小学六年级奥数 抽屉原理(含答案)
高斯小学奥数六年级下册含答案第05讲_抽屉原理
第五讲抽屉原理二本讲知识点汇总:一、最不利原则:为了保.证.能完成一件事情,需要考虑在最倒霉(最不利)的情况下,如何能达到目标.二、抽屉原理:形式1:把n 1个苹果放到n个抽屉中,一定有2个苹果放在一个抽屉里;形式2:把m n 1个苹果放到n 个抽屉中,一定有m 1个苹果放在一个抽屉里.例1.中国奥运代表团的173 名运动员到超市买饮料,已知超市有可乐、雪碧、芬达、橙汁、味全和矿泉水 6 种饮料,每人各买两种不同的饮料,那么至少多少人买的饮料完全相同?「分析」本题的“抽屉”是饮料的选法,“苹果”是 1 73名运动员.练习1、中国奥运代表团的83 名运动员到超市买饮料.超市有可乐、雪碧、芬达和橙汁,每人各买两种不同的饮料,那么至少多少人买的饮料完全相同?例2.国庆嘉年华共有5项游艺活动,每个学生至多参加2项,至少参加1项.那么至少有多少个学生,才能保证至少有 4 个人参加的活动完全相同?「分析」本题的“抽屉”是参加活动的方法.练习2、高思运动会共有 4 个项目,每个学生至多参加3项,至少参加 1 项.那么至少有多少个学生,才能保证至少有 5 个人参加的活动完全相同?例3.从1到50这50个自然数中,至少选出多少个数,才能保证其中一定有两个数的和是50?「分析」思考一下:哪两个数的和是50?练习3、从1到35这35 个自然数中,至少选出多少个数才能保证其中一定有两个数的和为34?例4.从1到100这100个自然数中,至少选出多少个数才能保证其中一定有两个数的和是7的倍数?如果要保证是 6 的倍数呢?「分析」两个数的和是7 的倍数,这两个数除以7 的余数要符合什么条件哪?练习4、从1至99这99 个自然数中任意取出一些数,要保证其中一定有两个数的和是5 的倍数,至少要取多少个?例5.至少取出多少个正整数,才能保证其中一定有两个整数的和或差是100 的倍数?「分析」从余数角度思考一下:什么样的两个数的和或差是100?例6.在边长为 2 的正六边形中,放入50 个点,任意三点不共线,请证明:一定能从中选出三个点,以它们为顶点的三角形面积不大于「分析」通过把正六边形均分,来构造“抽屉”1.四大发明之印刷术印刷术是中国古代的四大发明之一,是中国古代汉族劳动人民经过长期实践和研究才发明的.活字印刷的方法是先制成单字的阳文反文字模,然后按照稿件把单字排列在字盘内涂墨印刷.自从汉朝发明纸以后,书写材料比起过去用的甲骨、简牍、金石和缣帛要轻便、经济多了,但是抄写书籍还是非常费工的,远远不能适应社会的需要.至迟到东汉末年的熹平年间(公元172~178 年),出现了摹印和拓印石碑的方法.大约在公元600 年前后的隋朝,人们从刻印章中得到启发,在人类历史上最早发明了雕版印刷术.雕版印刷是在一定厚度的平滑的木板上,粘贴上抄写工整的书稿,薄而近乎透明的稿纸正面和木板相贴,字就成了反体,笔划清晰可辨.雕刻工人用刻刀把版面没有字迹的部分削去,就成了字体凸出的阳文,和字体凹入的碑石阴文截然不同.印刷的时候,在凸起的字体上涂上墨汁,然后把纸覆在它的上面,轻轻拂拭纸背,字迹就留在纸上了.到了宋朝,雕版印刷事业发展到全盛时期.雕版印刷对文化的传播起了重大作用,但是也存在明显缺点:第一,刻版费时费工费料;第二,大批书版存放不便;第三,有错字不容易更正.北宋平民发明家毕昇总结了历代雕版印刷的丰富的实践经验,经过反复试验,在宋仁宗庆历年间(公元1041~1048)制成了胶泥活字,实行排版印刷,完成了印刷史上一项重大的革命.毕昇的方法是这样的:用胶泥做成一个个规格一致的毛坯,在一端刻上反体单字,字划突起的高度象铜钱边缘的厚度一样,用火烧硬,成为单个的胶泥活字.为了适应排版的需要,一般常用字都备有几个甚至几十个,以备同一版内重复的时候使用.遇到不常用的冷僻字,如果事前没有准备,可以随制随用.为便于拣字,把胶泥活字按韵分类放在木格子里,贴上纸条标明.排字的时候,用一块带框的铁板作底托,上面敷一层用松脂、蜡和纸灰混合制成的药剂,然后把需要的胶泥活字拣出来一个个排进框内.排满一框就成为一版,再用火烘烤,等药剂稍微熔化,用一块平板把字面压平,药剂冷却凝固后,就成为版型.印刷的时候,只要在版型上刷上墨,覆上纸,加一定的压力就行了.为了可以连续印刷,就用两块铁板,一版加刷,另一版排字,两版交替使用.印完以后,用火把药剂烤化,用手轻轻一抖,活字就可以从铁板上脱落下来,再按韵放回原来木格里,以备下次再用.毕昇还试验过木活字印刷,由于木料纹理疏密不匀,刻制困难,木活字沾水后变形,以及和药剂粘在一起不容易分开等原因,所以毕昇没有采用.毕昇的胶泥活字版印书方法,如果只印二三本,不算省事,如果印成百上千份,工作效率就极其可观了,不仅能够节约大量的人力物力,而且可以大大提高印刷的速度和质量,比雕版印刷要优越得多.现代的凸版铅印,虽然在设备和技术条件上是宋朝毕昇的活字印刷术所无法比拟的,但是基本原理和方法是完全相同的.活字印刷术的发明,为人类文化做出了重大贡献.这中间,中国的平民发明家毕昇的功绩是不可磨灭的.可是关于毕昇的生平事迹,我们却一无所知,幸亏毕昇创造活字印刷术的事迹,比较完整地记录在北宋著名科学家沈括的名著《梦溪笔谈》里.但是除开西夏文字的几本推测为活字印刷的佛经外,中原地区无发现活字印刷的中文印刷品!作业1. (1) 一个班有37个人,那么至少有多少人是同一星座的?(2) 一副扑克牌,共54张,那么至少从中摸出多少张牌,才能保证至少有6张牌的花色相同?2. 动物王国举行运动会,共有101位运动员,有短跑、跳高、跳远、10米跳台、3米跳板五个项目,每位运动员最多选三个项目,最少选一个项目. 那么至少有多少位运动员所选的项目都相同?3. 1至70这70个自然数中,最多可以取出多少个数,使得其中每两个数的差都不等于6?4. 1至40这40个自然数中,最多可以取出多少个数,使得其中每两个数的和都不是4的倍数?5. 在半径为1的圆内,画13个点,其中任意3点不共线?请证明:一定存在3个点,以6它们为顶点的三角形面积小于6第五讲抽屉原理二例7.答案:12.解答:共有C6215种不同的选择方式,而173 15 11L 8 ,所以至少有12 个人买的饮料完全相同.例8.答案:46.解答:共有C52C5115 种参加方法,所以至少15 3 1 46 人.例9.答案:27.解答:可构造出26个组数:(1 , 49)、( 2, 48)、…、(24, 26)、(25)、( 50).所以至少要取27个数才能保证取到一组和为50 的数.例10.答案:46, 37.解答:由题意可知,如果取出的数没有两个数的和是7的倍数,则:除以7余 1 的数与除以7余6的数不能共存,除以7 余 2 的数与除以7 余 5 的数不能共存,除以7 余 3 的数与除以7 余 4 的数不能共存.而除以7余0的数只能取1个,且100 14 7L 2,所以最不利的情况是取尽余1、余2、余3和一个余0的数, 共45 个数, 所以至少选出46个数才可满足要求.同理至少选出37个数才能保证是 6 的倍数.(注意此时除以 6 余 3 和余0 的数都只能选 1 个)例11 .答案:52.解答:可构造出51 个组数:(1 , 8)、( 2 , 9)-( 7, 14 ); (15, 22 )、(16, 23 )???( 21, 28);……(85, 92)、(86 , 93)-( 91, 98); (99)、(100).每组数中的两数的差为7 ?只取出每个数组中较小的数显然不能满足要求,所以至少要取出52 个数,这时由抽屉原理知必定能取到某一个数组的两个数.例12.解答:先将正六边形分割成 6 个边长为 2 的正三角形,再将每个三角形等分成 4 个边长为 1 的正三角形,这样就把正六边形分割成24 个边长为 1 的正三角形,则由抽屉原理知,必有 3 点在一个等边三角形中,以它们为顶点的三角形面积显然不大于1.(边长是 1 的等边三角形面积小于1)练习1、答案:14.简答:共有C426种不同的选择方式,而83 6 13 5 ,所以至少有14 个人买的饮料完全相同.练习2、答案:57.简答:共有C43C42C4114 种参加方法,所以至少14 4 1 57 人.练习3、答案:20.简答:可构造出19个组数:(1, 33)、( 2, 32)、…、(16,18)、(17)、(34)、( 35).所以至少要取20个数才能保证取到一组和为34的数.练习4、答案:42.简答:1~99这99 个数中除以5余 1 的有20个,余 2 的有20个,余3的有20个,余4的有20个, 余0 的有19 个,选出余 1 和余 2 的数,再选一个余0 的数,再任选一个数一定符合题意,20 20 1 1 42 个.作业6. 答案:(1)4个;(2)23 张.简答:(1)抽屉原理;(2)最不利原则.7. 答案:5位.简答:首先运动员的项目有C5 Cf c3 25种可能,根据抽屉原理,至少有5位运动员的项目相同.8. 答案:36个.简答:每12个数中最多取出6个.9. 答案:12个.简答:将1~40按照除以4的余数分为四组:A 组:{1 , 5,…,37};B 组:{2 , 6,…,38};C组:{3,7,…,39};D 组:{4 , 8,…,40}.首先,B、D组最多取一个?取了A组就不能取C组.所以最多能取12个.10. 证明:将半径为1的圆六等分,分为六个扇形,每个扇形的面积是在同一部分中,这三个点组成的三角形不会大于所在的扇形,即-6 根据抽屉原理,至少有三个点6。
小学奥数:抽屉原理(含答案)
小学奥数:抽屉原理(含答案)教案抽屉原理1、概念解析把3个苹果任意放到两个抽屉里,可以有哪些放置的方法呢?一个抽屉放一个,另一个抽屉放两个;或3个苹果放在某一个抽屉里.尽管放苹果的方式有所不同,但是总有一个共同的规律:至少有一个抽屉里有两个或两个以上的苹果.如果把5个苹果任意放到4个抽屉里,放置的方法更多了,但仍有这样的结果.由此我们可以想到,只要XXX的个数多于抽屉的个数,就一定能保证至少有一个抽屉里有两个或两个以上的苹果.道理很简单:如果每个抽屉里的苹果都不到两个(也就是至多有1个),那么所有抽屉里的苹果数的和就比总数少了.由此得到:抽屉原理:把多于n个的苹果放进n个抽屉里,那么至少有一个抽屉里有两个或两个以上的苹果。
如果把苹果换成了鸽子,把抽屉换成了笼子,同样有类似的结论,所以有时也把抽屉原理叫做鸽笼原理.不要小看这个“原理”,利用它可以解决一些表面看来似乎很难的数学问题。
比如,我们从街上随便找来13人,便可以断定他们中至少有两个人属相(指鼠、牛、虎、兔、…等十二种生肖)相同.怎样证实这个结论是正确的呢?只要利用抽屉原理就很简单把道理讲清楚.事实上,因为人数(13)比属相数(12)多,因而至少有两个人属相相同(在这里,把13人算作13个“苹果”,把12种属相算作12个“抽屉”)。
应用抽屉原理要注意识别“抽屉”和“苹果”,XXX的数目一定要大于抽屉的个数。
2、例题讲解例1有5个小朋友,每人都从装有许多是非围棋子的布袋中随便摸出3枚棋子.请你证实,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。
例2一副扑克牌(去掉两张王牌),每人随意摸两张牌,至少有多少人才能保证他们当中一定有两人所摸两张牌的花色情况是相同的?例3从2、4、6、…、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34。
例4从1、2、3、4、…、19、20这20个自然数中,至少任选几个数,就可以保证其中一定包括两个数,它们的差是12。
六年级奥数抽屉原理含答案
抽屉原理知识框架一、 知识点介绍抽屉原理有时也被称为鸽笼原理,它由德国数学家狄利克雷首先明确提出来并用来证明一些数论中的问题,因此,也被称为狄利克雷原则.抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可以解决很多有趣的问题,并且常常能够起到令人惊奇的作用.许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使问题得到解决.二、 抽屉原理的定义(1)举例桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。
(2)定义一般情况下,把n +1或多于n +1个苹果放到n 个抽屉里,其中必定至少有一个抽屉里至少有两个苹果。
我们称这种现象为抽屉原理。
三、 抽屉原理的解题方案(一)、利用公式进行解题 苹果÷抽屉=商……余数余数:(1)余数=1, 结论:至少有(商+1)个苹果在同一个抽屉里 (2)余数=x ()()11xn -, 结论:至少有(商+1)个苹果在同一个抽屉里(3)余数=0, 结论:至少有“商”个苹果在同一个抽屉里 (二)、利用最值原理解题将题目中没有阐明的量进行极限讨论,将复杂的题目变得非常简单,也就是常说的极限思想“任我意”方法、特殊值方法.重难点抽屉原理是一种特殊的思维方法,不但可以根据它来做出许多有趣的推理和判断,同时能够帮助同学证明很多看似复杂的问题。
本讲的主要教学目标是: (1) 理解抽屉原理的基本概念、基本用法; (2) 掌握用抽屉原理解题的基本过程; (3) 能够构造抽屉进行解题;(4)利用最不利原则进行解题;(5)利用抽屉原理与最不利原则解释并证明一些结论及生活中的一些问题。
例题精讲(一)、直接利用公式进行解题(1)求结论【例 1】6只鸽子要飞进5个笼子,每个笼子里都必须有1只,一定有一个笼子里有2只鸽子.对吗?【考点】抽屉原理【难度】1星【题型】解答【解析】6只鸽子要飞进5个笼子,如果每个笼子装1只,这样还剩下1只鸽子.这只鸽子可以任意飞进其中的一个笼子,这样至少有一个笼子里有2只鸽子.所以这句话是正确的.利用刚刚学习过的抽屉原理来解释这个问题,把鸽笼看作“抽屉”,把鸽子看作“苹果”,6511÷=,112+=(只)把6个苹果放到5个抽屉中,每个抽屉中都要有1个苹果,那么肯定有一个抽屉中有两个苹果,也就是一定有一个笼子里有2只鸽子.【答案】对【巩固】年级一班学雷锋小组有13人.教数学的张老师说:“你们这个小组至少有2个人在同一月过生日.”你知道张老师为什么这样说吗?【考点】抽屉原理【难度】1星【题型】解答【解析】略.【总结】题目中并没有说明什么是“抽屉”,什么是“物品”,解题的关键是制造“抽屉”,确定假设的“物品”,根据“抽屉少,物品多”转化为抽屉原理来解.【答案】从题目可以看出,这道题显然与月份有关.我们知道,一年有12个月,把这12个月看成12个抽屉,这道题就相当于把13个苹果放入12个抽屉中.根据抽屉原理,至少有一个抽屉放了两个苹果.因此至少有两个同学在同一个月过生日.【例 2】人的头发平均有12万根,如果最多不超过20万根,那么13亿中国人中至少有人的头发的根数相同。
小学六年级奥数-第29讲 抽屉原理(一)后附答案
第29讲抽屉原理(一)一、知识要点如果给你5盒饼干,让你把它们放到4个抽屉里,那么可以肯定有一个抽屉里至少有2盒饼干。
如果把4封信投到3个邮箱中,那么可以肯定有一个邮箱中至少有2封信。
如果把3本联练习册分给两位同学,那么可以肯定其中有一位同学至少分到2本练习册。
这些简单内的例子就是数学中的“抽屉原理”。
基本的抽屉原理有两条:(1)如果把x+k(k≥1)个元素放到x个抽屉里,那么至少有一个抽屉里含有2个或2个以上的元素。
(2)如果把m×x×k(x>k≥1)个元素放到x个抽屉里,那么至少有一个抽屉里含有m+1个或更多个元素。
利用抽屉原理解题时要注意区分哪些是“抽屉”?哪些是“元素”?然后按以下步骤解答:a、构造抽屉,指出元素。
b、把元素放入(或取出)抽屉。
C、说明理由,得出结论。
本周我们先来学习第(1)条原理及其应用。
二、精讲精练【例题1】某校六年级有学生367人,请问有没有两个学生的生日是同一天?为什么?把一年中的天数看成是抽屉,把学生人数看成是元素。
把367个元素放到366个抽屉中,至少有一个抽屉中有2个元素,即至少有两个学生的生日是同一天。
平年一年有365天,闰年一年有366天。
把天数看做抽屉,共366个抽屉。
把367个人分别放入366个抽屉中,至少在一个抽屉里有两个人,因此,肯定有两个学生的生日是同一天。
练习1:1、某校有370名1992年出生的学生,其中至少有2个学生的生日是同一天,为什么?2、某校有30名学生是2月份出生的,能否至少有两个学生生日是在同一天?3、15个小朋友中,至少有几个小朋友在同一个月出生?【例题2】某班学生去买语文书、数学书、外语书。
买书的情况是:有买一本的、二本的、也有三本的,问至少要去几位学生才能保证一定有两位同学买到相同的书(每种书最多买一本)?首先考虑买书的几种可能性,买一本、二半、三本共有7种类型,把7种类型看成7个抽屉,去的人数看成元素。
小学六年级奥数抽屉原理含答案
小学六年级奥数抽屉原理含答案Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】抽屉原理知识要点1.抽屉原理的一般表述(1)假设有3个苹果放入2个抽屉中,必然有一个抽屉中至少有2个苹果。
它的一般表述为:第一抽屉原理:(mn+1)个物体放入n个抽屉,其中必有一个抽屉中至少有(m+1)个物体。
(2)若把3个苹果放入4个抽屉中,则必然有一个抽屉空着。
它的一般表述为:第二抽屉原理:(mn-1)个物体放入n个抽屉,其中必有一个抽屉中至多有(m-1)个物体。
2.构造抽屉的方法常见的构造抽屉的方法有:数的分组、染色分类、图形的分割、剩余类等等。
例1自制的一副玩具牌共计52张(含四种牌:红桃、红方、黑桃、黑梅,每种牌都有1点,2点,……13点牌各一张),洗好后背面朝上放。
一次至少抽取张牌,才能保证其中必定有2张牌的点数和颜色都相同。
如果要求一次抽出的牌中必定有3张牌的点数是相邻的(不计颜色),那么至少要取张牌。
点拨对于第一问,最不利的情况是两种颜色都取了1~13点各一张,此时再抽一张,这张牌必与已抽取的某张牌的颜色与点数都相同。
点拨对于第二问,最不利的情况是:先抽取了1,2,4,5,7,8,10,11,13各4张,此时再取一张,这张牌的点数是3,6,9,12中的一张,在已抽取的牌中必有3张的点数相邻。
解(1)13×2+1=27(张) (2)9×4+1=37(张)例2 证明:37人中,(1)至少有4人属相相同;(2)要保证有5人属相相同,但不保证有6人属相相同,那么人的总数应在什么范围内点拨可以把12个属相看做12个抽屉,根据第一抽屉原理即可解决。
解 (1)因为37÷12=3……1,所以,根据第一抽屉原理,至少有3+1=4(人)属相相同。
(2)要保证有5人的属相相同的最少人数为4×12+1=49(人)不保证有6人属相相同的最多人数为5×12=60(人)所以,总人数应在49人到60人的范围内。
奥数-18抽屉原理+答案
请你说明理由。
2. 一个旅行团在北京游玩 5 天,他们想去 6 个景点游玩,导游说你们至少有一天游 玩两个景点,请你说明理由。
二、 解题方法
抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可以解决很多有趣 的问题,许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使 问题得到解决。
1. 公式 苹果÷抽屉=商……余数 余数:① 余数=0,结论:至少有“商”个苹果在同一个抽屉里。 ② 余数>0,结论:至少有(商+1)个苹果在同一个抽屉里。
抽屉原理
一、 抽屉原理
桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,至少有一个抽 屉里面至少放两个苹果。如果把 n+1 个物体放到 n 个抽屉中,那么至少有一个抽屉 中放着 2 个或更多的物体,我们称这种现象为抽屉原理。
抽屉原理可以推广为:如果有 m 个抽屉,有 k×m+r(0<r≤m)个元素那么至 少有一个抽屉中要放(k+1)个或更多的元素。通俗地说,如果元素的个数是抽屉个 数的 k 倍多一些,那么至少有一个抽屉要放(k+1)个或更多的元素。
6. 四个连续的自然数分别被 3 除后,必有两个余数相同,请说明理由。
2
【例3】 一养鸽户有 10 只鸽笼,每天鸽子回家他都要数一数,并作记录。他发现 每天都会出现 3 只鸽子住同一个鸽笼,请问:他至少养了几只鸽子?
解析:本题需要求“苹果”的数量,需要反用抽屉原理,并结合最“坏”情况。 最坏的情况是每个笼子都有 2 只鸽子,出现 3 只鸽子住同一个鸽笼,是因为比这些 鸽子还至少多 1 只鸽子,所以至少需要养 21 只鸽子。
小学奥数--抽屉原理
⼩学奥数--抽屉原理⼩学奥数--抽屉原理抽屉原理(⼀)解题要点:要从最不利情况考虑,准确地建⽴抽屉和确定元素的总个数(如果将5个苹果放到3个抽屉中去,那么不管怎么放,⾄少有⼀个抽屉中放的苹果不少于2个。
道理很简单,如果每个抽屉中放的苹果都少于2个,即放1个或不放,那么3个抽屉中放的苹果的总数将少于或等于3,这与有5个苹果的已知条件相⽭盾,因此⾄少有⼀个抽屉中放的苹果不少于2个。
同样,有5只鸽⼦飞进4个鸽笼⾥,那么⼀定有⼀个鸽笼⾄少飞进了2只鸽⼦。
以上两个简单的例⼦所体现的数学原理就是“抽屉原理”,也叫“鸽笼原理”。
抽屉原理1:将多于n件的物品任意放到n个抽屉中,那么⾄少有⼀个抽屉中的物品不少于2件。
说明这个原理是不难的。
假定这n个抽屉中,每⼀个抽屉内的物品都不到2件,那么每⼀个抽屉中的物品或者是⼀件,或者没有。
这样,n个抽屉中所放物品的总数就不会超过n件,这与有多于n件物品的假设相⽭盾,所以前⾯假定“这n 个抽屉中,每⼀个抽屉内的物品都不到2件”不能成⽴,从⽽抽屉原理1成⽴。
从最不利原则也可以说明抽屉原理1。
为了使抽屉中的物品不少于2件,最不利的情况就是n个抽屉中每个都放⼊1件物品,共放⼊n 件物品,此时再放⼊1件物品,⽆论放⼊哪个抽屉,都⾄少有1个抽屉不少于2件物品。
这就说明了抽屉原理1。
例1 某幼⼉园有367名1996年出⽣的⼩朋友,是否有⽣⽇相同的⼩朋友,分析与解:1996年是闰年,这年应有366天。
把366天看作366个抽屉,将367名⼩朋友看作367个物品。
这样,把367个物品放进366个抽屉⾥,⾄少有⼀个抽屉⾥不⽌放⼀个物品。
因此⾄少有2名⼩朋友的⽣⽇相同。
例2在任意的四个⾃然数中,是否其中必有两个数,它们的差能被3整除, 分析与解:因为任何整数除以3,其余数只可能是0,1,2三种情形。
我们将余数的这三种情形看成是三个“抽屉”。
⼀个整数除以3的余数属于哪种情形,就将此整数放在那个“抽屉”⾥。
高斯小学奥数六年级下册含答案第05讲_抽屉原理
第五讲 抽屉原理二本讲知识点汇总:一、 最不利原则:为了保证..能完成一件事情,需要考虑在最倒霉(最不利)的情况下,如何能达到目标.二、 抽屉原理:形式1:把个苹果放到n 个抽屉中,一定有2个苹果放在一个抽屉里; 形式2:把个苹果放到n 个抽屉中,一定有个苹果放在一个抽屉里.例1. 中国奥运代表团的173名运动员到超市买饮料,已知超市有可乐、雪碧、芬达、橙汁、味全和矿泉水6种饮料,每人各买两种不同的饮料,那么至少多少人买的饮料完全相同? 「分析」本题的“抽屉”是饮料的选法,“苹果”是173名运动员.练习1、中国奥运代表团的83名运动员到超市买饮料.超市有可乐、雪碧、芬达和橙汁,每人各买两种不同的饮料,那么至少多少人买的饮料完全相同?例2. 国庆嘉年华共有5项游艺活动,每个学生至多参加2项,至少参加1项.那么至少有多少个学生,才能保证至少有4个人参加的活动完全相同?「分析」本题的“抽屉”是参加活动的方法.练习2、高思运动会共有4个项目,每个学生至多参加3项,至少参加1项.那么至少有多少个学生,才能保证至少有5个人参加的活动完全相同?1m + 1m n ⨯+ 1n +例3.从1到50这50个自然数中,至少选出多少个数,才能保证其中一定有两个数的和是50?「分析」思考一下:哪两个数的和是50?练习3、从1到35这35个自然数中,至少选出多少个数才能保证其中一定有两个数的和为34?例4.从1到100这100个自然数中,至少选出多少个数才能保证其中一定有两个数的和是7的倍数?如果要保证是6的倍数呢?「分析」两个数的和是7的倍数,这两个数除以7的余数要符合什么条件哪?练习4、从1至99这99个自然数中任意取出一些数,要保证其中一定有两个数的和是5的倍数,至少要取多少个?例5.至少取出多少个正整数,才能保证其中一定有两个整数的和或差是100的倍数?「分析」从余数角度思考一下:什么样的两个数的和或差是100?例6.在边长为2的正六边形中,放入50个点,任意三点不共线,请证明:一定能从中选出三个点,以它们为顶点的三角形面积不大于1.「分析」通过把正六边形均分,来构造“抽屉”.四大发明之印刷术印刷术是中国古代的四大发明之一,是中国古代汉族劳动人民经过长期实践和研究才发明的.活字印刷的方法是先制成单字的阳文反文字模,然后按照稿件把单字排列在字盘内涂墨印刷.自从汉朝发明纸以后,书写材料比起过去用的甲骨、简牍、金石和缣帛要轻便、经济多了,但是抄写书籍还是非常费工的,远远不能适应社会的需要.至迟到东汉末年的熹平年间(公元172~178年),出现了摹印和拓印石碑的方法.大约在公元600年前后的隋朝,人们从刻印章中得到启发,在人类历史上最早发明了雕版印刷术.雕版印刷是在一定厚度的平滑的木板上,粘贴上抄写工整的书稿,薄而近乎透明的稿纸正面和木板相贴,字就成了反体,笔划清晰可辨.雕刻工人用刻刀把版面没有字迹的部分削去,就成了字体凸出的阳文,和字体凹入的碑石阴文截然不同.印刷的时候,在凸起的字体上涂上墨汁,然后把纸覆在它的上面,轻轻拂拭纸背,字迹就留在纸上了.到了宋朝,雕版印刷事业发展到全盛时期.雕版印刷对文化的传播起了重大作用,但是也存在明显缺点:第一,刻版费时费工费料;第二,大批书版存放不便;第三,有错字不容易更正.北宋平民发明家毕昇总结了历代雕版印刷的丰富的实践经验,经过反复试验,在宋仁宗庆历年间(公元1041~1048)制成了胶泥活字,实行排版印刷,完成了印刷史上一项重大的革命.毕昇的方法是这样的:用胶泥做成一个个规格一致的毛坯,在一端刻上反体单字,字划突起的高度象铜钱边缘的厚度一样,用火烧硬,成为单个的胶泥活字.为了适应排版的需要,一般常用字都备有几个甚至几十个,以备同一版内重复的时候使用.遇到不常用的冷僻字,如果事前没有准备,可以随制随用.为便于拣字,把胶泥活字按韵分类放在木格子里,贴上纸条标明.排字的时候,用一块带框的铁板作底托,上面敷一层用松脂、蜡和纸灰混合制成的药剂,然后把需要的胶泥活字拣出来一个个排进框内.排满一框就成为一版,再用火烘烤,等药剂稍微熔化,用一块平板把字面压平,药剂冷却凝固后,就成为版型.印刷的时候,只要在版型上刷上墨,覆上纸,加一定的压力就行了.为了可以连续印刷,就用两块铁板,一版加刷,另一版排字,两版交替使用.印完以后,用火把药剂烤化,用手轻轻一抖,活字就可以从铁板上脱落下来,再按韵放回原来木格里,以备下次再用.毕昇还试验过木活字印刷,由于木料纹理疏密不匀,刻制困难,木活字沾水后变形,以及和药剂粘在一起不容易分开等原因,所以毕昇没有采用.毕昇的胶泥活字版印书方法,如果只印二三本,不算省事,如果印成百上千份,工作效率就极其可观了,不仅能够节约大量的人力物力,而且可以大大提高印刷的速度和质量,比雕版印刷要优越得多.现代的凸版铅印,虽然在设备和技术条件上是宋朝毕昇的活字印刷术所无法比拟的,但是基本原理和方法是完全相同的.活字印刷术的发明,为人类文化做出了重大贡献.这中间,中国的平民发明家毕昇的功绩是不可磨灭的.可是关于毕昇的生平事迹,我们却一无所知,幸亏毕昇创造活字印刷术的事迹,比较完整地记录在北宋著名科学家沈括的名著《梦溪笔谈》里.但是除开西夏文字的几本推测为活字印刷的佛经外,中原地区无发现活字印刷的中文印刷品!作业1. (1)一个班有37个人,那么至少有多少人是同一星座的?(2)一副扑克牌,共54张,那么至少从中摸出多少张牌,才能保证至少有6张牌的花色相同?2. 动物王国举行运动会,共有101位运动员,有短跑、跳高、跳远、10米跳台、3米跳板五个项目,每位运动员最多选三个项目,最少选一个项目.那么至少有多少位运动员所选的项目都相同?3. 1至70这70个自然数中,最多可以取出多少个数,使得其中每两个数的差都不等于6?4. 1至40这40个自然数中,最多可以取出多少个数,使得其中每两个数的和都不是4的倍数?5. 在半径为1的圆内,画13个点,其中任意3点不共线.请证明:一定存在3个点,以它们为顶点的三角形面积小于6.第五讲抽屉原理二例7.答案:12.解答:共有2615C=种不同的选择方式,而17315118÷=L,所以至少有12个人买的饮料完全相同.例8.答案:46.解答:共有215515C C+=种参加方法,所以至少153146⨯+=人.例9.答案:27.解答:可构造出26个组数:(1,49)、(2,48)、…、(24,26)、(25)、(50).所以至少要取27个数才能保证取到一组和为50的数.例10.答案:46,37.解答:由题意可知,如果取出的数没有两个数的和是7的倍数,则:除以7余1的数与除以7余6的数不能共存,除以7余2的数与除以7余5的数不能共存,除以7余3的数与除以7余4的数不能共存.而除以7余0的数只能取1个,且1001472=⨯L,所以最不利的情况是取尽余1、余2、余3和一个余0的数,共45个数,所以至少选出46个数才可满足要求.同理至少选出37个数才能保证是6的倍数.(注意此时除以6余3和余0的数都只能选1个)例11.答案:52.解答:可构造出51个组数:(1,8)、(2,9)…(7,14);(15,22)、(16,23)…(21,28);……(85,92)、(86,93)…(91,98);(99)、(100).每组数中的两数的差为7.只取出每个数组中较小的数显然不能满足要求,所以至少要取出52个数,这时由抽屉原理知必定能取到某一个数组的两个数.例12.解答:先将正六边形分割成6个边长为2的正三角形,再将每个三角形等分成4个边长为1的正三角形,这样就把正六边形分割成24个边长为1的正三角形,则由抽屉原理知,必有3点在一个等边三角形中,以它们为顶点的三角形面积显然不大于1.(边长是1的等边三角形面积小于1)练习1、答案:14.简答:共有246C=种不同的选择方式,而836135=⨯+,所以至少有14个人买的饮料完全相同.练习2、答案:57.简答:共有32144414C C C++=种参加方法,所以至少144157⨯+=人.练习3、答案:20.简答:可构造出19个组数:(1,33)、(2,32)、…、(16,18)、(17)、(34)、(35).所以至少要取20个数才能保证取到一组和为34的数.练习4、答案:42.简答:1~99这99个数中除以5余1的有20个,余2的有20个,余3的有20个,余4的有20个,余0的有19个,选出余1和余2的数,再选一个余0的数,再任选一个数一定符合题意,20201142+++=个.作业6. 答案:(1)4个;(2)23张.简答:(1)抽屉原理;(2)最不利原则.7. 答案:5位.简答:首先运动员的项目有12355525C C C ++=种可能,根据抽屉原理,至少有5位运动员的项目相同.8. 答案:36个.简答:每12个数中最多取出6个.9. 答案:12个.简答:将1~40按照除以4的余数分为四组:A 组:{1,5,…,37};B 组:{2,6,…,38};C 组:{3,7,…,39};D 组:{4,8,…,40}.首先,B 、D 组最多取一个.取了A 组就不能取C 组. 所以最多能取12个.10. 证明:将半径为1的圆六等分,分为六个扇形,每个扇形的面积是6π.根据抽屉原理,至少有三个点在同一部分中,这三个点组成的三角形不会大于所在的扇形,即6π.。
小学奥数—抽屉原理
小学奥数-抽屉原理(一) 先了解一下抽屉原理的概念,然后结合一些较复杂的抽屉原理问题,讨论如何构造抽屉。
抽屉原理1将多于n件物品任意放到n个抽屉中,那么至少有一个抽屉中的物品不少于2件。
抽屉原理2将多于m×n件物品任意放到到n个抽屉中,那么至少有一个抽屉中的物品不少于(m+1)件。
理解抽屉原理要注意几点:(1)抽屉原理是讨论物品与抽屉的关系,要求物品数比抽屉数或抽屉数的倍数多,至于多多少,这倒无妨。
(2)“任意放”的意思是不限制把物品放进抽屉里的方法,不规定每个抽屉中都要放物品,即有些抽屉可以是空的,也不限制每个抽屉放物品的个数。
(3)抽屉原理只能用来解决存在性问题,“至少有一个”的意思就是存在,满足要求的抽屉可能有多个,但这里只需保证存在一个达到要求的抽屉就够了。
(4)将a件物品放入n个抽屉中,如果a÷n= m……b,其中b是自然数,那么由抽屉原理2就可得到,至少有一个抽屉中的物品数不少于(m+1)件。
例1 五年级有47名学生参加一次数学竞赛,成绩都是整数,满分是100分。
已知3名学生的成绩在60分以下,其余学生的成绩均在75~95分之间。
问:至少有几名学生的成绩相同?分析与解:关键是构造合适的抽屉。
既然是问“至少有几名学生的成绩相同”,说明应以成绩为抽屉,学生为物品。
除3名成绩在60分以下的学生外,其余成绩均在75~95分之间,75~95共有21个不同分数,将这21个分数作为21个抽屉,把47-3=44(个)学生作为物品。
例2 夏令营组织2000名营员活动,其中有爬山、参观博物馆和到海滩游玩三个项目。
规定每人必须参加一项或两项活动。
那么至少有几名营员参加的活动项目完全相同?分析与解:本题的抽屉不是那么明显,因为问的是“至少有几名营员参加的活动项目完全相同”,所以应该把活动项目当成抽屉,营员当成物品。
营员数已经有了,现在的问题是应当搞清有多少个抽屉。
例3把125本书分给五(2)班学生,如果其中至少有1人分到至少4本书,那么,这个班最多有多少人?分析与解:这道题一下子不容易理解,我们将它变变形式。
六年级奥数:抽屉原理(附答案详解)
六年级奥数:抽屉原理(附答案详解)一、填空题1.一个联欢会有100人参加,每个人在这个会上至少有一个朋友.那么这100人中至少有个人的朋友数目相同.2.在明年(即1999年)出生的1000个孩子中,请你预测:(1)同在某月某日生的孩子至少有个.(2)至少有个孩子将来不单独过生日.3.一个口袋里有四种不同颜色的小球.每次摸出2个,要保证有10次所摸的结果是一样的,至少要摸次.4.有红、黄、蓝三种颜色的小珠子各4颗混放在口袋里,为了保证一次能取到2颗颜色相同的珠子,一次至少要取颗.如果要保证一次取到两种不同颜色的珠子各2颗,那么一定至少要取出颗.5.从1,2,3…,12这十二个数字中,任意取出7个数,其中两个数之差是6的至少有对.6.某省有4千万人口,每个人的头发根数不超过15万根,那么该省中至少有人的头发根数一样多.7.在一行九个方格的图中,把每个小方格涂上黑、白两种颜色中的一种,那么涂色相同的小方格至少有个.8.一付扑克牌共有54张(包括大王、小王),至少从中取张牌,才能保证其中必有3种花色.9.五个同学在一起练习投蓝,共投进了41个球,那么至少有一个人投进了个球.10.某班有37名小学生,他们都订阅了《小朋友》、《儿童时代》、《少年报》中的一种或几种,那么其中至少有名学生订的报刊种类完全相同.二、解答题11.任给7个不同的整数,求证其中必有两个整数,它们的和或差是10的倍数.12.在边长为1的正方形内任取51个点,求证:一定可以从中找出3点,以它们为顶点的三角形的面积不大于1/50.13.某幼儿园有50个小朋友,现在拿出420本连环画分给他们,试证明:至少有4个小朋友分到连环画一样多(每个小朋友都要分到连环画).14.能否在88的棋盘上的每一个空格中分别填入数字1,或2,或3,要使每行、每列及两条对角线上的各个数字之和互不相同?请说明理由.1.2因为每个人至少有1个朋友,至多有99个朋友,将有1个朋友的人,2个朋友的人,…,99个朋友的人分成99类,在100个人中,总有两个人属于同一类,他们的朋友个数相同.2.(1)3;(2)636因为1999年有365天,故在1999年出生的孩子至少有(个)孩子的生日相同;又因为1000-(365-1)=363,即至少有363个孩子将来不单独过生日.3.91当摸出的2个球颜色相同时,可以有4种不同的结果;当摸出的2个球颜色不同时,最多可以有3+2+1=6(种)不同结果.一共有10种不同结果.将这10种不同结果看作10个抽屉,因为要求10次摸出结果相同,故至少要摸910+1=91(次).4.4;7将三种不同颜色看作3个抽屉,对于第一问中为保证一次取到2颗相同颜色的珠子,一次至少要取13+1=4(颗)珠子.对于第二问为了保证一次取到两种不同颜色珠子各2颗,一次至少要取4+(12+1)=7(颗)珠子.5.1将1~12这十二个数组成这六对两数差为6的数组.任取7个数,必定有两个数差在同一组中,这一对数的差为6.6.267将4千万人按头发的根数进行分类:0根,1根,2根…,150000根共150001类.因为40000000=(266150001)+99743 266150001,故至少有一类中的人数不少于266+1=267(个),即该省至少有267个人的头发根数一样多.7.7将每10块颜色相同的木块算作一类,共3类.把这三类看作三个抽屉,而现在要保证至少有三块同色木块在同一抽屉中,那么至少要有23+1=7(块).8.29将4种花色看作4个抽屉,为了保证取出3张同色花,那么应取尽2个抽屉由的213张牌及大、小王与一张另一种花色牌.计共取213+2+1=29(张)才行.9.9将5个同学投进的球作为抽屉,将41个球放入抽屉中,至少有一个抽屉中放了9个球,(否则最多只能进58=40个球).10.6订阅报刊的种类共有7种:单订一份3种,订二份3种,订三分1种.将37名学生依他们订的报刊分成7类,至少有6人属于同一类,否则最多只有66=36(人).11.将整数的末位数字(0~9)分成6类:在所给的7个整数中,若存在两个数,其末位数字相同,则其差是10的倍数;若此7数末位数字不同,则它们中必有两个属于上述6类中的某一类,其和是10的倍数.A BC EF GH 12.将边长为1的正方形分成25个边条为的正方形,在51个点中,一定有(个)点属于同一个小正方形.不妨设A、B、C三点边长为的小正方形EFGH内,由于三角形ABC 的面积不大于小正方形面积EFGH的,又EFGH的面积为.故三角形ABC 的面积不大于.13.考虑最极端的情况,有3个小朋友分到1本,有3个小朋友分到2本,…,有3个小朋友分到16本,最后两个小朋友分到17本,那么一共至少要3(1+2+3+…+16)+217=442(本),而442 420,故一定有4个小朋友分了同样多的书.14.注意到8行、8列及两对角线共有18条"线",每条线上有8个数字,要使每条线上的数字和不同,也就是需要每条线上的数字和有18种以上的可能.但我们填入的数只有1、2、3三种,因此在每条线上的8个数字中,其和最小是8,最大是24,只有24-8+1=17(种).故不可能使得每行,每列及两条对角线上的各个数字之和互不相等.。
小学六年级奥数第30讲 抽屉原理(二)(含答案分析)
第30讲抽屉原理(二)一、知识要点在抽屉原理的第(2)条原则中,抽屉中的元素个数随着元素总数的增加而增加,当元素总数达到抽屉数的若干倍后,可用抽屉数除元素总数,写成下面的等式:元素总数=商×抽屉数+余数如果余数不是0,则最小数=商+1;如果余数正好是0,则最小数=商。
二、精讲精练【例题1】幼儿园里有120个小朋友,各种玩具有364件。
把这些玩具分给小朋友,是否有人会得到4件或4件以上的玩具?把120个小朋友看做是120个抽屉,把玩具件数看做是元素。
则364=120×3+4,4<120。
根据抽屉原理的第(2)条规则:如果把m×x×k(x>k≥1)个元素放到x个抽屉里,那么至少有一个抽屉里含有m+1个或更多个元素。
可知至少有一个抽屉里有3+1=4个元素,即有人会得到4件或4件以上的玩具。
练习1:1、一个幼儿园大班有40个小朋友,班里有各种玩具125件。
把这些玩具分给小朋友,是否有人会得到4件或4件以上的玩具?2、把16枝铅笔放入三个笔盒里,至少有一个笔盒里的笔不少于6枝。
这是为什么?3、把25个球最多放在几个盒子里,才能至少有一个盒子里有7个球?【例题2】布袋里有4种不同颜色的球,每种都有10个。
最少取出多少个球,才能保证其中一定有3个球的颜色一样?把4种不同颜色看做4个抽屉,把布袋中的球看做元素。
根据抽屉原理第(2)条,要使其中一个抽屉里至少有3个颜色一样的球,那么取出的球的个数应比抽屉个数的2倍多1。
即2×4+1=9(个)球。
列算式为(3—1)×4+1=9(个)练习2:1、布袋里有组都多的5种不同颜色的球。
最少取出多少个球才能保证其中一定有3个颜色一样的球?2、一个容器里放有10块红木块、10块白木块、10块蓝木块,它们的形状、大小都一样。
当你被蒙上眼睛去容器中取出木块时,为确保取出的木块中至少有4块颜色相同,应至少取出多少块木块?3、一副扑克牌共54张,其中1—13点各有4张,还有两张王的扑克牌。
小学奥数抽屉原理题型及答案解析
小学奥数抽屉原理题型及答案解析一、抽屉原理解释抽屉原理,也被称为鸽巢原理,是组合数学中的一个重要原理。
这个原理的基本含义是:如果n+1个物体被放到n个抽屉里,那么至少有一个抽屉中会放有2个或更多的物体。
这个原理可以用来解决很多看似复杂的问题。
原理解释:假设有3个抽屉和4个苹果,我们要把这4个苹果放进3个抽屉里。
无论我们怎么放,总会有至少一个抽屉里放了2个或更多的苹果。
这是因为每个抽屉最多只能放1个苹果的话,3个抽屉只能放3个苹果,但我们有4个苹果,所以至少有一个抽屉里会有2个苹果。
同样的,如果有n个抽屉和n+1个物体,无论我们怎么分配这些物体到抽屉里,至少会有一个抽屉里会有2个或更多的物体。
二、抽屉原理应用举例属相问题:中国有12个属相,如果问任意37个人中,至少有几个人属相相同?我们可以把12个属相看作12个抽屉,37个人看作37个物体。
根据抽屉原理,至少有一个抽屉里有4个或更多的物体,也就是说,至少有4个人的属相是相同的。
自然数问题:在任意的100个自然数中,是否可以找到一些数(可以是一个数),它们的和能被100整除?这个问题也可以通过抽屉原理来解决。
如果我们把这100个自然数对100取余,那么余数只能是0到99之间的数,也就是有100个“抽屉”。
根据抽屉原理,至少有一个“抽屉”里有多于一个的数,这两个数的差就是100的倍数,因此它们的和也能被100整除。
三、抽屉原理解题思路和方法首先,需要理解抽屉原理的基本含义,即如果把n+1个物体放在n个抽屉里,那么至少有一个抽屉中至少放有2个物体。
这是解题的基础。
其次,在解题过程中,需要找出隐藏的抽屉数和物体数,并将问题转化为抽屉问题。
这通常需要对问题进行仔细分析,找出其中的规律和特点。
接下来,可以利用平均分的方法来确定每个抽屉中的物体数。
如果物体数不能被抽屉数整除,那么至少有一个抽屉中的物体数会多于平均值。
这有助于确定至少有多少个物体是相同或满足某种条件的。
小学抽屉原理公式
小学奥数抽屉原理公式及经典例题解答分析第一抽屉原理原理1:把多于n个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件。
证明(反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n,而不是题设的n+k(k≥1),故不可能。
原理2 :把多于mn(m乘以n)个的物体放到n个抽屉里,则至少有一个抽屉里有不少于m+1的物体。
证明(反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn个物体,与题设不符,故不可能。
原理3 :把无穷多件物体放入n个抽屉,则至少有一个抽屉里有无穷个物体。
原理1 、2 、3都是第一抽屉原理的表述。
例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况:①4=4+0+0②4=3+1+0③4=2+2+0④4=2+1+1观察上面四种放物体的方式,我们会发现一个共同特点:总有那么一个抽屉里有2个或多于2个物体,也就是说必有一个抽屉中至少放有2个物体。
第二抽屉原理把(mn——1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体。
证明(反证法):若每个抽屉都有不少于m个物体,则总共至少有mn个物体,与题设矛盾,故不可能。
例:①k=[n/m]+1个物体:当n不能被m整除时。
②k=n/m个物体:当n能被m整除时。
理解知识点:[X]表示不超过X的最大整数。
例[4.351]=4;[0.321]=0;[2.9999]=2;关键问题:构造物体和抽屉。
也就是找到代表物体和抽屉的量,而后依据抽屉原则进行运算。
抽屉原理经典例题:1、30名学生参加数学竞赛,已知参赛者中任何10人里都至少有一名男生,那么男生至少有______人。
答案:30-(10-1)=30-9,=21(人)。
答:男生至少有21人。
2、一副扑克牌有54张,至少抽取______张扑克牌,方能使其中至少有两张牌有相同的点数。
(大小鬼不相同)答案:建立抽屉:54张牌,根据点数特点可以分别看做15个抽屉,考虑最差情况:每个抽屉都摸出了1张牌,共摸出15张牌,此时再任意摸出一张,无论放到哪个抽屉,都会出现有两张牌在同一个抽屉,即两张牌点数相同,15+1=16(张),答:至少抽取16张扑克牌,方能使其中至少有两张牌有相同的点数。
六年级奥数第30讲抽屉原理
抽屉原理是数学中一个非常重要的概念,也被称为鸽巢原理。
它的含义是:如果有n+1个物体放入n个容器中,那么至少有一个容器中会有两个或两个以上的物体。
这个概念有时候在解决问题中起到了非常重要的作用。
现在我们来看一个具体的例子。
问题:小明有7双袜子,每双袜子的颜色都不同。
他忘记了每双袜子的颜色,但他想知道他至少要在袜子抽屉中拿出几只袜子,才能确保他至少拿到一双相同颜色的袜子?解答:根据抽屉原理,我们知道如果小明至少要拿出8只袜子,那么他肯定能拿到一双相同颜色的袜子,因为他只有7种颜色的袜子,但有8只袜子。
如果小明只拿出7只袜子,那么可能出现以下情况:(1)他一直拿的是不同颜色的袜子,直到拿完7只,这种情况下他没有拿到一双相同颜色的袜子;(2)他拿到了两只相同颜色的袜子,这种情况下他拿到了一双相同颜色的袜子。
通过这个例子,我们可以看到抽屉原理的应用。
抽屉原理告诉我们,当我们将一些物体放入一些容器中时,如果物体的数量超过了容器的数量,那么就一定存在至少一个容器中有两个或两个以上的物体。
这个原理可以帮助我们解决很多有关排列和组合的问题。
现在我们来应用抽屉原理解决一个稍微复杂一些的问题。
问题:有9本不同的书放在3个抽屉里,每个抽屉至少有一本书,问一共有多少种放法?解答:根据题目的要求,我们可以知道每个抽屉至少有一本书,所以第一个抽屉必须放书,我们把第一个抽屉放好书的情况列举出来:(1)第一个抽屉放1本书,剩下8本书放在剩下的两个抽屉中;(2)第一个抽屉放2本书,剩下7本书放在剩下的两个抽屉中;(3)第一个抽屉放3本书,剩下6本书放在剩下的两个抽屉中;(4)第一个抽屉放4本书,剩下5本书放在剩下的两个抽屉中;(5)第一个抽屉放5本书,剩下4本书放在剩下的两个抽屉中;根据抽屉原理,我们知道在剩下的两个抽屉中至少有一个抽屉中有两本及以上的书。
所以这个问题就变成了,把剩下的书放入两个抽屉的问题。
(1)第二个抽屉放1本书,剩下3本书放在第三个抽屉中;(2)第二个抽屉放2本书,剩下2本书放在第三个抽屉中;(3)第二个抽屉放3本书,剩下1本书放在第三个抽屉中;根据抽屉原理,我们知道在剩下的第三个抽屉中至少有一本书。
小学六年级奥数-抽屉原理(含答案)
抽屉原理学问要点1.抽屉原理的一般表述(1)假设有3个苹果放入2个抽屉中,必定有一个抽屉中至少有2个苹果。
它的一般表述为:第一抽屉原理:(mn+1)个物体放入n个抽屉,其中必有一个抽屉中至少有(m+1)个物体。
(2)若把3个苹果放入4个抽屉中,则必定有一个抽屉空着。
它的一般表述为:第二抽屉原理:(mn-1)个物体放入n个抽屉,其中必有一个抽屉中至多有(m-1)个物体。
2.构造抽屉的方法常见的构造抽屉的方法有:数的分组、染色分类、图形的分割、剩余类等等。
例1自制的一副玩具牌共计52张(含四种牌:红桃、红方、黑桃、黑梅,每种牌都有1点,2点,……13点牌各一张),洗好后反面朝上放。
一次至少抽取张牌,才能保证其中必定有2张牌的点数与颜色都一样。
假如要求一次抽出的牌中必定有3张牌的点数是相邻的(不计颜色),那么至少要取张牌。
点拨对于第一问,最不利的状况是两种颜色都取了1~13点各一张,此时再抽一张,这张牌必与已抽取的某张牌的颜色与点数都一样。
点拨对于第二问,最不利的状况是:先抽取了1,2,4,5,7,8,10,11,13各4张,此时再取一张,这张牌的点数是3,6,9,12中的一张,在已抽取的牌中必有3张的点数相邻。
解(1)13×2+1=27(张) (2)9×4+1=37(张)例2 证明:37人中,(1)至少有4人属相一样;(2)要保证有5人属相一样,但不保证有6人属相一样,那么人的总数应在什么范围内?点拨可以把12个属相看做12个抽屉,依据第一抽屉原理即可解决。
解(1)因为37÷12=3……1,所以,依据第一抽屉原理,至少有3+1=4(人)属相一样。
(2)要保证有5人的属相一样的最少人数为4×12+1=49(人)不保证有6人属相一样的最多人数为5×12=60(人)所以,总人数应在49人到60人的范围内。
例3有一副扑克牌共54张,问:至少摸出多少张才能保证:(1)其中有4张花色一样?(2)四种花色都有?点拨首先我们要弄清晰一副扑克牌有2张王牌,四种花色,每种有13张。
《小学奥数》小学六年级奥数讲义之精讲精练第30讲抽屉原理(二)含答案
第30讲抽屉原理(二)一、知识要点在抽屉原理的第(2)条原则中,抽屉中的元素个数随着元素总数的增加而增加,当元素 总数达到抽屉数的若干倍后,可用抽屉数除元素总数,写成下面的等式:元素总数=商X 抽屉数 株数如果余数不是0,则最小数二商+1;如果余数正好是0,则最小数二商。
二、精讲精练【例题11幼儿园里有120个小朋友,各种玩具有364件。
把这些玩具分给小朋友,是 否有人会得到4件或4件以上的玩具?把120个小朋友看做是120个抽屉,把玩具件数看做是元素。
则364=120X 3+4, 4V 120 根据抽屉原理的第(2)条规则:如果把 mXxXk (x>k>1)个元素放到x 个抽屉里,那么 至少有一个抽屉里含有m+1个或更多个元素。
可知至少有一个抽屉里有 3+1=4个元素,即有 人会得到4件或4件以上的玩具。
练习1 :1、一个幼儿园大班有40个小朋友,班里有各种玩具125件。
把这些玩具分给小朋友, 是否有人会得到4件或4件以上的玩具?2、把16枝铅笔放入三个笔盒里,至少有一个笔盒里的笔不少于3、把25个球最多放在几个盒子里,才能至少有一个盒子里有 【例题2】布袋里有4种不同颜色的球,每种都有10个。
最少取出多少个球,才能保证 其中一定有3个球的颜色一样?把4种不同颜色看做4个抽屉,把布袋中的球看做元素。
根据抽屉原理第(2)条,要使 其中一个抽屉里至少有3个颜色一样的球,那么取出的球的个数应比抽屉个数的 2倍多1。
6枝。
这是为什么? 7个球?即2X4+1=9(个)球。
列算式为(3—1) X 4+1=9 (个)练习2:1、布袋里有组都多的5种不同颜色的球。
最少取出多少个球才能保证其中一定有3个颜色一样的球?2、一个容器里放有10块红木块、10块白木块、10块蓝木块,它们的形状、大小都一样, 当你被蒙上眼睛去容器中取出木块时,为确保取出的木块中至少有4块颜色相同,应至少取出多少块木块?3、一副扑克牌共54张,其中1 — 13点各有4张,还有两张王的扑克牌。
高斯小学奥数六年级下册含答案第05讲抽屉原理
第五讲抽屉原理二本讲学问点汇总:一、最不利原则:为了保.证.能完成一件事情,需要考虑在最倒霉〔最不利〕的状况下,如何能到达目标.二、抽屉原理:形式1:把n +1个苹果放到n 个抽屉中,确定有2 个苹果放在一个抽屉里;形式2:把m⨯n +1 个苹果放到n 个抽屉中,确定有m +1个苹果放在一个抽屉里.例1.中国奥运代表团的173 名运发动到超市买饮料,超市有可乐、雪碧、芬达、橙汁、味全和矿泉水 6 种饮料,每人各买两种不同的饮料,那么至少多少人买的饮料完全一样?「分析」此题的“抽屉”是饮料的选法,“苹果”是173名运发动.练习1、中国奥运代表团的83 名运发动到超市买饮料.超市有可乐、雪碧、芬达和橙汁,每人各买两种不同的饮料,那么至少多少人买的饮料完全一样?例2.国庆嘉年华共有5 项游艺活动,每个学生至多参与2 项,至少参与1 项.那么至少有多少个学生,才能保证至少有4 个人参与的活动完全一样?「分析」此题的“抽屉”是参与活动的方法.练习2、高思运动会共有4 个工程,每个学生至多参与3 项,至少参与1 项.那么至少有多少个学生,才能保证至少有5 个人参与的活动完全一样?例3.从1 到50 这50 个自然数中,至少选出多少个数,才能保证其中确定有两个数的和是50「分析」思考一下:哪两个数的和是50?练习3、从1 到35 这35 个自然数中,至少选出多少个数才能保证其中确定有两个数的和为34?例4.从1 到100 这100 个自然数中,至少选出多少个数才能保证其中确定有两个数的和是7 的倍数?假设要保证是6 的倍数呢?「分析」两个数的和是7 的倍数,这两个数除以7 的余数要符合什么条件哪?练习4、从1 至99 这99 个自然数中任意取出一些数,要保证其中确定有两个数的和是5 的倍数,至少要取多少个?例5.至少取出多少个正整数,才能保证其中确定有两个整数的和或差是100 的倍数?「分析」从余数角度思考一下:什么样的两个数的和或差是100?例6.在边长为 2 的正六边形中,放入50 个点,任意三点不共线,请证明:确定能从中选出三个点,以它们为顶点的三角形面积不大于1.「分析」通过把正六边形均分,来构造“抽屉”.四大制造之印刷术印刷术是中国古代的四大制造之一,是中国古代汉族劳动人民经过长期实践和争论才制造的.活字印刷的方法是先制成单字的阳文反文字模,然后依据稿件把单字排列在字盘内涂墨印刷.自从汉朝制造纸以后,书写材料比起过去用的甲骨、简牍、金石和缣帛要轻松、经济多了,但是抄写书籍还是格外费工的,远远不能适应社会的需要.至迟到东汉末年的熹平年间〔公元172~178年〕,消灭了摹印和拓印石碑的方法.大约在公元600年前后的隋朝,人们从刻印章中得到启发,在人类历史上最早制造了雕版印刷术.雕版印刷是在确定厚度的平滑的木板上,粘贴上抄写工整的书稿,薄而近乎透亮的稿纸正面和木板相贴,字就成了反体,笔划清楚可辨.雕刻工人用刻刀把版面没有字迹的局部削去,就成了字体凸出的阳文,和字体凹入的碑石阴文截然不同.印刷的时候,在凸起的字体上涂上墨汁,然后把纸覆在它的上面,轻轻拂拭纸背,字迹就留在纸上了.到了宋朝,雕版印刷事业进展到全盛时期.雕版印刷对文化的传播起了重大作用,但是也存在明显缺点:第一,刻版费时费工费料;其次,大批书版存放不便;第三,有错字不简洁更正.北宋平民制造家毕昇总结了历代雕版印刷的丰富的实践阅历,经过反复试验,在宋仁宗庆历年间〔公元1041~1048〕制成了胶泥活字,实行排版印刷,完成了印刷史上一项重大的革命.毕昇的方法是这样的:用胶泥做成一个个规格全都的毛坯,在一端刻上反体单字,字划突起的高度象铜钱边缘的厚度一样,用火烧硬,成为单个的胶泥活字.为了适应排版的需要,一般常用字都备有几个甚至几十个,以备同一版内重复的时候使用.遇到不常用的冷僻字,假设事前没有预备,可以随制随用.为便于拣字,把胶泥活字按韵分类放在木格子里,贴上纸条标明.排字的时候,用一块带框的铁板作底托,上面敷一层用松脂、蜡和纸灰混合制成的药剂,然后把需要的胶泥活字拣出来一个个排进框内.排满一框就成为一版,再用火烘烤,等药剂略微熔化,用一块平板把字面压平,药剂冷却凝固后,就成为版型.印刷的时候,只要在版型上刷上墨,覆上纸,加确定的压力就行了.为了可以连续印刷,就用两块铁板,一版加刷,另一版排字,两版交替使用.印完以后,用火把药剂烤化,用手轻轻一抖,活字就可以从铁板上脱落下来,再按韵放回原来木格里,以备下次再用.毕昇还试验过木活字印刷,由于木料纹理疏密不匀,刻制困难,木活字沾水后变形,以及和药剂粘在一起不简洁分开等缘由,所以毕昇没有承受.毕昇的胶泥活字版印书方法,假设只印二三本,不算省事,假设印成百上千份,工作效率就极其可观了,不仅能够节约大量的人力物力,而且可以大大提高印刷的速度和质量,比雕版印刷要优越得多.现代的凸版铅印,虽然在设备和技术条件上是宋朝毕昇的活字印刷术所无法比较的,但是根本原理和方法是完全一样的.活字印刷术的制造,为人类文化做出了重大奉献.这中间,中国的平民制造家毕昇的功绩是不行磨灭的.可是关于毕昇的生平事迹,我们却一无所知,幸亏毕昇制造活字印刷术的事迹,比较完整地记录在北宋著名科学家沈括的名著《梦溪笔谈》里.但是除开西夏文字的几本推想为活字印刷的佛经外,中原地区无觉察活字印刷的中文印刷品!作业1.〔1〕一个班有37 个人,那么至少有多少人是同一星座的?〔2〕一副扑克牌,共54 张,那么至少从中摸出多少张牌,才能保证至少有6 张牌的花色一样?2.动物王国进展运动会,共有101 位运发动,有短跑、跳高、跳远、10 米跳台、3 米跳板五个工程,每位运发动最多项选择三个工程,最少选一个工程.那么至少有多少位运发动所选的工程都一样?3. 1 至70 这70 个自然数中,最多可以取出多少个数,使得其中每两个数的差都不等于6?4. 1 至40 这40 个自然数中,最多可以取出多少个数,使得其中每两个数的和都不是4 的倍数?5.在半径为1 的圆内,画13 个点,其中任意3 点不共线.请证明:确定存在3 个点,以它们为顶点的三角形面积小于.6第五讲抽屉原理二例7.答案:12.解答:共有C2 =15 种不同的选择方式,而173 ÷15 =11L 8 ,所以至少有12 个人买的饮料完全一样.6例8.答案:46.解答:共有C2 +C1 =15 种参与方法,所以至少15⨯3 +1 =46 人.5 5例9.答案:27.解答:可构造出26个组数:〔1,49〕、〔2,48〕、…、〔24,26〕、〔25〕、〔50〕.所以至少要取27个数才能保证取到一组和为50 的数.例10.答案:46,37.解答:由题意可知,假设取出的数没有两个数的和是7 的倍数,则:除以7 余1 的数与除以7 余6 的数不能共存,除以7 余2 的数与除以7 余5 的数不能共存,除以7 余3 的数与除以7 余4 的数不能共存.而除以7 余0 的数只能取1 个,且100 =14⨯7L 2 ,所以最不利的状况是取尽余1、余2、余3 和一个余0 的数,共45 个数,所以至少选出46 个数才可满足要求.同理至少选出37 个数才能保证是6 的倍数.〔留意此时除以6余3和余0的数都只能选1个〕例11.答案:52.解答:可构造出51个组数:〔1,8〕、〔2,9〕…〔7,14〕;〔15,22〕、〔16,23〕…〔21,28〕;……〔85,92〕、〔86,93〕…〔91,98〕;〔99〕、〔100〕.每组数中的两数的差为7.只取出每个数组中较小的数明显不能满足要求,所以至少要取出52 个数,这时由抽屉原理知必定能取到某一个数组的两个数.例12.解答:先将正六边形分割成6 个边长为2 的正三角形,再将每个三角形等分成4 个边长为1 的正三角形,这样就把正六边形分割成24 个边长为1 的正三角形,则由抽屉原理知,必有3 点在一个等边三角形中,以它们为顶点的三角形面积明显不大于1.〔边长是1的等边三角形面积小于1〕练习1、答案:14.简答:共有C 2=6 种不同的选择方式,而83 =6 ⨯13 +5 ,所以至少有14个人买的饮料完全一样.4练习2、答案:57.简答:共有C3+C 2+C1=14 种参与方法,所以至少14 ⨯4 +1 =57 人.4 4 4练习3、答案:20.简答:可构造出19个组数:〔1,33〕、〔2,32〕、…、〔16,18〕、〔17〕、〔34〕、〔35〕.所以至少要取20 个数才能保证取到一组和为34 的数.练习4、答案:42.简答:1~99 这99 个数中除以5 余1 的有20 个,余2 的有20 个,余3 的有20 个,余4 的有20 个,余0 的有19 个,选出余 1 和余 2 的数,再选一个余0 的数,再任选一个数确定符合题意,20 +20 +1+1 =42 个.作业6. 答案:〔1〕4 个;〔2〕23 张.简答:〔1〕抽屉原理;〔2〕最不利原则.7. 答案:5 位.简答:首先运发动的工程有C1 +C 2+C3 = 25 种可能,依据抽屉原理,至少有5 位运发动的工程一样.5 5 58. 答案:36 个.简答:每12 个数中最多取出6 个.9. 答案:12 个.简答:将1~40 依据除以4 的余数分为四组:A 组:{1,5,…,37};B 组:{2,6,…,38};C 组:{3,7,…,39};D 组:{4,8,…,40}.首先,B、D 组最多取一个.取了A 组就不能取C 组.所以最多能取12 个.10. 证明:将半径为1 的圆六等分,分为六个扇形,每个扇形的面积是π6.依据抽屉原理,至少有三个点在同一局部中,这三个点组成的三角形不会大于所在的扇形,即π.6。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抽屉原理知识要点1.抽屉原理的一般表述(1)假设有3个苹果放入2个抽屉中,必然有一个抽屉中至少有2个苹果。
它的一般表述为:第一抽屉原理:(mn+1)个物体放入n个抽屉,其中必有一个抽屉中至少有(m+1)个物体。
(2)若把3个苹果放入4个抽屉中,则必然有一个抽屉空着。
它的一般表述为:第二抽屉原理:(mn-1)个物体放入n个抽屉,其中必有一个抽屉中至多有(m-1)个物体。
2.构造抽屉的方法常见的构造抽屉的方法有:数的分组、染色分类、图形的分割、剩余类等等。
例1自制的一副玩具牌共计52张(含四种牌:红桃、红方、黑桃、黑梅,每种牌都有1点,2点, (13)点牌各一张),洗好后背面朝上放。
一次至少抽取张牌,才能保证其中必定有2张牌的点数和颜色都相同。
如果要求一次抽出的牌中必定有3张牌的点数是相邻的(不计颜色),那么至少要取张牌。
点拨对于第一问,最不利的情况是两种颜色都取了1~13点各一张,此时再抽一张,这张牌必与已抽取的某张牌的颜色与点数都相同。
点拨对于第二问,最不利的情况是:先抽取了1,2,4,5,7,8,10,11,13各4张,此时再取一张,这张牌的点数是3,6,9,12中的一张,在已抽取的牌中必有3张的点数相邻。
解(1)13×2+1=27(张)(2)9×4+1=37(张)例2 证明:37人中,(1)至少有4人属相相同;(2)要保证有5人属相相同,但不保证有6人属相相同,那么人的总数应在什么范围内?点拨可以把12个属相看做12个抽屉,根据第一抽屉原理即可解决。
解 (1)因为37÷12=3……1,所以,根据第一抽屉原理,至少有3+1=4(人)属相相同。
(2)要保证有5人的属相相同的最少人数为4×12+1=49(人)不保证有6人属相相同的最多人数为5×12=60(人)所以,总人数应在49人到60人的范围内。
例3有一副扑克牌共54张,问:至少摸出多少张才能保证:(1)其中有4张花色相同?(2)四种花色都有?点拨首先我们要弄清楚一副扑克牌有2张王牌,四种花色,每种有13张。
(1)按最不利原则先取出2张为王牌,再取4张均不同花色,再连续取两次4张也均不同花色,这时必能保证每一花色都有3张,再取1张即可达到要求。
(2)仍需按最不利原则去取牌,先是2张王牌,接着依次把三种花色的牌全部取出13×3,这时假设仍是没有四种花色,再取1张即可。
解 (1)2+4×3+1=15(张) (2)2+13×3+1=42(张)例 4 学校买来红、黄、蓝三种颜色的球,规定每位学生最多可以借两种不同颜色的球。
那么至少要来几名学生借球,就能保证必有两名学生借的球的颜色完全相同?点拨根据题中“最多可借两种不同颜色的球”,可知最多有以下6种情况:解借球有6种情况,看做6个抽屉,所以至少要来7名学生借球,才能保证。
例5 从前面30个自然数中最少要取出几个数,才能保证取出的数中能找到两个数,其中较大的数是较小数的倍数?点拨把1~30这30个自然数分成下面15组:{1,2,4,8,16},{3,6,12,24},{5,10,20},{7,14,28},{9,18},{11,22},{13,26},{15,30},{1 7},{19},{21},{23},{25),{27},{29},在这15组中,每组中的任意两个数都存在倍数关系,故可把这15组看做15个抽屉,至少要取出16个数才能达到题目的要求。
例6 边长为1的正方形中,任意给定13个点,其中任意三点都不共线。
试说明其中至少有4个点,以此4点为顶点的四边形面积不超过四分之一。
解:把正方形平均分成四个相同的小正方形,每个正方形的面积为四分之一。
13=4×3+1,13个点至少有4个点在同一个小正方形,以此4点为顶点的四边形的面积不超过小正方形的面积,即不超过原正方形面积的四分之一。
例7平面上给定六个点,没有三点共线。
每两点用一条红线段或黄线段连接起来,试说明由这些线段围成的三角形中,至少有一个三角形,它的三条边同色.解因为有六个点,每个点都要引出五条线段,据抽屉原理,任意一点引五条线段中至少有三条线段同色,不妨设是红色(如图红色线段为实线,蓝色线段为虚线),这时三角形a2a3a4会出现两种颜色情况(1)若a2a3,a3a4,a2a4中有任意一条线段为红的,那么这条红线段与它的两个端点与a1引出的两条线段组成一个红三角形。
(2)若a2a3,a3a4,a2a4中没有一条线段是红色的,则a2a3a4为一个蓝色三角形。
综上所述,无论(1)还是(2),题目结论都成立。
说明:若把两种颜色连线换成人与人之间的相识或不相识关系,就可以解决实际问题:结果可证明6人之间至少有3人互相认识或不认识。
1.要在30米长的水泥台上放16盆花,不管怎么放,至少有几盆之间的距离不超过2米?解:两盆 30÷2=15段,30米中每两米为一段的有15段,16盆花至少有两盆花在一段,至少两盆之间的距离不超过2米。
3.在一个边长为1的正三角形内随意放置10个点,试说明其中至少有两个点之间的距离不超过1/3。
解:把边长为一的正三角形平分成9粉,由每个三角的边长为1/3,必有两点在一个三角形内,则两点的距离小于1/3。
4.用黑、红两种颜色将一个长9、宽3的矩形中的边长为1的小正方形随意涂色,试证必有两列涂色情况一样。
因为涂色出现八种情况:(红红红),(蓝,蓝,蓝),(红,红,蓝),(红,蓝,红),(蓝,红,红),(蓝,蓝,红),(蓝,红,蓝),(红,蓝,蓝),所以九列中一定有两列是相同的。
5.从整数1,2,3,……,199,200中任选101个数,求证在选出的这些自然数中至少有两个数,其中的一个是另一个的倍数。
分数组{1,2,4,8,16,……128},{3,6,12,24,48^192},{5,10,20,40^200},{7,14,28,56,112},{9,18,36,72,144},{11,22,44,88,176},{13,26,52,104},{15,30,60,120,}……{99,198},{101},{103},……{199}共100个抽屉,任选101个数必有两个数在一个抽屉里,即其中的一个是另一个的倍数。
6.在10×10方格纸的每个方格中,任意填入1、2、3、4四个数之一。
然后分别对每个2×2方格中的四个数求和。
在这些和数中,至少有多少个和相同?1、2、3、4填入后,四个数的和最小为4,最大为16。
4-16之间有13个不同的和,2×2的方格在10×10的方格中可推出81个和,81÷13=6^3,故至少有6+1=7个和。
7.从八个连续自然数中任意选出五个,其中必有两个数的差等于4,试分析之。
这八个连续自然数为a,a+1,a+2,a+3,a+4,a+5,a+6,a+7,分为四组{ a+4,a},{a+5,a+1},{a+6,a+2},{a+7,a+3},取五个数必有两个数在一个抽屉中,即差为48.任意给定七个自然数,说明其中必有四个数,它们的和为4的倍数。
七个数中必有三对奇偶性相同,即满足a1+a2=2k1,a3+a4=2k2,a5+a6=2k3。
在k1,k2,k2三个数中又至少有两个奇偶性相同,不妨设k1,k2奇偶性相同,所以k1+k2=2m,即a1+a2+a3+a4=4m, 2k1+2k2=4m,所以其中必有四个数,它们的和是4的倍数。
9.从3,6,9……81,84这些数中,任意选出16个数,其中至少有两个数的和等于90,试说明之。
分数组{6,84},{9,81},{12,78},……{42,48},{3},{45},共15个抽屉,故取16个数必有两个数在一个抽屉中,即和为90。
10.任意给定七个不同的自然数,其中必有两个数的和或差是10的倍数,试说明之。
按余数是2或5或两个余数和为10来构造6个抽屉:{0},{5},{1,9},{2,8},{3,7},{4,6}这样7个数必有两个数在一个抽屉里,它们的余数之和是10或余数相同,从而他们本身的和或差为10的倍数。
11.能否在10行10列的方格中的每个空格处分别填上1,2,3这三个数,使大正方形的每行、每列及两条对角线的各个数字和互不相同?10个数的和最小为10,最大为30,10-30中有21个数。
10行10列加上两条对角线共22个和,则必有两条线上的和相同。
所以不能。
12.能否把1~7这七个数排成一圈,使任意两个相邻数的差等于2或3?在这7个数中,1,2,6,7都不能相邻,要把它们隔开需要4个数,而现在只剩下3,4,5三个数,所以不能。
13.平面上给定六个点,没有三个点在一条直线上,每两点用一条红色线段或蓝色线段连接起来。
试说明这些线段围成的三角形中,至少有两个同色三角形。
14.库房里有一批篮球、排球、足球和手球,每人任意搬运两个,至少有多少人搬运才能保证有5人搬运的球完全一样?每人搬得可能是两篮、两排、两足、两手、篮排、篮足、篮手、排足、排手、足手10种情况。
4×10+1=41人15.在一个3×4平方米的长方形盘子中,任意撒入5个豆,5个豆中距离最小的两个豆的最大距离是几米?(这时盘子的对角线长为5米)将长方形分成四份,如放5豆,必有2个豆在一个小长方形内,一个小正方形内最大的距离是2.5米(如AE ),故距离最小的两个点的距离最大值是2.5米。
16.一个3行7列的21个小方格的长方形,每个小方格用红或黄中的一种颜色涂色。
证明:不论如何涂色,一定能找到一个由小方格组成的长方形,它的四个角上的小方格具有相同的颜色。
第一行有7个方格,因为涂两种颜色,根据抽屉原理二,必有一种颜色涂了4个或4个以上的方格。
设第一行有四个红方格,第二行是在第一行四个红方格下面的四个方格中,如果有两个红色,那么结 论已成立,否则必有三个黄方格。
第三行是在第二行3个黄方格下面的3个方格中,至少有两个方格 涂一种颜色。
如涂红色就与第一行组成符合条件的长方形,如涂黄色就与第二行组成符合条件的长方形。
17.在{1,2,……,n}中,任意取10个数,使得其中有两个数的比值不小于32,且不大于23。
求n 的最大值。
由于任取10个数中有两个数在同一个抽屉里,显然最多构造9个抽屉.这9个抽屉中的每一个抽屉 都含有1,2,3,,n 中的一些数,而且这些数必须满足每两个数的比值都在和之间,这9个抽屉,是:{1};{2,3};{4,5,6};{7,8,9,10};{11,12,,16};{17,18,,24,25};{26,27,,38, 39};{40,41,,59,60};{61,62,,90,91}. 因此,n 的最大值是91.18.从1,2,3,…,1988,1989这些自然数中,最多可取多少个数,其中每两个数的差不等于4? 把1,2,……,1989这些数分成四组公差是4的等差的数列;1,5,9,……,1989共498个数;2,6,10,……1986共497个数;3,7,11……1987共497个数;4,8,12……1988共497个数;我们发现:1.四行中每一行中任意相邻两数相差为4,不相邻两数相差不可能是4;2.而分属不同两行的任意两个数相差不可能为4,因为如果相差为4的话,两数将被归为一行,这显然与事实矛盾;故选符合规定的数只要在每组里每隔一个数选一个,每行最多可选249个数;最终249×4=996(个)19.四个人聚会,每人各带了两件礼品,分赠给其余三个人中的两人。