排水系统计算
建筑内部排水系统计算排水定额和相关设计秒流量
3、确定是否需设置通气管
排水铸铁立管最大允许排水流量
通气情况
立管工作 高度(m) 50
管径(mm) 75 100 125 150
普通伸顶通气
—
1.0 2.5 4.5 7.0 10.0
设有专用通气立管通气
—
— 5.0 9.0 14.0 25.0
特制配件伸顶通气
—
— — 6.0 9.0 13.0
6.某6层住宅内有一个单元的给水立管,假设每层卫生间内设
冲洗水箱浮球阀坐式大便器1个,
混合水嘴洗脸盆1个,
混合水嘴洗涤盆1个,
混合水嘴浴盆1个,
用水定额取225L/(人·d),每户按4人计,Kh
=2.0,
试求此立管最底部的给水设计秒流量。
建筑内部排水横管应按一下( )种方法进行水力计算 A.按明渠均匀流公式计算 B.先确定管道的流速,然后再进行计算 C.先确定管道的坡度,然后按满管重力流进行计算 D.按设计秒流量和水头损失查表计算
1、设计规定及设计参数 (1)充满度
(2)自净流速
(3)管道坡度
(4)最小管径
(1)排水管道最大充满度
(2)自净流速(最小流速)
各种排水管道的自清流速值
生活污水管径(mm) 污废类别 d<150 d=150 d=200
自清流速 0.60 0.65 (m/s)
0.70
明渠 雨水及 (沟) 合流制
排水管
排水当量
1.00
2.00 3.00
1.00
0.30 0.75 3.00 0.45 4.50 3.60 4.50
排水管管 径
(mm)
50
50 50
50~75
建筑内部排水系统的计算
7-3 雨排水系统的计算
一、雨量计算:
1.按q5
Qr
k q5 F (L / s) 10000
式中:k — 屋面泄流系数;
F — 汇水面积,m2;
q5 — 5 min 暴雨强度,L / s ha
2.按小时降雨厚度计算:
Qr
k h5 F 3600
h5 — 5 min 时的小时降雨厚度, mm/ h。
表 87、65型雨水斗设计流量
DN (mm)
75 100 150 200
设计流量(L/s) 8
12
26
40
2.悬吊管
Q wv
v
1
2
R3I
1 2
n
I (h h) / L
h — 悬吊管末端的最大负压 ,mH 2O,取0.5 h — 雨水斗和悬吊管末端的 几何高差, m。
3.立管
管径mm 75
100
附表1 排水管道最大充满度
附表2 各种排水管道的自清流速值
生活污水管径(mm) 污废类别 d<150 d=150 d=200
自清流速 0.60
(m/s)
0.65
0.70
明渠 雨水及 (沟) 合流制
排水管
0.40 0.75
附表3 生活污水管道的坡度
管径(mm)
50 75 100 125 150 200
二、水力计算(87型)
(一)单斗系统 1.雨水斗泄流量计算(单斗)
5
Qy kLs 2g hs2 式中:Qy — 雨水泄流量; kI5 — 流量系数,试验值1.6~1.8 h5 — 天沟水深
2.雨水斗排泄雨水面积 F 3600 Qr h5 k1
令N 36h500,k1 1,F NQr
施工期间的排水系统水力计算
施工期间的排水系统水力计算在施工期间,为确保工地排水系统的正常运行,需要进行相应的水力计算。
水力计算是根据施工期间排水管网的特点和需求,通过分析管道流量、管道阻力等参数,以确保排水系统的设计合理性和运行稳定性。
本文将介绍施工期间排水系统水力计算的基本原理和步骤。
一、施工期间排水系统概述施工期间排水系统是为了排走施工现场的降水、污水等废水,保证施工期间工地的排水不受阻碍。
施工期间排水系统由排水管道、排水设备等组成。
为了确保排水管道正常运行,需要进行水力计算来确定管道尺寸、水流速度、流量等参数。
二、水力计算的基本原理1. 流量计算:根据施工现场的降水量、污水产生量等,计算出排水管道系统需要处理的总流量。
2. 管道阻力计算:通过管道材质、尺寸、布置方式等参数,计算出管道的摩阻系数和管线的总阻力。
3. 泵站的选择和设计:根据施工期间排水系统需要,选择合适的泵站,并设计泵站的流量、扬程等参数。
三、施工期间排水系统水力计算步骤1. 确定流量需求:根据施工现场的降水量和污水产生量,计算出排水管道系统需要处理的总流量。
流量需求是确定其他参数的基础。
2. 确定管道材质和尺寸:根据总流量和预计的流速,选择合适的管材和管径。
不同管材和管径会对水力计算结果产生影响。
3. 计算管道阻力:根据所选管道的材质、管径、长度、弯头、阀门等参数,计算出排水系统的总阻力。
阻力计算可以采用经验公式或通过软件模拟计算。
4. 确定泵站的选择和设计:根据总流量和所需扬程,选择合适的泵站,并设计泵站的工作参数。
5. 系统优化和校核:对进行水力计算得到的参数进行优化和校核,确保排水系统设计合理、安全稳定。
四、示例计算假设施工现场的降水量为1000m³/h,预计的污水产生量为500m³/h,需要计算排水系统的水力参数。
1. 确定流量需求:总流量 = 降水量 + 污水产生量总流量 = 1000m³/h + 500m³/h总流量 = 1500m³/h2. 确定管道材质和尺寸:根据总流量和预计的流速,选择合适的管材和管径。
排水系统水力计算例题
排水系统水力计算例题例题:某一30层商住楼,五层以下为商场,以上为住宅。
现有一根排水总立管,承接住宅的10根排水立管,其中PL-1、PL-3和PL-6每层承接有洗涤盆和洗衣机的排水,PL-10每层只承接洗涤盆的排水;PL-5、PL-8每层承接有浴盆、坐便器及洗脸盆的排水,PL-2、PL-4、PL-6和PL-9每层承接有蹲便器及洗脸盆的排水。
排水平面大样及系统原理图如图所示。
试进行水力计算,以确定各管段的管径和坡度。
解:由于为高层建筑,排水管采用机制排水铸铁管。
计算方法采用:排水横支管采用最小管径法确定各管段的管径和坡度;立管(包括总立管)采用临界流量法确定管径,且立管管径不发生变化;横干管及排出管采用水力计算法确定各管段的管径和坡度。
一、排水横支管的计算根据规范第4.4.12至4.4.15和4.4.9之规定,可确定出下列排水横支管各管段的管径和坡度:1.厨房洗涤盆排水管:DN75,坡度0.02 2.厨房洗衣机地漏排水管:DN50,坡度0.03 3.卫生间洗脸盆排水管:DN50,坡度0.03 4.卫生间浴盆排水管:DN50,坡度0.03 5.卫生间大便器排水管:DN100,坡度0.02 二、排水立管的计算由于立管的管径一般不变化,因此计算时按立管最大设计秒流量不超过规范4.4.11表中的通水能力确定管径。
1.确定秒流量计算公式m a x m a x 18.012.0q N q N q p p p +=+=α 其中α=1.52.各卫生器具当量数 洗涤盆:N p =1洗衣机地漏:N p =1.5 洗脸盆:N p =0.75低水箱坐便器:N p =6.0 蹲便器:N p =4.5 浴盆:N p =3.0三、排水横干管、立管及排出管的计算1.进行管段编号,如图所示。
2.列表,主要有:管段编号、当量总数、设计秒流量、管径、坡度、排水流量、备注等。
3.水力计算(1)设计秒流量计算,方法同上(2)确定管径、坡度根据设计秒流量,依据排水横管水力计算的4个规定,通过查表的形式,确定出各管段的管径和坡度。
建筑内部排水系统的计算
建筑内部排水系统的计算引言建筑内部排水系统是现代建筑中一个重要的组成部分。
它起着将废水从建筑物中排出的作用,确保建筑物内部的卫生和舒适。
本文将介绍建筑内部排水系统的计算方法,包括流量计算、管道尺寸计算和坡度计算等。
流量计算建筑内部排水系统的流量计算是为了确定排水管道的尺寸和容量。
流量计算需要考虑建筑物内部的水源和水流量等因素。
常见的流量计算方法包括以下几个步骤:1.确定建筑物的水源2.估计每个使用点的水流量3.计算建筑内部的总流量4.根据总流量确定排水管道的尺寸和容量确定水源建筑物可使用的水源包括自来水管道和储水设备等。
确定水源后,需要了解水源的压力和流量等参数。
估计每个使用点的水流量每个使用点的水流量根据建筑物的用途和设计需求进行估算。
可以参考建筑设计规范和使用经验进行估算。
计算建筑内部的总流量将每个使用点的水流量相加即可得到建筑内部的总流量。
需要考虑同时使用多个使用点的情况。
确定排水管道的尺寸和容量根据建筑内部的总流量,可以选择合适的排水管道尺寸和容量。
排水管道的尺寸需要满足建筑设计规范的要求,并考虑未来的扩展和维修等因素。
管道尺寸计算建筑内部排水系统的管道尺寸计算是为了确定管道的直径和长度。
管道尺寸计算需要考虑管道的材料、流量和压力等参数。
确定管道材料常见的管道材料有铸铁、钢、铜和塑料等。
确定管道材料需要考虑建筑的使用环境和使用要求。
管道直径的选择需要满足建筑设计规范的要求,并考虑水流速度和压力损失等因素。
可以使用流量计算结果和管道摩阻系数等参数进行管道直径的计算。
确定管道长度管道长度是指建筑内部排水系统中各管道的总长度。
管道长度需要考虑建筑布局和管道的走向等因素。
坡度计算建筑内部排水系统的坡度计算是为了确保废水能够顺利流向排水口。
坡度计算需要考虑管道的材料、长度和流量等参数。
坡度是指管道在水平方向上的倾斜程度。
适当的坡度可以保证废水能够顺利流动,避免积水和堵塞等问题。
根据建筑设计规范和使用经验,可以确定合适的坡度范围。
建筑内部排水系统的计算
-
职工食堂、营业餐馆厨房设备同时给水百分数
厨房设备名称 污水盆 洗涤盆 煮锅
生产性洗涤机 器皿洗涤机 开水器
同时给水百分数(%)
50 70 60 40 90 50
实验室化验水嘴同时给水百分数
化验水嘴名称
同时给水百分数(%) 科学研究实验室 生产实验室
单联化验水嘴
20
30
双联或三联化验水嘴
30
50
5 建筑内部排水系统的计算 〔calculation〕
计算目的: 1、确定DN(排水+通气) 2、确定i 3、构筑物选型
5.1 排水定额和设计秒流量 〔Design Flow Calculation〕
5.1.1 排水定额
1、每人每日排水定额 取q排=q给 Kh 排=Kh 给 那么 Qd= q排×N Qp=(q排×N) / T Qh= Kh 排× Qp
4
淋浴器
0.15 0.45 50
5 高水箱大便器
1.50 4.50
100
6 感应式冲洗小便器 0.10 0.30 40~50
链回
根据建筑物用途而定的系数α 值
住宅、宾馆、医院、 建筑物名称 疗养院、幼儿园、
养老院的卫生间
集体宿舍、旅馆 和其他公共建筑 的公共盥洗室和 厕所间
α值
1.5
2.0~2.5
ቤተ መጻሕፍቲ ባይዱ链回
条件如图 求qAB 解:qAB =0.1×2×100%
+1.5×3×12% =0.74 (L/s) 因0.74 <1.5(L/s) 故取qAB=1.5 (L/s)
链回
qu qp•n o•b
b-同给水;冲洗水箱大便器:12%
假设qu<1个大便器的排水量
屋面雨水排水系统溢流口计算
屋面雨水排水系统溢流口计算
1.1溢流口的最大溢流设计流量可按下列公式计算:
(1.1-1)
(1.1-2)
式中: Q q ——溢流口服务面积内的最大溢流水量(L/s );
b ——溢流口宽度(m );
h ——溢流口高度(m );
g ——重力加速度,(m/s 2),取9.81;
h max ——屋面最大设计积水高度(m );
h b ——溢流口底部至屋面或雨水斗(平屋面时)的高差(m )。
1.2溢流口的宽度可按下式计算:
b =Q q N ℎ1−32 (1.2)
式中:h 1——溢流口处的堰上水头(m ),宽顶堰宜取0.03m ;
N ——溢流口宽度计算系数,可取1420~1680。
1.3溢流口处堰上水头之上的保护高度不宜小于50mm 。
1.4当溢流口采用薄壁堰时,其设计流量可按下式计算:
(1.4)
式中:K ——堰流量系数。
1.4A 建筑屋面雨水溢流设施的泄流量宜按现行国家标准《建筑给水排水设计标准》GB50015的规定进行计算确定。
23q 2385h g b Q =b h h h -max =231q 2h g Kb Q =。
雨水排水系统的水力计算
前进
返回本章总目录
6.3 雨水排水系统的水力计算
返回本书总目录
5.径流系数
后退
前进
返回本章总目录
6.3 雨水排水系统的水力计算
6.3.2 系统计算原理与参数
返回本书总目录
1.雨水斗泄流量
重力流状态下,雨水斗的排水状况是自由堰流,通过雨水斗
的泄流量与雨水斗进水口直径和斗前水深有关,可按环形溢
流堰公式计算:
6.3 雨水排水系统的水力计算
6.3.3 设计计算步骤
返回本书总目录
2.天沟外排水 天沟布置 即确定天沟的分水线及每条天沟的汇水面积;按照屋面的
构造一般应在伸缩缝或沉降缝作为天沟分水线,单坡的排泄长 度不宜大于 50m。天沟较长时,坡度不能太大,但最小坡度不 得小于0.003。
确定天沟断面 天沟形状:矩形、梯形、半圆形、三角形等。 天沟尺寸:根据排水量、天沟汇水面积计算,根据每一条天沟
管径 I
0.02 0.03 0.04 0.05 0.06 0.07
75mm
3.07 3.77 4.35 4.86 5.33 5.75
100mm 150mm 200mm 250mm
6.63 8.12 9.38 10.49 11.49 12.41
19.55 23.94 27.65 30.91 33.86 36.57
211(110.85lgP) q
(t8)0.70
后退
前进
返回本章总目录
返回本书总目录
6.3 雨水排水系统的水力计算
6.3.1 屋面雨水设计流量计算
屋面雨水排水管道的设计降雨历时可按5min计算, 居住小区的雨水管道设计降雨历时应按下式计算:
t t1M2t
给排水工程中的排水能力计算方法
给排水工程中的排水能力计算方法在给排水工程中,排水能力计算是非常重要的一项工作。
它能够帮助工程设计师确定合理的排水管道尺寸,确保排水系统的正常运行。
本文将介绍一些常用的排水能力计算方法,以帮助读者更好地了解该领域。
1. 水流量计算方法在排水工程中,首先需要计算水流量。
一种常用的计算方法是根据设计排水量和管道的流速来确定水流量。
设计排水量是指特定场所根据预定几率内可能出现的峰值排水量,它一般由规范或经验确定。
而管道的流速是指单位时间内通过管道的流量,通常根据排水系统的性质和特点确定。
通过将设计排水量除以流速,就能得到水流量。
2. 勾股定理计算方法当排水管道的布置为直线型时,可以使用勾股定理来计算排水能力。
勾股定理是指在直角三角形中,直角边的平方等于其他两条边的平方和。
在排水工程中,排水能力与排水管道的横截面积有关。
通过测量管道的水流速度和水流高度,可以利用勾股定理计算得到管道的横截面积,从而得到排水能力。
3. 额定流速计算方法额定流速是指在合理范围内,管道可以保持稳定流动的速度。
在排水工程中,常常将额定流速作为设计要求。
计算额定流速的方法是利用流速公式:V = Q/A,其中V为流速,Q为水流量,A为管道的横截面积。
通过对排水量进行合理分配,可以得到相应的额定流速。
4. 标准曲线法计算方法标准曲线法是一种常用的排水能力计算方法,适用于复杂排水系统的设计。
该方法通过实测或经验确定标准曲线,并根据实际情况进行修正。
标准曲线法计算排水能力的步骤包括:确定设计排水量、选择合适的标准曲线、计算相应的水深和流速、绘制流量-水深曲线图。
根据曲线图,可以得出排水系统的排水能力,并进行必要的调整。
5. 数值模拟计算方法随着计算机技术的发展,数值模拟计算方法在排水能力计算中得到广泛应用。
该方法通过对排水系统进行数学模型的建立和计算机仿真,可以更精确地计算排水能力。
通过输入系统的几何参数、水力参数和边界条件等,运用数值计算方法求解流体力学方程,得到流速、压力等关键参数,并进一步计算排水能力。
排水沟系统计算
排水沟系统计算排水沟系统计算涉及多个方面,包括尺寸、流量、坡度以及所需的工程量等。
以下是一些关键的计算方法和公式:1. 排水沟尺寸计算:宽度:通常,排水沟的宽度应大于或等于排水管的直径。
深度:应足够容纳排水管和水流。
长度:根据实际需要进行设计。
2. 排水沟流量计算:常用的计算公式为:Q = K ×B ×D ×VQ:排水沟的流量,单位为m³/s。
K:系数,一般取0.7\~0.8。
B:排水沟的宽度,单位为m。
D:排水沟的深度,单位为m。
V:水流速度,单位为m/s。
另一个常用的公式是曼宁公式:Q = A ×R^(2/3) ×S^(1/2)A:排水沟横截面积,单位为平方米。
R:湿周半径,单位为米。
S:水流坡度,单位为米/米。
3. 排水沟坡度计算:常用的计算公式为:S = (H/L) ×100S:排水沟的坡度。
H:高度差,单位为m。
L:水平距离,单位为m。
通常,排水沟的坡度应大于0.5%。
4. 工程量计算:土方工程量:需要计算挖掘排水沟所需的土方工程量。
例如,混凝土的用量= 长度×截面积×厚度。
砖砌工程量:为了加强排水沟的稳定性,可以在排水沟两侧砌砖。
砖的用量= 长度×砌筑高度×砖长×砖宽÷砖高。
排水管工程量:在排水沟中安装排水管以将雨水排放到下水道或其他排水设施中。
5. 雨水排水量计算:计算公式:Q = C ×I ×AQ:雨水排水量,单位为m³/s。
C:径流系数,无单位,取值范围为0.5\~0.9。
I:降雨强度,单位为mm/h。
A:室外排水沟的有效面积,单位为m²。
在进行排水沟系统计算时,需要综合考虑多个因素,包括排水沟的尺寸、流量、坡度以及所需的工程量等。
同时,还需要考虑降雨强度、径流系数等因素对雨水排水量的影响。
这些计算方法和公式可以帮助工程师和设计师进行排水沟系统的规划和设计。
建筑内部排水系统的计算
第五章建筑内部排水系统的计算1.以每人每日为标准2.以卫生器具为标准2.以卫生器具为标准)(3)最小管径厨房的排水立管最小管径为75mm,公共食堂干管管径不小于100mm,支管管径不小于75mm;凡连接大便器的支管其最小管径为100mm;小便槽和连接3个及3个以上小便器的排水管支管管径不小于75mm。
一、横管的水力计算2.水力计算方法附录5.2生活污水铸铁排水管水力计算表 附录5.1排水塑料管水力计算表排水设计秒流量通气方式查表排水立管管材双立管排水系统排三立管排水系统三、通气管管径的确定2.伸顶通气立管 可与污水管同径; 在最冷月平均气温低于-13℃ 的地区,在室内平顶或吊顶以下 0.3m处将管径放大一级。
3.汇合通气立管D2 de ≥ d max + 0.25∑ d i2A 1B 2C 3第三节建筑排水系统设计计算步骤一、系统的选择污废水的性质排水体制污废水污染程度污废水综合利用的 可能性和处理要求第三节建筑排水系统设计计算步骤一、系统的选择不通气 伸顶通气 专用通气立管通气 特制配件通气通气方式第三节建筑排水系统设计计算步骤二、管道系统的布置水力条件好 占地面积小安全可靠 施工安装 维护管理方便工程造价低 美观第三节建筑排水系统设计计算步骤二、管道系统的布置第三节建筑排水系统设计计算步骤三、绘制计算用图排水计算用图第三节建筑排水系统设计计算步骤三、绘制计算用图排水系统计算用图第三节建筑排水系统设计计算步骤四、计算排水流量1.平均时排水量和最大时的排水量 2.排水设计秒流量q p = 0.12α N P + qmaxq p = ∑ q0 i n0 i bii =1m第三节建筑排水系统设计计算步骤11 10五、确定各管道的管径912 1534 8 13横支(干)管 立管 通气管系7 612145第三节建筑排水系统设计计算步骤横管水力计算表五、确定各管道的管径管路 编号 卫生器具名称数量 排水当量总 数Np 设计秒流 量 (L/s) 管径 (mm) 坡度 备注立管水力计算表管路 编号 卫生器具名称数量 排水当量总数 Np 设计秒流量 (L/s) 管径 (mm) 备注流量扬程生活污水单独排放时化粪池最大使用人数(附录4.2)生活污水单独排放时化粪池最大使用人数(附录4.2)各层横支管配管计算表卫生器具数及当量数大便器 小便器 污水盆管段 编号 n N n N n N 当量总数 ∑Np 流量 q u (L/s) 管径DN (mm)坡度0~1 1~2 2~3 3~4 4~5 5~61 2 34.5 4.5 4.51 2 2 2 20.3 0.3 0.3 0.3 0.31 1 1 1 1 11 1 1 1 1 11 0.3 1.60 6.10 10.6015.102.03 2.28 2.4350 75 75 110 110 1100.026(1)横支管。
建筑排水系统水力计算
建筑排水系统水力计算建筑排水系统是指用于排除建筑物内部产生的废水、雨水及其他液体的系统,其设计合理与否直接影响建筑物的正常使用和排水效果。
水力计算是建筑排水系统设计的重要环节之一,其目的是确定系统所需的管道尺寸、流速和水压等参数,以确保系统的运行稳定和适用性。
建筑排水系统在设计中需要考虑的因素有很多,其中包括建筑物使用类型、楼层高度、废水产生量、排水设备类型和用量、地势高低等。
根据不同的设计要求和标准,可以采用不同的水力计算方法,如流体力学方程法、经验公式法和安全排水剖面法等。
在进行水力计算之前,首先需要确定建筑物内部的排水设备类型和用量,以及使用的排水管道材料和尺寸。
然后,根据建筑物的使用类型和楼层高度,可以确定排水设备产生的废水流量,并结合排水设备的安装位置和管道布置,确定整个建筑物的排水系统。
在实际的水力计算中,可以使用流体力学方程法来计算管道的流量、水压和管道尺寸等参数。
流体力学方程法是利用连续性方程、动量方程和能量方程来描述流体在管道中的流动情况。
通过求解这些方程组,可以得到建筑排水系统所需的参数。
另一种常用的水力计算方法是经验公式法,其基本原理是根据实际工程经验,通过建立不同排水设备和管道尺寸之间的关系,来确定合适的流量和水压。
这种方法的优点是简单快速,适用于一般的建筑排水系统设计。
此外,还可以使用安全排水剖面法来进行水力计算。
安全排水剖面法是根据建筑物的安全排水要求,通过确定管道尺寸和剖面变化规律,来保证排水系统的畅通和防止堵塞。
总之,建筑排水系统水力计算是建筑排水系统设计中一个重要的环节,其目的是确定系统所需的管道尺寸、流速和水压等参数,以保证系统的运行稳定和适用性。
根据不同的设计要求和标准,可以采用不同的水力计算方法,如流体力学方程法、经验公式法和安全排水剖面法等。
通过水力计算,可以为建筑排水系统的设计提供科学依据,提高系统的运行效果和安全性。
排水沟系统计算
排水沟系统计算
排水沟系统的计算通常需要考虑以下几个方面:
1. 排水量计算:确定需要排出的水量,这可能涉及到降雨径流、地面排水或其他水源的流量。
可以根据场地的面积、降雨量、坡度等因素来估算排水量。
2. 水沟尺寸设计:根据排水量计算结果,选择合适的水沟尺寸。
水沟的宽度和深度会影响其排水能力。
一般来说,较宽和较深的水沟可以处理更大的排水量。
3. 流速计算:计算水流在水沟中的流速,以确保水能有效地流动。
流速受到水沟的坡度、粗糙度和水流条件的影响。
4. 水沟坡度设计:确定水沟的坡度,使水流能够自然地流向出水口。
坡度的大小取决于排水量和流速要求,以及场地的地形条件。
5. 材料和结构强度:选择适合的水沟材料,考虑其承载能力和耐久性。
同时,确保水沟的结构能够承受水流的冲击和重量。
6. 出水口和排水管道:设计合适的出水口和连接的排水管道,以确保水能顺利排出并引流到指定的位置。
7. 排水系统的维护和清理:考虑排水沟系统的维护和清理需求,定期清理水沟,防止堵塞和积水。
给排水专业计算公式
给排水专业计算公式给排水工程是建筑施工中的重要环节之一,其功能是通过水管将建筑物内和外的洁净水和废水分别排放。
给排水设计主要包括以下几个方面:设计原则、设计流程、设计方法和设计公式等部分。
本文将详细介绍给排水专业计算公式。
1. 给水管网计算公式给水管网计算公式主要包括水管的流量计算公式和水压的计算公式。
(1)水管流量计算公式Q=K×C×d×d其中,Q为流量,K为管道的粗糙系数,C为流量系数,d 为管道的内径。
(2)水压计算公式P=γ×h,其中,P为水压,γ为水的比重,h为水柱的高度。
2. 排水管网计算公式排水管网设计中,常用的公式有排水管径的计算公式、排水管坡度的计算公式和排水管流量的计算公式。
(1)排水管径的计算公式D=4×Q/(π×v),其中,D为管径,Q为流量,v为水流速度。
(2)排水管坡度的计算公式i=h/L,其中,i为坡度比,h为水平线与管坡之间的垂直距离,L为管道水平长度。
(3)排水管流量的计算公式Q=C×A×V,其中,Q为流量,C为流系数,A为管道横截面积,V为水流速度。
3. 消防给水系统计算公式消防给水系统主要包括水泵、水箱和水管等配件。
其计算公式主要包括消防水泵扬程、水泵流量、水箱容积和水管流量等公式。
(1)消防水泵扬程的计算公式H=H1+H2+H3,其中,H为水泵的总扬程,H1为液位高差所产生的扬程,H2为管道阻力所产生的扬程,H3为管件阻力所产生的扬程。
(2)水泵流量的计算公式Q=3600×η×P/ρ×g×h,其中,Q为流量,η为水泵效率,P 为水泵功率,ρ为水的密度,g为重力加速度,h为液位高差。
(3)消防水箱容积的计算公式V=A×h,其中,V为水箱容积,A为水箱底面积,h为水箱高度。
(4)水管流量的计算公式Q=C×A×v,其中,Q为流量,C为流系数,A为管道横截面积,v为水流速度。
体积和容积排水法计算公式
体积和容积排水法计算公式在工程领域中,排水是一个非常重要的问题,特别是在建筑、道路和基础设施建设中。
为了有效地设计和规划排水系统,工程师们需要了解如何计算排水的体积和容积。
体积和容积排水法是一种常用的计算方法,可以帮助工程师们准确地确定排水系统的尺寸和容量。
体积和容积排水法是一种基于水流速度和管道截面积的计算方法。
通过测量水流速度和管道截面积,工程师们可以使用以下的计算公式来确定排水系统的体积和容积。
体积排水法计算公式:体积 = 水流速度×截面积×时间。
在这个公式中,水流速度是指水流通过管道的速度,通常以米/秒或立方米/小时来表示。
截面积是指管道横截面的面积,通常以平方米或立方米来表示。
时间是指水流通过管道的时间,通常以小时或分钟来表示。
通过将这些值代入到公式中,工程师们可以计算出排水系统的体积。
容积排水法计算公式:容积 = 水流速度×截面积。
在这个公式中,容积是指管道每秒钟排出的水的体积,通常以立方米/秒来表示。
水流速度和截面积的定义同上。
通过将这些值代入到公式中,工程师们可以计算出排水系统的容积。
体积和容积排水法的计算公式可以帮助工程师们准确地确定排水系统的尺寸和容量,从而确保排水系统能够有效地处理水流。
这些计算公式还可以帮助工程师们优化排水系统的设计,以提高其效率和性能。
除了使用体积和容积排水法的计算公式,工程师们还需要考虑其他因素来确定排水系统的设计。
例如,他们需要考虑水流的速度和压力、管道的材料和尺寸、以及排水系统的布局和结构。
通过综合考虑这些因素,工程师们可以设计出一个能够有效地处理水流的排水系统。
在实际的工程项目中,工程师们还需要考虑排水系统的维护和管理。
他们需要定期检查排水系统的运行情况,确保其能够正常工作。
如果发现排水系统存在问题,工程师们需要及时进行维修和更换,以确保排水系统能够持续地有效地处理水流。
总之,体积和容积排水法的计算公式是工程师们设计和规划排水系统的重要工具。
城市排水工程系统规划计算部分
城市排水工程系统规划计算部分1. 引言城市排水工程系统是指为了排除城市内的降雨、废水和污水等含水物质,使城市保持干燥、清洁和良好环境的一系列设施和设备。
城市排水工程系统规划计算是对城市排水系统进行设计和规划的关键步骤之一。
本文将介绍城市排水工程系统规划计算的一些基本原理和方法。
2. 降雨计算降雨计算是城市排水工程系统规划计算中的重要环节,它用于确定城市排水系统所需的排水能力。
常用的降雨计算方法包括经验公式法、单站折减法和概率分析法。
其中,经验公式法是根据历史降雨情况和地理环境特点,结合经验关系式进行降雨计算;单站折减法是根据降雨站点的历史数据,在不同降雨站点上进行降雨计算,并结合统计学方法进行推算;概率分析法是以概率论和统计学为基础,通过分析降雨概率、频率和强度等参数,进行降雨计算。
3. 雨水径流计算雨水径流计算是城市排水工程系统规划计算中的另一个重要环节,它用于确定降雨后的径流量。
常用的雨水径流计算方法包括单位面积径流量法、单位面积蓄水容积法和土壤水文模型法。
其中,单位面积径流量法是根据土壤类型、地形和降雨强度等因素,通过一定的公式将降雨转化为径流量;单位面积蓄水容积法是根据土壤的蓄水特性和蓄水容量,确定雨水的蓄水量;土壤水文模型法是通过建立土壤水文模型,模拟降雨时的水文过程,从而计算雨水的径流量。
4. 堵塞和冲洪计算堵塞和冲洪计算是城市排水工程系统规划计算中的重要内容,它用于确定城市排水系统中的堵塞和冲洪情况。
常用的堵塞和冲洪计算方法包括堵塞系数法、堵塞计算模型和冲洪模型。
其中,堵塞系数法是根据不同的排水设施和排水管道的堵塞程度,通过一个系数将堵塞情况转化为堵塞量;堵塞计算模型是通过建立一种数学模型,根据堵塞因素的影响程度和排水设施的特性,计算出堵塞量;冲洪模型是通过模拟城市排水系统中的排水流程,计算出冲洪量和冲洪高程。
5. 设备选型和管网布置计算设备选型和管网布置计算是城市排水工程系统规划计算中的关键步骤,它用于确定城市排水系统所需的设备类型和管网布置方式。
排水系统的水力计算与设计规范要求
排水系统的水力计算与设计规范要求排水系统是现代建筑中不可或缺的一部分,它确保了建筑物内外的水能够顺利排除,保持建筑物的正常运行和人员的舒适。
而水力计算与设计规范是排水系统设计过程中必须遵循的重要指导依据。
本文将对排水系统的水力计算与设计规范要求进行探讨。
一、水力计算要求在进行排水系统设计之前,必须进行水力计算,以确保系统能够满足正常使用条件下的排水需求,并能够有效排除污水和雨水。
水力计算要求主要包括以下几点:1. 流量计算:根据建筑物类型、面积、人员数量等因素,确定排水系统的设计流量。
该流量应能够满足建筑物内的水量供应、污水排放以及雨水排除的需求。
2. 输水管道设计:根据设计流量、输水距离、管道材料等因素,计算输水管道的直径和坡度。
管道的直径和坡度应能够保证流速和压力在合理范围内,同时减小水流阻力。
3. 水泵设计:如果需要使用水泵进行排水,必须对水泵进行合理选择和设计。
水泵的工作能力应能够满足系统需要的流量和压力,并具备一定的备用能力。
4. 排气设计:对于长管道、高点位以及阻塞易发生的地方,需要设置排气装置以排除管道内部产生的空气。
排气装置的位置和数量应根据实际情况进行设置。
5. 反水设计:在设计排水系统时,必须考虑到反水问题。
通过设置适当的阀门、曲线管段等措施,防止污水倒流和管道内的负压状况。
二、设计规范要求排水系统的设计必须符合相应的设计规范要求,以确保系统的可靠性、安全性和持久性。
设计规范要求包括以下几个方面:1. 地方性规范:各地区根据当地的气候、地质和行业特点等因素,制定了相应的排水系统设计规范。
设计师在进行排水系统设计时,必须遵循所在地区的规范要求。
2. 建筑规范:建筑排水系统设计必须符合建筑设计和建筑工程施工规范的要求。
这些规范规定了排水系统所需的设备、材料和施工方法等。
3. 国家标准:国家对排水系统的设计、施工和维护也有相关的标准要求。
设计师必须熟悉并遵守国家标准,以确保系统符合国家的安全和环保要求。
给排水计算书
给排水计算1、给水系统计算:1.1用水量如下表:住宅冷水给水设计秒流量公式采用q g=0.2×U×N g,其中U=1+αc(N g-1)0.49Ng,αc =0.01512。
-1F由市政给水管网直供水,在此不作计算。
1.2加压给水系统1区(1F~8F):设计秒流量:q g=0.2×U×N g=24 m3/h单泵流量:Q=24 /2=12 m3/h扬程:H=△Z+Σhi+Σhf+Hf=5.0+21+6+8=40m设备选择:TQG-12/0.40-3-5.5 (两用一备)单泵Q=12m3/h H=40m N=5.5kw 1.3加压给水系统2区(9F~16F):设计秒流量:q g=0.2×U×N g=24 m3/h单泵流量:Q=24 /2=12 m3/h扬程:H=△Z+Σhi+Σhf+Hf=5.4+45+14=64.4m 设备选择:TQG-12/0.65-3-7.5 (两用一备)单泵Q=12m3/h H=65m N=7.5kw2.消火栓给水系统计算:2.1消防用水量:水池:252吨2.2选用水泵扬程计算:H=H1+H2+H3式中:H—消防水泵扬程。
(mH2O)H1—地下水池最低水位至系统最不利点消火栓高差。
(mH2O)H2—消防栓口所需压力。
(mH2O)H3—水泵至最不利点消火栓管路的水头损失。
(mH2O)计算值为:H=5.4+45+1.1+15+20=86.5m设备选择: XBD20-90-HY (一用一备)Q=20l/s H=90m N=37Kw3、喷淋给水系统计算:3.1以地下一层取160m2为最不利作用面积,计算管网水力计算(局部水头损失按沿程水头损失20%计)3.2选用水泵扬程计算:H=HP+HP j+Hh p+Hb j式中:H—喷淋水泵扬程(mH2O)HP—最不利点喷头所需压力(mH2O)Hp j—最不利点喷头至地下水池最低水位之间的几何高差(mH2O)Hh p—最不利点喷头至水泵吸水管之间管道损失。
雨水排水系统的水力计算
雨水排水系统的水力计算雨水排水系统是指为了排除雨水而设计的管道系统。
在城市建设中,雨水排水系统是必不可少的基础设施之一。
水力计算是设计雨水排水系统时必需的一项重要工作,它能够帮助工程师确定各种参数,从而确保系统能够高效地排水。
本文将详细介绍雨水排水系统的水力计算方法和相关的计算公式。
在进行水力计算之前,我们首先需要了解几个重要的概念。
首先是雨水流量的计算。
通常,我们使用多个气象站的降雨数据来确定一个城市或地区的降雨强度。
根据历史数据和统计分析,可以得出一定时间内的设计雨量。
设计雨量越大,说明系统需要具备更高的排水能力。
其次是雨水径流系数的确定。
雨水径流系数是指降雨过程中径流的量与总降雨量的比值。
该系数取决于地表情况、土壤类型和降雨强度等因素。
通过现场勘测和实验研究,可以确定不同场地和不同条件下的雨水径流系数。
接下来是管道的水力特性。
雨水排水系统中使用的管道通常为圆管或方管。
在进行水力计算时,我们需要知道管道的内径或边长,并考虑流体的流速和压力损失等因素。
根据伯努利方程和一些基本的流体动力学原理,我们可以计算出管道中的水流速度和压力变化。
最后是雨水排放的规划和设计。
在城市建设中,我们需要根据雨洪情况和市政要求来规划雨水排放的方式和位置。
适当的排放方式可以减少洪水和滞水的发生,保护城市的基础设施和居民的生活环境。
具体的水力计算方法包括:汇水面积的计算、雨水流量的确定、雨水径流系数的选择、管道的水力计算、排放流量的确定等。
在实际工程中,我们可以根据具体情况选择适用的计算方法,并利用计算软件或手算等方式完成水力计算的工作。
综上所述,雨水排水系统的水力计算是设计合理的系统的关键步骤之一。
通过准确计算各项参数,我们能够确保雨水排水系统的性能和安全性。
在未来的城市建设中,我们应该不断提升水力计算的技术水平,为城市的可持续发展做出贡献。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
通气管道计算
三立管排水系和多立管排水系统中,2 根或2根以上排水立管与l根通气立管连 接,应按最大1根排水立管管径查表6— 9确定共用通气立管管径。但同时应保 证共用通气立管管径不小于其余任何1 根排水立管管径。结合通气管管径不宜 小于通气立管管径。
通气管道计算
有些建筑不允许伸顶通气管分别出屋顶,可 用1根横向管道将各伸顶通气管汇合在一起, 集中在一处出屋顶,该横向通气管称为汇合 通气管。汇合通气管不需要逐段变化管径可 按下式计算
感谢下 载
q q nb
u
p0
qp —同类型的1个卫生器具排水流量, L/s
n0 —同类型卫生器具数 b —卫生器具的同时排水百分数,冲洗水箱大便器按12%
计算,其他卫生器具同给水。
校核:对于有大便器接入的排水管网起端,因卫生器
具较少,排水设计秒流量可能会小于一个大 便
器的排水量,这时应按一个大便器的排水量 作
横管水力计算
qu=ω·v
v
1
2
1
R3I 2
n
qu—排水设计秒流量,m3/s; I—水力坡度,即管道坡度,
R—水力半径,m
v—流速,m/s
ω—水流断面积,㎡
n—管道粗糙系数
立管水力计算
排水立管按通气方式分为:普通伸顶通 气、专用通气立管通气、特制配件伸顶 通气、不通气。
排水立管最大允许通水能力见表6—8,设计 时先计算立管的设计秒流量,然后查表6—8 确定管径。
排水立管最大允许通水能力
排水立管管径不得小于横支管管径,多层住宅厨房 间排水立管管径不应小于75mm。
通气管道计算
单立管低于-13℃的地区,为防止通气 管口结霜,减小通气管断面,应在室内平顶或吊顶以 下0.3m处将管径放大一级。
双立管排水系统通气管的管径应根据排水能力、管道 长度来确定,一般不宜小于污水管管径的1/2,最小 管径可按表6—9确定。当通气立管长度大于50m时, 通气立管管径应与排水立管相同。
铸 铁 排 水 管 道 坡 度
塑 料 排 水 管 道 坡 度
最小管径
公共食堂厨房排水:实际选用管径应比计算 管径大一号,且支管管径不小于75mm,干管 管径不小于100mm。
医院污物洗涤间:管径不小于75mm。
大便器:凡连接大便器的支管,其最小管径 均为100mm。
小便斗和小便槽:小便槽和连接3个及3个以 上小便器的排水支管管径不小于75mm。
q q nb
u
p0
6-2排水管网的水力计算
横管的水力计算
设计规定
• 充满度h/D:排水横管按非满流设计。排 水管的最大设计充满度见表6-3。
• 自净流速:污水中含有固体杂质,如果 流速过小,固体物会在管内沉淀,减小 过水断面积,造成排水不畅或堵塞管道, 为此规定了一个最小流速。建筑内部排 水横管自净流速见表6-4。
以卫生器具为标准
• 某管段的设计流量与其接纳的卫生器具类型、 数量及使用频率有关。
• 排水当量:以污水盆排水量0.33L/s为一个排 水当量,将其他卫生器具的排水量与0.33L/s 的比值,作为该种卫生器具的排水当量。
各种卫生器具的排水流量和当量值
设计秒流量
建筑内部排水流量具有历时短、瞬时流 量大、两次排水时间间隔长、不均匀的 的特点。
125㎜ 6.结合通气管:75㎜
设计例题:排水部分 1~12层 室内给水、消防、排水、热水管道平面布置图
设计例题:排水部分
设计秒流量:
q 0.12 • N q 0.12 2.5 12 6 2 2.0 5.6L / s
u
p
max
选DN125㎜普通伸顶排气管,出户管 h/D=0.6, DN=150㎜,i=0.007,排水 量为8.46L/s,V=0.78m/s,满足要求
第6章 建筑内部排水系统的计算
建筑内部排水系统计算:
确定排水管网各管段的管径 横向管道的坡度 通气管的管径 各控制点的标高 排水管件的组合形式。
6-1排水定额和设计秒流量
排水定额
以每人每日为标准
• 每人每日排放的污水量和时变化系数与气候、 建筑物内卫生设备完善程度有关。生活排水定 额和时变化系数与生活给水相同。
排水管网的水力计算—例6-1
例6-2 某9层饭店排水系统采用污废水分流 制,管材为排水铸铁管。计算草图见图6-2。 每根立管每层设洗脸盆、虹吸式坐便器和浴
盆各2个,试配管。
1.计算公式及参数: α=2.5
1~D为生活污水立管, ,
qmax=2.0L/s
1 ~d为生活废水立管, qmax=1.0L/s
生活废水排水立管底部与出户管相连处 的设计秒流量
q 0.12 • N q 0.12 2.5 0.75 312 2 1.0 3.85L / s
u
p
max
选DN100㎜普通伸顶排气管,出户管 h/D=0.5, DN=100㎜,i=0.025,排水 量为4.17L/s,V=1.05m/s,满足要求
DN d 2 0.25 d 2
max
i
DN—通气横干管和总伸顶通气管管径,mm
dmax—最大1根通气立管管径,mm; di—其余通气立管管径,mm;
例6-1 图6-1为某6层集体宿舍男厕排水系统 轴测图,管材为排水铸铁管。每层横支管设 污水盆1个,自闭式冲洗阀小便器2个,自闭 式冲洗阀大便器3个,试计算确定管径。
1.横支管计算 :计算排水设计秒流量,
计算结果见表6—1。
α=1.5。
2.立管计算:Np=15.10×6=90.6
q 最0下.1部2管1段.5排水90设.6计秒1流.5量:3.2L / s u
选100㎜立管,设伸顶通气管
3.排出管计算: DN=100mm,i=0.020,Q=3.72L/s,v=0.93m/s
设计秒流量:为保证最不利时刻的最大 排水量能迅速、安全排放,排水设计流 量应为建筑内部的最大排水瞬时流量。
设计秒流量计算
1.住宅、集体宿舍、旅馆、医院、幼儿园、办 公楼和学校等建筑
q 0.12 • N q
u
p
max
qu—计算管段的排水设计秒流量,L/s
Np—计算管段的卫生器具排水当量总数 α—根据建筑用途而定的系数
qmax— 计 算 管 段 上 排 水 量 最 大 的 1 个 卫 生 器 具 的 排 水 流 量 , L/s
校核:qu>该管段上所有卫生器具的排水流量的总和时,
应采用所有卫生器具的排水流量的累加值 作为设
计秒流量。
设计秒流量计算
2.工业企业生活间、公共浴室、洗衣房、公共 食堂、实验室、影剧院、体育场等建筑
充满度h/D
自净流 速
管道坡度
管道的坡度有通用坡度和最小坡度两种。 · 通用坡度为正常条件下应予保证的坡度; · 最小坡度为必须保证的坡度 · 一般情况下应采用通用坡度。当横管过长或建筑 空间受限制时,可采用最小坡度。 · 对于工厂业废水管道,根据水质规定了最小坡度。 当生产污水中含有铁屑等比重大的杂质时,管道的最 小坡度应按自净流速确定。
2.计算个管段设计秒流量
,
1 ~d为生活废水立管设计秒流量
3.排水横干管及排出管计算
例 6-2
4.专用通气立管计算 生活污水立管100㎜,查表:通气立管
75㎜,与生活废水立管相同,符合要求 5.汇合通气管及伸顶通气管计算 HI段:75㎜,FH段:管径不变 DN≥√(752+0.25×752) =83.85㎜ 取FH段通气管DN=100㎜ 总通气管: DN≥√(752+0.25 × 4 ×752) =106.07㎜, 取