数学模型_第六次实验报告
数学建模实验报告
湖南城市学院数学与计算科学学院《数学建模》实验报告专业:学号:姓名:指导教师:成绩:年月日目录实验一 初等模型........................................................................ 错误!未定义书签。
实验二 优化模型........................................................................ 错误!未定义书签。
实验三 微分方程模型................................................................ 错误!未定义书签。
实验四 稳定性模型.................................................................... 错误!未定义书签。
实验五 差分方程模型................................................................ 错误!未定义书签。
实验六 离散模型........................................................................ 错误!未定义书签。
实验七 数据处理........................................................................ 错误!未定义书签。
实验八 回归分析模型................................................................ 错误!未定义书签。
实验一 初等模型实验目的:掌握数学建模的基本步骤,会用初等数学知识分析和解决实际问题。
实验内容:A 、B 两题选作一题,撰写实验报告,包括问题分析、模型假设、模型构建、模型求解和结果分析与解释五个步骤。
数学建模实验报告
数学建模实验报告1.流⽔问题问题描述:⼀如下图所⽰的容器装满⽔,上底⾯半径为r=1m,⾼度为H=5m,在下地⾯有⼀⾯积为B0.001m2的⼩圆孔,现在让⽔从⼩孔流出,问⽔什么时候能流完?解题分析:这个问题我们可以采⽤计算机模拟,⼩孔处的⽔流速度为V=sqrt[2*g*h],单位时间从⼩孔流出的⽔的体积为V*B,再根据⼏何关系,求出⽔⾯的⾼度H,时间按每秒步进,记录点(H,t)并画出过⽔⾯⾼度随时间的变化图,当⽔⾯⾼度⼩于0.001m 时,可以近似认为⽔流完了。
程序代码:Methamatic程序代码:运⾏结果:(5)结果分析:计算机仿真可以很直观的表现出所求量之间的关系,从图中我们可以很⽅便的求出要求的值。
但在实际编写程序中,由于是初次接触methamatic 语⾔,对其并不是很熟悉,加上个⼈能⼒有限,所以结果可能不太精确,还请见谅。
2.库存问题问题描述某企业对于某种材料的⽉需求量为随机变量,具有如下表概率分布:每次订货费为500元,每⽉每吨保管费为50元,每⽉每吨货物缺货费为1500元,每吨材料的购价为1000元。
该企业欲采⽤周期性盘点的),(S s 策略来控制库存量,求最佳的s ,S 值。
(注:),(S s 策略指的是若发现存货量少于s 时⽴即订货,将存货补充到S ,使得经济效益最佳。
)问题分析:⽤10000个⽉进⾏模拟,随机产⽣每个⽉需求量的概率,利⽤计算机编程,将各种S 和s 的取值都遍历⼀遍,把每种S,s的组合对应的每⽉花费保存在数组cost数组⾥,并计算出平均⽉花费average,并⽤类answer来记录,最终求出对应的S和s。
程序代码:C++程序代码:#include#include#include#include#define Monthnumber 10000int Need(float x){int ned = 0;//求每个⽉的需求量if(x < 0.05)ned = 50;else if(x < 0.15)ned = 60;else if(x < 0.30)ned = 70;else if(x < 0.55)ned = 80;else if(x < 0.75)ned = 90;else if(x < 0.85)ned = 100;else if(x < 0.95)ned = 110;else ned = 120;return ned;}class A{public:int pS;int ps;float aver;};int main(){A answer;answer.aver=10000000;//int cost[Monthnumber+1]={0}; float average=0;int i;float x;int store[Monthnumber];//srand((int)time(0));for(int n=6;n<=12;n++){// int n=11;int S=10*n;for(int k=5;k{// int k=5;int s=k*10;average=0;int cost[Monthnumber+1]={0};for(i=1;i<=Monthnumber;i++){store[i-1]=S;srand(time(0));x=(float)rand()/RAND_MAX; //产⽣随机数//cout<<" "<//cout<int need=Need(x);if(need>=store[i-1]){cost[i]= 1000*S + (need - store[i-1])*1500 + 500;store[i]=S;}else if(need>=store[i-1]-s){cost[i]=1000*(need+S-store[i-1]) + 50*(store[i-1]-need) + 500; store[i]=S;}else{cost[i]=(store[i-1]-need)*50;store[i]=store[i-1]-need;}average=cost[i]+average;}average=average/Monthnumber;cout<<"n="<cout<<"花费最少时s应该为:"<cout<<"平均每⽉最少花费为:"<}运⾏结果:结果分析:⽤计算机模拟的结果和⽤数学分析的结果有⼀定的差异,由于计算机模拟时采⽤的是随机模型⽽我⽤time函数和rand函数产⽣真随机数,所以在每次的结果上会有所差异,但对于⼀般的⽣产要求亦可以满。
数学模型实验报告
运行结果:
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
数学建模实验报告
数学建模实验报告一、实验目的1、通过具体的题目实例,使学生理解数学建模的基本思想和方法,掌握数学建模分析和解决的基本过程。
2、培养学生主动探索、努力进取的的学风,增强学生的应用意识和创新能力,为今后从事科研工作打下初步的基础。
二、实验题目(一)题目一1、题目:电梯问题有r个人在一楼进入电梯,楼上有n层。
设每个乘客在任何一层楼出电梯的概率相同,试建立一个概率模型,求直到电梯中的乘客下完时,电梯需停次数的数学期望。
2、问题分析(1)由于每位乘客在任何一层楼出电梯的概率相同,且各种可能的情况众多且复杂,难于推导。
所以选择采用计算机模拟的方法,求得近似结果。
(2)通过增加试验次数,使近似解越来越接近真实情况。
3、模型建立建立一个n*r的二维随机矩阵,该矩阵每列元素中只有一个为1,其余都为0,这代表每个乘客在对应的楼层下电梯(因为每个乘客只会在某一层下,故没列只有一个1)。
而每行中1的个数代表在该楼层下的乘客的人数。
再建立一个有n个元素的一位数组,数组中只有0和1,其中1代表该层有人下,0代表该层没人下。
例如:给定n=8;r=6(楼8层,乘了6个人),则建立的二维随机矩阵及与之相关的应建立的一维数组为:m =0 0 1 0 0 01 0 0 0 0 00 0 0 0 0 00 1 0 0 0 00 0 0 0 0 00 0 0 0 0 10 0 0 0 1 00 0 0 1 0 0c = 1 1 0 1 0 1 1 14、解决方法(MATLAB程序代码):n=10;r=10;d=1000;a=0;for l=1:dm=full(sparse(randint(1,r,[1,n]),1:r,1,n,r));c=zeros(n,1);for i=1:nfor j=1:rif m(i,j)==1c(j)=1;break;endcontinue;endends=0;for x=1:nif c(x)==1s=s+1;endcontinue;enda=a+s;enda/d5、实验结果ans = 6.5150 那么,当楼高11层,乘坐10人时,电梯需停次数的数学期望为6.5150。
数学建模基础实验报告(3篇)
第1篇一、实验目的本次实验旨在让学生掌握数学建模的基本步骤,学会运用数学知识分析和解决实际问题。
通过本次实验,培养学生主动探索、努力进取的学风,增强学生的应用意识和创新能力,为今后从事科研工作打下初步的基础。
二、实验内容本次实验选取了一道实际问题进行建模与分析,具体如下:题目:某公司想用全行业的销售额作为自变量来预测公司的销售量。
表中给出了1977—1981年公司的销售额和行业销售额的分季度数据(单位:百万元)。
1. 数据准备:将数据整理成表格形式,并输入到计算机中。
2. 数据分析:观察数据分布情况,初步判断是否适合使用线性回归模型进行拟合。
3. 模型建立:利用统计软件(如MATLAB、SPSS等)进行线性回归分析,建立公司销售额对全行业的回归模型。
4. 模型检验:对模型进行检验,包括残差分析、DW检验等,以判断模型的拟合效果。
5. 结果分析:分析模型的拟合效果,并对公司销售量的预测进行评估。
三、实验步骤1. 数据准备将数据整理成表格形式,包括年份、季度、公司销售额和行业销售额。
将数据输入到计算机中,为后续分析做准备。
2. 数据分析观察数据分布情况,绘制散点图,初步判断是否适合使用线性回归模型进行拟合。
3. 模型建立利用统计软件进行线性回归分析,建立公司销售额对全行业的回归模型。
具体步骤如下:(1)选择合适的统计软件,如MATLAB。
(2)输入数据,进行数据预处理。
(3)编写线性回归分析程序,计算回归系数。
(4)输出回归系数、截距等参数。
4. 模型检验对模型进行检验,包括残差分析、DW检验等。
(1)残差分析:计算残差,绘制残差图,观察残差的分布情况。
(2)DW检验:计算DW值,判断随机误差项是否存在自相关性。
5. 结果分析分析模型的拟合效果,并对公司销售量的预测进行评估。
四、实验结果与分析1. 数据分析通过绘制散点图,观察数据分布情况,初步判断数据适合使用线性回归模型进行拟合。
2. 模型建立利用MATLAB进行线性回归分析,得到回归模型如下:公司销售额 = 0.9656 行业销售额 + 0.01143. 模型检验(1)残差分析:绘制残差图,观察残差的分布情况,发现残差基本呈随机分布,说明模型拟合效果较好。
数学建模的实验报告
数学建模实验报告姓名:学院:专业班级:学号:数学建模实验报告(一)——用最小二乘法进行数据拟合一.实验目的:1.学会用最小二乘法进行数据拟合。
2.熟悉掌握matlab软件的文件操作和命令环境。
3.掌握数据可视化的基本操作步骤。
4.通过matlab绘制二维图形以及三维图形。
二.实验任务:来自课本64页习题:用最小二乘法求一形如y=a+b x2的多项式,使之与下列数据拟合:三.实验过程:1.实验方法:用最小二乘法解决实际问题包含两个基本环节:先根据所给出数据点的变化趋势与问题的实际背景确定函数类;然后按照最小二乘法原则求最小二乘解来确定系数。
即要求出二次多项式: y=a+b x2的系数。
2.程序:x=[19 25 31 38 44]y=[19.0 32.3 49.0 73.3 97.8]ab=y/[ones(size(x));x.^2];a=ab(1),b=ab(2)xx=19:44;plot(xx,a+b*xx.^2,x,y,'.')3.上机调试得到结果如下:x = 19 25 31 38 44y=19.0000 32.3000 49.0000 73.3000 97.8000a = 0.9726b = 0.0500图形:四.心得体会通过本次的数学模型的建立与处理,我们学习并掌握了用最小二乘法进行数据拟合,及多项式数据拟合的方法,进一步学会了使用matlab软件,加深了我们的数学知识,提高了我们解决实际问题的能力,为以后深入学习数学建模打下了坚实的基础。
数学建模实验报告(二)——用Newton法求方程的解一.实验目的1.掌握Newton法求方程的解的原理和方法。
2.利用Matlab进行编程求近似解。
二.实验任务来自课本109页习题4-2:用Newton法求f(x)=x-cosx=0的近似解三.实验过程1.实验原理:把f(x)在x0点附近展开成泰勒级数f(x) = f(x0)+(x-x0)f'(x0)+(x-x0)^2*f''(x0)/2! +… 取其线性部分,作为非线性方程f(x) = 0的近似方程,即泰勒展开的前两项,则有f(x0)+f'(x0)(x-x0)=0 设f'(x0)≠0则其解为x1=x0-f(x0)/f'(x0) 这样,得到牛顿法的一个迭代序列:x(n+1)=x(n)-f(x(n))/f'(x(n))。
数学模型实习报告
数学模型实习报告一实习目的《数学模型》是信息与计算科学专业的一门专业选修课,理论性较强,强调实践能力的培养。
为了学好这门课程,必须在牢固掌握理论知识的同时,加强上机实践,灵活运用理论知识锻炼设计、模拟实验的能力,设置《数学模型》的课程设计环节十分重要。
本课程设计的目标就是要达到理论与实际应用相结合,以理论知识指导学生的创造、设计和动手能力,提高学生学习数学模型的兴趣和能力,并培养基本的、良好、科学的数学建模以及团队协作能力。
二实习要求本课程主要介绍计算方法、优化方法、统计方法的基本理论和基本算法,并要求掌握数学建模方法和MATLAB软件的使用。
本课程是以实用为最终目的。
要求学生能综合运用数学基础知识,进行数据的分析和处理、并利用MATLAB软件进行计算机求解。
课程的实践性比较强,强调培养学生的动手动脑能力、开创与创新意识以及解决实际问题的能力。
设计中要求综合运用所学知识,上机解决一些与实际应用结合紧密的、规模较大的问题,通过数据分析、处理等各环节的训练,使学生深刻理解、牢固掌握数据建模的方法,掌握分析、解决实际问题的能力。
三实习内容教师薪金的确定(一),问题的提出某地人事部门为研究中学教师的薪金与他们的资历、性别。
教育程度及培训情况等因素之间的关系,要建立一个数学模型,分析人事策略的合理性,特别是考察女教师是否受到不公正的待遇,以及她们的婚姻状况是否会影响收入。
为此,从当地教师中随机选了3414位进行观察,然后从中保留了90个观察对象,得到了下表给出的相关数据。
尽管这些数据具有一定的代表性,但是仍有统计分析的必要。
现将表中数据的符号介绍如下:Z ~月薪(元);1X~工作时间(月);2X=1~男性,2X=0~女性,3X=1~男性或单身女性,3X=0~已婚女性;4X~学历(取值0~6,值越大表示学历越高);5X=1~受雇于重点中学,5X =0~其它;6X =1~受过培训的毕业生,6X =0~为受过培训的毕业生或受过培训的肄业生;7X =1~已两年一上未从事教学工作,7X =0~其它。
数学建模优秀实验报告
一、实验背景与目的随着科学技术的不断发展,数学建模作为一种解决复杂问题的有力工具,在各个领域都得到了广泛应用。
本实验旨在通过数学建模的方法,解决实际问题,提高学生的数学思维能力和解决实际问题的能力。
二、实验内容与步骤1. 实验内容本实验选取了一道具有代表性的实际问题——某城市交通拥堵问题。
通过对该问题的分析,建立数学模型,并利用MATLAB软件进行求解,为政府部门提供决策依据。
2. 实验步骤(1)问题分析首先,对某城市交通拥堵问题进行分析,了解问题的背景、目标及影响因素。
通过查阅相关资料,得知该城市交通拥堵的主要原因是道路容量不足、交通信号灯配时不当、公共交通发展滞后等因素。
(2)模型假设为简化问题,对实际交通系统进行以下假设:1)道路容量恒定,不考虑道路拓宽、扩建等因素;2)交通信号灯配时固定,不考虑实时调整;3)公共交通系统运行正常,不考虑公交车运行时间波动;4)车辆行驶速度恒定,不考虑车辆速度波动。
(3)模型构建根据以上假设,构建以下数学模型:1)道路容量模型:C = f(t),其中C为道路容量,t为时间;2)交通流量模型:Q = f(t),其中Q为交通流量;3)拥堵指数模型:I = f(Q, C),其中I为拥堵指数。
(4)模型求解利用MATLAB软件,对所构建的数学模型进行求解。
通过编程实现以下功能:1)计算道路容量C与时间t的关系;2)计算交通流量Q与时间t的关系;3)计算拥堵指数I与交通流量Q、道路容量C的关系。
(5)结果分析与解释根据求解结果,分析拥堵指数与时间、交通流量、道路容量之间的关系。
针对不同时间段、不同交通流量和不同道路容量,提出相应的解决方案,为政府部门提供决策依据。
三、实验结果与分析1. 结果展示通过MATLAB软件求解,得到以下结果:(1)道路容量C与时间t的关系曲线;(2)交通流量Q与时间t的关系曲线;(3)拥堵指数I与交通流量Q、道路容量C的关系曲线。
2. 结果分析根据求解结果,可以得出以下结论:(1)在高峰时段,道路容量C与时间t的关系曲线呈现下降趋势,说明道路容量在高峰时段不足;(2)在高峰时段,交通流量Q与时间t的关系曲线呈现上升趋势,说明交通流量在高峰时段较大;(3)在高峰时段,拥堵指数I与交通流量Q、道路容量C的关系曲线呈现上升趋势,说明拥堵指数在高峰时段较大。
数学建模实验报告
数学建模实验报告实验报告:数学建模引言:数学建模是一门独特且灵活的学科,它将现实问题转化为数学模型,并利用数学工具和方法来分析和解决这些问题。
通过实践和研究,我们可以发现数学建模在各个领域都有广泛的应用,如物理学、生物学、经济学等。
本实验报告旨在介绍数学建模的基本理论与方法,并展示一个实际问题的建模与求解过程。
一、数学建模的基本理论与方法1.1模型的建立数学建模的第一步是建立数学模型。
一个好的模型应具备以下要素:准确描述问题的前提条件,明确问题的目标,确定可变参数和约束条件,考虑问题的实际需求。
1.2模型的求解模型的求解是数学建模的核心环节。
根据模型的形式和要求,我们可以选择适合的求解方法,如数值方法(如微积分、线性代数等)和符号计算方法(如差分方程、偏微分方程等)等。
1.3模型的分析与验证在模型求解的基础上,我们需要对模型进行分析和验证。
分析主要是从数学角度研究模型的性质和规律,验证则是将模型的结果与实际数据进行比对,以评估模型的准确性和可靠性。
二、实际问题的建模与求解考虑以下实际问题:公司准备推出一款新产品,为了提高产品的市场竞争力,他们决定在一部分商品上采用价格优惠的策略。
为了确定优惠的程度,他们需要建立一个数学模型来分析不同优惠方案的效果,并选择最优的方案。
2.1模型的建立首先,我们需要明确问题的前提条件和目标。
假设该产品的市场价格为P,成本价格为C,单位销售量为Q。
我们的目标是最大化销售利润。
于是,我们可以建立以下数学模型:利润函数:利润=销售额-成本利润=(P-D)*Q-C其中D为优惠的价格折扣。
2.2模型的求解为了确定最优的优惠方案,我们需要将问题转化为一个数学优化问题。
我们可以选用辅助函数法或拉格朗日乘子法来求解最优值。
在这里,我们选择辅助函数法。
我们将利润函数分别对P和D求偏导数,并令其等于0,得到以下方程组:d(利润)/dP=Q-2D=0d(利润)/dD=P-C=0解这个方程组可以求得最优解P=C,D=Q/22.3模型的分析与验证在分析这个模型之前,我们需要验证模型的准确性。
数学建模实验报告模板
页脚内容1数学建模实验报告一、摘要(写出本次作业建模的大致思路、方法及主要结果)根据微积分中熟知的有限覆盖定理,必然存在最小的覆盖,这样就为节约用水而建立优化模型提供了理论依据。
然而我们更需要的是对实际问题有具体指导的结论。
我们假设每个喷水龙头的喷水面积都是固定不变的,要使用水最少,只需浇灌的重复面积最小。
因此我们需要建立这样一个模型,既要使绿地全部被均匀地浇到,又要达到节约水资源的目的;而只有在被重复浇到的绿地面积达到最小时,才能使喷浇节约用水。
我们假设在绿地区内可以放置 n 个龙头,每个龙头最大的喷射半径为R 。
记绿地区域的面积为,第i 个龙头的喷射半径为i r ,喷射角度为i α,它所形成的区域为t S ,则绿地受水的总面积(实际上的圆覆盖)为nt t=1S=S ∑,从而得到如下优化模型问题:目标函数: S S n t t t=1S=Min{S }α∑ 约束条件:t t t 1S S;r R n=⊇≤;为了解决和简化问题,更能表达“覆盖”的含义,我们以S K=S 代替文献[1,2]中的SS 来作为有效覆盖率来刻画和评价模型的优劣,就有:1≥K 。
K 越接近1,模型就越好,因此用水也就越节约。
我们针对4种不同的几何形状绿地区域的覆盖进行讨论,从而得到了关于它们的有效覆盖率的计算结果。
二、问题重述(写出本次作业的具体内容)城市公共绿地的浇灌是一个长期大量的用水项目。
随着现代城市人们生活质量的提高,美化城市和建设绿色家园的需要,城市绿化带正在扩大,用水量随之不断增大。
因此,城市绿化用水的节约是一个十分重要的问题。
目前,对于绿地的浇灌用水主要有移动水车浇灌和安装固定喷水龙头旋转喷浇两种方式。
移动水车主要用于道路两侧狭长绿地的浇灌,固定喷水龙头主要用于公园、校区、广场等观赏性绿地。
观赏性绿地的草根很短,根系寻水性能差,不能蓄水,因此,喷水龙头的喷浇区域要保证对绿地的全面覆盖。
根据观察,绿地喷水龙头分布和喷射半径的设定较大随意性。
数学建模实习报告
数学建模实习报告一、引言数学建模是运用数学方法和技巧来解决实际问题的一门学科。
在大学数学课程中,培养学生的数学建模能力已经成为教学的重点之一。
本次实习报告旨在总结我在数学建模实习中的学习经验和收获,并将所学知识应用在实际问题中。
二、实习内容1. 实习项目介绍我所参与的数学建模实习项目是关于城市交通流量预测的研究。
通过对城市交通数据进行收集和分析,利用数学模型和算法来预测未来的交通流量,以便城市规划者和交通管理部门能够更好地优化交通流动。
2. 数据收集与预处理为了进行交通流量预测,我们首先需要收集一定时期内的交通数据,包括车辆数量、速度、道路状况等信息。
根据实际情况,我们选择了某城市的主干道作为研究对象,并在道路上安装了传感器来收集数据。
然后,我们对收集到的原始数据进行清洗和预处理,消除异常值和缺失值的影响,以保证数据的准确性和完整性。
3. 模型选择与建立在交通流量预测中,我们需要选择合适的数学模型来描述交通流动的规律。
经过研究和实践,我们选择了时间序列模型和神经网络模型作为预测模型的候选。
时间序列模型考虑了时间的连续性和相关性,适用于交通流量数据的预测;而神经网络模型则可以通过对历史数据的学习和训练来预测未来的交通流量。
4. 数据分析与模型评估在建立完预测模型后,我们对历史数据进行了分析和验证,评估了模型的准确性和可靠性。
通过比较模型预测结果和实际观测值,计算相关的误差指标和准确率,以评估模型的优劣,并进行进一步的改进和调整。
5. 结果与讨论经过一段时间的实验和分析,我们得到了相对准确的交通流量预测结果,并与城市交通管理部门进行了交流和反馈。
根据预测结果,他们可以提前做好交通管理和调度工作,以缓解拥堵和提高交通效率。
同时,我们也对模型的不足之处进行了讨论,并提出了一些改进和优化的建议。
三、实习收获通过参与数学建模实习,我获得了如下的收获和体会:1. 熟悉了数学建模的基本流程和方法,了解了数学建模在实际问题中的应用和意义。
数学建模实验报告范文
数学建模实验报告范文实验目的本次实验旨在运用数学建模的方法和技巧,对给定的问题进行分析和求解,以提高我们的问题解决能力和创新思维。
实验背景在现实生活中,我们经常面临各种各样的问题,但是如何从复杂的问题中提取关键信息,并通过数学建模的方法进行求解,是一个非常有挑战性的任务。
通过本次实验的学习和训练,我们可以更好地应对复杂问题,提高解决问题的能力和效率。
实验过程和方法本次实验我们选择了一个关于货车配送问题的案例进行研究。
具体过程如下:1. 问题理解:我们首先详细了解了货车配送问题的背景和要求,明确问题的目标和限制条件。
根据问题的描述,我们可以得到基本的数学模型:- 假设有N个配送点,每个配送点有固定的货物数量和配送时长。
- 有M辆货车,每辆货车的最大载重量和最大配送时长是已知的。
- 目标是使得总配送时间最短的同时,不超过货车的最大载重量。
2. 数据处理:我们将问题中给出的具体数据转化为计算机可处理的数据结构,并进行必要的预处理工作。
包括计算各个点之间的距离、货物数量等信息。
3. 建模与求解:我们根据问题的特点和要求,选用相应的数学模型和求解方法。
在本次实验中,我们选择了基于图论的算法,如最短路径算法和旅行商问题算法,来优化货车的配送路径和时间。
4. 结果分析:我们根据得到的结果,对货车的配送路径和时间进行分析和评估。
通过对比不同算法和参数设置的结果,找出最优解,并对结果进行可视化展示。
实验结果经过模型求解和分析,我们得到了一组满足条件的最优解。
在我们的实验中,总配送时间最短的方案是:...通过对比和分析不同算法和参数设置的结果,我们可以发现...实验总结本次实验通过对货车配送问题的研究和实践,我们学习了数学建模的基本方法和技巧。
通过模型建立、求解和分析的全过程,我们深入理解了数学建模的重要性和应用价值。
在实验过程中,我们遇到了一些困难和挑战,如如何选择合适的数学模型和求解算法等。
通过克服这些困难,我们不断提高了自己的问题解决能力和创新思维。
数模实验报告
数模实验报告数模实验报告摘要:本实验旨在通过数学建模的方法,分析和解决实际问题。
通过对数学模型的建立和求解,得出了一系列有关问题的结论和解决方案。
本文将详细介绍实验的目的、方法、结果和讨论。
1. 引言数学建模是一种将实际问题转化为数学问题,并通过数学方法求解的过程。
它在现代科学研究和工程实践中发挥着重要作用。
本实验选取了一个与交通流量相关的问题,通过数学建模的方法进行分析和求解。
2. 问题描述本实验的问题是:如何优化城市交通系统中的交通信号灯配时方案,以最大限度地提高交通流量并减少交通拥堵现象。
3. 模型建立为了解决这个问题,我们首先需要建立一个数学模型。
我们假设城市交通系统中的交通流量可以用一个二维矩阵来表示,其中每个元素表示一个交叉口的车辆数。
我们将交通信号灯配时方案表示为一个向量,其中每个元素表示一个交叉口的信号灯状态(红灯或绿灯)。
接下来,我们需要确定一个目标函数来衡量交通流量的优化程度。
我们选择了交通流量的总和作为目标函数,即最大化交通流量。
4. 模型求解为了求解模型,我们采用了遗传算法。
遗传算法是一种模拟生物进化过程的优化算法,通过模拟遗传、变异和选择的过程,逐步优化目标函数。
我们首先随机生成了一组初始解,并计算其对应的目标函数值。
然后,我们通过交叉、变异和选择等操作,不断迭代更新解的集合,直到达到停止条件。
最终,我们得到了一个最优的交通信号灯配时方案,使得交通流量达到了最大值。
同时,我们也得到了一系列次优解,可以用于进一步的分析和讨论。
5. 结果分析通过对模型求解的结果进行分析,我们可以得出以下结论:首先,优化交通信号灯配时方案可以显著提高交通流量。
与传统的固定配时方案相比,我们的最优方案将交通流量提高了20%。
其次,交通流量的优化程度与交通网络的拓扑结构有关。
我们发现,在某些情况下,即使使用最优方案,交通流量仍然无法达到最大值。
这是因为交通网络的结构限制了交通流量的传输。
最后,我们还发现,交通流量的优化程度与交通信号灯配时方案的调整频率有关。
数学建模的实验报告
数学建模的实验报告数学建模实验报告示例如下:实验名称:社交网络分析中的协同过滤实验目的:研究社交网络中的协同过滤算法,并比较其性能和效率。
实验设计:1. 数据收集:从Facebook的公开数据集中获取了20个城市居民的用户数据,包括他们的个人资料、社交关系和浏览记录等。
每个用户被标记为一个或多个好友、关注者或喜欢某个特定话题的人。
共收集了7000个用户数据点。
2. 数据预处理:对数据进行清洗和特征提取。
清洗数据是为了删除无用的信息,提取特征则是为了将数据转化为计算机能够理解的形式。
3. 模型选择和训练:选择协同过滤算法,并使用数据集训练模型,包括K-近邻算法、Apriori算法、朴素贝叶斯算法和聚类算法等。
4. 模型评估:使用测试集对不同算法的性能进行评估。
计算模型的准确性、召回率、精确度、F1值等指标,并比较不同算法之间的性能。
5. 应用测试:使用测试集尝试在实际应用中应用模型。
将模型应用于新的数据集,评估模型的性能和效率,并进行模型的优化和改进。
实验结果:1. 结果概述:经过预处理和特征提取后,共产生了7000个用户数据点,其中5566个用户被标记为好友、关注者或喜欢某个特定话题的人。
共1897个用户数据点被保留,用于评估模型的性能。
2. 模型评估指标:准确性:模型预测的准确率。
召回率:模型从测试集中返回的真实用户中,能够被预测为好友或关注者的比例。
精确度:模型预测的精确度。
F1值:在测试集中,模型预测正确的用户数量与实际用户数量之比。
实验结果显示,K-近邻算法的性能最好,召回率为74.06%。
Apriori算法的性能次之,准确性为72.32%。
朴素贝叶斯算法的性能最次,召回率为69.71%。
聚类算法的精确度最低,为68.91%。
3. 应用测试结果:在实际应用中,将模型应用于新的数据集,评估模型的性能和效率。
实验结果显示,K-近邻算法的应用性能最好,召回率为89.46%。
Apriori算法的应用性能次之,召回率为78.21%。
初中数学建模实验报告(3篇)
第1篇一、实验背景随着科学技术的飞速发展,数学建模作为一种重要的科学研究方法,越来越受到人们的重视。
初中数学建模实验旨在培养学生运用数学知识解决实际问题的能力,提高学生的创新思维和团队协作能力。
本实验以某市居民出行方式选择为研究对象,通过建立数学模型,分析不同因素对居民出行方式的影响。
二、实验目的1. 理解数学建模的基本概念和步骤。
2. 学会运用数学知识分析实际问题。
3. 培养学生的创新思维和团队协作能力。
4. 提高学生运用数学知识解决实际问题的能力。
三、实验方法1. 收集数据:通过网络、调查问卷等方式收集某市居民出行方式选择的相关数据。
2. 数据处理:对收集到的数据进行整理、清洗和分析,为建立数学模型提供依据。
3. 建立模型:根据数据分析结果,选择合适的数学模型,如线性回归模型、多元回归模型等。
4. 模型求解:运用数学软件或编程工具求解模型,得到预测结果。
5. 模型验证:将预测结果与实际数据进行对比,验证模型的准确性。
四、实验过程1. 数据收集:通过问卷调查的方式,收集了500份某市居民的出行方式选择数据,包括出行距离、出行时间、出行目的、出行方式等。
2. 数据处理:对收集到的数据进行整理和清洗,剔除无效数据,得到有效数据490份。
3. 建立模型:根据数据分析结果,选择多元回归模型作为本次实验的数学模型。
4. 模型求解:利用SPSS软件对多元回归模型进行求解,得到以下结果:- 模型方程:Y = 0.05X1 + 0.03X2 + 0.02X3 + 0.01X4 + 0.005X5 + 0.002X6 + 0.001X7 + 0.0005X8- 其中,Y为居民出行方式选择概率,X1至X8分别为出行距离、出行时间、出行目的、出行方式、天气状况、交通拥堵状况、收入水平、家庭人口数量等自变量。
5. 模型验证:将模型预测结果与实际数据进行对比,结果显示模型具有较高的预测准确性。
五、实验结果与分析1. 模型预测结果:根据模型预测,出行距离、出行时间、出行目的、出行方式、天气状况、交通拥堵状况、收入水平、家庭人口数量等因素对居民出行方式选择有显著影响。
数学建模实验报告模版
数学建模实验报告模版一、实验目的数学建模是实际问题抽象为数学模型,通过数学方法求解得到问题的答案。
本实验的目的是通过一个具体问题的建模与求解,培养学生的实际问题抽象与解决能力。
二、实验内容本次实验选择了一个实际生活中的问题进行建模与求解。
该问题是市场调查机构要对地区餐馆的顾客满意度进行调查,以评估餐馆的服务质量。
但由于资源有限,调查机构只能选择一部分顾客进行调查。
在这个问题中,我们需要确定调查的样本量大小,使其能够在一定的置信水平下准确代表整个顾客群体的意见。
三、实验步骤1.问题分析:首先,我们需要对问题进行分析,了解问题的背景和要求。
2.建立模型:根据问题的要求,我们选择了一个概率模型来描述问题。
假设顾客的满意度服从一个二项分布,即每位顾客都有可能是满意或不满意。
我们通过计算满意度的均值和方差,来代表整个顾客群体的意见。
3.数学求解:根据建立的模型,我们使用统计学方法对样本量大小进行估计,以达到一定的置信水平。
4.实验验证:最后,我们通过实验验证我们得到的样本量大小,看是否满足要求。
四、实验结果经过建模和求解,我们得到了样本量大小的估计结果。
根据我们的计算,当置信水平为95%时,我们需要调查的样本量大小为110人。
五、实验总结通过这次实验,我们学会了将实际问题抽象成数学模型,以及通过数学方法去求解这个模型。
我们也进一步了解了概率分布和统计学的知识,以及如何利用它们来进行建模和求解。
这对我们今后在实际问题中的应用具有重要意义。
在实验过程中,我们也发现了一些问题和不足之处。
例如,我们的模型可能存在一定的偏差,因为我们的假设可能与实际情况有所不同。
此外,我们的模型也有一些局限性,不适用于所有情况。
因此,在今后的学习过程中,我们需要进一步加强对数学建模的理解和应用,不断提高自己的建模能力,以更好地解决实际问题。
以上是一份关于数学建模实验的报告模板,希望对你的写作有所帮助。
实验报告的内容可根据具体实验情况进行修改和补充,以符合实际情况。
暑假数学建模社会实践报告
暑假数学建模社会实践报告一、实践背景暑假期间,我参加了学校组织的数学建模社会实践活动。
该活动是为了使学生通过实践,真正将数学知识应用于实际生活中,培养学生的实践能力和社会责任感。
我通过实际行动,深入了解了数学建模在社会中的应用,并结合实际情况进行数学建模实践,提高了自己的综合能力。
二、实践过程在实践过程中,我的团队选择了城市交通拥堵问题进行研究和分析。
我们首先搜集了大量的相关资料,了解了交通拥堵的原因和解决方法。
然后,我们运用了数学建模的方法,建立了数学模型,对城市交通拥堵问题进行了研究。
我们首先对城市道路交通流量进行了统计和分析,确定了交通流量的分布规律。
然后,我们分析了交通信号灯的调节方式,通过数学建模的方法,优化了交通信号灯的设置,使交通流量得到了更有效的分配,从而减少了交通拥堵的发生频率和时间。
最后,我们对新的交通信号灯设置方案进行了实际测试,并分析了测试结果。
测试结果表明,新的交通信号灯设置方案能够有效地减少交通拥堵的发生,提高交通效率。
这为城市的交通规划和交通管理提供了有力的参考。
三、实践收获通过这次实践活动,我收获了很多。
首先,我了解了数学建模的基本原理和方法,学会了如何将数学知识应用于实际生活中。
其次,我培养了团队合作精神和独立思考能力,通过与队友合作,分工合作,充分发挥每个人的特长,取得了良好的实践成果。
最后,我增强了自己的实践能力和社会责任感,明白了作为一名数学建模者的重要性和使命感。
四、实践感悟通过这次实践活动,我深刻理解了数学建模在社会中的重要性和应用价值。
数学建模不仅可以帮助我们解决实际问题,提高生活质量,还可以为社会发展提供有力的支持和指导。
同时,我也意识到数学建模需要广泛的知识储备和实践经验,需要不断学习和提高自己的能力。
总结起来,这次暑假数学建模社会实践活动让我收获颇丰。
我通过实践了解了数学建模的理论和实践,锻炼了自己的综合能力和团队合作能力,培养了社会责任感。
我相信,在今后的学习和工作中,我会继续努力,发挥数学建模的优势,为社会的发展做出贡献。
数学模型实验报告全
40
30
20
10
0 1 0.5 0 -0.5 -1 -1 -0.5 0.5 0 1
数学实验报告
实验序号:03
实验 名称 问题背景与描述: 4、根据一盘录象带的实测数据,i)确定当 n [3500 ,4000 ,4300 ,4600 ,4900 ] 时,t 的值。ii)由模型 t an2 bn 确定 a, b 的值,iii)插值的结果与拟和 进行比较。下面数据表示是时间 t 与录像带计数器 n 之间的关系。 ( t 分) 0 10 20 30 40 50 60 70 80 90 n 0 617 1141 1601 2019 2403 2760 3096 3413 3715 ( t 分) 100 110 120 130 140 150 160 170 184 n 4004 4280 4545 4803 5051 5291 5525 5752 6061 2、比赛成绩 t 与桨手数 n 之间满足关系 t=anb,利用下面的数据估计参数 a,b。 t (分) n 7.21 1 6.88 2 6.32 4 5.8 8
ti
100 4.54
200 4.99
300 5.35
500 5.90
600 6.10
ci 103
2、利用酶促反应模型中的数据拟合指数增长模型中参数。
实验目的: 7、理解最小二乘法的概念; 8、熟悉 nlinfit 指令,并会建立函数文件; 9、能够运用最小二乘法与非线性拟和解决一定实际问题;
实验要求: 1、独立完成上述实验内容。 2、有完整的实验程序和结果。
数学实验报告
实验序号:01
实验 名称
Matlab 软件的使用及基本运算,矩阵与向量。
实验目的: 1、熟悉 Matlab 软件的使用; 2、会使用 Matlab 软件做一些基本运算; 3、会使用 Matlab 软件做向量和矩阵运算
数学模型实验报告六
2 1 1 2
5 2 1
1 B2 = 3 8
1 3 1 3
1 8 1 3 1
1 B3 = 1 1 3
1 1 1 3
3 3 1
1 1 B4 = 3 1 4
3 4 1 1 1 1
1 1 B5 = 1 1 4 4
1 4 1 4 1
计算层次单排序的权向量和一致性检验,成对比较矩阵 A 的最大特征值 λ =5.111 , 该特征值对应的归一化特征向量为: ω = {0.3468,0.1376,0.3254,0.0768,0.1134} 则 CI = 0.028,RI =1.12,故CR =0.024 < 0.1 ,表示 A 通过一致性验证
二、实验设备(环境)及要求
多媒体机房,单人单机,独立完成
ቤተ መጻሕፍቲ ባይዱ
三、实验内容
用层次分析法解决一个实际问题,例如: (1) 学校评选优秀学生或优秀班级,试给出若干准则,构造层次结构模型。可分 为相对评价和绝对评价两种情况讨论。 (2) (3) (4) 你要购买一台个人电脑,考虑功能、价格等因素,如何作出决策。 为大学毕业的青年建立一个选择志愿的层次结构模型。 你的家乡准备集资兴办一座小型饲养场,是养猪,还是养鸡、养鸭、养兔, 用层次分析法进行决策。
同理得 B2,B3 对总目标的权值分别为:0.302,0.368 又因为
CR = (0.3468 × 0.003 + 0.1376 × 0.001 + 0.3254 × 0 + 0.0768 × 0.005 + 0.1134 × 0) / 0.58 = 0.012 < 0.1
数学模型实验报告
福建农林大学计算机与信息学院(数学类课程)实验报告课程名称:数学模型姓名:系:信息与计算科学专业:信息与计算科学年级:2007级学号:071152035指导教师:姜永职称:副教授2009年12月18日实验项目列表1.实验项目名称:数学规划模型建立及其软件求解 2.实验目的和要求:了解数学规划的的基本理论和方法,并用于建立实际问题的数学规划模型;会用LINDO 和LINGO 软件解数学规划问题并对结果加以分析应用。
3.实验使用的主要仪器设备和软件:惠普微机;1.6LINDO 和0.9LINGO 版本4.实验的基本理论和方法:数学规划模型的一般形式为mi x g t s x f z Min i x,,2,1,0)(..)( =≤=其中)(x f 表示目标函数,),,2,1(0)(m i x g i =≤为约束条件。
LINDO/LINGO 是美国LINDO 系统公司开发的一套专门用于求解最优化问题的软件包。
LINDO 用于求解线性规划和二次规划问题,LINGO 除了具有LINDO 的全部功能外,还可以用于求解非线性规划问题,也可以用于一些线性和非线性方程(组)的求解,等等。
LINDO/LINGO 软件的最大特色在于可以允许优化模型中的决策变量是整数,而且执行速度很快。
线性优化求解程序通常使用单纯形算法,对LINDO/LINGO 软件,为了能解大规模问题,也可以使用内点算法。
非线性优化求解程序采用的是顺序线性规划法,即通过迭代求解一系列线性规划来达到求解非线性规划的目的。
5.实验内容与步骤: 题一:问题阐述:某公司将3种不同含硫量的液体原料(分别记为甲、乙、丙)混合生产两种产品(分别记为A ,B ),按照生产工艺的要求,原料甲、乙必须首先倒入混合池中混合,混合后的液体再分别与原料丙混合生产A ,B .已知原料甲,乙,丙的含硫量分别是3%,1%,2%,进货价格分别为6千元/ t ,16千元/ t ,10千元/t ,产品A ,B 的含硫量分别不能超过2.5%,1.5%,售价分别为9千元/t ,15千元/t ,根据市场信息,原料甲、乙、丙的供应量都不能超过500t ;产品A ,B 的最大市场需求量分别为100t ,200t .(1) 应如何安排生产?(2) 如果产品A 的最大市场需求量增长为600t ,应如何安排生产? (3) 如果乙的进货价格下降为13千元/t ,应如何安排生产?分别、对(1)、(2)两种情况进行讨论. 建立模型:(1)设A 中含甲乙原料混合物1y 吨,含丙原料1z 吨;B 中含甲乙原料混合物2y 吨,含丙原料2z 吨;甲乙原料混合物中,甲原料占比例为1x ,乙原料占比例为2x (即121=+x x )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告(二)院(系)理学院课程名称:数学模型日期2012年3月14 班级A0921 学号01 实验室文理楼209 专业信息与计算科学姓名计算机号12实验名称拟合成绩评定所用软件Matlab 教师签名实验目的或要求1.直观了解拟合基本内容2.掌握用数学软件求解拟合问题实验步骤、心得体会实验题目:1.通过测量10个成年男性的身高与体重,得到如下数据身高x/m1.65 1.70 1.72 1.75 1.78 1.80 1.82 1.79 1.68 1.76体重y/kg61 70 72 74 76 79 80 77 66 73试求身高与体重的关系,并作出关系图实验步骤:(1)以身高为横轴,体重为纵轴,将上述数据对(,)(1,2,,10)i ix y i 在直角坐标系中作出散点图,程序如下:x=[1.65 1.70 1.72 1.75 1.78 1.80 1.82 1.79 1.68 1.76]; %x代表身高y=[61 70 72 74 76 79 80 77 66 73]; %y代表体重plot(x,y,'r*'); %画出数据的散点图运行程序后出来下图:(2)所给的数据点(,)(1,2,,)i i x y i n = 的分布大致呈直线状态,可用直线来拟合这些数据点的曲线。
x=[1.65 1.70 1.72 1.75 1.78 1.80 1.82 1.79 1.68 1.76]; %x 代表身高 y=[61 70 72 74 76 79 80 77 66 73]; %y 代表体重p=polyfit(x,y,1) %对(x,y)做一阶线性拟合运行结果为: p =103.3868 -107.6100即用最小二乘法求得的拟合直线方程为103.3868107.6100y x =-(3)绘制出拟合出的曲线和散点图的对比x=[1.65 1.70 1.72 1.75 1.78 1.80 1.82 1.79 1.68 1.76]; %x 代表身高 y=[6170 72 74 76 79 80 77 66 73]; %y 代表体重p=polyfit(x,y,1) %对(x,y)做一阶线性拟合z=polyval(p,x); %计算拟合后的多项式p 中x 点对应的函数值 plot(x,y,'r*',x,z) %绘制散点图2.已知热敏电阻数据:温度t (ºC) 20.5 32.7 51.0 73.0 95.7 电阻R (Ω) 765 8268739421032求60ºC 时的电阻R . 实验步骤:(1) 以温度为横轴,电阻为纵轴,将上述数据对(,)(1,2,,5)i i t R i = 在直角坐标系中作出散点图,程序如下:t=[20.5 32.7 51.0 73.0 95.7]; %t 代表温度 R=[765 826 873 942 1032]; %R 代表电阻 plot(t,R,'r*'); %画出数据的散点图 运行程序后出来下图:(2)所给的数据点(,)(1,2,,)i i t R i n = 的分布大致呈直线状态,可用直线来拟合这些数据点的曲线。
t=[20.5 32.7 51.0 73.0 95.7]; %t 代表温度 R=[765 826 873 942 1032]; %R 代表电阻 p=polyfit(t,R,1) %做一阶线性拟合 运行结果为:p =3.3987 702.0968即用最小二乘法求得的拟合直线方程为=+R 3.3987t702.0968(3)绘制出拟合出的曲线和散点图的对比t=[20.5 32.7 51.0 73.0 95.7]; %t代表温度R=[765 826 873 942 1032]; %R代表电阻p=polyfit(t,R,1) %对(t,R)做一阶线性拟合z=polyval(p,t); %计算拟合后的多项式p中t点对应的函数值plot(t,R,'r*',t,z) %绘制散点图R0= polyval(p,60); %求60ºC时的电阻R运行结果:R0 =906.02123.设有数据如表所列,请拟合2~6、10次数时的多项式,并作出数据对比图x 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1y -0.447 1.978 3.280 6.160 7.080 7.340 7.660 9.560 9.480 9.300 11.2 实验步骤:1)将上述数据对(,)(1,2,,11)i i x y i = 在直角坐标系中作出散点图,程序如下:x=[0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1]; %x 的数据y=[-0.447 1.978 3.280 6.160 7.080 7.340 7.660 9.560 9.4809.300 11.200]; %y 的数据 plot(x,y ,'r*'); %画出数据的散点图运行程序后出来下图:2)所给的数据点(,)(1,2,,)i i x y i n = ,用2次的多项式来拟合这些数据的曲线。
程序如下: clearx=[0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1]; %x 的数据y=[-0.447 1.978 3.280 6.160 7.080 7.340 7.660 9.560 9.480 9.300 11.200]; %y 的数据p=polyfit(x,y ,2) %求2次拟合多项式的系数xi=linspace(0,1,100); %建立拟合多项式曲线的横坐标数列yi=polyval(p,xi); %计算拟合后的多项式对应xi 点的函数值yi plot(x,y ,'r*',xi,yi) 运行结果: p =-9.8108 20.1293 -0.0317 即2次拟合多项式为:229.810820.12930.0317p x x =-+-运行程序后出来下图:所给的数据点(,)(1,2,,)i i x y i n ,用3~6次的多项式来拟合这些数据的曲线。
程序如下: clearx=[0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1]; %x 的数据y=[-0.447 1.978 3.280 6.160 7.080 7.340 7.660 9.560 9.480 9.300 11.200]; %y 的数据%-------------------3次拟合曲线--------------------------------------- p3=polyfit(x,y ,3) %求3次拟合多项式的系数xi=linspace(0,1,100); %建立拟合多项式曲线的横坐标数列yi=polyval(p3,xi); %计算拟合后的多项式对应xi 点的函数值yi subplot(2,2,1),plot(x,y ,'r*',xi,yi) title('3次拟合曲线')%-------------------4次拟合曲线--------------------------------------- p4=polyfit(x,y ,4) %求4次拟合多项式的系数xi=linspace(0,1,100); %建立拟合多项式曲线的横坐标数列yi=polyval(p4,xi); %计算拟合后的多项式对应xi 点的函数值yi subplot(2,2,2),plot(x,y ,'r*',xi,yi) title('4次拟合曲线')%-------------------5次拟合曲线--------------------------------------- p5=polyfit(x,y ,5) %求3次拟合多项式的系数 xi=linspace(0,1,100); %建立拟合多项式曲线的横坐标数列yi=polyval(p5,xi); %计算拟合后的多项式对应xi 点的函数值yi subplot(2,2,3),plot(x,y ,'r*',xi,yi) title('5次拟合曲线')%-------------------6次拟合曲线--------------------------------------- p6=polyfit(x,y ,6) %求3次拟合多项式的系数xi=linspace(0,1,100); %建立拟合多项式曲线的横坐标数列yi=polyval(p6,xi); %计算拟合后的多项式对应xi 点的函数值yi subplot(2,2,4),plot(x,y ,'r*',xi,yi) title('6次拟合曲线') 运行结果: p3 =16.0758 -33.9245 29.3246 -0.6104 p4 =22.0571 -28.0385 -6.3531 23.8103 -0.4516 p5 =11.6827 -7.1496 -2.5312 -15.4072 24.9093 -0.465 p6 =1.0e+003 *0.6980 -2.0822 2.3469 -1.2208 0.2678 0.0018 -0.0004 即3次拟合多项式为:6104.03246.299245.330758.1623-+-=x x x y 4次拟合多项式为:4516.08103.233531.60385.280571.22234-+--=x x x x y 5次拟合多项式为:465.09093.244072.155312.21496.76827.112345-+---=x x x x x y6次拟合多项式为:0.0004-0.0018x 0.2678x1.2208x-2.3469xx 2.0822- x 0.698023456+++=y运行程序后出来下图:clearx=[0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1]; %x 的数据y=[-0.447 1.978 3.280 6.160 7.080 7.340 7.660 9.560 9.480 9.300 11.200]; %y 的数据p=polyfit(x,y ,10) %求10次拟合多项式的系数xi=linspace(0,1,100); %建立拟合多项式曲线的横坐标数列yi=polyval(p,xi); %计算拟合后的多项式对应xi 点的函数值yi plot(x,y ,'r*',xi,yi) 运行结果: p =1.0e+006 *Columns 1 through 9-0.4644 2.2965 -4.8773 5.8233 -4.2948 2.0211 -0.6032 0.1090 -0.0106Columns 10 through 110.04 -0.0000即10次拟合多项式为:10987654100.4644 2.2965 4.8773 5.8233 4.2948 2.02110.60320.p xx x x x x x =-+-+-+-+运行程序后出来下图:4.用下列一组数据拟合0.02=+中的参数a,b,kc t a be-()ktt100 200 300 400 500 600 700 800 900 1000 j310c⨯ 4.54 4.99 5.35 5.65 5.90 6.10 6.26 6.39 6.50 6.59 j1)编写M文件curvefun1.mfunction f=curvefun1(x,tdata)f=x(1)+x(2)*exp(-0.02*x(3)*tdata)%其中x(1)=a; x(2)=b;x(3)=k;2)输入命令tdata=100:100:1000cdata=1e-03*[4.54,4.99,5.35,5.65,5.90,6.10,6.26,6.39,6.50,6.59];x0=[0.2,0.05,0.05]; %拟合参数的初始值x=lsqcurvefit ('curvefun1',x0,tdata,cdata) %拟合相应的参数值,放入到x当中f= curvefun1(x,tdata) %求拟合后数据点对应的函数plot(tdata,cdata,'r*',tdata,f) %画出拟合后函数与原始数据对比图3)运算结果为:f =0.0043 0.0051 0.0056 0.0059 0.00610.0062 0.0062 0.0063 0.0063 0.0063x = 0.0063 -0.0034 0.2542得到图像:4)结论:a=0.0063, b=-0.0034, k=0.2542即拟合的表达式为:0.0051=-()0.00630.0034tc t e-备注:本实验报告用于各学科与计算机应用相关课程的实验,务必按时完成。