3第三章集成逻辑门
《数字逻辑》教学课件 第三章第3节
表3 - 10 数字集成电路按半导体件分类
二、TTL 电路的工作原理 1. TTL 与非门
TTL 的基本电路形式是与非门。与非门7400的电路图
如图3-12(a)所示,引脚图如图3-12(b)所示。引脚7和14
分别接地(GND)和电源(+ VCC ,+ 5V),逻辑高、低电平分 别为和。其真值表与表3-8相同。图中T1是一个多发射极 三极管,可看做是两个发射极独立、而基极共用、集电极
此外,TTL与门、或门电路是分别在与非门、或非门的基础 上增加一级非门构成的。
三、TTL 电路的特性和参数
在数字集成电路应用中,人们关心电路的抗干扰能力、带 负载能力、功耗和工作速度。本节讨论TTL 电路的这些性 能与有关参数(所给出的数据均以7400 或7437 与非门为 例)。
1. 抗干扰能力 上面已分析了TTL 与非门在输入端加标准高电平3.6 V和 标准低电平时的工作情况,而电压传输特性则描述输入电平 取不同值时输出电平相应变化的规律。测试TTL 与非门电 压传输特性曲线的电路如图3-19(a)所示,输入端A 接至可 调直流电源,其余输入端接标准高电平或5V。改变A点电平, 逐点测出vI 和对应的vO 值,即可描出电压传输特性曲线,如 图3 - 19(b)所示。
结这3个PN 结上是不合理的。实际情况是:这3个PN结导
通,因而T2 和T5 导通,vP = 0.7 V× 3 =2.1V,DL1和DL2 反 向截止。
下面做定量分析,以证明T2和T5饱和。设T2和T5的β均为 30。
假设T2饱和,则T2集电极电位 vC2 = vE2 +VCE(sat)= vB5 + VCE(sat)= 0.7V + 0.3V = 1V。
数电习题解答_杨志忠_第三章练习题_部分
教材:数字电子技术基础(“十五”国家级规划教材) 杨志忠 卫桦林 郭顺华 编著高等教育出版社2009年7月第2版; 2010年1月 北京 第2次印刷;第三章 集成逻辑门电路练习题P112【题3.1】在图P3.1所示的电路中,发光二极管正常发光的电流范围是8mA ≤I D ≤12mA ,正向压降为2V ,TTL 与非门输出高电平U OH =3V ,输出高电平电流I OH =-300uA ,输出低电平U OL =0.3V ,输出低电平电流I OL =20mA 。
分别求出图P3.1(a )和(b )中电阻RL1和RL2的取值范围。
解题思路:选择限流电阻R 的原则是既保证发光二极管正常工作又要保证门的输出电流不超载。
解:(a )、电路采用输出低电平驱动发光管;此时流过发光管的电流1CC D OL D L V V V I R −−=;根据发光管的工作条件:8mA ≤I D ≤12mA (最大电流小于门的最大输出电流I OL =20mA ),所以可以得到:1225337.5L R Ω≤≤Ω,门电路输出高电平时发光管熄灭电流为零。
(b )、电路采用输出高电平驱动发光管;此时流过发光管的电流2CC D D OH L V V I I R −=+;根据发光管的工作条件:8mA ≤I D ≤12mA ,所以可以得到:2256.4389.6L R Ω≤≤Ω,同时门电路输出低电平时,门的最大灌入电流要小于I OL =20mA ,由此得到2 4.723520CC OL L OL V V V R I mA−≥==Ω,所以综上所述限流电阻应该为:2256.4389.6L R Ω≤≤Ω。
【3.2】、在图P3.2(a )~(g )所示的TTL 门电路中,已知开门电阻R ON =3K Ω,关门电阻R OFF =0.8K 。
试判断哪些门电路能正常工作?哪些门电路不能正常工作?并且写出能正常工作电路的输出逻辑函数表达式。
解题思路:了解各类门电路的逻辑功能,明白TTL 门的开门电阻R ON ≥3K Ω时相当于在输入端得到高电平“1”,关门电阻R OFF ≤0.8K Ω时相当于在输入端得到低电平“0”。
数字电路教案-阎石-第三章-逻辑门电路
第3章逻辑门电路3.1 概述逻辑门电路:用以实现基本和常用逻辑运算的电子电路。
简称门电路.用逻辑1和0 分别来表示电子电路中的高、低电平的逻辑赋值方式,称为正逻辑,目前在数字技术中,大都采用正逻辑工作;若用低、高电平来表示,则称为负逻辑。
本课程采用正逻辑。
获得高、低电平的基本方法:利用半导体开关元件的导通、截止(即开、关)两种工作状态.在数字集成电路的发展过程中,同时存在着两种类型器件的发展。
一种是由三极管组成的双极型集成电路,例如晶体管-晶体管逻辑电路(简称TTL电路)及射极耦合逻辑电路(简称ECL电路).另一种是由MOS管组成的单极型集成电路,例如N-MOS逻辑电路和互补MOS(简称COMS)逻辑电路。
3。
2 分立元件门电路3。
3.1二极管的开关特性3.2.2三极管的开关特性NPN型三极管截止、放大、饱和3种工作状态的特点工作状态截止放大饱和条件i B=0 0<i B<I BS i B>I BS工作特点偏置情况发射结反偏集电结反偏u BE〈0,u BC〈0发射结正偏集电结反偏u BE>0,u BC〈0发射结正偏集电结正偏u BE〉0,u BC〉集电极电流i C=0 i C=βi B i C=I CSce间电压u CE=V CC u CE=V CC-i C R cu CE=U CES=0.3Vce间等效电阻很大,相当开关断开可变很小,相当开关闭合3.2。
3二极管门电路1、二极管与门2、二极管或门u A u B u Y D1D20V 0V 0V 5V 5V 0V 5V 5V0V4。
3V4。
3V4.3V截止截止截止导通导通截止导通导通3。
2.4三极管非门3。
2。
5组合逻辑门电路1、与非门电路2、或非门电路3.3 集成逻辑门电路一、TTL与非门1、电路结构(1)抗饱和三极管作用:使三极管工作在浅饱和状态。
因为三极管饱和越深,其工作速度越慢,为了提高工作速度,需要采用抗饱和三极管。
构成:在普通三极管的基极B和集电极C之间并接了一个肖特基二极管(简称SBD)。
三集成逻辑门电路
平VIH= 3.6V时, VO= VOL =VCES5=0.3V。 即:有0为1;全1为0 真值表为:
真值表 ABF 001 011 101 110
3.逻辑关系:Y= AB
二、TTL与非门的电压传输特性
(1)测试电路
vI
&
vO
+ V -
+ V -
(a)电压传输特性测 试电路
A& B
F
门电路即可实现“与”运算
这种连接方式称为“线与”,可以 节省门电路。
C& D
§3.2 特殊门电路 —— 三态门 TSL
普通逻辑门电路有两个输出:0 和 1
三态门的输出除了 0 和 1 之外,还有一个“高阻态”;其输入端 也多了一个控制端,称为“使能端”。
“高阻态” 相当于将输出端与其他端断开 D1 &
BC段:线性区:0.6V<vI<1.3V这时T2管导通处 于放大状态, VC2、 VO随vI的增大而线性降低, 故该段称为线性区。由于T5管的基极电位还低 于0.7V,故T5管仍截止。T3、T4管还是处于导 通状态
CD段:过渡区1.3V<VI<1.4V,T5、T2、T3、T4 导通, T2、T5管趋于饱和,T4趋于截止,输出电压 VO随VI增加急剧下降到低电平VO=0.3V。CD段中 点 对 应 的 输 入 电 压 称 阈 值 电 压 VT ( 门 槛 电 压 ) , VT=1.4V。
VNH
R3
D
E
图2-6 TTL与非门
O 0.5 1 1.5 2 2.5 3 3.5 vI(V) VOFF VON
(b)电压传输特 性
返回
D2
EN
控制 输 入 输出
第 3 章 逻辑门电路总结
EXIT
逻辑门电路
一、三极管的开关作用及其条件
iC 临界饱和线 M T IC(sat) S
放大区
IB(sat)
uI=UIL
三极管为什么能用作开关? 饱 Q + 怎样控制它的开和关? uBE 和 区
O UCE(sat) B uBE < Uth
负载线
A N C
截止区
uCE
三极管关断的条件和等效电路
当输入 uI 为低电平,使 uBE < Uth时,三极管截止。
逻辑门电路
第3章
逻辑门电路
概 述 三极管的开关特性
TTL 集成逻辑门 CMOS 集成逻辑门 集成逻辑门的应用
本章小结
EXIT
逻辑门电路
3.1
主要要求:
概 述
了解逻辑门电路的作用和常用类型。 理解高电平信号和低电平信号的含义。
EXIT
逻辑门电路
一、门电路的作用和常用类型
按逻辑功能不同分 指用以实现基本逻辑关系和 门电路 (Gate Circuit) 常用复合逻辑关系的电子电路。 与门 或门 非门 异或门 与非门 或非门 与或非门 按电路结构不同分
上例中三极管反相 器的工作波形是理想波 形,实际波形为 :
t
UCE(sat) O
EXIT
逻辑门电路
二、三极管的动态开关特性
uI
UIH
UIL O iC 0.9IC(sat) IC(sat) 0.1IC(sat) O uO VCC ton toff t
uI 正跳变到 iC 上升到 0.9IC(sat) 所需的时间 ton 称 为三极管开通时间。
逻辑门电路
(2) 对应输入波形画出输出波形 三极管截止时, iC 0,uO +5 V 三极管饱和时, uO UCE(sat) 0.3 V
《电子技术基础与技能》教案集成逻辑门电路
《电子技术基础与技能》教案-集成逻辑门电路第一章:集成逻辑门电路概述教学目标:1. 理解集成逻辑门电路的概念和分类。
2. 掌握集成逻辑门电路的基本原理和特性。
3. 能够分析集成逻辑门电路的应用和实际意义。
教学内容:1. 集成逻辑门电路的概念和分类。
2. 集成逻辑门电路的基本原理和特性。
3. 集成逻辑门电路的应用和实际意义。
教学方法:1. 采用讲授法,讲解集成逻辑门电路的概念、分类、原理和特性。
2. 通过举例和实际案例,分析集成逻辑门电路的应用和实际意义。
3. 引导学生进行思考和讨论,提高对集成逻辑门电路的理解和认识。
教学评估:1. 进行课堂问答,检查学生对集成逻辑门电路概念和分类的理解。
2. 布置课后习题,巩固学生对集成逻辑门电路原理和特性的掌握。
3. 组织小组讨论,评估学生对集成逻辑门电路应用和实际意义的理解。
第二章:与门(AND Gate)教学目标:1. 理解与门的概念和功能。
2. 掌握与门的真值表和逻辑表达式。
3. 能够分析与门的应用和实际意义。
教学内容:1. 与门的概念和功能。
2. 与门的真值表和逻辑表达式。
3. 与门的应用和实际意义。
教学方法:1. 采用讲授法,讲解与门的概念和功能。
2. 通过举例和实际案例,分析与门的应用和实际意义。
3. 引导学生进行思考和讨论,提高对与门的真值表和逻辑表达式的理解。
教学评估:1. 进行课堂问答,检查学生对与门概念和功能的理解。
2. 布置课后习题,巩固学生对与门的真值表和逻辑表达式的掌握。
3. 组织小组讨论,评估学生对与门应用和实际意义的理解。
第三章:或门(OR Gate)教学目标:1. 理解或门的概念和功能。
2. 掌握或门的真值表和逻辑表达式。
3. 能够分析或门的应用和实际意义。
教学内容:1. 或门的概念和功能。
2. 或门的真值表和逻辑表达式。
3. 或门的应用和实际意义。
教学方法:1. 采用讲授法,讲解或门的概念和功能。
2. 通过举例和实际案例,分析或门的应用和实际意义。
数字电子技术基础第三章逻辑门电路
数字电子技术基础第三章逻辑门电路
第一节 常见元器件的开关特性
3.MOS管的开关特性
A、MOS管静态开关特性
在数字电路中,MOS管也是作为 开关元件使用,一般采用增强型的 MOS管组成开关电路,并由栅源电压 uGS控制MOS管的导通和截止。
时间。
toff = ts +tf 关断时间toff:从输入信号负跃变的瞬间,到iC 下降到 0.1ICmax所经历的时间。
数字电子技术基础第三章逻辑门电路
第一节 常见元器件的开关特性
2.三极管的开关特性
B、晶体三极管动态开关特性
ton和toff一般约在几十纳秒(ns=10-9 s)范围。通常都
有toff > ton,而且ts > tf 。
0 .3V 3 .6V 3 .6V
1V 5V
3 .6V
数字电子技术基础第三章逻辑门电路
第三节 TTL和CMOS集成逻辑门电路
1.TTL集成逻辑门电路
3 .6V 3 .6V 3 .6V
2.1V
0 .3V
数字电子技术基础第三章逻辑门电路
第三节 TTL和CMOS集成逻辑门电路
1.TTL集成逻辑门电路
数字电子技术基础第三章逻辑门电路
❖ 2.教学重点:不同元器件的静态开关特性,分立元件门电路 和组合门电路,TTL和CMOS集成逻辑门电路基本功能和电气特 性。
❖ 3.教学难点:组合逻辑门电路、TTL和CMOS集成逻辑门4.课时 安排: 第一节 常见元器件的开关特性 第二节 基本逻辑门电路 第三节 TTL和CMOS集成逻辑门电路
数字逻辑期末复习资料
第一章 数制与编码1、二、八、十、十六进制数的构成特点及相互转换;二转BCD :二B 到十D 到BCD ,二B 到十六H ,二B 到八O2、有符号数的编码;代码的最高位为符号位,1为负,0为正3、各种进制如何用BCD 码表示;4、有权码和无权码有哪些?BCD 码的分类:有权码:8421,5421,2421 无权码:余3码,BCD Gray 码 例:1、〔1100110〕B =〔0001 0000 0010〕8421BCD =〔102〕D =〔 66 〕H =〔146〕O〔178〕10=〔10110010〕2=〔0001 0111 1000 〕8421BCD =〔B2 〕16=〔 262〕8 2、将数1101.11B 转换为十六进制数为〔 A 〕A. D.C HB. 15.3HC. 12.E HD. 21.3H 3、在以下一组数中,最大数是〔 A 〕。
A.(258)D1 0000 0010B.(100000001 )B 257C.(103)H 0001 0000 0011259D.(001001010111 )8421BCD 2574、假设用8位字长来表示,〔-62〕D =( 1011 1110)原5、属于无权码的是〔B 〕A.8421 码B.余3 码 和 BCD Gray 的码C.2421 码D.自然二进制码 6、BCD 码是一种人为选定的0~9十个数字的代码,可以有许多种。
〔√〕 第二章 逻辑代数根底1、根本逻辑运算和复合逻辑运算的运算规律、逻辑符号;F=AB 与 逻辑乘 F=A+B 或 逻辑加F=A 非 逻辑反2、逻辑代数的根本定律及三个规则;3、逻辑函数表达式、逻辑图、真值表及相互转换;4、最小项、最大项的性质;5、公式法化简;卡诺图法化简〔有约束的和无约束的〕。
例:1、一个班级中有四个班委委员,如果要开班委会,必须这四个班委委员全部同意才能召开,其逻辑关系属于〔 A 〕逻辑关系。
A 、与B 、或C 、非 2、数字电路中使用的数制是〔 A 〕。
(完整版)数电1-10章自测题及答案(2)
第一章绪论一、填空题1、根据集成度的不同,数字集成电路分位以下四类:小规模集成电路、中规模集成电路、大规模集成电路、超大规模集成电路。
2、二进制数是以2为基数的计数体制,十六体制数是以16为基数的计数体制。
3、二进制数只有0和1两个数码,其计数的基数是2,加法运算的进位规则为逢二进一。
4、十进制数转换为二进制数的方法是:整数部分用除2取余法,小数部分用乘2取整法,十进制数23.75对应的二进制数为10111.11。
5、二进制数转换为十进制数的方法是各位加权系数之和,二进制数10110011对应的十进制数为179。
6、用8421BCD码表示十进制时,则每位十进制数可用四位二进制代码表示,其位权值从高位到低位依次为8、4、2、1。
7、十进制数25的二进制数是11001,其对应的8421BCD码是00100101。
8、负数补码和反码的关系式是:补码=反码+1。
9、二进制数+1100101的原码为01100101,反码为01100101,补码为01100101。
-1100101的原码为11100101,反码为10011010,补码为10011011。
10、负数-35的二进制数是-100011,反码是1011100,补码是1011101。
二、判断题1、二进制数有0~9是个数码,进位关系为逢十进一。
()2、格雷码为无权码,8421BCD码为有权码。
(√)3、一个n位的二进制数,最高位的权值是2^n+1。
(√)4、十进制数证书转换为二进制数的方法是采用“除2取余法”。
(√)5、二进制数转换为十进制数的方法是各位加权系之和。
(√)6、对于二进制数负数,补码和反码相同。
()7、有时也将模拟电路称为逻辑电路。
()8、对于二进制数正数,原码、反码和补码都相同。
(√)9、十进制数45的8421BCD码是101101。
()10、余3BCD码是用3位二进制数表示一位十进制数。
()三、选择题1、在二进制技术系统中,每个变量的取值为(A)A、0和1B、0~7C、0~10D、0~F2、二进制权值为(B )A、10的幂B、2的幂C、8的幂D、16的幂3、连续变化的量称为(B )A、数字量B、模拟量C、二进制量D、16进制量4、十进制数386的8421BCD码为(B)A、0011 0111 0110B、0011 1000 0110C、1000 1000 0110D、0100 1000 01105、在下列数中,不是余3BCD码的是(C )A、1011B、0111C、0010D、10016、十进制数的权值为(D )A、2的幂B、8的幂C、16的幂D、10的幂7、负二进制数的补码等于(D )A、原码B、反码C、原码加1D、反码加18、算术运算的基础是 ( A )A 、加法运算B 、减法运算C 、乘法运算D 、除法运算9、二进制数-1011的补码是 ( D )A 、00100B 、00101C 、10100D 、1010110、二进制数最高有效位(MSB )的含义是 ( A )A 、最大权值B 、最小权值C 、主要有效位D 、中间权值第二章 逻辑代数基础一、填空题1、逻辑代数中三种最基本的逻辑运算是与运算、或运算、非运算。
数字电路第三章习题与答案
第三章集成逻辑门电路一、选择题1、三态门输出高阻状态时,( )就是正确的说法。
A、用电压表测量指针不动B、相当于悬空C、电压不高不低D、测量电阻指针不动2、以下电路中可以实现“线与”功能的有( )。
A、与非门B、三态输出门C、集电极开路门D、漏极开路门3.以下电路中常用于总线应用的有( )。
A、TSL门B、OC门C、漏极开路门D、CMOS与非门4.逻辑表达式Y=AB可以用( )实现。
A、正或门B、正非门C、正与门D、负或门5.TTL电路在正逻辑系统中,以下各种输入中( )相当于输入逻辑“1”。
A、悬空B、通过电阻2、7kΩ接电源C、通过电阻2、7kΩ接地D、通过电阻510Ω接地6.对于TTL与非门闲置输入端的处理,可以( )。
A、接电源B、通过电阻3kΩ接电源C、接地D、与有用输入端并联7.要使TTL与非门工作在转折区,可使输入端对地外接电阻RI( )。
A、>RONB、<ROFFC、ROFF<RI<ROND、>ROFF8.三极管作为开关使用时,要提高开关速度,可( )。
A、降低饱与深度B、增加饱与深度C、采用有源泄放回路D、采用抗饱与三极管9.CMOS数字集成电路与TTL数字集成电路相比突出的优点就是( )。
A、微功耗B、高速度C、高抗干扰能力D、电源范围宽10.与CT4000系列相对应的国际通用标准型号为( )。
A、CT74S肖特基系列B、 CT74LS低功耗肖特基系列C、CT74L低功耗系列D、 CT74H高速系列11.电路如图(a),(b)所示,设开关闭合为1、断开为0;灯亮为1、灯灭为0。
F 对开关A、B、C的逻辑函数表达式( )。
F1F 2(a)(b)A.C AB F =1 )(2B A C F +=B.C AB F =1 )(2B A C F +=C. C B A F =2 )(2B A C F +=12.某TTL 反相器的主要参数为IIH =20μA;IIL =1、4mA;IOH =400μA;水IOL =14mA,带同样的门数( )。
数字电子技术基础-第3章课后习题答案
第3章集成逻辑门电路3-1 如图3-1a)~d)所示4个TTL门电路,A、B端输入的波形如图e)所示,试分别画出F1、F2、F3和F4的波形图。
A1A234a)b)c)d)F1F2F3F4BAe)图3-1 题3-1图解:从图3-1a)~d)可知,11F=,2F A B=+,3F A B=⊕,4F A B= ,输出波形图如图3-2所示。
F1F2F3F4AB图3-2题3-1输出波形图3-2 电路如图3-3a )所示,输入A 、B 的电压波形如图3-3b )所示,试画出各个门电路输出端的电压波形。
1A 23b)a)AB图3-3 题3-2图解:从图3-3a )可知,1F AB =,2F A B =+,3F A B =⊕,输出波形如图3-4所示。
F 1F 2F 3AB图3-4 题3-2输出波形3-3在图3-5a )所示的正逻辑与门和图b )所示的正逻辑或门电路中,若改用负逻辑,试列出它们的逻辑真值表,并说明F 和A 、B 之间是什么逻辑关系。
b)a)图3-5 题3-3图解:(1)图3-5a )负逻辑真值表如表3-1所示。
表3-1 与门负逻辑真值表F 与A 、B 之间相当于正逻辑的“或”操作。
(2)图3-5b )负逻辑真值表如表3-2所示。
表3-2 或门负逻辑真值表F 与A 、B 之间相当于正逻辑的“与”操作。
3-4试说明能否将与非门、或非门和异或门当做反相器使用?如果可以,各输入端应如何连接?解:与非门、或非门和异或门经过处理以后均可以实现反相器功能。
1)与非门:将多余输入端接至高电平或与另一端并联; 2)或非门:将多余输入端接至低电平或与另一端并联;3) 异或门:将另一个输入端接高电平。
3-5为了实现图3-6所示的各TTL 门电路输出端所示的逻辑关系,请合理地将多余的输入端进行处理。
b)a)AB=A B=+A BC DABC D图3-6 题3-5图解:a )多余输入端可以悬空,但建议接高电平或与另两个输入端的一端相连;b )多余输入端接低电平或与另两个输入端的一端相连;c) 未用与门的两个输入端至少一端接低电平,另一端可以悬空、接高电平或接低电平;d )未用或门的两个输入端悬空或都接高电平。
数字电子技术基础:第三章 逻辑门电路
逻辑符号
C
vI /vO
TG
vO /vI
C
C
υo/ υI
2. CMOS传输门电路的工作原理
vI /vO
5V到+5V
C
+5V
TP +5V vO /vI
5V TN
5V
C
设TP:|VTP|=2V, TN:VTN=2V
I的变化范围为-5V到+5V。
c=0=-5V, c =1=+5V
1)当c=0, c =1时 GSN= -5V (-5V到+5V)=(0到-10)V
在由于电路具有互补对称的性质,它的开通时间与关 闭时间是相等的。平均延迟时间:<10 ns。
动态功耗
CMOS反相器的PD与f和 2 VDD
CMOS反相器从一个稳定状态转变到另一个稳定状态时所产生的功耗
PD=PC+PT
分布电容CL充放电引起的功耗: PC CL fVD2D
CMOS管瞬时交替导通引起的功耗:PT CPD fVD2D
74标准系列 74LS系列
74AS系列
74LVC 74VAUC 低(超低)电压 速度更加快 与TTL兼容 负载能力强 抗干扰 功耗低
74ALS
3.1 概述
门电路:实现基本逻辑/复合逻辑运算的单元电路
逻辑状态的描述—— 正逻辑:高电平→1,低电平→0 负逻辑:高电平→0,低电平→1
缺点:功耗较大/速度较慢
VDD VIH(min) I OH(total) I IH(total)
… …
I0H(total) &1
+V DD RP
&
&1
IIH(total) &
第三章集成逻辑门电路例题补充
第2章 逻辑门电路2.1解题指导【例2-1】 试用74LS 系列逻辑门,驱动一只V D =1.5V ,I D =6mA 的发光二极管。
解:74LS 系列与之对应的是T4000系列。
与非门74LS00的I OL 为4mA ,不能驱动I D =6mA 的发光二极管。
集电极开路与非门74LS01的I OL 为6mA ,故可选用74LS01来驱动发光二极管,其电路如图所示。
限流电阻R 为Ω=--=--=k V V V R OL D CC 5.065.05.156【例2-2】 试分析图2-2所示电路的逻辑功能。
解:由模拟开关的功能知:当A =1时,开关接通。
传输门导通时,其导通电阻小于1k Ω,1k Ω与200k Ω电阻分压,输出电平近似为0V 。
而A =0时,开关断开,呈高阻态。
109Ω以上的电阻与200k Ω电阻分压,输出电平近似为V DD 。
故电路实现了非逻辑功能。
【例2-3】 试写出由TTL 门构成的逻辑图如图2-3所示的输出F 。
&≥1F≥1A B图2-3 例2-3门电路解:由TTL 门输入端悬空逻辑上认为是1可写出【例2-4】 试分别写出由TTL 门和CMOS 门构成的如图2-4所示逻辑图的表达式或逻辑值。
B F图2-4 例2-4门电路解:由TTL 门组成上面逻辑门由于10k Ω大于开门电阻R ON ,所以,无论 A 、B 为何值 。
由CMOS 门组成上面逻辑门由于CMOS 无开门电阻和关门电阻之说,所以, 。
2.2 例题补充2-1 一个电路如图2-5所示,其三极管为硅管,β=20,试求:ν1小于何值时,三极管T 截止,ν1大于何值时,三极管T 饱和。
解:设v BE =0V 时,三极管T 截止。
T 截止时,I B =0。
此时10)10(020I --=-v v I =2VT 临界饱和时,v CE =0.7V 。
此时V CC v Iv O+10V VV V 020011DD F ≈+=DDDD 44DD 599F 210101021010V V V V ≈+≈⨯+=A B A F =++⋅=110≡F AB F =mAI 0465.010207.010BS =⨯-=mAv I I 0465.010)10(7.027.0I BS B =----== v I =4.2V上述计算说明v I <2V 时,T 截止;v I >4.2V 时,T 饱和。
模电课件第三章集成逻辑门电路
R1
R2
4k 1.6k
A
uI
T1
T2
D1
R3 1k
输入级 中间级
+VCC(5V) R4
130 T4
DY T5 uo
输出级
26
2. 工作原理
(1)输入为低电平(0.0V)时: uI UIL 0 V
不足以让 T2、T5导通
0.7V
三个PN结
导通需2.1V
T2、T5截止
27
(1) uI UIL 0 V
RC+(1+)Re
17
[例2]下图电路中 = 50,UBE(on) = 0.7 V,UIH = 3.6 V,UIL = 0.3 V,为
使三极管开关工作,试选择 RB 值,并对应输入波形画出输出波形。
+5 V
uI
1 k
UIH
UIL O
t
解:(1)根据开关工作条件确定 RB 取值
uI = UIL = 0.3 V 时,三极管满足截止条件
按电路结构不同分 是构成数字电路的基本单元之一
TTL 集成门电路
输入端和输出端都用 三极管的逻辑门电路。
CMOS 集成门电路
用互补对称 MT特rCa点nomsi不sptlo同erm-分TernatnasriystMoreLtaolg-Oicxide-Semiconductor
Ucc =5V
1k uo
T
β =30
iB
I BS
Ucc Uces RC
Ucc RC
, Uces 0.7V
8
三极管的开关特性
3V
0V RB ui
+UCC
RC
3V
uO T
截饱止和 0V
数字电路第三章习题与答案
第三章集成逻辑门电路一、选择题1. 三态门输出高阻状态时,()是正确的说法。
A.用电压表测量指针不动B.相当于悬空C.电压不高不低D.测量电阻指针不动2. 以下电路中可以实现“线与”功能的有()。
A.与非门B.三态输出门C.集电极开路门D.漏极开路门3.以下电路中常用于总线应用的有()。
A.TSL门B.OC门C. 漏极开路门D.CMOS与非门4.逻辑表达式Y=AB可以用()实现。
A.正或门B.正非门C.正与门D.负或门5.TTL电路在正逻辑系统中,以下各种输入中()相当于输入逻辑“1”。
A.悬空B.通过电阻2.7kΩ接电源C.通过电阻2.7kΩ接地D.通过电阻510Ω接地6.对于TTL与非门闲置输入端的处理,可以()。
A.接电源B.通过电阻3kΩ接电源C.接地D.与有用输入端并联7.要使TTL与非门工作在转折区,可使输入端对地外接电阻RI()。
A.>RONB.<ROFFC.ROFF<RI<ROND.>ROFF8.三极管作为开关使用时,要提高开关速度,可( )。
A.降低饱和深度B.增加饱和深度C.采用有源泄放回路D.采用抗饱和三极管9.CMOS数字集成电路与TTL数字集成电路相比突出的优点是()。
A.微功耗B.高速度C.高抗干扰能力D.电源范围宽10.与CT4000系列相对应的国际通用标准型号为()。
A.CT74S肖特基系列B. CT74LS低功耗肖特基系列C.CT74L低功耗系列D. CT74H高速系列11.电路如图(a),(b)所示,设开关闭合为1、断开为0;灯亮为1、灯灭为0。
F 对开关A、B、C的逻辑函数表达式()。
F1F2 (a)(b)A.C AB F =1 )(2B A C F += B.C AB F =1 )(2B A C F +=C. C B A F =2 )(2B A C F +=12.某TTL 反相器的主要参数为IIH =20μA ;IIL =1.4mA ;IOH =400μA ;水IOL =14mA ,带同样的门数( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如果集成逻辑门是以双极型晶体管(电子和空穴两种 载流子均参与导电)为基础的,则称为双极型集成逻辑门电 路。它主要有下列几种类型:
– 晶体管—晶体管逻辑(TTL:Transistor-Transistor Logic); – 高阈值逻辑(HTL:High Threshold Logic); – 射极耦合逻辑(ECL:Emitter Coupled Logic; ECL门又
• PN结加反向电压时 ,空间电荷区变宽 , 区中电场增 强。反向电压增大到一定程度时,反向电流将突然增 大。如果外电路不能限制电流,则电流会大到将PN结 烧毁。反向电流突然增大时的电压称击穿电压。
半导体器件简介
• 二极管D(Diode)
– 晶体二极管为一个由p型半导体和n型半导体形成的 p-n结,在其界面处两侧形成空间电荷层,并建有自 建电场。
负逻辑:低电平表示 逻辑1,高电平表示0
逻辑1 +Vcc
逻辑0 +Vcc
逻辑0
0V
逻辑1
0V
获得高、低电平的基本方法:利用半导体开关元件 的导通、截止(即开、关)两种工作状态。
1、二极管的开关特性
二极管符号: ቤተ መጻሕፍቲ ባይዱ极
+ uD -
负极
理想开关
理想开关的特性: •开关S断开时,通过开关的电流i=0,这时开关两端点间呈现的电 阻为无穷大 •开关S闭合时,开关两端的电压v=0,这时开关两端点间呈现的电 阻为零 •开关S的接通或断开动作瞬间完成 •上述开关特性不受其他因素(如温度等)的影响
文件名
尽信书,则不如无书
半导体器件的开关特性 和分立元件门电路
•半导体器件简介
•PN结 •二极管 •三极管 •场效应管
•半导体器件的开关特性 •第三章概述
半导体器件简介
• PN结
– 采用不同的掺杂工艺,将P型半导体与N型半 导体制作在同一块硅片上,在它们的交界面就 形成空间电荷区称PN结。PN结具有单向导 电性。
工作状态 条件
偏置情况
工
作 集电极电流
特
点
ce 间 电 压
ce 间 等 效 电 阻
截止 iB= 0
发射结反偏 集电结反偏 uBE<0, uBC<0
iC= 0
uCE= VCC
很大, 相当开关断开
放大 0< iB< IBS 发射结正偏 集电结反偏 uBE>0, uBC<0
iC= β iB uCE= VCC-
叫做电流开关逻辑门,即Current Switching Logic,CSL);
– 集成注入逻辑(I2L :Integrated Injection Logic)。
如果集成逻辑门是以单极型晶体管(只有一种极性 的载流子:电子或空穴)为基础的,则称为单极型集成 逻辑门电路。目前应用得最广泛的是金属—氧化物— 半 导 体 场 效 应 管 逻 辑 电 路 (MOS : Metal Oxide Semiconductor)。
MOS电路又可分为:
– PMOS(P沟道MOS); – NMOS(N沟道MOS); – CMOS(PMOS—NMOS互补)。
§3.1 晶体管的开关特性
门:具有开关作用。 门电路:具有控制信号通过或不通过能力的电路。
一、器件的开关作用
体现开关作用→静态特性 开关特性 转换过程→动态特性
Z=0 →短路、相当开关闭合
二极管的稳态开关特性
二极管伏安特性
iD Ise qD /v kT 1
理想二极管开关特性 二极管特性折线简化
Vi<Vth时,二极管截止,iD=0。 Vi>Vth时,二极管导通。
二极管的瞬态开关特性
理想二极管开关特性
二极管瞬态开关特性
2、三极管的开关特性
NPN 型三极管截止、放大、饱和 3 种工作状态的特点
D2
0V
B
要分析输入的各种状态
⒈二极管与门(续)
真值表:
VA VB VF D1 D2
ABF
0V 0V 0.7V 通 通 0→低电位 0 0 0
实现
0V 5V 0.7V 通 止
4
PN结
• 在PN结上外加一电压 ,如果P型一边接正极 ,N型一 边接负极,电流便从P型一边流向N型一边,空穴和电 子都向界面运动,使空间电荷区变窄,甚至消失,电 流可以顺利通过。
• 如果N型一边接外加电压的正极,P型一边接负极,则 空穴和电子都向远离界面的方向运动,使空间电荷区 变宽,电流不能流过。这就是PN结的单向导电性。
– (PN junction)
PN结
• 在 P 型半导体中有许多带正电荷的空穴和带负电荷的 电离杂质。在电场的作用下,空穴是可以移动的,而 电离杂质(离子)是固定不动的 。
• N 型半导体中有许多可动的负电子和固定的正离子。 • 当P型和N型半导体接触时,在界面附近空穴从P型半
导体向N型半导体扩散,电子从N型半导体向P型半导 体扩散。空穴和电子相遇而复合,载流子消失。因此 在界面附近的结区中有一段距离缺少载流子,却有分 布在空间的带电的固定离子,称为空间电荷区 。 • P 型半导体一边的空间电荷是负离子 ,N 型半导体一 边的空间电荷是正离子。正负离子在界面附近产生电 场,这电场阻止载流子进一步扩散 ,达到平衡。
三、半导体三极管的开关特性
Vcc=5V
⒈开关作用
1k
Vbe
Vbc
Vi
截止 反偏 反偏, ib=ic =0,开关断开。 10K
Vo T β =30
放大 正偏 反偏, ic = βib, 线性放大。
饱和 正偏 正偏, ib >Ibs , 开关闭合。
ib Ib sV c R cV C ce sV R c C c , V ce s 0 .3 V
而将其余部分抑制,从而实现对脉冲波形的变换或整形。从输出 波形来看,可分为上限幅、下限幅、上下限幅几种。从电路结构 结构上看,限幅电路可分为串联、并联限幅两种。
3.二极管开关应用电路(续)
(2)钳位电路。钳位电路是将脉冲波形的顶部或底部钳定在某
一选定电平上。其实质是由二极管的通断来改变RC电路的充放电 时间常数,使得电容C实现快充慢放或者慢充快放,达到钳位波形 的目的。
是
– 栅极Gate,G – 源极Source,S – 漏极Drain,D
半导体器件的开关特性
逻辑门电路:用以实现基本和常用逻辑运算的电子电 路。简称门电路。
基本和常用门电路有与门、或门、非门(反相器)、 与非门、或非门、与或非门和异或门等。
逻辑0和1: 电子电路中用高、低电平来表示。
正逻辑:高电平表示 逻辑1,低电平表示0
– 当不存在外加电压时,处于电平衡状态。 – 当外界有正向电压偏置时,引起正向电流。 – 当外界有反向电压偏置时,形成在一定反向电压范
围内与反向偏置电压值无关的反向饱和电流I0。 – 当外加的反向电压高到一定程度时,产生了数值很
大的反向击穿电流,称为二极管的击穿现象。
二极管
• 正向特性
– 在电子电路中,将二极管的正极接在高电位端,负极接在低电位端,二极 管就会导通,这种连接方式,称为正向偏置。
– MOS场效应管即金属-氧化物-半导体型场效 应管,英文缩写为MOSFET(Metal-OxideSemiconductor Field-Effect-Transistor),属 于绝缘栅型。
– 其主要特点是在金属栅极与沟道之间有一层 二氧化硅绝缘层,因此具有很高的输入电阻。
场效应管
• 它也分N沟道管和P沟道管, • 它和三极管一样,也有三个引脚,分别
导通→截止时间toff较大
⑵ toff中 ts占主要部分。
四、基本门电路
对应三种基本逻辑运算,有三种基本门电路
⒈二极管与门(D与门)
⑴电路 ⑵原理
D1
5V A
Vcc(5V) R
F
电位表: VA VB 0V 0V 0V 5V 5V 0V 5V 5V
VF 0.7V 0.7V 0.7V 5V
D1 D2 通通 通止 止通 止止
iC R c
可变
饱和
iB> IBS 发射结正偏 集电结正偏 uBE>0, uBC>0
iC= ICS uCE = U CE S=
0.3V 很小, 相当开关闭合
三极管的稳态开关特性
基本单管共射电路
单管共射电路直流传输特性
三极管的瞬态开关特性
3、场效应管的开关特性
+VDD RD
D ui G
ui
S
• 反向特性
– 在电子电路中,二极管的正极接在低电位端,负极接在高电位端,此时二 极管中几乎没有电流流过,此时二极管处于截止状态,这种连接方式,称 为反向偏置。
– 二极管处于反向偏置时,仍然会有微弱的反向电流流过二极管,称为漏电 流。当二极管两端的反向电压增大到某一数值,反向电流会急剧增大,二 极管将失去单方向导电特性,这种状态称为二极管的击穿。
– 小规模集成电路(SSI:Small Scale Integrating),一块芯片上含 1~50个门。
– 中规模集成电路(MSI:Medium Scale Integrating),一块芯片上 含50~100个门。
– 大规模集成电路(LSI:Large Scale Integrating),一块芯片上含 100~10000个门。
⒈开关作用(续)
Vcc=5V
临界饱和:Vbc=0 V 时,T处于临界饱和
ibIb s IcV cc R V C ces ,V ce s0 .3 VV i 10K
饱和系数: B ib
I bs