热力学函数的基本关系式共15页文档
热力学一般关系(热学高等数学偏微分)word版本
第二部分工质的热力性质六热力学函数的一般关系式由热力学基本定律引出的一些基本热力学状态函数(如内能U、熵S)及其为某一研究方便而设的组合函数(如焓H、自由能F、自由焓G等)许多都是不可测量,必须将它们与可测量(如压力p、体积V、温度T等)联系起来,否则我们将得不到实际的结果,解决不了诸如上一章讲的最大功计算等一些具体的问题。
这就需要发展热力学的数学理论以将热力学基本定律应用到各种具体问题中去。
热力学函数一般关系式 全微分性质+基本热力学关系式6.1 状态函数的数学特性对于状态参数,当我们强调它们与独立变量的函数关系时,常称它们为状态函数。
从数学上说,状态函数必定具有全微分性质。
这一数学特性十分重要,利用它可导出一系列很有实用价值的热力学关系式。
下面我们扼要介绍全微分的一些基本定理。
设函数),(y x f z =具有全微分性质dy y z dx x z dz xy ⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂= (6-1) 则必然有(1) 互易关系令式(6-1)中),(y x M x z y=⎪⎪⎭⎫ ⎝⎛∂∂, ),(y x N y z x =⎪⎪⎭⎫ ⎝⎛∂∂ 则 y x x N y M ⎪⎪⎭⎫ ⎝⎛∂∂=⎪⎪⎭⎫ ⎝⎛∂∂ (6-2)互易关系与⎰=0dz 等价。
它不仅是全微分的必要条件,而且是充分条件。
因此,可反过来检验某一物理量是否具有全微分。
(2) 循环关系当保持z 不变,即0=dz 时,由式(6-1),得0=⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂z xz y dy y z dx x z则 xy z y z x z x y ⎪⎪⎭⎫ ⎝⎛∂∂⎪⎪⎭⎫ ⎝⎛∂∂-=⎪⎪⎭⎫ ⎝⎛∂∂ 故有 1-=⎪⎪⎭⎫ ⎝⎛∂∂⎪⎪⎭⎫ ⎝⎛∂∂⎪⎪⎭⎫ ⎝⎛∂∂y z x z x x y y z (6-3)此式的功能是:若能直接求得两个偏导数,便可确定第三个偏导数。
结果也很容易记忆,只需将三个变量依上、下、外次序,即))()((xzy yxz zyx 循环就行了。
热力学函数的基本关系式
麦克斯韦关系式 S p V T T V
14
思考:定容或定压下S 随T 的变化率各等于什么?
S(T,p) S(T,V)
由定义式出发
1)由定义式出发
dS Qr C dT
定压
S Cp T p T
H p
T
T
V T
p
V
热力学状态方程,将U(或H)与p,V,T联系起来了。
—— 对实际气体,已知pVT状态方程式,代入,积分 可求ΔU、ΔH。
13
典型证明题:
证明: H T p V p V T T V V T
证:由热力学基本方程 dH = TdS + Vdp 定温下等式两边同除以dV,得
除了定义式外, 还可以导出四种类型的重要关系式
2
1. 热力学基本方程
封闭系统中, 微小可逆过程:dU=δQr+δWr
δWr ′=0时,
dS δ Qr T
δWr=-pdV,
dU=TdS-pdV
H=U+pV
dH=dU+pdV+Vdp
A=U-TS dA=dU-TdS-SdT
dH=TdS+Vdp
dA= - SdT - pdV
4
由四个热力学基本方程,分别加上相应的条件,可得到
8个派生公式:
dU = TdS- pdV
U S
V
T
U V
S
p
dH = TdS + Vdp
T V HS p源自H p SdA = -SdT- pdV
A T
V
S
A V
T
p
dG = -SdT + Vdp
热力学函数的基本关系式
dG = -SdT + Vdp
S p
T
V T
p
麦克斯韦关系式 :表示的是系统在同一状态的两种
变化率数值相等。 9
二阶混合偏导数
T p V S S V 麦氏方程记忆法:
T p
S
V S
p
① 对角乘积永远是pV,TS;
② 等式两边分母与外角标互换;
S p
T
V T
4
由四个热力学基本方程,分别加上相应的条件,可得到
8个派生公式:
dU = TdS- pdV
U S
V
T
U V
S
p
dH = TdS + Vdp
T V H
S p
H p S
dA = -SdT- pdV
A T
V
S
A V
T
p
dG = -SdT + Vdp
G T
P
S
G P
则
U T p p
V T T V
11
练习:由热力学基本方程出发证明,
H p
T
T
V T
p
V
证明:
dH=TdS+Vdp
定温下,等式两边除以dp
H p
T
T
S p
T
V
由麦克斯韦方程
S p
T
V T
p
返回
H p
T
T
V T
p
V
12
U T p p V T T V
S T p
T
T
定容
S CV T V T
S T V
15
T
V
5
2. 吉布斯 - 亥姆霍茨方程
2.11热力学函数间的关系
dc = 0 d ( cv ) = cdv d ( u ± v ) = du ± dv d ( uv ) = vdu + udv
u vdu − udv d = 2 v v
c为常数; u、v 为变量 为常数; 为常数
不定积分公式
∫ du = u + C
u m +1 u m du = +C ∫ m +1 du ∫ u = ln u + C
一、热力学基本关系式
(2) 因为
dH = TdS + Vdp
H = U + pV
d H = d U + p d V + Vd p
dU = TdS − pdV dH = TdS + Vdp
所以
一、热力学基本关系式
(3)
dF = − SdT − pdV
F = U − TS dF = dU − TdS − SdT
式中:m为常数(指数); C为积分常数。
二、对应系数关系式
U = f ( S ,V )
可逆过程) (W’=0;可逆过程) 可逆过程
F = f (T , V )
dU = (
∂U ∂U )V dS + ( ) S dV ∂S ∂V ∂U p = −( )S ∂V
dU = T dS − pdV
∂F ∂F )V dT + ( )T d V ∂T ∂V dF = − SdT − pdV dF = ( S = −( ∂F )V ∂T p = −( ∂F θ )T ∂V
第十一节 热力学函数间的关系
H
H = U + pV pV
U
U = H − pV
TS TS
热力学函数间的关系
计算结果说明,在给定条件下,298K时,合成氨反应可 以进行;而在1000K时,反应不能自发进行
再见!
H
U
TS
G
TS F
H U pV pV U H pV
G H TS F pV pV F U TS G pV
T1
T
T2 T1
H T2
dT
(1) 若温度变化范围不大,△H可近似为不随温度变化的常数
G T
T 2
G T
T 1
H
1 T2
1 T1
四、G与温度的关系—吉布斯-亥姆霍兹公式
25℃,反应 2SO3(g) 2SO2(g) O2(g)
rGm (298K) 1.400 10 5 J mol1 r Hm 1.966 105 J mol1
H T2
吉布斯-亥姆赫兹公式
G T
T
H T2
P
四、G与温度的关系—吉布斯-亥姆霍兹公式
吉布斯-亥姆赫兹方程式
Байду номын сангаас
G T
T
H T2
P
(微分形式)
应用:在等压下若已知反应在T1的rGm(T1),则可求得该反 应在T2时的rGm(T2)。
积分形式
T2 d ( G )
M 和N也是 x,y 的函数
二阶导数
M
2Z
( y )x xy ,
N
2Z
( x )y xy
所以
M N ( y )x ( x )y
三、Maxwell 关系式
热力学函数是状态函数,数学上具有全微分性质,将上述
关系式用到四个基本公式中, 就得到Maxwell关系式:
6.热力学基本关系式
G U pV TS
dG S dT V d p
U、H、F、G这些热力学函数之间的关系实质是勒让德变换 勒让德变换实际上是在我们得到了一个不变量后,要得到它的对偶自变量下的 不变量的一个重要的变换。
热力学四个基本关系式(Gibbs关系式)如下:
d U T d S p dV
S p V T T V
(1)
U p V T T p T V
得证
几个重要的偏导关系式
1.与S有关的
S p V T T V
S V T p p T
d H T d S V d p
(1)
(2) (3)
d F S d T p dV dG S dT V d p
(4)
条件: 简单封闭系统,只作体积功。
• 基本关系式实质上是 U 、 H 、 F 和 G 的数学全 微分展开式。 • 简单的封闭系统, 状态只需两个独立变量即可 决定, 这两个变量可以任意选取. • 从四个关系式的微分变量可知, 对不同的状态 函数, 在作全微分展开时, 选取的独立变量是 不一样的:
例: 试证明:
U p V T T p T V
解:有基本热力学关系式
d U T d S p dV
在等温条件下,求内能对体积的偏微商:
U S V T V p T T
由麦克斯韦关系式: 代入(1)式得:
Wf 0
Qr T d S
将上式代入内能的全微分:
W p dV
d U T d S p dV
(1)
热力学函数间的关系
r Gm ,2
1.400 × 105 1 1 5 ) = 1.966 × 10 ( 873 298 873 298
r Gm ,2 = 30820J mol -1
吉布斯- 吉布斯-亥姆赫兹方程式
G T = H T2 T P
(微分形式)
应用:在等压下若已知反应在 应用:在等压下若已知反应在T1的rGm(T1),则可求得该反 应在T 时的 应在 2时的rGm(T2)。 积分形式
∫
T2
T1
T2 G H ( ) = ∫ 2 dT T1 T T
( V V ) p dT = ( )T dp T p
1mol理想气体, PV = RT 理想气体, 理想气体 p T ( )p = , R V V V ( )T = , p p R p ( )V = V T 则 ( T ) p ( V )T ( p )V = 1
V p T
可写成
T V p ( )p( )T ( )V = 1 V p T
2010-8-2
三、Maxwell 关系式
证明: 例3证明:(
T V p )p( )T ( )V = 1 并以理想气体验证上式的正确。 并以理想气体验证上式的正确。 V p T
定量纯气体, 证: 定量纯气体, V = f (p,T)
dV = ( V V ) p dT + ( )T dp T p
当V恒定,dV = 0,则 恒定, , 恒定
dU = Td S pdV
U S 等温对V求偏微分 等温对 求偏微分 ( )T = T ( )T p V V
S p S 不易测定,根据Maxwell关系式 ( )T = ( ) V 关系式 ( )T 不易测定,根据 V T V
1.6 热力学函数的基本关系式
∂ H ∂ V ∂ p = −T ∂ T +V p T
11
δWr ′=0时, = 时
δ Qr dS = T
δWr=- =-pdV, ,
H=U+pV dH=dU+pdV+Vdp
dU=TdS-pdV
A=U-TS dA=dU-TdS-SdT
dH=TdS+Vdp
G=H-TS dG=dH-TdS-SdT
3
dA= - SdT - pdV
dG= - SdT+Vdp
dU = TdS- pdV - dH = TdS + Vdp dA = -SdT- pdV - dG = -SdT + Vdp 应用条件是 应用条件是: (1) 封闭系统;(2) 无非体积功;(3) 可逆过程。 封闭系统; 无非体积功; 可逆过程。 另外,下面的情况相当于具有可逆过程的条件: 另外 下面的情况相当于具有可逆过程的条件: 下面的情况相当于具有可逆过程的条件 (i) 定量纯物质单相系统 定量纯物质单相系统 单相系统; (ii) 定量,定组成的单相系统 定量,定组成的单相系统 单相系统; (iii) 保持相平衡及化学平衡的系统 保持相平衡 化学平衡的系统 相平衡及 的系统.
麦克斯韦关系式 :表示的是系统在同一状态的两种变化 率数值相等。因此应用于某种场合等式左右可以代换。 率数值相等。因此应用于某种场合等式左右可以代换。 等式左右可以代换
9
2. 热力学状态方程
由 dU=TdS-pdV = -
∂ U ∂ S = T −p ∂ V T ∂ V T
∂G ∂T P
[ ]
∂G ∂P T
=V
5
吉布斯2. 吉布斯-亥姆霍茨方程
热力学函数的基本关系式
⑵等温等压相变△G 对于等温等压的可逆相变,直接可得(△G)T,P=0.对于非等温 等压的非可逆相变或同温同压下两个相态的△G,可以通过设计可 逆过程进行计算,也可根据G---P关系公式求算。
1.8 热力学函数的基本关系式
H
U、H、S、A、G 、 p、V、T H =U+pV,A =U-TS,G =H-TS 1. 热力学基本方程
U
pV
TS A pV
TS
G
δWr ′=0时,则δWr=-pdV,于是
一微小可逆过程
dU=δQr+δWr,
dS δ Qr T
δWr ′ =0时,则δWr=-pdV,于是
=8586Jmol-1 故△G= △G1+ △G2 + △G3=8584Jmol-1 依Gibbs自由能减少原理,298K,1atm水不能经等温等压过程转变 为同温 同压的水蒸气,但其逆过程则是可以的。因此在298K, 1atm下液态水是稳定态。
⒊应用Gibbs--helmholtz方程求△G 将 G--H方程:{э(△G/T)/эT}P=- △H/T2
△S=0,△T=0,△H=0,
△G=0
⑵理气在等温等压的Gibbs自由能改变 △G = △H-T △S (△H=0) △S=-R∑nilnXi △G= RT∑nilnXi 其中ni为组分i的量,Xi为理想混合气中
为组分I的摩尔数。
⒌非等温等压两态的△G 若体系的两态温度,压力都不相等,根据G的定义:
热力学基本关系式
衡态) (不可逆) 例3:单纯pVT变化(仅研究均匀系统←→平衡系统)
纯pg,混合气体 由T1,p1→→T2,p2可用基本方程
dU Tds pdV -----最基本 dG sdT VdP ----最常用
3.由热力学基本方程计算纯物质pVT 变化过程的ΔA ,ΔG
①恒温过程dT= 0 dAT pdV
a. pg: PV=nRT
dGT Vdp
AT
V2 pdV
V1
nRT ln V2 V1
GT
p2Vdp nRT ln p2
p1
p1
b.凝聚相(S,l):等温压缩率很小,→体积可认为不变
AT
p
T
H p
S
V
dA SdT pdV
A S T V
A p V T
dG SdT Vdp
G S T p
G p
T
V
T U H
S V S p
U A p
V S V T
V
H p
S
G p
T
A G S
T V T p
§3.7 热力学基本方程及 Maxwell 关系式
H
pV
U
pV
A
G
• U ←第一定律;绝对值不可知 • S ←第二定律,有以第三定律为
基础的规定熵
TS
❖ H, A, G 组合辅助函数
TS
❖ U, H →能量恒算
❖ S, A, G →判断过程的方向与限度
热力学状态函数
可通过实验直接测定 p,V,T
CV,m, Cp,m等
热力学函数间关系及其相互变换
一、熵函数在分子上
1、 分母和脚标为T,用函数关系直接变换
2、分母和脚标不含T,用链关系插入T 变换
如
7
1.2 熵变换是函数变换之关键
二、熵函数在分母上,用倒易关系变换 如
8
1.2 熵变换是函数变换之关键
三、熵函数在脚标上,用循环关系把S 换到分子上 如
用U、H、F、G代替S 上述变换规则仍适用。有U、H、 F、G、S 交叉出现时,设法将其变成仅有一个出现。
C p 2V 求证: T 2 (中科院考研) T p p T
13
1.3 例证
4、 证明:
14
1.3 例证
5、 证明:
依此,原则上可处理任意函数间关系。
15
1.3 例证
6、 证明:
16
1.3
17
1.3 例证
8、
22
某气体的状态方程为p[(V/n)-b]=RT,式中b为常数, n为物质的量。若该气体经一等温过程,压力自p1变 至p2,则下列状态函数的变化,何者为零? (A)△U (B) △H (C) △S (D) △G
解:由基本方程dU=TdS-pdV得出,
U S V T p p T p T p T V V T p T p p T nR nRT = T p 2 0 p p
3
1.1 函数关系
三、定义式
四、Maxwell 关系
4 记忆口诀:“S−p、V−T,排成口字齐;平行求偏导,侧转找下 标”。
1.1 函数关系
◆ Maxwell 关系
5
1.1 函数关系
五、数学公式
Euler 关系
热力学一般关系(热学 高等数学 偏微分)
第二部分工质的热力性质六热力学函数的一般关系式由热力学基本定律引出的一些基本热力学状态函数(如内能U、熵S)及其为某一研究方便而设的组合函数(如焓H、自由能F、自由焓G等)许多都是不可测量,必须将它们与可测量(如压力p、体积V、温度T等)联系起来,否则我们将得不到实际的结果,解决不了诸如上一章讲的最大功计算等一些具体的问题。
这就需要发展热力学的数学理论以将热力学基本定律应用到各种具体问题中去。
热力学函数一般关系式 全微分性质+基本热力学关系式6.1 状态函数的数学特性对于状态参数,当我们强调它们与独立变量的函数关系时,常称它们为状态函数。
从数学上说,状态函数必定具有全微分性质。
这一数学特性十分重要,利用它可导出一系列很有实用价值的热力学关系式。
下面我们扼要介绍全微分的一些基本定理。
设函数),(y x f z =具有全微分性质dy y z dx x z dz xy ⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫⎝⎛∂∂= (6-1) 则必然有(1) 互易关系令式(6-1)中),(y x M x z y=⎪⎪⎭⎫⎝⎛∂∂,),(y x N y z x=⎪⎪⎭⎫⎝⎛∂∂ 则 yx x N yM ⎪⎪⎭⎫ ⎝⎛∂∂=⎪⎪⎭⎫⎝⎛∂∂ (6-2)互易关系与⎰=0dz 等价。
它不仅是全微分的必要条件,而且是充分条件。
因此,可反过来检验某一物理量是否具有全微分。
(2) 循环关系当保持z 不变,即0=dz 时,由式(6-1),得 0=⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫⎝⎛∂∂z xz y dy y z dx x z则 xy zy z x z x y ⎪⎪⎭⎫ ⎝⎛∂∂⎪⎪⎭⎫⎝⎛∂∂-=⎪⎪⎭⎫ ⎝⎛∂∂ 故有 1-=⎪⎪⎭⎫⎝⎛∂∂⎪⎪⎭⎫ ⎝⎛∂∂⎪⎪⎭⎫ ⎝⎛∂∂y z xz x x y y z (6-3)此式的功能是:若能直接求得两个偏导数,便可确定第三个偏导数。
结果也很容易记忆,只需将三个变量依上、下、外次序,即))()((xzy yxz zyx 循环就行了。
物理化学1.15-1 热力学函数的基本关系式
8个热力学函数: 可直接测定
p、V、T、U 、H 、S、A、G
定 H =U+pV 义 式 A =U-TS
可求得
G =H-TS=A+pV
1.热力学基本方程
封闭系统 dU =δQ + δW
可逆过程
=δQr -pdV + δWr′
δQr =TdS
dU = TdS -pdV + δWr' δWr'=0:
dA = -SdT- pdV dG = -SdT + Vdp
G S T p
G p
T
V
证明:无相变和化学变化的封 闭系统,在定温下其吉布斯自 由能随压力的改变恒为正值。
证明:
dG = -SdT + Vdp
G ( p )T
V
>0
解: dG = -SdT + Vdp
S T2 nCV ,mdT nR ln V2 ,
T1
T
V1
A nRT ln V2 V1
应(用ቤተ መጻሕፍቲ ባይዱ()i封条i()i无i闭件i)非可系:体逆统积过,功程,。
可用于: (i)定量,定组成的单相系统;
(ii) 保持相平衡及化学平衡的系统.
8个派生公式: dU = TdS- pdV dH = TdS + Vdp
U T S V U p V S
dU = TdS -pdV
dU=TdS-pdV
H=U+pV dH=dU+pdV+Vdp
A=U-TS dA=dU-TdS-SdT
dH=TdS+Vdp
dA= - SdT - pdV
热力学基本关系式
至今讨论中常应用的八个热力学函数--p、V、T、U、H、S、A、G。
其中 U 和 S 分别由热力学第一定律和第二定律导出;H、A、G 则由定义得来。
而 U、H、A、G 为具有能量量纲的函数。
这些热力学函数间通过一定关系式相互联系着。
基本热力学关系式共有十一个(以下分别用公式左边括弧中的数字标明)。
从这十一个基本关系式出发,可以导出许多其它衍生关系式,它们表示出各不同物理量间的相互关系,利用它们可以帮助我们由易于直接测量的物理量出发以计算难于直接测量的物理量的数值。
由定义可得如下三个关系式:(1) (3-136)(2) (3-137)(3) (3-138)又由热力学第一定律、第二定律联合公式,在无非膨胀功条件下:将它和式(3-136)、(3-137)、(3-138)联系起来:即可得以下四个一组被称为恒组成均相封闭系统的热力学基本方程。
又称 Gibbs 方程。
(4) (3-139)(5) (3-140)(6) (3-141)(7) (3-142)这四个基本方程均不受可逆过程的限制,因为 U、H、A、G 等随着相应两个独立的状态函数变化而变化,因而与变化的具体途径(可逆或不可逆)无关,自然亦可用于不可逆过程。
公式虽然是四个,但式(5)、(6)、(7)实际上是基本公式(4)在不同条件下的表示形式。
根据全微分定义可有如下关系:(3-143)(3-144)(3-145)(3-146)式(3-139)与式(3-143)对比、式(3-140)与式(3-144)对比、式(3-141)与式(3-145)对比、式(3-142)与式(3-146)对比,可得如下关系(或称"对应系数式"):(3-147)(3-148)(3-149)和 (3-150)如分别将尤拉(Euler)定则:应用于热力学基本方程(4)、(5)、(6)、(7)可得如下四式:(8) (3-151)(9) (3-152)(10) (3-153)(11) (3-154)这四式常称为"麦克斯威关系式"。
§3.13 几个热力学函数间的关系
作不定积分,得
G H 2 dT I T T
式中 I 为积分常数
使用上式时,需要知道 H 与T的关系后再积分
26
G H 2 dT I T T
H (T ) C p dT H0
例49
已知
C p a bT cT
2
C p a bT cT 2
p1
例50
将温度为T、在标准压力下的纯物作为标准态
G( p, T ) G ( p , T ) Vdp
p
p
对于理想气体
例30例31例32例33
p G ( p, T ) G ( p , T ) nRT ln p
例22
作业:p200-203 23,24,25
29
这就是Gibbs——Helmholtz方程的一种形式
24
(G) G H [ ]p T T
为了将该式写成易于积分的形式,在等式两 边各除以T,重排后得
1 (G) G H [ ]p T T T2 1 (G) G H [ ]p 2 2 T T T T
T V ( )S ( )p p S
(4) dG SdT Vdp
S p ( )T ( )V V T
易直接测定的偏微商。
S V ( )T ( ) p p T
利用该关系式可将实验可测偏微商来代替那些不
16
(1)求U随V的变化关系 已知基本公式 dU TdS pdV 等温对V求偏微分
值,即等温时焓随压力的变化值。
H 只要知道气体的状态方程,就可求得 ( )T p
19
(3)求 S 随 P 或V 的变化关系 等压热膨胀系数(isobaric thermal expansirity)定义