2020年多轴箱设计说明书

合集下载

组合机床多轴箱设计 毕业设计教材

组合机床多轴箱设计 毕业设计教材

第一章概述第一节组合机床多轴箱简介组合机床是针对被加工零件的特点及工艺要求,按高度集中工序原则设计的一种高效率专用机床。

它由大量的通用部件和少量的专用部件组成的,能够对一种(或几种)零件进行多刀,多轴,多面,多工位加工,在组合机床上可以完成钻孔,扩孔,铰孔,钻孔,攻丝,车削,铣削及滚压等工序,生产率高,加工精度稳定。

1.组合机床上的通用部件和标准零件约占全部机床零、部件总量的70%-80%,因此设计和制造的周期短,投资少,经济效果好。

2.由于组合机床采用多刀加工,并且自动化程度高,因此通用机床生产效率高,产品质量稳定,劳动强度低。

3.组合机床的通用部件是经过周密设计和长期生产实践考验的,又有专门厂成批制造,因此结构稳定、工作可靠,使用和维修方便。

4.在组合机床上加工零件时,由于采用专用夹具、刀具和导向装置等,加工质量靠工艺装备保证,对操作工人的技术水平要求不高。

5.当被加工产品更新时,采用其他类型的专用机床时,其大部分部件要报废。

用组合机床时,其通用部件和标准零件可以重复使用,而不必另行设计和制造。

6.组合机床易于联成组合机床自动线,以适应大规模的生产需要。

通过分析,采用组合机床加工。

多轴箱是组合机床的主要部件之一,它关系到整台组合机床质量的好坏。

按专用需求进行设计,由通用零件组成,按加工工件和工艺要求进行专门设计。

其主要作用是,根据被加工零件的加工要求,将动力和运动由电动机或动力部件传给各工作主轴,使主轴得到所要求的转速和转向。

多轴箱的设计主要包括多轴箱箱体的设计和传动系统的设计。

第二节本设计简介本设计来源于实际生产中的问题,当零件有多孔或者相同特征的多个部位需要加工时,如果用传统的机床逐个加工,势必会造成生产效率低下以及定位精度低的问题,这个时候,组合机床的优势就会凸现出来。

如果采用专用钻床加工,一次进刀只能加工一个孔,生产效率就会跟不上整体的节奏,而且也不容易保持三个孔之间的位置精度,如果采用留空同时加工的组合机床,情况就会大大改观,正是基于此,才提出了《基于UG的多轴箱设计及虚拟装配》的课题。

某钻孔卧式组合机床多轴箱设计

某钻孔卧式组合机床多轴箱设计
关键词:组合机床;多轴箱;钻孔;齿轮;轴
Abstract
This subject has certain parts design of drilling horizontal combination machine tools moving workbench workstation Multi-axle Box. In the design, according to the calculated by processing components determines the size of the box, through the drilling process of cutting parameter determination, then calculates the cutting parameters of drilling process, and then calculating dynamic parameters of the dynamic parameter selection, power box. Then driving scheme. According to the transmission scheme and design requirements of shaft, selected bearings, gears, pumps and other ancillary components, and calculate transmission shaft and the coordinates. Through the design on the same machine processing drilling tools, use more in aspects of the work piece machining, achieve high concentration process, so as to achieve higher productivity.

多轴箱课程设计

多轴箱课程设计

多轴箱课程设计一、课程目标知识目标:1. 学生能够理解多轴箱的基本概念、结构和功能;2. 学生掌握多轴箱的传动原理及其在工程中的应用;3. 学生了解多轴箱的维护与保养知识。

技能目标:1. 学生能够运用所学知识,分析多轴箱的传动系统,并进行简单的故障排查;2. 学生能够通过实际操作,熟练拆装多轴箱,掌握多轴箱的组装与调试技巧;3. 学生能够运用多轴箱相关知识,解决实际问题,提高动手实践能力。

情感态度价值观目标:1. 培养学生对机械设备的兴趣和热爱,激发他们学习机械专业的热情;2. 培养学生严谨、细致的学习态度,养成勤奋好学的良好习惯;3. 培养学生的团队协作意识,提高沟通与交流能力。

本课程针对高中阶段机械专业学生,结合多轴箱的学科特点,注重理论联系实际,突出实践操作能力的培养。

通过本课程的学习,使学生既掌握了多轴箱的基本理论知识,又具备了实际操作技能,为将来的职业发展打下坚实基础。

同时,课程注重培养学生的情感态度价值观,激发学生的学习兴趣,提高他们的综合素质。

二、教学内容1. 多轴箱概述- 多轴箱的定义与分类- 多轴箱的结构与组成- 多轴箱的应用领域2. 多轴箱的传动原理- 传动系统的基本概念- 多轴箱的传动方式- 传动比的计算与调整3. 多轴箱的拆装与调试- 拆装工具的选择与使用- 多轴箱拆装步骤及注意事项- 调试方法与技巧4. 多轴箱的维护与保养- 多轴箱的润滑与冷却- 常见故障分析与排除- 维护保养周期的制定与实施5. 实践操作- 多轴箱拆装实操- 故障排查与处理- 多轴箱组装与调试实操本教学内容依据课程目标,结合教材内容,注重理论与实践相结合,以科学性和系统性为原则,制定详细的教学大纲。

教学内容分为五个部分,分别涵盖多轴箱的基本概念、传动原理、拆装调试、维护保养及实践操作,确保学生全面掌握多轴箱的相关知识和技能。

教学进度安排合理,确保学生在掌握理论知识的同时,充分锻炼实践操作能力。

三、教学方法本课程采用多种教学方法,以激发学生的学习兴趣和主动性,提高教学效果。

组合机床多轴箱设计

组合机床多轴箱设计

组合机床多轴箱设计多轴箱是组合机床的重要专用部件,用于钻、扩、铰、镗孔等加工工序。

多轴箱一般具有多根主轴,同时对一列孔系进行加工。

根据结构特点,多轴箱分为通用和专用两大类。

通用多轴箱采用标准主轴和导向套引导刀具来保证加工孔的位置精度,而专用多轴箱采用刚性主轴和精密滑台导轨来保证加工孔的位置精度。

本课题主要设计大型通用多轴箱,由通用零件如箱体、主轴、传动轴、齿轮和附加机构等组成。

大型通用多轴箱由通用零件如箱体、主轴、传动轴、齿轮和附加机构等组成。

多轴箱的通用箱体类零件的材料为HT200,前、后、侧盖等材料为HT150.多轴箱基本尺寸系列标准规定了9种名义尺寸,宽度和高度是根据配套滑台的规格按规定的系列尺寸选择。

通用主轴分为钻床类主轴和攻螺纹类主轴。

钻床类主轴按支承型式可分为滚锥轴承主轴、滚珠轴承主轴和滚针轴承主轴,按与刀具的连接是浮动还是刚性连接,又可分为短主轴和长主轴。

攻螺纹类主轴按支承型式可分为前后支承均为圆锥滚子轴承主轴和前后支承均为推力球轴承和无内环滚针轴承的主轴。

主轴材料一般采用40Cr钢,热处理C42;滚针轴承主轴用20Cr钢,热处理S0.5~C59.通用传动轴按用途和支承型式分为六种,分别为圆锥轴承传动轴、滚针轴承传动轴、埋头传动轴、手柄轴、油泵传动轴和攻螺纹用蜗杆轴。

传动轴一般采用45钢,调质T235;滚针轴承传动轴用20Gr钢,热处理S0.5~C59.多轴箱用通用齿轮有传动齿轮、动力箱齿轮和电动机齿轮三种。

多轴箱的工作原理是利用多根主轴同时对一列孔系进行加工,完成钻、扩、铰、镗孔等加工工序。

通用多轴箱是组合机床中的重要部件之一。

它通过传动轴和传动齿轮的传动,将动力箱中电动机轴的动能传递给主轴,主轴带动刀具加工工件。

通过对齿轮啮合的调整,可以获得不同的传动比,从而实现主轴的不同转速。

多轴箱还可以安装多个不同的主轴,这样就可以用多个主轴对同一个工件进行不同的加工。

多轴箱与动力箱一起安装于进给滑台,可完成钻、扩、铰、镗孔等加工工艺。

组合机床毕业设计说明书.

组合机床毕业设计说明书.

目录摘要 (I)Abstract (II)第一章绪论 (1)1.1 设计的目的 (1)1.2 设计的内容 (1)1.3 设计的要求 (1)第二章组合机床的总体设计 (2)2.1 工序图 (2)2.2 加工示意图 (2)2.3 机床尺寸联系总图 (5)第三章多轴箱的设计 (9)3.1 多轴箱的组成 (9)3.2多轴箱装配图的绘制 (9)(1)驱动轴位置的确定 (9)(2)主轴位置的的确定 (9)(3)驱动轴齿轮的确定 (9)(4)各传动轴位置的确定 (11)(5)手柄轴的安置 (11)(6)润滑油泵的安置 (11)3.3选择加工基准坐标系XOY,计算主轴、驱动轴的坐标 (11)总结 (13)参考文献(References) (14)致谢 (15)卧式双面24轴组合钻床总体设计及左主轴箱设计(双级圆锥-圆柱齿轮减速器箱体底座)专业:机械设计制造及其自动化学号:7011210138 学生姓名:徐伟龙指导老师:冯永平摘要:组合钻床是根据工件加工的需要,以通用部件为基础,配之以少量的专用部件和按工件形状与加工工艺设计的专用部件和夹具,组成的专用钻床。

组合机床同时具有生产效率高、加工精度高、配置较为灵活等优点,是机械一线生产中不可获缺的机器,也是高校大学生毕业设计研究的一个重要课题之一。

作为一名机械专业的学生,我有幸选择了这一个课题的研究,得到了这次了解组合机床的机会。

现在我就来简述这次课程设计的过程:根据零件(双级圆锥-圆柱齿轮减速器箱体底座左端面12孔)的类型和加工的要求我选择了卧式组合钻床;在动力部件选择方面,由于液压滑台导向性好、使用寿命长、液压缸活塞和后盖上分别装有双向单向阀和缓冲装置所以我选择了液压滑台;动力箱方面则采用三相异步电动机作为动力源,动力头选用了钻削头;辅助部件包括定位、夹紧、润滑、冷却、排屑以及自动线的清洗机等各种辅助装置,当然还有其他支承部件、控制部件、辅助部件等等我将在说明书中详述。

多轴箱设计说明书

多轴箱设计说明书

前言1 绪论 (5)1.1 机床在国民经济的地位及其发展简史 (5)1.3 组合机床设计的目的、内容、要求 (7)1.3.1设计的目的 (7)1.3.2 设计内容 (7)1.3.3 设计要求 (7)1.4 组合机床的设计步骤 (8)1.4.1调查研究 (8)1.4.2 拟定方案 (8)1.4.3 工作图设计 (8)2 零件分析 ............................... 错误!未定义书签。

2.1 零件的结构特点及其技术要求............ 错误!未定义书签。

2.1.1 零件结构特点...................... 错误!未定义书签。

2.1.2 技术要求.......................... 错误!未定义书签。

2.2. 零件的生产批量及其机床的使用.......... 错误!未定义书签。

2.2.1 零件的生产批量.................... 错误!未定义书签。

2.2.2 机床的使用条件.................... 错误!未定义书签。

2.3 零件工艺方案........................... 错误!未定义书签。

1.3.1 生产工艺方案...................... 错误!未定义书签。

3 组合机床的总体设计 ................... 错误!未定义书签。

3.1 组合机床方案的制定 (28)3.1.1制定工艺方案 (28)3.1.2 确定组合机床的配置形式和结构方案。

(29)3.2 确定切削用量及选择刀具 (30)3.2.1 确定工序间余量 (30)3.2.2 选择切削用量 (30)3.2.3 确定切削力、切削扭矩、切削功率 (30)3.2.4 选择刀具结构 (31)3.3钻孔组合机床总设计“三图一卡”的编制 (32)3.3.1 被加工零件工序图 (32)3.3.2 加工示意图 (33)3.3.3 机床联系尺寸图 (37)3.3.4 生产率计算卡 (39)3.4 多轴箱的设计 (40)3.4.1 绘制多轴箱设计原始依据图 (40)3.4.2 齿轮模数选择 (41)3.4.3 多轴箱的传动设计 (41)3.4.4 绘制传动系统图 (43)3.4.5 传动零件的校核 (45)2.5 确定机械重块平衡机构.................. 错误!未定义书签。

毕业设计组合机床设计多轴箱设计

毕业设计组合机床设计多轴箱设计

毕业设计组合机床设计多轴箱设计毕业设计(论文)设计(论文)题目:喷油泵体单工位双面钻孔组合机床设计(多轴箱设计)学生姓名:指导教师:二级学院:机电工程学院专业:机械设计制造及其自动化班级: M11机械设计制造及其自动化学号:提交日期:2013年 2月27日答辩日期: 2013年3月4日目录摘要 (III)Abstract (V)第1章绪论 (1)1.1 组合机床的发展史 (1)1.2 组合机床的国内外发展状况 (1)1.3 组合机床的分类和组成 (3)1.4 组合机床的特点 (4)1.5本课题研究的内容及意义 (5)1.6 组合机床设计步骤 (5)1.6.1调查研究 (5)1.6.2 拟定方案 (6)1.6.3 工作图设计 (6)第2章组合机床总体设计 (8)2.1组合机床工艺方案 (8)2.1.1被加工零件特点 (8)2.1.2定位基准的选择 (10)2.1.3组合机床配置形式 (10)2.2选择刀具和切削用量 (11)2.3 切削力、切削扭矩、切削功率的确定 (11)2.4组合机床总体分析——三图一卡 (12)2.4.1 被加工零件工序图 (12)2.4.2 加工示意图 (13)2.4.3 组合机床联系尺寸图 (17)2.4.4 生产率计算卡 (21)第3章组合机床多轴箱设计 (23)3.1多轴箱的组成及表示方法 (23)3.1.1 多轴箱的组成 (23)3.1.2 多轴箱总图绘制方法特点 (23)3.2 多轴箱通用零件 (24)3.2.1 通用箱体类零件 (24)3.2.2 通用主轴、齿轮和套 (25)3.3多轴箱的原始数据的计算 (25)3.3.1被加工的零件的特点 (25)3.3.2箱体尺寸的确定 (25)3.3.3钻孔切削参数的确定 (26)3.3.4钻孔的切削力,切削转矩和切削功率等动力参数计算 (27)3.3.5多轴箱所需动力计算 (27)3.3.6轴的初步选定 (27)3.4多轴箱传动方案设计 (28)3.4.1多轴箱传动系统的一般要求 (28)3.4.2主轴分布类型及传动方案 (29)3.5传动件的设计计算 (31)3.5.1 传动方案图分析 (31)3.5.2 齿轮的设计计算 (31)3.5.3 齿轮的校核 (32)3.6 主轴坐标的计算 (35)3.6.1主轴坐标计算 (35)3.6.2 验算中心距误差 (35)3.6.3绘制坐标检查图 (37)第4章结论 (38)参考文献 (40)喷油泵体单工位双面钻孔组合机床设计(多轴箱设计)摘要本课题设计了喷油泵体单工位双面钻孔组合机床设计(多轴箱设计)。

主轴箱的设计

主轴箱的设计

6主轴箱的设计多轴箱是组合机床的重要专用部件,根据加工示意图所确定的工件加工孔数和配置,切削用量和主轴类型而设计,由通用零部件组成,能将动力箱的动力传递给主轴,使之按要求的转速和转向旋转,提供切削动力,多轴箱与动力箱一起安装在进给滑台上,可以完成钻,扩,绞,镗等工序。

6.1 绘制主轴箱设计原始依据图多轴箱原始依据图是设计多轴箱的第一步,它是根据之前的零件工序图和尺寸联系图绘制的,通过工序图知道了主轴的相对分布状况,通过尺寸联系图指的了多轴箱的主体尺寸。

在编制此图时从“三图一卡”中已知:1)主轴箱轮廓尺寸500×500毫米。

2)工件轮廓尺寸及各孔位置尺寸。

3)工件与主轴箱相对位置尺寸。

根据这些数据可编制出主轴箱设计原始依据图:图6-1主轴箱原始依据图附表:(1)被加工零件名称:转向蜗杆箱材料:KTZ450-06硬度:200HBS(2)动力部件ITD25-ⅠA型动力箱,电动机为Y100L-6型,功率P=1.5KW转速n=520r/min,输入转速520r/min。

图中的横坐标是以左销孔为原点的水平向右的射线,纵坐标是原点引出的竖直向上的射线。

通过工序图可知,被加工孔是对称分布的所以可以把孔的分度圆放在箱体的轴线上,Y向尺寸是根据最低主轴轴线到箱体地面距离决定的。

表6-1主轴箱外伸尺寸及切削用量轴号工序内容 主轴外伸尺寸) 切削用量D/d L n(r/min) v(mm/min)f(mm/r) f V1-5 钻5xM22 32/20115590160.15886.2 传动设计 6.2.1拟定传动路线把主轴1-5作为一组同心圆,在其圆心上布置中心传动轴11。

油泵轴由埋头传动轴驱动,手柄轴由传动轴12驱动。

6.2.2 齿轮模数的确定初选模数可由下式估算,在通过类比确定:()330~32Pm mm Z n ≥⋅式中: P ——齿轮传递功率(KW ),可取P=1.5kw Z —一对齿轮中小齿轮的齿数,取Z=19; n ——小齿轮的转数(r/min ),其中n=520r/min代入上式计算可知: m>1.5根据标准,0轴传动采用模数为m=3而其他的传动模数采用m=2;6.3.2确定传动轴位置及齿轮齿数传动轴11为主轴1,2,3 ,4,5都各自在同一同心圆上。

毕业设计__组合机床设计(多轴箱设计)

毕业设计__组合机床设计(多轴箱设计)

毕业设计(论文)设计(论文)题目:喷油泵体单工位双面钻孔组合机床设计(多轴箱设计)学生姓名:指导教师:二级学院:机电工程学院专业:机械设计制造及其自动化班级: M11机械设计制造及其自动化学号:目录摘要 (III)Abstract (IV)第1章绪论 (1)1.1 组合机床的发展史 (1)1.2 组合机床的国内外发展状况 (1)1.3 组合机床的分类和组成 (3)1.4 组合机床的特点 (4)1.5本课题研究的内容及意义 (5)1.6 组合机床设计步骤 (5)1.6.1调查研究 (5)1.6.2 拟定方案 (5)1.6.3 工作图设计 (6)第2章组合机床总体设计 (7)2.1组合机床工艺方案 (7)2.1.1被加工零件特点 (7)2.1.2定位基准的选择 (9)2.1.3组合机床配置形式 (9)2.2选择刀具和切削用量 (10)2.3 切削力、切削扭矩、切削功率的确定 (10)2.4组合机床总体分析——三图一卡 (11)2.4.1 被加工零件工序图 (11)2.4.2 加工示意图 (12)2.4.3 组合机床联系尺寸图 (16)2.4.4 生产率计算卡 (20)第3章组合机床多轴箱设计 (22)3.1多轴箱的组成及表示方法 (22)3.1.1 多轴箱的组成 (22)3.1.2 多轴箱总图绘制方法特点 (22)3.2 多轴箱通用零件 (23)3.2.1 通用箱体类零件 (23)3.2.2 通用主轴、齿轮和套 (24)3.3多轴箱的原始数据的计算 (24)3.3.1被加工的零件的特点 (24)3.3.2箱体尺寸的确定 (24)3.3.3钻孔切削参数的确定 (25)3.3.4钻孔的切削力,切削转矩和切削功率等动力参数计算 (26)3.3.5多轴箱所需动力计算 (26)3.3.6轴的初步选定 (26)3.4多轴箱传动方案设计 (27)3.4.1多轴箱传动系统的一般要求 (27)3.4.2主轴分布类型及传动方案 (28)3.5传动件的设计计算 (30)3.5.1 传动方案图分析 (30)3.5.2 齿轮的设计计算 (30)3.5.3 齿轮的校核 (31)3.6 主轴坐标的计算 (34)3.6.1主轴坐标计算 (34)3.6.2 验算中心距误差 (34)3.6.3绘制坐标检查图 (36)第4章结论 (37)参考文献 (39)喷油泵体单工位双面钻孔组合机床设计(多轴箱设计)摘要本课题设计了喷油泵体单工位双面钻孔组合机床设计(多轴箱设计)。

毕业设计:组合机床的设计说明书

毕业设计:组合机床的设计说明书

摘要组合机床是以通用部件为基础,配以工件特定外形和加工工艺设计的专用部件和夹具,组成的半自动或自动专用机床。

它一般采用多轴、多刀、多工序、多面或多工位同时加工的方式,生产效率比通用机床高几倍至几十倍。

由于通用部件已经标准化和系列化,可根据需要灵活配置,能缩短设计和制造周期。

因此,组合机床兼有低成本和高效率的优点,在大批、大量生产中得到广泛应用,并可用以组成自动生产线。

本课题是针对汽车减速器壳体侧端面上6×Φ8孔钻削这一特定工序而设计的一台专用卧式组合机床。

本设计中,在充分数据计算的基础上对标准通用零件做了仔细选择。

并依据被加工零件的结构特点、加工部位的尺寸精度、表面粗糙度要求,以及定位夹紧方式、工艺方法和加工过程所采用的刀具、生产率、切削用量情况等,设计了结构合理的多轴箱。

关键词:组合机床、多轴箱、工艺流程、生产率ABSTRACTWith the general components as the basic structure,the combined machine tool is a kind of semi-automatic or automatic specific machine composed by the specific components and clamps for the specific workpiece shape and processing technology design. It generally applies stamulous processing from the aspects of multi-axis, multi-cutter, multi-procedure, multi-surface or multi-station so that the production efficiency is several times and even more higher than the general machine tool. Owing to the standardization and serialization of the general components, the configuration can be made flexibly to shorten the circle of design and manufacture. Therefore, with the advantages of low cost and high efficiency, the combined machine tool is applied to the production in a large quantity and to form the automatic production line.On the specific procedure of 6×Φ8 hole drilling of the auto s peed reducer shell side-end, the horizontal combined machine tool is designed specifically.On the basis of the complete data calculation, the standard general parts is chosen. The multi-axis box with reasonable structure is designed based on the structural features of the processed parts, the dimension precision of the processing sites, the surface roughness, the locating and clamping ways, the technological approach as well as the cutter, production efficiency, cutting parameter in the manufacturing process.Keyword:Combined machine tool, production efficiency, clamp, multi-axis开题报告一、课题介绍本课题是针对汽车减速器壳体侧端面上6个孔钻削这一特定工序而设计的一台专用卧式组合机床。

通用多轴箱设计

通用多轴箱设计

二、多轴箱的组成 多轴箱通用零件的编号方法
• T07表示多轴箱的通用零件 • 小组号分别用1、2、3和4表示箱 体类、主轴类、传动轴类和齿轮 类零件 • 顺序号和零件顺序号表示的内容 随类别号和小组号的不同而不同。 1. 500×400T0711-11,宽500mm,高400mm的多轴箱体 2. 30T0721-41,圆锥滚子轴承,直径30mm的扩、镗主轴
⑥ 钻、扩、铰、镗的主轴,轴头用圆柱孔与刀具连接,用单 键传递转矩。 ⑦ 攻丝主轴因靠模杆在主轴孔内作轴向移动,为获得良好的 导向,采用双键结构,轴向不定位。
三、多轴箱的设计
(2)主轴直径和齿轮模数的初步确定
初定主轴直径在“三图一卡”时进行。初选模数由下式估算,
再通过类比确定,即:
m ( 30 ~ 32)
三、多轴箱的设计
3)多轴箱内的齿轮传动副的最佳传动比为1~1.5,后盖内的第 Ⅳ排(或第Ⅴ排)齿轮,根据需要,传动比可取大一些,但不能超 过3~3.5。 4)驱动轴转速较高时,采用逐步降速传动;驱动轴转速较低 时,可先使速度升高一点再降速。 多轴箱的传动链较短,常常是一根中间传动轴带动多根主轴。 因此,设计的重点是合理安排各传动件。 为避免主轴齿轮过大,最后一级常采用升速传动。 5)粗加工切削力大,如钻孔,其主轴上的齿轮尽量安排靠近 前支承,以减小主轴的扭转变形。
二、多轴箱的组成
4.润滑泵
中等规格的多轴箱用
规格较大的通用多轴箱常采用R12-1A叶片 泵进行润滑。
一个润滑泵;规格较
大且主轴数量多的多 轴箱用两个润滑泵; 润滑泵泵出的油经分 油器至各润滑点。 润滑泵安装在前盖内,润滑泵轴在箱体内的悬伸长度为24mm,传 动方式有两种,一是由润滑泵传动轴传动,另一种是通过传动轴 上的齿轮直接与润滑泵轴上的齿轮啮合传动,传动齿轮齿宽为 12mm。

多轴箱设计

多轴箱设计

第三部分通用多轴箱低设计多轴箱是组合机床的重要专用部件。

它是根据加工示意图所确定的工件加工孔的数量和位置、切削用量和主轴类型设计的传递各主轴运动的动力部件。

其动力来自通用的动力箱,与动力箱一起安装于进给滑台,可完成铣面、钻、镗孔等加工工序。

多轴箱按结构特点分为通用(即标准)多轴箱和专用多轴箱两大类。

前者结构典型,能利用通用的箱体和传动件;后者结构特殊,往往需要加强主轴系统刚性,而使主轴及某些传动件必须专门设计,故专用主轴箱通常指“刚性主轴箱”即采用不需要刀具导向装置的刚性主轴和用精密滑台导轨来保证加工孔的位置精度。

通用多轴箱则采用标准主轴,借助导向套引导刀具来保证被加工孔的位置精度。

通用多轴箱又分为大型多轴箱和小型多轴箱,这两种多轴箱的设计方法基本相同。

第一章绘制多轴箱设计原始依据图多轴箱设计原始依据图是根据“三图一卡”绘制的。

其主要内容及注意事项如下: 1.根据机床联系尺寸图和加工示意图,标注所有主轴位置尺寸及工件与主轴、主轴与驱动轴的相关位置尺寸。

在绘制主轴位置时,要特别注意:主轴和被加工零件在机床上是面对面安放的,因此,多轴箱主视图上的水平方向尺寸真好相反:其次,多轴箱上的坐标尺寸基准和零件工序图上的基准经常不重合,应根据多轴箱与加工零件的相对位置关系尺寸,然后根据零件工序图各孔位置尺寸,算出多轴箱上各主轴坐标。

3.根据加工示意图标注各主轴转速及转向主轴逆时针转向(面对主轴看)可不标,只注顺时针转向。

4.列表注明各主轴的工序内容、切削用量及主轴外伸尺寸等。

5.标明动力部件型号及其性能参数等。

1.1主轴、齿轮的确定及动力计算1.1.1主轴形式和直径、齿轮模数的确定主轴的形式和直径、主要取决于工艺方法、刀具的进给抗力和切削转矩。

主轴间距较小时常选用滚针轴承主轴。

滚针轴承精度较低、结构刚度及装备工艺性都较差,除非轴距限制,一般不选用。

主轴直径按加工示意图所示主轴类型及外伸尺寸可初步确定。

传动轴的直径可参考主轴直径大小初步选定。

组合机床多轴箱设计

组合机床多轴箱设计

总装图介绍



主视图如图3-3所示,箱体材料为HT200,后盖与前盖的 材料为HT150,以左边定位销计算各个孔的精确坐标, 画出轴与轴套的圆,用点画线画出齿轮的传动情况,油 泵轴右旋,箱体上面有两个起吊螺钉。油盘的孔为直径 3毫米,可以将油泵的油均匀撒到齿轮上。 1~8轴为主轴,9号轴为传动轴,1、3、5、7使用第一排 齿轮,2、4、6、8使用第三排齿轮。驱动轴从箱体中间 伸出带动手柄轴和传动轴。 箱体连接的螺纹孔都是以定位销基准排布。箱体中各个 轴的位置可以根据驱动轴的齿轮位置为圆心,传动轴的 第四排齿轮与驱动轴齿轮的中心距离为半径画圆,根据 装料高度并保证最低轴位置。这样就可以确定轴在箱体 上位置。
可以承受大的压力载荷
传动方案设计
阀体的孔以同心圆分布可以用一根中间传 动轴带动。同时应该考虑到同心圆直径的 大小,如果工件孔的同心圆直径小,再加 入中间传动轴会导致制造箱体加工集中, 在实际加工工件时箱体承受的应力集中导 致箱体无法承受较大压力,使箱体弯曲变 形降低孔的加工精度。 所以轴与轴之间距离不小于65毫米。
设计准备
1.根据计算轴的公式
计算出传动轴直径,其中传动轴扭转角可以取大的值-1度每米。传动轴直径为35 毫米。 2.选择轴型 按支承方式的不同可分为三种:
一、前后支承均为圆锥滚子轴承的主轴(简称滚锥主轴); 二、前支承为推力求轴承和向心球轴承,后支承为向心球轴承或圆锥滚子轴承 的主轴(称滚珠主轴); 三、前后支承均为推力球轴承和无内圈滚子轴承的主轴(称滚针主轴)。 根据钻削类主轴工进时单向受力较大,后退受力较小,选择前支承为推 力球轴承和向心球轴承、后支承为圆锥滚子轴承。

第六部分
总装图与零件图绘制
总装图说明

说明书样本(以轴箱为例)

说明书样本(以轴箱为例)

机械工程系课程设计说明书课程名称:机械系统设计课程设计题目名称:分级变速主轴箱设计年级专业及班级:2009级机制1班姓名:于彤学号:0908012153指导教师:于霖冲,林志树评定成绩:教师评语:指导老师签名:2012 年 12 月 31日目录一、课程设计目的 (3)二、课程设计题目,主要技术参数和技术要求 (3)三、运动设计 (3)1.确定极限转速,转速数列,结构网和结构式 (3)2.主传动转速图和传动系统图 (4)3.确定变速组齿轮齿数,核算主轴转速误差 (5)四、动力计算 (6)1.传动件的计算转速 (6)2.传动轴和主轴的轴径设计 (7)3.计算齿轮模数 (8)4.带轮设计 (9)五、主要零部件选择 (11)六、校核 (12)结束语...................................................参考文献.................................................1.概述1.1机床主轴箱课程设计的目的设计,是在学习过课程《机械制造装备设计》之后进行的实践性教学环节。

其目的在于通过机床运动机械变速传动系统的结构设计,使学生在拟定传动和变速的结构方案过程中,得到设计构思,方案分析,结构工艺性,机械制图,零件计算,编写技术文件和查阅技术资料等方面的综合训练,树立正确的设计思想,掌握基本的设计方法,并培养学生具有初步的结构分析,结构设计和计算能力。

1.2设计任务和主要技术要求机床的规格和类型有系列型谱作为设计时应该遵照的基础。

因此,对这些基本知识和资料作些简要介绍。

本次设计的是普通型车床主轴变速箱。

主要用于加工回转体。

参数(规格尺寸)和基本参数如下:题目25:分级变速主传动系统设计技术参数:Nmin=95r/min; Nmax=800r/min; Z=10级;公比为1.26;电动机功率P=3.5/5kw;n=710/1420r/min1.3机床主轴箱总体设计(工业机械臂总体设计)1.3.1系统划分1.3.2各系统功能简介2.参数的拟定2.1 确定极限转速1.确定极限转速,公比、变速级数Nmin=95r/min ,Nmax=800r/min; ϕ=1.26; z=112.转速数列:ϕ=1.26=(1.06)495,118,150,190,236,300,375,475,600,750,800(r/min)共11级3.确定极限转速:Rn=Nmax/Nmin=800/95=8.42.2.2 主电机选择合理的确定电机功率N,使机床既能充分发挥其使用性能,满足生产需要,又不致使电机经常轻载而降低功率因素。

多轴箱(模板)资料

多轴箱(模板)资料

目录1 概述 (1)1.1 组合机床的特点 (1)1.2 组合机床的分类和组成 (1)1.3 组合机床的发展史 (2)1.4 组合机床的CAD发展概况 (2)2 组合机床总体设计 (4)2.1 制定组合机床工艺方案 (4)2.2 选择刀具及切削用量 (4)2.3 切削力、切削功率的确定 (5)2.4 组合机床的总体分析——三图一卡 (5)2.4.1 被加工零件工序图 (6)2.4.2 加工示意图 (6)2.4.3 组合机床联系尺寸图 (10)2.4.4 生产率计算卡 (13)3 组合机床多轴箱设计 (16)3.1 主轴箱设计的原始依据 (16)3.2 主轴结构型式的选择 (17)3.3 多轴箱传动设计 (17)3.3.1 对多轴箱传动系统的一般要求 (18)3.3.2 传动系统拟定 (18)3.3.3 多轴箱坐标计算、绘制坐标检查图 (22)3.4 绘制多轴箱总图 (24)结论 (25)参考文献 (26)1 概述1.1 组合机床的特点组合机床是由大量的通用部件和少量专用部件组成的工序集中的高效率专用机床。

它能够对一种(或几种)零件进行多刀、多轴、多面、多工位加工。

在组合机床上可以完成钻孔、扩孔、锪孔、铰孔、镗孔、铣削平面、切削内外螺纹以及加工外圆和端面等工序,生产效率比通用机床高几倍至几十倍,且加工精度十分稳定。

组合机床一般用于加工箱体类或特殊形状的零件。

加工时,工件一般不旋转,由刀具的旋转运动和刀具与工件的相对进给运动,来实现。

有的组合机床采用车削头夹持工件使之旋转,由刀具作进给运动,也可实现某些回转体类零件(如飞轮、汽车后桥半轴等)的外圆和端面加工。

组合机床与通用机床、其他专用机床比较,具有以下特点:1)组合机床上的通用部件和标准零件约占全部机床零、部件总量的70~80%,因此设计和制造的周期短,投资少,高效率,经济效果好。

2)由于组合机床采用多刀加工,并且自动化程度高,因此比通用机床生产效率高,产品质量稳定,劳动强度低。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

机床主传动系统设计多轴箱是组合机床的重要专用部件。

它是根据加工示意图所确定的工件加工孔的数量和位置、切削用量和主轴类型设计的传递各主轴运动的动力部件。

其动力来自通用的动力箱,与动力箱一起安装于进给滑台,可完成钻扩铰镗孔等加工工序。

通用主轴箱采用标准主轴,借助导向套引导刀具来保证被加工孔的位置精度。

5.1大型主轴箱的组成大型通用主轴箱由通用零件如箱体、主轴、传动轴、齿轮和附加机构等组成。

有箱体、前盖、后盖、上盖、侧盖等为箱体类零件;主轴、传动轴、手柄轴、传动齿轮、动力箱或电动机齿轮等为传动类零件;叶片泵、分油器、注油标、排油塞、油盘和防油套等为润滑及防油元件。

5.2多轴箱通用零件1.通用箱体类零件箱体材料为HT200,前、后、侧盖等材料为HT150。

多轴箱的标准厚度为180mm,前盖厚度为55mm,后盖厚度为90mm。

2.通用主轴1)滚锥轴承主轴2)滚针轴承主轴3)滚珠轴承主轴:前支承为推力球轴承、后支承为向心球轴承或圆锥滚子轴承。

因推力球轴承设置在前端,能承受单方向的轴向力,适用于钻孔主轴。

3.通用传动轴通用传动轴一般用45#钢,调质T235;滚针轴承传动轴用20Cr钢,热处理S0.5~C59。

4.通用齿轮和套多轴箱用通用齿轮有:传动齿轮、动力箱齿轮和电机齿轮。

5.3通用多轴箱设计1.多轴箱设计原始依据图1) 多轴箱设计原始依据图图5-1.原始依据图2) 主轴外伸及切削用量表5-1.主轴参数表轴号 主轴外伸尺寸(mm) 切削用量 备注D/dL工序内容n (r/min ) v(m/min) f(mm/r)九轴 30/20 115 钻Ф4.9900 14 0.053) 被加工零件:箱体类零件,材料及硬度,HT200,HB20~400 2.主轴、齿轮的确定及动力的计算 1) 主轴型式和直径、齿轮模数的确定主轴的型式和直径,主要取决于工艺方法、刀具主轴联结结构、刀具的进给抗力和切削转矩。

钻孔采用滚珠轴承主轴。

主轴直径按加工示意图所示主轴类型及外伸尺寸可初步确定。

传动轴的直径也可参考主轴直径大小初步选定。

齿轮模数m (单位为mm )按下列公式估算:3(30~P m zn ≥=3 5.521900⨯≈1.9(《组合机床设计简明手册》p62)多轴箱中的齿轮模数常用2、2.5、3、3.5、4几种。

为便于生产,同一多轴箱中的模数规格最好不要多于两种。

因此选用齿轮模数为2、3两种。

2) 多轴箱所需动力的计算多轴箱的动力计算包括多轴箱所需的功率和进给力两项。

传动系统确定之后,多轴箱所需功率P 多轴箱按下列公式计算:111nnni i i i i i P P P P P P P ====++=++∑∑∑切削损失切削损失多轴箱空转空转(《组合机床设计简明手册》p62)P =多轴箱4.76kw +0.074×9kw +4.76×1%kw =5.48kw 多轴箱所需的进给力F 多轴箱(单位为N )可按下列公式计算1ni i F F ==∑多轴箱=187.78×9=1691N实际上,为克服滑台移动引起的摩擦阻力,动力滑台的进给力应大于F 多轴箱。

3.多轴箱传动设计多轴箱传动设计,是依据动力箱驱动轴位置和转速、各主轴位置及其转速要求,设计传动链,把驱动轴与各主轴连接起来,使各主轴获得预定的转速和转向。

1) 对多轴箱传动系统的一般要求a) 在保证主轴的强度、刚度、转速和转向的条件下,力求使传动轴和齿轮的规格、数量为最少; b) 尽量不要用主轴带动主轴;c) 为使结构紧凑,多轴箱内齿轮副的传动比一般要大于1/2(最佳传动比为1~1/1.5),后盖内齿轮副传动比允许取至1/3~1/3.5;d) 用于粗加工主轴上的齿轮,应尽可能设置在第Ⅰ排,以减少主轴的扭转变形;精加工主轴上的齿轮,应设置在第Ⅱ排,以减少主轴端的弯曲变形。

e) 多轴箱内具有粗精加工主轴时,最好从动力箱驱动轴齿轮传动开始,就分两条传动路线,以避免影响加工精度。

f)驱动轴直接带动的转动轴数不能超过两根,以免给装配带来困难。

多轴箱传动设计过程中,当齿轮排数Ⅰ~Ⅳ排不够用时,可以增加排数。

2)拟定多轴箱传动系统的基本方法拟定多轴箱传动系统的基本方法是:先把全部主轴中心尽可能分布在几个同心圆上,在各个同心圆的圆心上分别设置中心传动轴;非同心圆分布的一些轴,也宜设置中间传动轴;然后根据选定的各中心传动轴再取同心圆,并用最少的传动轴带动这些中心传动轴;最后通过合拢传动轴与动力箱驱动轴连接起来。

a)所需加工孔为同心圆分布图5-2.需加工孔的位置分布b)确定驱动轴转速转向及其在多轴箱上的位置图5-3.驱动轴及传动轴的分布位置3) 用最少的传动轴及齿轮副把驱动轴和各主轴连接起来 在多轴箱设计原始依据图中确定了主轴的位置、转速和转向的基础上,首先分析主轴位置,拟定传动方案,选定齿轮齿轮模数,再经过“计算、作图和所次试凑”相结合的方法,确定齿轮齿数和中间传动轴的位置及转速。

齿轮齿轮模数 传动轴转速的计算公式:(《组合机床设计简明手册》p65)n z u z n ==从主从主()22z m m A z z S =+=从主 n z n n u z ==从从从主主 z n n u n z ==主从主主从222(1)(1)AA Az z u n mm u m n =-==++从主主从222(1)(1)AA Amz n mu m n -==++从主从主z =①驱动轴-传动轴Ⅰ:m =2mm A =66mm u =1І244Az z m+==驱 21.5z =驱 І21.5z =圆整后均取22 d 驱=66mm d Ⅰ=66mm720/min n r =驱 І720/min n r =②传动轴Ⅰ-主轴3:m =3mm A =92.18.mm u =1.25І3261.45Az z m+== 27z =3 І34z = d Ⅰ3=102mm d 3=81mmІ720/min n r = 900/min n r =3主轴4、5、6均与主轴3相同,由传动轴Ⅰ带动。

③传动轴Ⅱ-主轴1:m =3mm A =61.94mm u =1.25 П1241.29Az z m+== 18.3z =1取18 П22.9z =取23 d Ⅱ=54mm d 1=69mmП720/min n r = 900/min n r =1 主轴2和主轴1相同,由传动轴Ⅱ带动。

④传动轴Ⅳ-传动轴Ⅱ:m =3mm A =91.36mm u =1.74 ПΙV 260.91Az z m+== ΙV 38z = П23z = П69d mm = ΙV 114d mm = П720/min n r = ΙV 414/min n r =⑤传动轴Ⅰ-传动轴Ⅳ:m =3mm A =91.36mm u =1/1.74ΙΙV 260.91Az z m+== ΙV 38z = Ι23z = Ι69d mm = ΙV 114d mm =Ι720/min n r = ΙV 414/min n r =⑥传动轴Ⅲ-主轴7:m =3mm A =71.88mm u =1.25 Ш7247.92Az z m+== 721z = Ш27z = 763d mm = Ш81d mm =主轴8、9和主轴7相同,由传动轴Ⅲ带动。

Ш720/min n r = 7900/min n r =⑦传动轴Ⅴ-传动轴Ⅲ:m =3mm A =89.69mm u =1.19 ШV 259.79Az z m+== V 32z = Ш27z = V 96d mm = Ш81d mm = Ш720/min n r = V 608/min n r =⑧传动轴Ⅰ-传动轴Ⅴ:m =3mm A =89.69mm u =1/1.19ΙV 259.79Az z m+== V 32z = Ι27z = V 96d mm = Ι81d mm =Ι720/min n r = V 608/min n r =⑨驱动轴-手柄轴:m =3mm A =66mm u =1244Az z m+==驱手柄 22z =手柄 22z =驱 66d mm =手柄 66d mm =驱720/min n r =驱 720/min n r =手柄⑩传动轴Ⅵ-油泵轴:m =2mm A =70mm u =2.09 270Az z m+==IV 油泵 24z =油泵 46z =IV 24d mm =油泵 46d mm =IV720/min n r =油泵 376/min n r =IV○11手柄轴-传动轴Ⅵ:m =2mm A =70mm u =1/2.09 270Az z m+==IV 油泵 24z =手柄 46z =IV 24d mm =手柄 46d mm =IV720/min n r =手柄 376/min n r =IV4) 润滑泵轴和手柄轴的安置 多轴箱常采用叶片油泵润滑,油泵供油至分油器经油管分送至各润滑点。

油泵安装在箱体前壁上,泵轴尽量靠近油池。

油泵轴的齿轮齿数为24,模数为2mm,转速应当不高与800/minr。

通常油泵齿轮放在第Ⅰ排,以便于维修。

当泵体或管接头和传动轴相碰时,可改用埋头传动轴。

多轴箱一般设手柄轴,用于对刀、调整或装配检修时检查主轴精度。

手柄轴转速尽量高些,其周围应有较大孔间。

图5-4.手柄轴和油泵轴的位置4.九孔钻削多轴箱坐标检查图驱动轴,主轴坐标值表(mm)表5-2.主轴坐标值表坐标销O 驱动轴主轴1 主轴2 主轴3 主轴4 X 0.000 265.000 38.700 38.700 217.500 312.500 Y 0.000 200.500 235.300 147.700 121.500 121.500 主轴5 主轴6 主轴7 主轴8 主轴9 传动轴Ⅰ传动轴Ⅱ312.500 217.500 466.500 513.900 488.070 265.000 82.500 279.500 279.500 251.710 191.500 128.460 200.500 191.500 传动轴Ⅲ传动轴Ⅳ传动轴Ⅴ传动轴Ⅵ手柄轴油泵轴442.410 173.750 353.710 195.660 265.000 132.500183.980 196.000 192.240 59.260 68.720 89.430九孔钻削多轴箱坐标检查图:图5-5.多轴箱坐标检查图5.绘制多轴箱总图通用多轴箱总图设计包括绘制主视图、展开图,明细表,制订技术条件等。

相关文档
最新文档