COF=度.19.如图,点A,B,C是直线l上的三点,点P在直线l外,PA⊥l,垂足为A,PA=5cm,PB=7cm,PC=6cm,则点P到直线l的距离是cm.20.已知A 、O、B 三点共线,⊥BOC=35°,作OD⊥OC,则⊥DOB=.三、作图题21.如图,某村庄计划把河中的水引到水池M中,怎样开的渠最短,为什么(保留作图痕迹,不写作法和证明)理由是:.四、解答题22.如图,直线AB、CD相交于点O,∠AOC=70°,过点O画EO⊥CD,O为垂足,求∠BOE 的度数.23.如图,直线AB和CD相交于点O,若∠BOD=40°,OA平分∠EOC,求∠EOD的度数.24.如图,直线AB,CD,EF相交于点O.如果⊥BOD=60°,EF垂直于AB于点O,求⊥AOD和⊥FOC的度数.25.如图,直线AB,CD相交于点O,∠BOC=125°,∠AOE=∠BOD,求∠DOE的度数.答案1.B 2.C 3.C 4.B 5.B 6.D 7.B 8.A 9.A 10.C 11.A 12.D 13.45 14.35 15.120 16.58°;122°17.两点之间,线段最短;垂线段最短18.25 19.5 20.125°或55°21.解:理由是:垂线段最短.作图如下:22.解:如图:∵⊥AOC=70°,∴⊥BOC=180°-70°=110°,∵EO⊥CD,∴⊥BOE=⊥BOC-⊥COE=20°;如图,∵⊥AOC=70°,∴⊥BOD=70°,∵EO⊥CD,∴⊥BOE=⊥BOD+⊥DOE=160°;综上:⊥BOE的度数为20°或160°.23.解:∵⊥BOD=40°,∴⊥AOC=⊥BOD=40°.∵OA平分⊥EOC,∴⊥AOE=⊥AOC=40°,∴∠EOD=180°−∠AOE−∠BOD=180°−40°−40°=100°.24.解:∵⊥BOD =60°∴⊥AOD =120°,⊥AOC =60°,∵EF垂直于AB于点O∴⊥AOF =90°,∴⊥FOC=⊥AOF+⊥AOC=90°+60°=150°.25.解:∵直线AB,CD相交于点O,∠BOC=125°,∴∠BOD=180°−∠BOC=180°−125°=55.又∵∠AOE=∠BOD,∴∠AOE=55°,∴∠DOE=180°−∠AOE−∠BOD=180°−55°−55°=70°.。
精品 七年级数学下册 相交线练习题
)
A.3 对.
B.4 对.
C.5 对.
D.6 对.
8.垂线的一个性质是( ) A、过一点有一条直线与已知直线垂直 B、过一点只有一条直线与已知直线垂直 C、过一点有且只有一条直线与已知直线垂直 D、过一点能画出一条直线与已知直线垂直 9.如图,∠1 的同位角是 ,∠2 的内错角是 .
10.如图,∠1 的同位角是
相交线练习题
1.两条相交直线与另外一条直线在同一平面内,它们的交点个数是( ). A.1 B.2 C.3 或 2 D.1 或 2 或 3 2.直线 a、b、c 相交于点 O,则图中对顶角共有( ) A.6 对 B.5 对 C.4 对 D.3 对 3.下列结论中,错误的是( ) A.同一个角的两个邻补角是对顶角 B.对顶角相等,相等的两个角也是对顶角 C.对顶角的平分线在一条直线上 D.邻补角的平分线互相垂直 4.如图,下列说法中错误的是( ) A. 1、3 是同位角 C. 1、5 是同位角
17.已知∠ABC=90°,∠1=∠2,∠DCA=∠CAB.求证:(1)CD⊥CB;(2)CD 平分∠ACE.
2
,∠1 的内错角是
,∠1 的同旁内角是
.
1
11.如图,O 为直线 AB 上一点,∠BOC = 3∠AOC,OC 平分∠AOD; ⑴ 求∠AOC 的度数; ⑵ 推测 OD 与 AB 的位置关系,并说明理由。
12.如图,将长方形纸片折叠后再展开,折痕的夹角是多少?
13.如图,能否在△ABC 所在平面画一条直线使图形中与∠B 成为同旁内角的角有 3 个?4 个?能否多于 4 个?
15.如图,直线 AB、CD 相交于 O,OE⊥CD 于 O,OF⊥AB 于 O,∠1=65° ,求∠BOE 的度数.
人教版七年级数学下册《相交线中求角》专项练习题-附含答案
人教版七年级数学下册《相交线中求角》专项练习题-附含答案【例题讲解】如图 直线AB CD 相交于点O OE 平分∠BOD OF 平分∠COE .(1)若∠AOC =76° 求∠BOF 的度数;(2)若∠BOF =36° 求∠AOC 的度数;(3)请探究∠AOC 与∠BOF 的数量关系.)BOD ∠=又OE 平分180142DOE =︒-∠︒ OF 平分33EOF =∠-∠︒.)OE 平分∠COE ∠ BOE ∴∠BOE x ∠= 则2COA x ∠= EOF ∠180AOC COF +∠︒=︒ 解得:)由(1)知(180DOE ︒-∠【综合解答】1.如图 直线AB 、CD 相交于点O OE 把BOD ∠分成两部分(1)直接写出图中AOC ∠的对顶角为________ BOE ∠的邻补角为________;(2)若AOC 70∠=︒ 且BOE EOD ∠∠:=2:3 求AOE ∠的度数.2.如图 直线AB 、CD 、EF 相交于点O OG 平分∠COF ∠1=30° ∠2=45°.求∠3的度数.【答案】∠3=52.5°【详解】试题分析:先求出∠EOD的度数从而得出∠COF=105° 再根据OG平分∠COF 可得∠3的度数.试题解析:∠∠1=30° ∠2=45°∠∠EOD=180°﹣∠1﹣∠2=105°∠∠COF=∠EOD=105°又∠OG平分∠COF∠∠3=∠COF=52.5°.考点:对顶角、邻补角.3.如图直线AB、CD相交于点O∠DOE=∠BOD OF平分∠AOE.(1)判断OF与OD的位置关系并说明理由;(2)若∠AOC:∠AOD=1:5 求∠EOF的度数.4.如图 直线AB CD 相交于点O EO AB ⊥ 垂足为O .(1)若35EOC ∠=︒ 求AOD ∠的度数;(2)若2BOC AOC ∠=∠ 求DOE ∠的度数.【答案】(1)125°;(2)150°【分析】(1)把COB ∠的度数计算出来 再根据对顶角的性质即可得到答案;(2)根据2BOC AOC ∠=∠ 设AOC x ∠= 2BOC x ∠=得到60BOD AOC ∠=∠=︒ 最后根据EO AB ⊥即可得到答案;【详解】解:(1)EO AB ⊥90EOB ∴∠=︒909035125COB EOC ∴∠=︒+∠=︒+︒=︒125AOD COB ∴∠=∠=︒;(2)2BOC AOC ∠=∠∴设AOC x ∠= 2BOC x ∠=又180BOC AOC ∠+∠=︒2180x x ∴+=︒60x ∴=︒60BOD AOC ∴∠=∠=︒又EO AB ⊥90EOB ∴∠=︒6090150DOE BOD EOB ∴∠=∠+∠=︒+︒=︒.【点睛】本题主要考查了对顶角的性质(对顶角相等)和邻补角的性质熟练掌握邻补角的性质和对顶角的性质是解题的关键.5.如图直线AB CD相交于O点OM平分∠AOB(1)若∠1=∠2 求∠NOD的度数;(2)若∠BOC=4∠1 求∠AOC与∠MOD的度数.【答案】(1)90°;(2)∠AOC=60°;∠MOD=150°.【分析】(1)根据角平分线的性质可得∠1+∠AOC=90° 再利用等量代换可得∠2+∠AOC=90° 利用邻补角互补可得答案;(2)根据条件可得90°+∠1=4∠1 进而可得求出∠1=30° 从而可得∠AOC的度数再利用邻补角互补可得∠MOD的度数.【详解】(1)∠OM平分∠AOB∠∠1+∠AOC=90°.∠∠1=∠2 ∠∠2+∠AOC=90° ∠∠NOD=180°﹣90°=90°;(2)∠∠BOC=4∠1 ∠90°+∠1=4∠1 ∠∠1=30° ∠∠AOC=90°﹣30°=60° ∠MOD=180°﹣30°=150°.【点睛】本题考查了角平分线和邻补角关键是掌握邻补角互补.6.如图直线AB CD EF相交于点O.(1)写出∠COE的邻补角;(2)分别写出∠COE和∠BOE的对顶角;(3)如果∠BOD=60° ∠BOF=90° 求∠AOF和∠FOC的度数.【答案】(1)∠COE的邻补角为∠COF和∠EOD;(2)∠COE和∠BOE的对顶角分别为∠DOF和∠AOF;(3)∠FOC=150°.【分析】(1)根据邻补角的定义(两个角有一条公共边它们的另一条边互为反向延长线具有这种关系的两个角)可得∠COE的邻补角有∠COF和∠EOD两个角;(2)根据对顶角的定义(一个角的两边分别是另一个角两边的反向延长线且这两个角有公共顶点)可得∠COE和∠BOE的对顶角分别为∠DOF和∠AOF;(3)由∠BOF=90°可得:AB∠EF 所以∠AOF=90° 由∠AOC=∠BOD可得:∠AOC =60° 由∠FOC=∠AOF+∠AOC即可求出∠FOC的度数;【详解】(1)∠COE的邻补角为∠COF和∠EOD;(2)∠COE和∠BOE的对顶角分别为∠DOF和∠AOF;(3)∠∠BOF=90°∠AB∠EF∠∠AOF=90°又∠∠AOC=∠BOD=60°∠∠FOC=∠AOF+∠AOC=90°+60°=150°.7.如图直线AB、CD相交于点O OE平分∠BOD OF平分∠COE.(1)若∠AOC=76° 求∠BOF的度数;(2)若∠BOF=36° 求∠AOC的度数;8.如图 直线AB 、CD 相交于点O OE 平分BOC ∠ 90COF ∠=.(1)若∠AOF =50° 求∠BOE 的度数;(2)若∠BOD :∠BOE =1:4 求∠AOF 的度数.【答案】(1)70BOE ∠=;(2)70AOF ∠=.【分析】(1)根据补角 余角的关系 可得∠COB 根据角平分线的定义 可得答案;(2)根据邻补角 可得关于x 的方程 根据解方程 可得∠AOC 再根据余角的定义 可得答案.【详解】(1)∠∠COF 与∠DOF 是邻补角∠∠COF =180°−∠DOF =90°.∠∠AOC 与∠AOF 互为余角∠∠AOC =90°−∠AOF =90°−50°=40°.∠∠AOC 与∠BOC 是邻补角∠∠COB =180°−∠AOC =180°−40°=140°.∠OE 平分∠BOC(2)∠BOD:∠BOE=1:4设∠BOD=∠AOC=x∠BOE=∠COE=4x.∠∠AOC与∠BOC是邻补角∠∠AOC+∠BOC=180°即x+4x+4x=180°解得x=20°.∠∠AOC与∠AOF互为余角∠∠AOF=90°−∠AOC=90°−20°=70°.【点睛】此题考查角平分线的定义对顶角、邻补角解题关键在于掌握其性质定义.9.如图∠1=∠2 ∠1+∠2=162° 求∠3与∠4的度数.【答案】∠3=54°∠4=72°【详解】试题分析:本题首先根据方程思想求出. ∠1、∠2的度数再根据对顶角、邻补角的关系求出∠3与∠4的度数.试题解析:由已知∠1=∠2 ∠1+∠2=162°解得:∠1=54° ∠2=108°.∠∠1与∠3是对顶角∠∠3=∠1=54°.∠∠2与∠4是邻补角∠∠4=180°﹣∠2=72°.考点:1二元一次方程组;2对顶角;3邻补角.10.如图直线AB CD相交于点O EO∠AB垂足为O.(1)若∠COE =35° 则∠AOD 的度数为_________°(直接写出结果);(2)若∠AOD +∠COE =170° 求∠COE 的度数. 【答案】(1)125(2)40°【分析】(1)先根据两角互余求出∠AOC 的度数 再利用邻补角即可求出∠AOD 的度数;(2)设AOC x ∠= 则AOC BOD x ∠=∠= 再利用周角列出方程 解出x 的值之后再利用互余即可求出∠COE 的度数.(1)解:∠∠COE =35° EO ∠AB∠90AOE COE AOC ∠=∠+∠=︒∠903555AOC ∠=︒-︒=︒.又∠∠AOD 是∠AOC 的邻补角∠180125AOD AOC ∠=︒-∠=︒.(2)解:设AOC x ∠= 则AOC BOD x ∠=∠=∠360AOD COE AOC BOD BOE ∠∠+∠+∠+∠=︒+即170902360x ︒+︒+=︒解得50x =︒.∠905040COE ∠=︒-︒=︒.【点睛】本题考查了两角互余的关系和邻补角以及周角 解题的关键是熟练掌握互余、互补的概念和对顶角相等以及周角为360︒ 互余是指两角之和为90° 互补是指两角之和为180° 并且熟知两个角有一条公共边 它们的另一边互为反向延长线 具有这种关系的两个角 叫做邻补角. 11.如图 直线AB CD 相交于点O OE 把BOD ∠分成两部分.(1)直接写出图中AOD ∠的对顶角为______ DOE ∠的邻补角为______.(2)若=90AOC ∠︒ 且:2:3BOE EOD ∠∠=.求EOC ∠的度数.【答案】(1)BOC ∠ EOC ∠;(2)126゜【分析】(1)根据对顶角和邻补角的定义直接写出即可;(2)根据对顶角相等求出∠BOD 的度数 再根据∠BOE :∠EOD =2:3求出∠BOE 和∠EOD 的度数 即可求出∠EOC 的度数.【详解】解:(1)AOD ∠的对顶角为BOC ∠ DOE ∠的邻补角为EOC ∠.(2)∠∠BOE :∠EOD =2:3 设2BOE x ∠= 3EOD x ∠=则590BOD AOC x ∠=∠==解得:18x =.∠354DOE x ∠==.∠180126EOC DOE ∠=-∠=.【点睛】本题主要考查了对顶角与邻补角的定义 解题的关键在于能够熟练掌握相关知识进行求解.12.如图 直线AB 和CD 相交于点O OE 把∠AOC 分成两部分且∠AOE :∠EOC =3:5 OF 平分∠BOE .(1)若∠BOD =80° 求∠BOE ;(2)若∠BOF =∠AOC +14° 求∠EOF .【答案】(1)150°;(2)78°13.如图 直线AB CD 相交于点O OE AB ⊥ 垂足为O .(1)直接写出图中AOC ∠的对顶角为 BOD ∠的邻补角为 ;(2)若:1:2BOD COE ∠∠= 求AOD ∠的度数.【答案】(1)BOD ∠;BOC ∠ AOD ∠;(2)150°【分析】(1)根据对顶角、邻补角的定义寻找对顶角和邻补角即可;(2)设∠BOD=x 则∠COE=2x 再根据∠BOD 与∠COE 互余可求得x 的值 从而得出∠AOC 的大小 进而得出∠AOD 的大小.【详解】(1)∠AOC 的对顶角为:∠BOD∠BOD 的邻补角为:∠BOC ∠AOD(2)∠:1:2BOD COE ∠∠=设∠BOD=x 则∠COE=2x∠OE∠AB∠∠EOB=90°∠∠COE+∠BOD=90° 即x+2x=90°解得:x=30°∠∠BOD=∠COA=30°∠∠AOD=150°【点睛】本题考查角度的简单推导 解题关键是利用对顶角相等和补角为180°转化求解.14.如图 直线MD 、CN 相交于点O OA 是∠MOC 内的一条射线 OB 是∠NOD 内的一条射线 ∠MON =70°.(1)若∠BOD =12∠COD 求∠BON 的度数;(2)若∠AOD =2∠BOD ∠BOC =3∠AOC 求∠BON 的度数. 【答案】(1)75°(2)54°【分析】(1)先由对顶角相等求出∠COD =70° 再由已知条件求出∠BOD 的度数 根据邻补角的定义与角的和差进行求解即可;(2)设∠AOC =x ° 则∠BOC =3x ° 利用角的和差即可解得x 进而求解.(1)∠∠MON =70°∠∠COD =∠MON =70°15.如图直线AB、CD相交于点O OE∠AB 且∠DOE=5∠COE 求∠AOD的度数.【答案】120°【分析】由OE∠AB可得∠EOB=90° 设∠COE=x 则∠DOE=5x 而∠COE+∠EOD=180° 即x+5x=180° 得到x=30° 则∠BOC=30°+90°=120° 利用对顶角相等即可得到∠AOD的度数.【详解】解:∠OE∠AB∠∠EOB=90°设∠COE=x 则∠DOE=5x∠∠COE+∠EOD=180°∠x+5x=180°∠x=30°∠∠BOC=∠COE+∠BOE=30°+90°=120°∠∠AOD=∠BOC=120°.。
七年级数学下相交线练习题
10756894321(1)相交线练习题一、判断(每题1分,共10分)1.顶点相同并且相等的两个角是对顶角.( )2.相交直线构成的四个角中若有一个角是直角,就称这两条直线互相垂直.( )3.直线外一点到这条直线的垂线段叫做这点到这条直线的距离.( )4.如图1,∠2和∠8是对顶角.( )5.如图1,∠2和∠4是同位角.( )6.如图1,∠1和∠3是同位角.( )7.如图1,∠9和∠10是同旁内角,∠1和∠7也是同旁内角.( ) 8.如图1,∠2和∠10是内错角.( )9.O 是直线AB 上一点,D 分别在AB 的两侧,且∠DOB=∠AOC, 则C,O,D•三点在同一条直线上.( )D C A B NM P(2)Qla75684321b(3)564321AB NM P(4)OQ421D AB (5)OFE10.如图2,其中共有4对同位角,4对内错角,4对同旁内角.( )二、填空(每空1分,共29分)11.如图3,直线L 截直线a,b 所得的同位角有______对,它们是_ _____;•内错有___对,它们是_____ _;同旁内角有______对,•它们 是_____ _;•对顶角_____•对,•它们是_____ _. 12.如图4,∠1的同位角是________,∠1的内错角是________,∠1•的同旁内角是_______. 13.如图5,直线AB,CD 相交于O,OE 平分∠AOD,FO ⊥OD 于O,∠1=40°,则∠2=•___ __,∠4=______. 14.如图6,AB ⊥CD 于O,EF 为过点O 的直线,MN 平分∠AOC,若∠EON=100•°,•那么∠EOB=_____ ,∠BOM=_____ .15.如图7,AB 是一直线,OM 为∠AOC 的角平分线,ON 为∠BOC 的角平分线,则OM,ON 的位置关系是_______.16.直线外一点与直线上各点连结的线段中,以_________为最短.17.从直线外一点到这条直线的____ ____叫做这点到直线的距离.D C A B NM (6)O FE C ABN M (7)D C AB(8)O18.经过直线外或直线上一点,有且只有______直线与已知直线垂直.19.如图8,要证BO ⊥OD,请完善证明过程,并在括号内填上相应依据:∵AO ⊥CO,∴∠AOC=__________(___________).又∵∠COD=40°(已知),∴∠AOD=_______.•∵∠BOC=∠AOD=50°(已知),∴∠BOD=_______, ∴_______⊥_______(__________).20.如图9,直线AB,CD 被EF 所截,∠1=∠2,要证∠2+∠4=180°,请完善证明过程,•并在括号内填上相应依据.∵直线AB 与EF 相交,∴∠1=∠3=(__________),又∵∠1+•∠4=180°(___________),∠1=∠2(已知), ∴∠2=∠3,∠2+∠4=180°(____________________)三、选择(每题3分,共30分).21.下列语句正确的是( )A.相等的角为对顶角B.不相等的角一定不是对顶角C.不是对顶角的角都不相等D.有公共顶点且和为180°的两个角为邻补角 22.两条相交直线与另外一条直线在同一平面内,它们的交点个数是( ) A.1 B.2 C.3或2 D.1或2或3 23.如图10,PO ⊥OR,OQ ⊥PR,能表示点到直线(或线段)的距离的线段有( ) A.1条 B.2条 C.3条 D.5条(10)PQD CAB(11)OD CAB(12)FE24.如图,OA ⊥OB,OC ⊥OD,则( )A.∠AOC=∠AODB.∠AOD=∠DOBC.∠AOC=∠BODD.以上结论都不对25.下列说法正确的是( )A.在同一平面内,过已知直线外一点作这条直线的垂线有且只有一条B.连结直线外一点和直线上任一点,使这条线段垂直于已知直线C.作出点P 到直线的距离D.连结直线外一点和直线上任一点的线段长是点到直线的距离 26.如图12,与∠C 是同旁内角的有( ). A.2 B.3 C.4 D.5 27.下列说法正确的是( ).A.两条直线相交成四个角,如果有三个角相等,那么这两条直线垂直.B.两条直线相交成四个角,如果有两个角相等,那么这两条直线垂直.C.两条直线相交成四个角,如果有一对对顶角互余,那么这两条直线垂直.D.两条直线相交成四个角,如果有两个角互补,那么这两条直线垂直. 28.如果∠1与∠2互为补角,且∠1>∠2,那么∠2的余角是( ) A. 12(∠1+∠2) B. 12∠1 C. 12(∠1-∠2) D.12∠229.已知OA ⊥OC,∠AOB:∠AOC=2:3,则∠BOC 的度数是( )A.30°B.150°C.30°或150°D.以上答案都不对下图中共有30.右图共有几对对顶角( ) A.18对 B.16对C.20对D.22 对四、作图题(4+3=7分)31、如图,按要求作出:(1)AE ⊥BC 于E;(2)AF ⊥CD 于F;(3)连结BD,作AG ⊥BD 于G.32、如下左图,一辆汽车在直线形的公路AB 上由A 向B 行驶,M 、N 分别是位于公路AB 两侧的村庄,(1)现在公路AB 上修建一个超市C ,使得到M 、N 两村庄距离最短,请在图中画出点C (2)设汽车行驶到点P 位置时离村庄M 最近;行驶到点Q 位置时,距离村庄N 最近,请在图中公路AB 上分别画出P 、Q 两点的位置。
七年级数学下册第五章《相交线与平行线》测试卷-人教版(含答案)
七年级数学下册第五章《相交线与平行线》测试卷-人教版(含答案)三总分题号一二19 20 21 22 23 24分数一、选择题(每题3分,共30分)1.下列四个图案中,可能通过如图平移得到的是()A.B.C.D.2.下列说法正确的是()A.直线AB和直线BA是同一条直线 B.直线是射线的2倍C.射线AB与射线BA是同一条射线 D.三条直线两两相交,有三个交点3.下列各图中,∠1=∠2一定成立的是()A.B.C.D.4.如图,直线BC,DE相交于点O,AO⊥BC于点O.OM平分∠BOD,如果∠AOE =50°,那么∠BOM的度数()A.20°B.25°C.40°D.50°5.如图,在铁路旁有一李庄,现要建一火车站,为了使李庄人乘车最方便,请你在铁路线上选一点来建火车站,应建在()A.A点B.B点C.C点D.D点6.如图,点P在直线L外,点A,B在直线l上,PA=3,PB=7,点P到直线l 的距离可能是()A.2 B.4 C.7 D.87.如图所示,∠1和∠2不是同位角的是()A.①B.②C.③D.④8.如图所示,同位角共有()A.6对B.8对C.10对D.12对9.下列说法正确的有()个.①不相交的两条直线是平行线;②在同一平面内,两条不相交的线段是平行线;③过一点可以而且只可以画一条直线与已知直线平行;④如果一条直线与两条平行线中的一条平行,那么它与另一条直线也互相平行.A.1 B.2 C.3 D.410.如图,a∥b,M、N分别在a,b上,P为两平行线间一点,那么∠1+∠2+∠3=()A .180°B .360°C .270°D .540°二、填空题(每题3分,共24分)11.把命题“等角的补角相等”改写成“如果…那么…”的形式是______. 12.如图所示,12//l l ,点A ,E ,D 在直线1l 上,点B ,C 在直线2l 上,满足BD 平分ABC ∠,BD CD ⊥,CE 平分DCB ∠,若136BAD =︒∠,那么AEC ∠=___________.13.把一个直角三角板(90GEF ∠=︒,30GFE ∠=︒)如图放置,已知AB ∥CD ,AF 平分BAE ∠,则AEG ∠=_____________14.如图,点E 在BC 延长线上,四个条件中:①13∠=∠;②25180+=︒∠∠,③4∠=∠B ;④B D ∠=∠;⑤180D BCD ∠+∠=︒,能判断//AB CD 的是______.(填序号).15.如图,已知12//l l ,直线l 分别与12,l l 相交于,C D 两点,现把一块含30角的直角三角中尺按如图所示的位置摆放.若1130∠=︒,则2∠=___________.16.如图,∠AEM=∠DFN=a,∠EMN=∠MNF=b,∠PEM=12∠AEM,∠MNP=12∠FNP,∠BEP,∠NFD的角平分线交于点I,若∠I=∠P,则a和b的数量关系为_____(用含a的式子表示b).17.如图所示,将△ABC沿BC边平移得到△A1B1C1,若BC1=8,B1C=2,则平移距离为.18.如图,△ABC的边长AB =3 cm,BC=4 cm,AC=2 cm,将△ABC沿BC方向平移a cm(a<4 cm),得到△DEF,连接AD,则阴影部分的周长为_______cm.三.解答题(共46分)19.(7分)如图,直线l1,l2,l3相交于点O,∠1=40°,∠2=50°,求∠3的度数.20.(7分)已知:如图,AB∥CD,CD∥EF.求证:∠B+∠BDF+∠F=360°.21.(8分)如图,直线DE与∠ABC的边BC相交于点P,现直线AB,DE被直线BC所截,∠1与∠2.∠1与∠3,∠1与∠4分别是什么角?22.(8分)如图,已知∠1+∠2=180°,∠3=∠B.(1)试判断DE与BC的位置关系,并说明理由.(2)若DE平分∠ADC,∠2=3∠B,求∠1的度数.23.(8分)图1,点E在直线AB上,点F在直线CD上,EG⊥FG.(1)若∠BEG+∠DFG=90°,请判断AB与CD的位置关系,并说明理由;(2)如图2,在(1)的结论下,当EG⊥FG保持不变,EG上有一点M,使∠MFG=2∠DFG,则∠BEG与∠MFG存在怎样的数量关系?并说明理由;(3)如图2,若移动点M,使∠MFG=n∠DFG,请直接写出∠BEG与∠MFG的数量关系.24.(8分)已知,E、F分别是直线AB和CD上的点,AB∥CD,G、H在两条直线之间,且∠G=∠H.(1)如图1,试说明:∠AEG=∠HFD;(2)如图2,将一45°角∠ROS如图放置,OR交AB于E,OS交CD于F,设K为SO上一点,若∠BEO=∠KEO,EG∥OS,判断∠AEG,∠GEK的数量关系,并说明理由;(3)如图3,将∠ROS=(n为大于1的整数)如图放置,OR交AB于E,OS交CD于F,设K为SO上一点,连接EK,若∠AEK=n∠CFS,则=.参考答案一、选择题: 题号 1 2 3 4 5 6 7 8 9 10 答案 CACAAACCDB二、填空题:11.如果两个角是等角的补角,那么它们相等. 12.146° 13.30°解:∵AB ∥CD ,AF 平分∠BAE , ∴∠BAF=∠EAF=∠AFE , 又∵∠GFE=30°,∴∠BAF=∠EAF=30°,即∠BAE=60°, ∴∠AEF=180°-60°=120°, 又∵∠GEF=90°,∴∠AEG=120°-90°=30°, 14.②③解:①∵∠1=∠3,∴AD ∥BC ;②∵∠2+∠5=180°,∵∠5=∠AGC ,∴∠2+∠AGC=180°,∴AB ∥DC ; ③∵∠4=∠B ,∴AB ∥DC ; ④∠B=∠D 无法判断出AD ∥BC ; ⑤∵∠D+∠BCD=180°,∴AD ∥BC . 15.20︒如图,∵121130,l l ∠=︒∥, ∴50CDB ∠=︒, ∵30ADB ∠=︒,∴2503020CDB ADB ∠=∠-∠=︒-︒=︒.16.如图1,ABCD是长方形纸带(AD∥BC),∠DEF=18°,将纸带沿EF折叠成图2,再沿BF折叠成图3,则图3中的∠CFE的度数是126°.【分析】在图1中,由AD∥BC,利用“两直线平行,内错角相等”可得出∠BFE的度数,由折叠的性质可知,在图3中∠BFE处重叠了三次,进而可得出∠CFE+3∠BFE=180°,再代入∠BFE的度数即可求出结论.【解答】解:在图1中,AD∥BC,∴∠BFE=∠DEF=18°.由折叠的性质可知,在图3中,∠BFE处重叠了三次,∴∠CFE+3∠BFE=180°,∴∠CFE=180°﹣3×18°=126°.故答案为:126°.17.解:∵△ABC沿BC边平移得到△A1B1C1,∴BC=B1C1,BB1=CC1,∵BC1=8,B1C=2,∴BB1=CC1=,即平移距离为3,故答案为:3.18.180;3;内错角相等,两直线平行;两直线平行,同位角相等三.解答题:19.解:∵∠1=40°,∠2=50°,∴∠5=∠1=40°,∠4=∠2=50°,∴∠3=180°﹣∠5﹣∠4=180°﹣40°﹣50°=90°.20.证明:∵AB∥CD(已知)∴∠B+∠BDC=180°(两直线平行,同旁内角互补)∵CD∥EF(已知)∴∠CDF+∠F=180°(两直线平行,同旁内角互补)∴∠B+∠BDC+∠CDF+∠F=360°,∵∠BDF=∠BDC+∠CDF(已知)∴∠B+∠BDF+∠F=360°.21.解:∵直线AB,DE被直线BC所截,∴∠1与∠2是同旁内角,∠1与∠3是内错角,∠1与∠4是同位角.22.解:(1)如图1,作直线GH交AB于M,交CD于Q,∵AB∥CD,∴∠BMG=∠FQH,∵∠EGH=∠GHF,∴∠AEG=∠EGH﹣∠BMG=∠FHG﹣∠FQH=∠HFD;(2)∠GEK﹣2∠AEG=45°,如图2,延长KO交AB于M,∵EG∥MS,∴∠AEG=∠EMF,∠GEK=∠OKE,设∠OEM=α,则∠OEK=2α,∠OME=45°﹣α,∴∠OKE=180°﹣∠MEK﹣∠OME=135°﹣2α,∵EG∥OS,∴∠GEK=∠OKE=135°﹣2α,∴∠AEG=180°﹣∠GEK﹣∠MEK=180°﹣135°+2α﹣3α=45°﹣α,即∠GEK﹣2∠AEG=45°.(3)作OH∥AB,∵AB∥CD,∴OH∥CD,如图3,∵AB∥OH,∴∠OEB=∠EOH,又∵OH∥CD,∴∠FOH=∠OFD,又∵∠OFD=∠CFS=∠AEK,而∠EOH+∠HOF=,∴∠EOH =﹣∠AEK,即180°﹣n∠EOH=∠AEK,又∵∠OEK+∠AEK+∠EOH=180°,∴∠OEK+180°﹣n∠EOH+∠EOH=180°,∴∠OEK=(n﹣1)∠EOH,∴,又∵∠EOH=∠BEO,∴.故答案为:.。
人教版数学七年级下册 第五章 相交线与平行线 单元练习含答案
人教版数学七年级下册第五章相交线与平行线单元练习含答案人教版数学七年级下册第五章相交线与平行线单元练习1.下列说法中正确的是( )A.两条直线相交所成的角是对顶角B.互补的两个角是邻补角C.互补且有一条公共边的两个角是邻补角D.不相等的角一定不是对顶角2. 如图,OB⊥CD于点O,∠1=∠2,则∠2与∠3的关系是( )A.∠2与∠3互余 B.∠2与∠3互补C.∠2=∠3 D.不能确定3. 如图是一跳远运动员跳落沙坑时留下的痕迹,则表示该运动员成绩的是( )A.线段AP1的长 B.线段AP2的长 C.线段BP3的长 D.线段CP3的长4. 如图,已知直线b,c被直线a所截,则∠1与∠2是一对( )A.同位角 B.内错角 C.同旁内角 D.对顶角5. 若a⊥b,c⊥d,则a与c的关系是( )A.平行 B.垂直 C.相交 D.以上都不对6. 如图,下列条件中不能判定AB∥CD的是( )A.∠3=∠4 B.∠1=∠5 C.∠1+∠4=180° D.∠3=∠57. 如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=70°,则∠AED=( )A.55° B.125° C.135° D.140°8. 下列命题:①有理数和数轴上的点一一对应;②内错角相等;③平行于同一条直线的两条直线互相平行;④邻补角一定互补.其中真命题的个数是( )A.1个 B.2个 C.3个 D.4个9. 如图,将周长为8的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长为( )A.8 B.9 C.10 D.1110. 如图所示,OA⊥OB,∠AOC=120°,则∠BOC等于______度.11. 如图,直线AB,CD相交于点O,若∠AOD=28°,则∠BOC =__________,∠AOC=___________.12. 自来水公司为某小区A改造供水系统,如图所示,沿路线AO铺设管道和BO主管道衔接(AO⊥BO),路线最短、工程造价最低,其根据是垂线段_____________13. 如图,直线BD上有一点C,则:(1)∠1和∠ABC是直线AB,CE被直线_______所截得的_______角;(2)∠2和∠BAC是直线CE,AB被直线______所截得的________角;(3)∠3和∠ABC是直线_______,_______被直线_______所截得的__________角;14. 如图,过点A画直线l的平行线,能画条15. 如图,用两个相同的三角板按照如图所示的方式作平行线,能解释其中道理的是内错角,两直线 .16. 如图,四边形ABCD中,A D∥BC,∠A=110°,则∠B=___________.17. 两个锐角之和是钝角,其条件是两个锐角之和,结论是钝角,这是一个________命题(填“真”或“假”).18. 如图所示,将直角三角形ABC沿BC方向平移4 cm,得到直角三角形DEF,连接AD,若AB=5 cm,则图中阴影部分的面积为_____________.19. 如图,O为直线AB上一点,∠AOC=13∠BOC,OC是∠AOD的平分线.判断OD与AB的位置关系,并说明理由.20. 如图,直线a,b被直线l所截,已知∠1=40°,试求∠2的同位角及同旁内角的度数.21. 如图,AB∥CD,点E是CD上一点,∠AEC=42°,EF平分∠AED交AB于点F,求∠AFE的度数.22. 如图,AD∥BC,且AD<BC,△ABC经过平移后到了△DEF,(1)平移的方向是射线___________的方向,平移距离是线段________________的长度;(2)在观察图形时,小明发现了AD+BC=BF这一结论,你觉得这一结论成立吗?为什么?参考答案:1---9 DABAD DBBC10. 3011. 28° 152°12. 最短13. (1) DB 同位(2) AC 内错(3) AB AC BC 同旁内14. 115. 相等平行16. 70°17. 假18. 20cm219. 解:OD⊥AB.理由:因为OC平分∠AOD,所以可设∠AOC=∠COD=x°,而∠AOC=13∠BOC,所以∠BOC=3∠AOC=3x°.因为∠AOC+∠BOC=180°,所以x+3x=180,所以x=45,所以∠AOD=2∠COD=90°,即OD⊥AB.20. 解:∵∠1=40°,∴∠3=∠1=40°,4=180°-∠1=140°,即∠2的同位角是140°,∠2的同旁内角是40°. 21. 解:∵∠AEC=42°,∴∠AED=180°-∠AEC=138°.∵EF 平分∠AED,∴∠DEF=∠AED=69°.又∵AB∥CD,∴∠AFE=∠DEF=69°.22. (1) BC BE或CF或AD(2) 解:结论成立.理由:∵△A BC经过平移后到了△DEF,∴AD =BE=CF,BC=EF,∴AD+BC=BE+EF=BF.人教版七年级数学下册第五章相交线平行线单元检测题一、选择题。
初中数学七年级下学期相交线专项试题集一
初中数学七年级下学期相交线专项试题集一一、单选题1、在一个平面上任意画3条直线,最多可以把平面分成的部分是()A、4个B、6个C、7个D、8个2、两条直线相交所成的四个角中,下列说法正确的是()A、一定有一个锐角B、一定有一个钝角C、一定有一个直角D、一定有一个不是钝角3、下列说法正确的个数是()①连接两点的线中以线段最短;②两条直线相交,有且只有一个交点;③若两条直线有两个公共点,则这两条直线重合;④若AB+BC=AC,则A、B、C三点共线.A、1B、2C、3D、44、观察图形,并阅读相关的文字:那么8条直线相交,最多可形成交点的个数是()A、21B、28C、36D、455、已知平面中有n个点A,B,C三个点在一条直线上,A,D,F,E四个点也在一条直线上,除些之外,再没有三点共线或四点共线,以这n个点作一条直线,那么一共可以画出38条不同的直线,这时n等于()A、9B、10C、11D、126、三条直线两两相交,它们的交点个数是()A、1B、2C、3D、1或37、如图两条非平行的直线AB,CD被第三条直线EF所截,交点为PQ,那么这3条直线将所在平面分成()A、5个部分B、6个部分C、7个部分D、8个部分8、公园里准备修五条甬道,并在甬道交叉路口处设一个报亭,这样的报亭最多设()A、9个B、10个C、11个D、12个9、如图,一次函数y=-2x+3的图象与x、y轴分别相交于A、C两点,二次函数y=x2+bx+c的图象过点c且与一次函数在第二象限交于另一点B,若AC∶CB=1∶2,那么,这个二次函数的顶点坐标为( )A、(-,)B、(-,)C、(,)D、(,-)10、两条直线相交所成的四个角中,下列说法正确的是()A、一定有一个锐角B、一定有一个钝角C、一定有一个直角D、一定有一个不是钝角11、下列语句中:①一条直线有且只有一条垂线;②不相等的两个角一定不是对顶角;③两条不相交的直线叫做平行线;④若两个角的一对边在同一直线上,另一对边互相平行,则这两个角相等;⑤不在同一直线上的四个点可画6条直线;⑥如果两个角是邻补角,那么这两个角的平分线组成的图形是直角.其中错误的有()A、2个B、3个C、4个D、5个12、下列说法错误的是[ ]A、在同一平面内,两条不平行的直线是相交线B、与同一条直线平行的直线必平行C、与同一条直线相交的直线必相交D、过直线外一点有且只有一条直线平行于已知直线13、下列说法中可能错误的是()A、过一点有且只有一条直线与已知直线平行B、过一点有且只有一条直线与已知直线垂直C、两条直线相交,有且只有一个交点D、若两条直线相交成直角,则这两条直线互相垂直14、一次函数y=-2x+4图象与y轴的交点坐标是()A、(0, 4)B、(4, 0)C、(2, 0)D、(0, 2 )15、一次函数y=-2x+4图象与y轴的交点坐标是【】A、(0, 4)B、(4, 0)C、(2, 0)D、(0, 2 )16、已知n(n≥3,且n为整数)条直线中只有两条直线平行,且任何三条直线都不交于同一个点.如图,当n=3时,共有2个交点;当n=4时,共有5个交点;当n=5时,共有9个交点;…依此规律,当共有交点个数为27时,则n 的值为()A、6B、7C、8D、917、直线y=2x+2与x轴的交点坐标是()A、(0,2)B、(2,0)C、(-1,0)D、(0,-1)二、判断题1、三条直线两两相交有三个交点.( )三、填空题1、(2012•集美区一模)如图,2条直线两两相交最多能有1个交点,3条直线两两相交最多能有3个交点,4条直线两两相交最多能有6个交点,5条直线两两相交最多能有个交点,…,n条直线两两相交最多能有个交点(用含有n的代数式表示)2、三条直线相交,最多有个交点.3、在同一平面内三条直线有个交点,请你画出示意图如下:4、若5条直线两两相交,则交点的个数有.5、已知1条直线将平面分割为2个区域,2条直线两两相交最多可将平面分割成4个区域,则10条直线两两相交最多可将平面分割成个区域.6、三条直线两两相交,最少有个交点,最多有个交点.7、按照下面图形说出几何语句;.8、公园因游客多,准备修10条笔直的路,要求交叉口越多越好,则交叉口最多有个.9、一块长方体橡皮被刀切了3次,最多能被分成块.10、在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线与⊙O交于B、C两点,则弦BC的长的最小值为.11、直线与轴的交点坐标是 ,与轴的交点坐标是 .12、一次函数的图象与x轴的交点坐标为,与y轴的交点坐标为.13、如果一次函数y=x+b经过点A(0,3),那么b= .14、若一次函数y=ax+1-a中,y随x的增大而增大,且它的图象与y轴交于正半轴,则实数a的取值范围是。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学下册相交线练习题◆回顾归纳1.有一条公共边,另一边互为_________,这种关系的两个角称为_______.2.有公共_______的两个角,并且一个角的两边是另一个角的两边的______,具有这种位置关系的两个角称为________.3.对项角________.◆课堂测控知识点一邻补角1.(教材变式题)如图所示,取两根木条a,b,将它们钉在一起,•就得到一个相交线的模型,其中∠1和∠2是______,且∠1+∠2=______,同理∠2 与∠4, ∠3 与______,∠1与∠3都是邻补角.2.邻补角是()A.和为180°的两个角;B.有公共顶点且互补的两个角C.有一条公共边相等的两个角D.有公共顶点且有一条公共边,另一边互为反向延长线的两个角3.(探究过程题)如图所示,已知直线AB,CD相交于点O,且OE平分∠BOC,•若∠AOC=42°.(1)∠AOC与______互为邻补角?(2)与∠EOA互为补角的角是哪些角?并说明理由.(3)求∠BOE的度数.[解答](1)∠AOC与∠AOD,_______互为邻补角(2)∠AOE+∠EOB=180°所以∠EOA与∠EOB________.因为∠COE=_____.所以∠AOE+_______=180°∠AOE与______也互补(3)因为∠AOC=42°而∠AOC+∠BOC=180°所以∠BOC=180°-42°=_____.又因为OE平分_____.所以∠BOE=12×_____=_____.完成上述解答过程的填空并与同伴进行交流!知识点二对顶角4.(经典题)如图所示,∠1和∠2是对顶角的是()5.如图所示,l1与l2相交于O点,若∠1=30°,则∠2=______,∠3=_____.(第5题) (第6题) (第7题) 6.如图所示,AB,CD相交于点O,OB平分∠DOE,若∠DOE=60°,则∠AOC 的度数为_______.7.如图所示,AB与CD相交于O,∠AOD+∠BOC=280°,则∠AOC为()A.40° B.140° C.120° D.60°◆课后测控1.如图所示,直线a,b相交于点O,若∠2=2∠1,则∠1=_____.2.如图所示, l1与l2相交于O点,图中对顶角有_____组,邻补角有______组.3.如图所示,直线AB,CD交于点O,下列说法正确的是()A.∠AOD=∠BOD B.∠AOC=∠DOBC.∠AOD+∠BOC=361° D.以上都不对(第1题) (第2题) (第3题) 4.将一个长方形纸片按如图所示的方式折叠,BC,BD为折痕,试求∠CBD的度数.5.(动手操作实验题)如图所示是小明自制对顶角的“小仪器”示意图:(1)将直角三角板ABC的AC边延长且使AC固定;(2)另一个三角板CDE•的直角顶点与前一个三角板直角顶点重合;(3)延长DC,∠PCD与∠ACF就是一组对顶角,已知∠1=30°,∠ACF为多少?◆拓展创新6.(1)两条直线相交于一点有______组不同的对顶角;(2)三条直线相交于一点有_____组不同的对顶角;(3)四条直线相交于一点有_____组不同的对顶角;……(4)n条直线相交于同一点有_____组不同对顶角呢?(如图所示)答案:回顾归纳1.反向延长线,邻补角2.顶点,延长线,对顶角 3.相等课堂测控1.邻补角,180°,∠4 2.D3.(1)∠COB;(2)互为邻补角,∠BOE,∠CO E,∠COE;(3)138°,∠COB,138°,69°4.C(点拨:对顶角有公共顶点且角的两边互为反向延长线)5.150°,30°(点拨:邻补角,对顶角定义)6.30°(点拨:∠AOC=∠BOD=∠BOE=12∠DOE)7.A(点拨:∠AOD=∠BOC,2∠BOC=280°)课后测控1.60°(点拨:设∠1=x°,则∠2=2x°,x°+2x°=180°)2.2,4(点拨:∠1与∠3,∠2与∠4是对顶角,邻补角有∠1与∠2,∠2与∠3,∠3与∠4,∠4与∠1)3.B (点拨:对顶角相等)4.BC 为折痕,所以∠ABC=∠CBA′, 同理∠E′BD=∠DBE. 而∠CBD=∠CBA′+ ∠DEB′=12∠ABA′+12∠E′BE=12×180°=90°. 5.∵∠PCD=90°-∠1, 又∵∠1=30°,∴∠PCD=90°-30°=60°, 而∠PCD=∠ACF, ∴∠ACF=60°.6.(1)2 (2)6 (3)12 (4)n (n-1)七年级数学下册期末模拟题一 选择题(每小题3分,共12题,共计36分)1.下列计算正确的是( ) A.9 =±3 B.|﹣3|=﹣3 C.9 =3D.﹣32=92.如果c 为有理数,且c≠0,下列不等式中正确的是( ) A.3c >2c B.cc 23 C.3+c >2+c D.﹣3c <﹣2c3.下列说法不正确的是( )A.过任意一点可作已知直线的一条平行线B.同一平面内两条不相交的直线是平行线C.在同一平面内,过直线外一点只能画一条直线与已知直线垂直D.平行于同一直线的两直线平行4.若点P (﹣a ,4﹣a )是第二象限的点,则a 的取值范围是( ) A.a <4 B.a >4 C.a <0D.0<a <45.对于图中标记的各角,下列条件能够推理得到a ∥b 的是( ) A.∠1=∠2 B.∠2=∠4 C.∠3=∠4D.∠1+∠4=180°6.如图,直线a ∥b ,直线c 与a 、b 相交,∠1=70°,则∠2的大小是( ) A.20° B.50° C.70°D.110°7.某次考试中,某班级的数学成绩统计图如下.下列说法错误的是( )A.得分在70~80分之间的人数最多B.该班的总人数为40C.得分在90~100分之间的人数最少D.及格(≥60分)人数是268.若方程mx+ny=6的两个解是⎩⎨⎧==11y x ,⎩⎨⎧-==12y x ,则m ,n 的值为( ) A.4,2 B.2,4 C.﹣4,﹣2 D.﹣2,﹣49.如果不等式组⎩⎨⎧<->-m x x x )1(312的解集是x <2,那么m 的取值范围是( )A.m=2B.m >2C.m <2D.m≥210.若(3x ﹣y+5)2+|2x ﹣y+3|=0,则x+y 的值为( ) A.2B.﹣3C.﹣1D.311.为了改善住房条件,小亮的父母考察了某小区的A 、B 两套楼房,A 套楼房在第3层楼,B 套楼房在第5层楼,B 套楼房的面积比A 套楼房的面积大24平方米,两套楼房的房价相同,第3层楼和第5层楼的房价分别是平均价的1.1倍和0.9倍.为了计算两套楼房的面积,小亮设A 套楼房的面积为x 平方米,B 套楼房的面积为y 平方米,根据以上信息列出了下列方程组.其中正确的是( ) A.B.C.D.12.某大型超市从生产基地购进一批水果,运输过程中质量损失10%,假设不计超市其它费用,如果超市要想至少获得20%的利润,那么这种水果的售价在进价的基础上应至少提高( )A.40%B.33.4%C.33.3%D.30%二 填空题(每小题3分,共6题,共计18分)13.小于17的所有正整数和是 .14..如图所示,若AB ∥DC ,∠1=39°,∠C 和∠D 互余,则∠D= ,∠B= .15.若关于x 、y 的二元一次方程组⎩⎨⎧=-=+k y x ky x 95的解也是二元一次方程2x+3y=6的解,则k﹣21的算术平方根为 .16.将点A 先向下平移3个单位,再向右平移2个单位后得B (﹣2,5),则A 点关于y 轴的对称点坐标 为 . 17.若关于x 的不等式组⎩⎨⎧->->-22132x x a x 的解集中只有4个整数解,则a 取值范围是18.如图,在平面直角坐标系中,已知点A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一根长为2017个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A 处,并按A→B→C→D→A…的规律紧绕在四边形ABCD 的边上,则细线的另一端所在位置的点的坐标是 .三 计算综合题(共7题,共计66分)19.(本小题8分)解下列方程组或不等式组:(1)⎪⎩⎪⎨⎧=-=-132353y x y x (2)⎩⎨⎧-≥-->-3219235x x x .20.(本小题8分)某校举行“汉字听写”比赛,每位学生听写汉字39个,比赛结束后,随机抽查部分学生的听写结果,以下是根据抽查结果绘制的统计图的一部分. 根据以上信息解决下列问题:(1)在统计表中,m=,n=,并补全直方图;(2)扇形统计图中“C组”所对应的圆心角的度数是度;(3)若该校共有964名学生,如果听写正确的个数少于24个定为不合格,请你估算这所学校本次比赛听写不合格的学生人数.21.(本小题10分)在平面直角坐标系中,三角形ABC的三个顶点的位置如图所示,点A′的坐标是(﹣2,2),现将三角形ABC平移,使点A变换为点A′,点B′、C′分别是B、C的对应点.(1)请画出平移后的三角形A′B′C′(不写画法),并写出点B′、C′的坐标;(2)求三角形ABC的面积.22.(本小题10分)已知:如图,B、E分别是AC、DF上一点,∠1=∠2,∠C=∠D.求证:∠A=∠F.23.(本小题8分)商店为了对某种商品促销,将定价为3元的商品,以下列方式优惠销售:若购买不超过5件,按原价付款;若一次性购买5件以上,超过部分打八折.如果用27元钱,最多可以购买该商品多少件?24.(本小题10分)已知2台大收割机和5台小收割机同时工作2h共收割小麦3.6hm2,3台大收割机和2台小收割机同时工作5h共收割小麦8hm2.求1台大收割机和1台小收割机每小时各收割小麦多少公顷(hm2)?(1)分析:如果设1台大收割机每小时各收割小麦x hm2,和1台小收割机每小时各收割小麦y hm2,则2台大收割机和5台小收割机同时工作1h共收割小麦hm2,3台大收割机和2台小收割机同时工作1h共收割小麦hm2(均用含x,y的代数式表示);(2)根据以上分析,结合题意,请你列出方程组,求出1台大收割机和1台小收割机每小时各收割小苗多少公顷(hm2)?25(本小题10分)某旅行社拟在暑假期间面向学生推出“林州红旗渠一日游”活动,收费标准如下:人数m 0<m≤100100<m≤200m>200 收费标准(元/人)90 85 75 甲、乙两所学校计划组织本校学生自愿参加此项活动.已知甲校报名参加的学生人数多于100人,乙校报名参加的学生人数少于100人.经核算,若两校分别组团共需花费20 800元,若两校联合组团只需花费18 000元.(1)两所学校报名参加旅游的学生人数之和超过200人吗?为什么?(2)两所学校报名参加旅游的学生各有多少人?。