最新大学工程流体力学实验-参考答案
《工程流体力学》习题参考答案
闻建龙主编的《工程流体力学》习题参考答案第一章 绪论1-1 物质是按什么原则分为固体和液体两大类的?解:从物质受力和运动的特性将物质分成两大类:不能抵抗切向力,在切向力作用下可以无限的变形(流动),这类物质称为流体。
如空气、水等。
而在同等条件下,固体则产生有限的变形。
因此,可以说:流体不管是液体还是气体,在无论多么小的剪应力(切向)作用下都能发生连续不断的变形。
与此相反,固体的变形与作用的应力成比例,经一段时间变形后将达到平衡,而不会无限增加。
1-2 何谓连续介质假设?引入连续介质模型的目的是什么?在解决流动问题时,应用连续介质模型的条件是什么?解:1753年,欧拉首次采用连续介质作为流体宏观流动模型,即不考虑流体分子的存在,把真实的流体看成是由无限多流体质点组成的稠密而无间隙的连续介质,甚至在流体与固体边壁距离接近零的极限情况也认为如此,这个假设叫流体连续介质假设或稠密性假设。
流体连续性假设是流体力学中第一个根本性假设,将真实流体看成为连续介质,意味着流体的一切宏观物理量,如密度、压力、速度等,都可看成时间和空间位置的连续函数,使我们有可能用数学分析来讨论和解决流体力学问题。
在一些特定情况下,连续介质假设是不成立的,例如:航天器在高空稀薄气体中飞行,超声速气流中激波前后,血液在微血管(1μm )内的流动。
1-3 底面积为25.1m 的薄板在液面上水平移动(图1-3),其移动速度为s m 16,液层厚度为mm 4,当液体分别为C 020的水和C 020时密度为3856m kg 的原油时,移动平板所需的力各为多大?题1-3图解:20℃ 水:s Pa ⋅⨯=-3101μ20℃,3/856m kg =ρ, 原油:s Pa ⋅⨯='-3102.7μ水: 233/410416101m N u=⨯⨯=⋅=--δμτN A F 65.14=⨯=⋅=τ油: 233/8.2810416102.7m N u=⨯⨯=⋅'=--δμτ N A F 2.435.18.28=⨯=⋅=τ1-4 在相距mm 40=δ的两平行平板间充满动力粘度s Pa ⋅=7.0μ液体(图1-4),液体中有一边长为mm a 60=的正方形薄板以s m u 15=的速度水平移动,由于粘性带动液体运动,假设沿垂直方向速度大小的分布规律是直线。
工程流体力学答案详解
第一章 流体及其物理性质1-1 已知油的重度为7800N/m 3,求它的密度和比重。
又,0.2m 3此种油的质量和重量各为多少?已已知知::γ=7800N/m 3;V =0.2m 3。
解解析析::(1) 油的密度为 3kg/m 79581.97800===gγρ; 油的比重为 795.01000795OH 2===ρρS (2) 0.2m 3的油的质量和重量分别为 kg 1592.0795=⨯==V M ρ N 15602.07800=⨯==V G γ1-2 已知300L(升)水银的质量为4080kg ,求其密度、重度和比容。
已已知知::V =300L ,m =4080kg 。
解解析析::水银的密度为 33kg/m 13600103004080=⨯==-V m ρ 水银的重度为3N/m 13341681.913600=⨯==g ργ水银的比容为 kg /m 10353.7136001135-⨯===ρv1-3 某封闭容器内空气的压力从101325Pa 提高到607950Pa ,温度由20℃升高到78℃,空气的气体常数为287.06J/k g ·K 。
问每kg 空气的体积将比原有体积减少多少?减少的百分比又为多少?已已知知::p 1=101325Pa ,p 2=607950Pa ,t 1=20℃,t 2=78℃,R =287.06J/k g ·K 。
解解析析::由理想气体状态方程(1-12)式,得 kg /m 83.0101325)27320(06.2873111=+⨯==p RT v kg /m 166.0607950)27378(06.2873222=+⨯==p RT v kg /m 664.0166.083.0321=-=-v v%80%10083.0166.083.0%100121=⨯-=⨯-v v v每kg 空气的体积比原有体积减少了0.664m 3;减少的百分比为80%。
工程流体力学课后习题答案
流体及其主要物理性质7 相对密度0.89的石油,温度20ºC 时的运动粘度为40cSt ,求动力粘度为多少?解:89.0==水ρρdν=40cSt =0.4St =0.4×10-4m 2/sμ=νρ=0.4×10-4×890=3.56×10-2Pa ·s8 图示一平板在油面上作水平运动,已知运动速度u=1m/s ,板与固定边界的距离δ=1,油的动力粘度μ=1.147Pa ·s ,由平板所带动的油层的运动速度呈直线分布,求作用在平板单位面积上的粘性阻力为多少?解:233/10147.11011147.1m N dy du ⨯=⨯⨯==-μτ9 如图所示活塞油缸,其直径D =12cm ,活塞直径d =11.96cm ,活塞长度L =14cm ,油的μ=0.65P ,当活塞移动速度为0.5m/s 时,试求拉回活塞所需的力F=?解:A =πdL , μ=0.65P =0.065 Pa ·s , Δu =0.5m/s , Δy=(D-d)/2()N dy du AF 55.821096.11125.010141096.1114.3065.0222=⨯-⨯⨯⨯⨯⨯⨯==---μ流体静力学6油罐内装相对密度0.70的汽油,为测定油面高度,利用连通器原理,把U 形管内装上相对密度为1.26的甘油,一端接通油罐顶部空间,一端接压气管。
同时,压气管的另一支引入油罐底以上0.40m 处,压气后,当液面有气逸出时,根据U 形管内油面高差h =0.70m 来推算油罐内的油深H 为多少?解:p -γ甘油Δh =p -γ汽油(H-0.4)H =γ甘油Δh/γ汽油+0.4=1.26×0.7/0.70+0.4=1.66m7为测定油品重度,用如下装置,经过1管或2管输入气体,直至罐内油面出现气泡为止。
用U 形管水银压力计分别量出1管通气时的Δh 1,及2管通气时的Δh 2。
工程流体力学(含实验演示)
工程流体力学(含实验演示)一、选择题 (共26题)1、以下物理量中,量纲与运动粘度相同的是()A、动力粘度B、粘性力C、压强与时间的乘积D、面积除以时间考生答案:D2、在源环流动中,等势线是()A、平行直线B、同心圆C、过圆心的半辐射线D、螺旋线考生答案:D3、己知某井筒环形截面管路的内径d1为10cm,外径d2为15cm,则水力半径与之相等的圆形截面的管路半径为()A、2.5B、5C、7.5D、10考生答案:B4、并联管段AB有3条管线并联,设流量Q1>Q2>Q3,则三段管路水头损失的关系为()A、B、C、D、考生答案:B5、以下物理量中,量纲与动力粘度相同的是()A、运动粘度B、粘性力C、密度D、压强与时间的乘积考生答案:D6、在点汇流动中,等势线是()A、平行直线B、同心圆C、过圆心的半辐射线D、螺旋线考生答案:B7、己知某管路截面为正方形,边长为12cm,其水力半径为()A、12cmB、6cmC、4cmD、3cm考生答案:D8、理想流体是一种通过简化得到的流体模型,在理想流体中不存在()A、体积力B、惯性力C、压力D、粘性力考生答案:D9、以下物理量中,量纲与应力相同的是()A、动力粘度B、总压力C、压强D、表面张力考生答案:C10、在纯环流中,等势线是()A、平行直线B、同心圆C、过圆心的半辐射线D、螺旋线考生答案:C11、己知某管路截面为正方形,边长为10cm,则其水力半径为()A、2.5B、5C、7.5D、10考生答案:A12、下列单位中,()是基本量纲的单位A、米B、牛C、PaD、瓦考生答案:A13、动力粘度系数的单位是()A、Pa.sB、/sC、s/考生答案:A14、静止流体的点压强值与()无关A、位置B、方向C、流体的密度考生答案:B15、在缓变流的同一有效截面中,流体的压强分布满足()A、B、P=CC、D、考生答案:A16、串联管路AB有3段组成,设水头损失hf1>hf2>hf3,摩阻系数相等,管线长度也相等,中间无流体引入引出,则三段管线的流量之间的关系是()A、Q1<Q2<Q3B、Q1=Q2=Q3C、Q1>Q2>Q3考生答案:B17、动量方程不可以适用于()A、粘性流体的的流动B、非稳定流动C、以上两种说法都不对考生答案:C18、N-S方程不可以适用于()A、不可压缩粘性流体的流动B、不可压缩理想流体的非稳定流动C、不可压缩理想流体的稳定流动D、非牛顿流体的运动考生答案:D19、下列说法中正确的是()A、液体不能承受压力B、理想流体所受的切应力一定为0C、粘性流体所受的切应力一定为0考生答案:B20、其它条件(流体和管材,管径和管壁厚度等)均相同的情况下,当管路中液体流速增加,则水击压力会()A、增加B、减小C、不变考生答案:A21、单位时间内,控制体内由于密度变化引起的质量增量等于从控制面()。
工程流体力学课后习题答案(第二版)
第一章 绪论1-1.20℃的水2.5m 3,当温度升至80℃时,其体积增加多少? [解] 温度变化前后质量守恒,即2211V V ρρ= 又20℃时,水的密度31/23.998m kg =ρ 80℃时,水的密度32/83.971m kg =ρ 321125679.2m V V ==∴ρρ 则增加的体积为3120679.0m V V V =-=∆1-2.当空气温度从0℃增加至20℃时,运动粘度ν增加15%,重度γ减少10%,问此时动力粘度μ增加多少(百分数)? [解] 原原ρννρμ)1.01()15.01(-+==原原原μρν035.1035.1==035.0035.1=-=-原原原原原μμμμμμ此时动力粘度μ增加了3.5%1-3.有一矩形断面的宽渠道,其水流速度分布为μρ/)5.0(002.02y hy g u -=,式中ρ、μ分别为水的密度和动力粘度,h 为水深。
试求m h 5.0=时渠底(y =0)处的切应力。
[解] μρ/)(002.0y h g dydu-=)(002.0y h g dydu-==∴ρμτ 当h =0.5m ,y =0时)05.0(807.91000002.0-⨯⨯=τPa 807.9=1-4.一底面积为45×50cm 2,高为1cm 的木块,质量为5kg ,沿涂有润滑油的斜面向下作等速运动,木块运动速度u=1m/s ,油层厚1cm ,斜坡角22.620 (见图示),求油的粘度。
[解] 木块重量沿斜坡分力F 与切力T 平衡时,等速下滑yu AT mg d d sin μθ== 001.0145.04.062.22sin 8.95sin ⨯⨯⨯⨯==δθμu A mg s Pa 1047.0⋅=μ1-5.已知液体中流速沿y 方向分布如图示三种情况,试根据牛顿内摩擦定律yud d μτ=,定性绘出切应力沿y 方向的分布图。
[解]1-6.为导线表面红绝缘,将导线从充满绝缘涂料的模具中拉过。
工程流体力学课后习题答案
第1章 绪论【1-1】500cm 3的某种液体,在天平上称得其质量为0.453kg ,试求其密度和相对密度。
【解】液体的密度3340.4530.90610 kg/m 510m V ρ-===⨯⨯ 相对密度330.906100.9061.010w ρδρ⨯===⨯ 【1-2】体积为5m 3的水,在温度不变的条件下,当压强从98000Pa 增加到4.9×105Pa 时,体积减少1L 。
求水的压缩系数和弹性系数。
【解】由压缩系数公式10-1510.001 5.110 Pa 5(4.91098000)p dV V dP β-=-==⨯⨯⨯- 910111.9610 Pa 5.110pE β-===⨯⨯ 【1-3】温度为20℃,流量为60m 3/h 的水流入加热器,如果水的体积膨胀系数βt =0.00055K -1,问加热到80℃后从加热器中流出时的体积流量变为多少?【解】根据膨胀系数1t dVV dtβ=则2113600.00055(8020)6061.98 m /ht Q Q dt Q β=+=⨯⨯-+= 【1-4】用200升汽油桶装相对密度0.70的汽油。
罐装时液面上压强为98000Pa 。
封闭后由于温度变化升高了20℃,此时汽油的蒸汽压力为17640Pa 。
若汽油的膨胀系数为0.0006K -1,弹性系数为13.72×106Pa ,(1)试计算由于压力温度变化所增加的体积,(2)问灌装时汽油的体积最多不应超过桶体积的百分之多少?【解】(1)由1β=-=P pdV Vdp E可得,由于压力改变而减少的体积为6200176400.257L 13.7210⨯∆=-===⨯P p VdP V dV E 由于温度变化而增加的体积,可由1β=t t dV V dT得 0.000620020 2.40L β∆===⨯⨯=t t t V dV VdT(2)因为∆∆tp VV ,相比之下可以忽略由压力变化引起的体积改变,则由 200L β+=tV V dT得1198.8%200110.000620β===++⨯t V dT 【1-5】图中表示浮在油面上的平板,其水平运动速度为u =1m/s ,δ=10mm ,油品的粘度μ=0.9807Pa ·s ,求作用在平板单位面积上的阻力。
工程流体力学实验参考答案
静水压强实验1.同一静止液体内的测压管水头线是根什么线? 测压管水头指γp z +,即静水力学实验仪显示的测压管液面至基准面的垂直高度。
测压管水头线指测压管液面的连线。
实验直接观察可知,同一静止液面内的测压管水头线是一根水平线。
2.当0〈B p 时,试根据记录数据,确定水箱内的真空区域。
0〈B p ,相应容器的真空区域包括以下三个部分:(1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占区域,均为真空区域。
(2)同理,过箱顶小不杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区域。
(3)在测压管5中,自水面向下深度某一段水柱亦为真空区域。
这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等。
3.若再备一根直尺,试采用另外最简便的方法测定0γ。
最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂直高度h 和0h ,由式00h h w w γγ= ,从而求得0γ。
4.如测压管太细,对于测压管液面的读数将有何影响?设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算γθσd h cos 4= 式中,σ为表面张力系数;γ为液体容量;d 为测压管的内径;h 为毛细升高。
常温的水,m N 073.0=σ,30098.0m N =γ。
水与玻璃的浸润角θ很小,可以认为0.1cos =θ。
于是有d h 7.29= (h 、d 均以mm 计)一般来说,当玻璃测压管的内径大于10mm 时,毛细影响可略而不计。
另外,当水质不洁时,σ减小,毛细高度亦较净水小;当采用有机下班玻璃作测压管时,浸润角θ较大,其h 较普通玻璃管小。
如果用同一根测压管测量液体相对压差值,则毛细现象无任何影响。
因为测量高、低压强时均有毛细现象,但在计算压差时,互相抵消了。
工程流体力学参考答案带图-张维佳
第一章1-2密度为850kg/m³的某液体动力学年度为0.005pa·s,其运动黏度为多少?答:不相同。
水的粘滞性随温度升高而减小,而空气的粘滞性随温度升高而增大。
因为液体分子间距小,内聚力强,粘滞性作用主要来源于分子内聚力,温度升高分子间距变大,内聚力减小,所以粘滞性减小;气体的内聚力极小,可以忽略,其粘滞作用取决于分子热运动中动量交换,当温度升高时,热运动加剧,其粘滞性随温度升高而增强。
1-4 已知海下h=8km处压强为p=8.17x107Pa,设海水到的平均体积模量K=2.34x109Pa,试求该深处海水的密度。
解:重度:比容:动力粘度:1-6如图1-6解:设圆锥体母线与轴的夹角为(其中),微元体表面积为dA,微元半径为r,微元高度为h。
微元面积:切应力:微元阻力矩:1-8 弹性模量:1-10 解:设平板宽度为b,根据题意有:则:第二章2.2 解:真空度:绝对压强:2.4 解:如下图所示2.6 解:水银水所以,水银水带入重度:水,水银真空度:2.8 解:水下平面水平放置时,压力中心与平面形心重合。
2.10 解:形心处压强为:则闸门所受压力大小为:压力中心到形心的距离为:,(其中,,)那么,闸门水压力对轴的力矩为:所以,闸门水压力对轴的力矩与形心水深无关。
2.12 解:设抛物线方程为带入点坐标,得:所以,,2.14 解:闸门所受水平分力为,方向向右;闸门所受的垂直分力为,方向向上。
闸门所受的垂直分力为,方向向上闸门所受总压力为:,2.16解:以容器底部中心为坐标原点,取z轴为纵坐标,此时与容器轴心线重合。
则水面抛物线方程为:带入方程上的点坐标(0.225,0.6)得,2.18 解:坐标原点设在圆筒上盖与轴心线交点处,Z轴正向向上。
容器中压力分布为:(1)容器上盖中心开孔,即边界条件为:,,带入得:,所以:(2)顶盖边缘开口,即边界条件为:,,带入得:,所以:第三章3-2 解:①表示单位重量流体对某一基准面具有的位置势能,又称位置水头;②表示单位重量流体具有的压强势能,又称压强水头;③表示单位重量流体具有的总势能,又称测压管水头;④表示单位重量流体具有的动能,又称速度水头;⑤表示单位重量流体具有的机械能,又称总水头。
工程流体力学习题及答案
一、 是非题。
1. 流体静止或相对静止状态的等压面一定是水平面。
( )2. 平面无旋流动既存在流函数又存在势函数。
( )3. 附面层分离只能发生在增压减速区。
( )4. 等温管流摩阻随管长增加而增加,速度和压力都减少。
( )5. 相对静止状态的等压面一定也是水平面。
( )6. 平面流只存在流函数,无旋流动存在势函数。
( )7. 流体的静压是指流体的点静压。
( )8. 流线和等势线一定正交。
( )9. 附面层内的流体流动是粘性有旋流动。
( )10. 亚音速绝热管流摩阻随管长增加而增加,速度增加,压力减小。
( )11. 相对静止状态的等压面可以是斜面或曲面。
( )12. 超音速绝热管流摩阻随管长增加而增加,速度减小,压力增加。
( )13. 壁面静压力的压力中心总是低于受压壁面的形心。
( )14. 相邻两流线的函数值之差,是此两流线间的单宽流量。
( )15. 附面层外的流体流动时理想无旋流动。
( )16. 处于静止或相对平衡液体的水平面是等压面。
( )17. 流体的粘滞性随温度变化而变化,温度升高粘滞性减少;温度降低粘滞性增大。
( )18. 流体流动时切应力与流体的粘性有关,与其他无关。
( )二、 填空题。
1、1mmH 2O= 9.807 Pa2、描述流体运动的方法有 欧拉法 和 拉格朗日法 。
3、流体的主要力学模型是指 连续介质 、 无粘性 和不可压缩性。
4、雷诺数是反映流体流动状态的准数,它反映了流体流动时 粘性力与 惯性力 的对比关系。
5、流量Q1和Q2,阻抗为S1和S2的两管路并联,则并联后总管路的流量Q 为 ,总阻抗S 为 。
串联后总管路的流量Q 为 ,总阻抗S 为 。
6、流体紊流运动的特征是 脉动现行 ,处理方法是 时均法 。
7、流体在管道中流动时,流动阻力包括 沿程阻力 和 局部阻力 。
8、流体微团的基本运动形式有: 平移运动 、 旋转流动 和 变形运动 。
工程流体力学(含实验演示)
A、
液体不能承受压力
B、理想流体所受的切应力一定为0
C、粘性流体所受的切应力一定为0考生答案:B
20、
其它条件(流体和管材,管径和管壁厚度等)均相同的情况下,当管路中液体流速增加,则水击压 力会()
A、增加
B、减小
C、
不变 考生答案:A
21、 单位时间内,控制体内由于密度变化引起的质量增量等于从控制面()。
35、 以下流体,适用于N-S方程的是()
A、粘度不为0的牛顿流体
B、
粘度为0的牛顿流体
C、理想流体
D、假塑性流体 考生答案:ABC
36、
在其它条件不变的情况下,以下因素中会使水击压力增加的有()
A、管径增加
B、管壁变厚
C、流体密度增加
D、流体密度减少 考生答案:BC
37、 在以下关于压力体的说法中,不正确的有()
A、平行直线
B、
同心圆
C、
过圆心的半辐射线
D、
螺旋线
考生答案:B
7、 己知某管路截面为正方形,边长为12cm,其水力半径为()
A、
12cm
B、
6cm
C、
4cm
D、3cm考生答案:D
8、
理想流体是一种通过简化得到的流体模型,在理想流体中不存在()
A、体积力
B、
惯性力
C、压力
D、
粘性力 考生答案:D
9、
以下物理量中,量纲与应力相同的是()
A、动力粘度
B、总压力
C、压强
D、表面张力 考生答案:C
10、
在纯环流中,等势线是()
A、平行直线
B、同心圆
(完整版)工程流体力学课后习题(第二版)答案.doc
h 12 h 6 2 1 0.1 12h 6 得h4 m 3 2-11.有一盛水的开口容器以的加速度 3.6m/s 2沿与水平面成 30o 夹角的斜面向上运动, 试求容器中水面的倾角。 [ 解 ] 由液体平衡微分方程 dp ( f x dx f y dy f z dz) f x a cos300 , f y 0 , f z ( g asin 300 ) 在液面上为大气压, dp a cos300 dx ( g a sin 300 )dz 0 dz a cos300 0.269 tan g a sin 300 dx 150 2-12.如图所示盛水 U 形管,静止时,两支管水面距离管口均为 h ,当 U 形管绕 OZ 轴以等角速度ω旋转 时, 求保持液体不溢出管口的最大角速度ωmax 。 [ 解 ] 由液体质量守恒知, 管液体上升高度与 管液体下降高度应相等,且两者液面同在一等压面上, 满足等压面方程: 2r 2 C z z I II
=45 °,闸门挡水深 h=3m ,试求水对闸门的作用力及 方向 [ 解 ] 水平分力: F px gh c A x hhb 1000 3.0 g 9.81 3 44.145kN 2 2 压力体体积: V [ h( h h) 1 h 2 ] 8 ( h ) 2 sin 45 2 sin 45 [ 3(3 3) 1 32 ] ( 3 )2 sin 45 2 8 sin 45 1.1629m 3 铅垂分力: F pz gV 1000 9.81 1.1629 11.41kN 合力: Fp F px 2 F pz 2 44.1452 11.412 45.595kN 方向: arctan
2g h 液体不溢出,要求 z I z II 2h , 以 r 1 a, r 2 b 分别代入等压面方程得: a b a>b gh 2 a2 b2 max 2 gh b2 a2 2-13.如图, 600 ,上部油深 h 1= 1.0m ,下部水深 h 2 = 2.0m ,油的重度 =8.0kN/m 3,求:平板 ab 单位 宽度上的流体静压力及其作用点。 [ 解 ] 合力 Pb 1 h11h22油 h 1 sin 600 2 水 h 2 sin 600 = 46.2kN +油h1h20 sin 60 作用点: 1
(完整版)工程流体力学习题及答案.doc
第 1 章绪论选择题( a )流体的分子; ( b )流体内的固体颗粒; 【1.1 】 按连续介质的概念,流体质点是指:( c )几何的点;( d )几何尺寸同流动空间相比是极小量,又含有大量分子的微元体。
解:流体质点是指体积小到可以看作一个几何点,但它又含有大量的分子, 且具有诸如速度、密度及压强等物理量的流体微团。
( d )【1.2 】 与牛顿内摩擦定律直接相关的因素是:( a )切应力和压强; ( b )切应力和剪切变 形速度;( c )切应力和剪切变形; ( )切应力和流速。
ddv dv解:牛顿内摩擦定律是dy,而且速度梯度dy是流体微团的剪切变形速度dddt ,故dt 。
( b )【1.3 】 流体运动黏度 υ 的国际单位是: ( a ) m 2/s ;( ) N/m 2 ;( ) kg/m ;( )N ·s/m 2。
bcd解:流体的运动黏度 υ 的国际单位是 m 2 /s 。
( a )p 【1.4 】 理想流体的特征是:( a)黏度是常数;( b )不可压缩;( c )无黏性;( d )符合RT。
解:不考虑黏性的流体称为理想流体。
( c )【1.5 】当 水的 压 强 增 加一 个 大 气 压 时, 水 的 密 度 增 大约 为 :( a ) 1/20 000 ;( b ) 1/1 000 ;( c ) 1/4 000 ;( d ) 1/2 000 。
解 : 当 水 的 压 强 增 加 一 个 大 气 压 时 , 其 密 度 增 大 约 dkdp0.5 10 9 1 105120 000 。
( a )【1.6 】 从力学的角度分析,一般流体和固体的区别在于流体:( a)能承受拉力,平衡时不能承受切应力; ( )不能承受拉力,平衡时能承受切应力; ( )不能承受拉力,bc平衡时不能承受切应力; (d )能承受拉力,平衡时也能承受切应力。
解:流体的特性是既不能承受拉力, 同时具有很大的流动性, 即平衡时不能承受切应力。
工程流体力学习题及答案(精编文档).doc
【最新整理,下载后即可编辑】第1章 绪论选择题【1.1】 按连续介质的概念,流体质点是指:(a )流体的分子;(b )流体内的固体颗粒;(c )几何的点;(d )几何尺寸同流动空间相比是极小量,又含有大量分子的微元体。
解:流体质点是指体积小到可以看作一个几何点,但它又含有大量的分子,且具有诸如速度、密度及压强等物理量的流体微团。
(d ) 【1.2】 与牛顿内摩擦定律直接相关的因素是:(a )切应力和压强;(b )切应力和剪切变形速度;(c )切应力和剪切变形;(d )切应力和流速。
解:牛顿内摩擦定律是d d v y τμ=,而且速度梯度d d vy 是流体微团的剪切变形速度d d tγ,故d d tγτμ=。
(b )【1.3】 流体运动黏度υ的国际单位是:(a )m 2/s ;(b )N/m 2;(c )kg/m ;(d )N·s/m 2。
解:流体的运动黏度υ的国际单位是/s m 2。
(a )【1.4】 理想流体的特征是:(a )黏度是常数;(b )不可压缩;(c )无黏性;(d )符合RTp=ρ。
解:不考虑黏性的流体称为理想流体。
(c )【1.5】当水的压强增加一个大气压时,水的密度增大约为:(a )1/20 000;(b )1/1 000;(c )1/4 000;(d )1/2 000。
解:当水的压强增加一个大气压时,其密度增大约95d 1d 0.51011020 000k p ρρ-==⨯⨯⨯=。
(a )【1.6】 从力学的角度分析,一般流体和固体的区别在于流体:(a )能承受拉力,平衡时不能承受切应力;(b )不能承受拉力,平衡时能承受切应力;(c )不能承受拉力,平衡时不能承受切应力;(d )能承受拉力,平衡时也能承受切应力。
解:流体的特性是既不能承受拉力,同时具有很大的流动性,即平衡时不能承受切应力。
(c ) 【1.7】下列流体哪个属牛顿流体:(a )汽油;(b )纸浆;(c )血液;(d )沥青。
(完整版)工程流体力学课后习题(第二版)答案
第一章 绪论1-1.20℃的水2.5m 3,当温度升至80℃时,其体积增加多少? [解] 温度变化前后质量守恒,即2211V V ρρ= 又20℃时,水的密度31/23.998m kg =ρ 80℃时,水的密度32/83.971m kg =ρ 321125679.2m V V ==∴ρρ 则增加的体积为3120679.0m V V V =-=∆1-2.当空气温度从0℃增加至20℃时,运动粘度ν增加15%,重度γ减少10%,问此时动力粘度μ增加多少(百分数)? [解] 原原ρννρμ)1.01()15.01(-+==Θ原原原μρν035.1035.1==035.0035.1=-=-原原原原原μμμμμμΘ此时动力粘度μ增加了3.5%1-3.有一矩形断面的宽渠道,其水流速度分布为μρ/)5.0(002.02y hy g u -=,式中ρ、μ分别为水的密度和动力粘度,h 为水深。
试求m h 5.0=时渠底(y =0)处的切应力。
[解] μρ/)(002.0y h g dydu-=Θ)(002.0y h g dydu-==∴ρμτ 当h =0.5m ,y =0时)05.0(807.91000002.0-⨯⨯=τPa 807.9=1-4.一底面积为45×50cm 2,高为1cm 的木块,质量为5kg ,沿涂有润滑油的斜面向下作等速运动,木块运动速度u=1m/s ,油层厚1cm ,斜坡角22.620 (见图示),求油的粘度。
[解] 木块重量沿斜坡分力F 与切力T 平衡时,等速下滑yu AT mg d d sin μθ== 001.0145.04.062.22sin 8.95sin ⨯⨯⨯⨯==δθμu A mg s Pa 1047.0⋅=μ1-5.已知液体中流速沿y 方向分布如图示三种情况,试根据牛顿内摩擦定律yud d μτ=,定性绘出切应力沿y 方向的分布图。
[解]1-6.为导线表面红绝缘,将导线从充满绝缘涂料的模具中拉过。
工程流体力学课后题答案
工程流体力学练习题第一章1-1解:设:柴油的密度为ρ,重度为γ;40C 水的密度为ρ0,重度为γ0。
则在同一地点的相对密度和比重为:ρρ=d ,0γγ=c ;30/830100083.0m kg d =⨯=⨯=ρρ30/81348.9100083.0m N c =⨯⨯=⨯=γγ1-2解:336/1260101026.1m kg =⨯⨯=-ρ;3/123488.91260m N g =⨯==ργ1-3解:269/106.191096.101.0m N E V V VVp p V Vp p p⨯=⨯⨯=∆-=∆-=∆⇒∆∆-=ββ1-4解:N m pVVp/105.21041010002956--⨯=⨯=∆∆-=β299/104.0105.211m N E pp ⨯=⨯==-β1-5解:1)求体积膨涨量和桶内压强受温度增加的影响,200升汽油的体积膨涨量为:()l T V V T T 4.2202000006.00=⨯⨯=∆=∆β由于容器封闭,体积不变,从而因体积膨涨量使容器内压强升高,体积压缩量等于体积膨涨量。
故:26400/1027.16108.9140004.22004.2mN E V V V V V V p p TT pTT⨯=⨯⨯⨯+=∆+∆-=∆+∆-=∆β2)在保证液面压强增量0.18个大气压下,求桶内最大能装的汽油质量。
设装的汽油体积为V ,那么:体积膨涨量为:T V V T T ∆=∆β;体积压缩量为:()()T V E p V VE p V T pT pp ∆+∆=∆+∆=∆β1因此,温度升高和压强升高联合作用的结果,应满足:()()⎪⎪⎭⎫ ⎝⎛∆-∆+=∆-∆+=p T pT E p T V V T V V 1110ββ()())(63.197108.9140001018.01200006.012001145l E p T V V p T =⎪⎪⎭⎫⎝⎛⨯⨯⨯-⨯⨯+=⎪⎪⎭⎫ ⎝⎛∆-∆+=β()kg V m 34.1381063.19710007.03=⨯⨯⨯==-ρ1-6解:石油的动力粘度:s pa .028.01.010028=⨯=μ石油的运动粘度:s m /1011.39.01000028.025-⨯=⨯==ρμν1-7解:石油的运动粘度:s m St /1044.01004025-⨯===ν石油的动力粘度:s pa .0356.0104100089.05=⨯⨯⨯==-ρνμ1-8解:2/1147001.01147.1m N u=⨯==δμτ1-9解:()()2/5.1621196.012.0215.0065.021m N d D u u=-⨯=-==μδμτN L d F 54.85.16214.01196.014.3=⨯⨯⨯=⨯⨯⨯=τπ第二章2-4解:设:测压管中空气的压强为p 2,水银的密度为1ρ,水的密度为2ρ。
工程流体力学 课后习题(简精版)答案
第一章 流体及其主要物理性质1-1.轻柴油在温度15ºC 时相对密度为0.83,求它的密度和重度。
解:4ºC 时所以,33/8134980083.083.0/830100083.083.0mN m kg =⨯===⨯==水水γγρρ1-2.甘油在温度0ºC 时密度为1.26g/cm3,求以国际单位表示的密度和重度。
333/123488.91260/1260/26.1m N g m kg cm g =⨯==⇒==ργρ 1-3.水的体积弹性系数为1.96×109N/m 2,问压强改变多少时,它的体积相对压缩1%?MPa Pa E E VVVV p p6.191096.101.07=⨯==∆=∆=∆β 1-4.容积4m 3的水,温度不变,当压强增加105N/m 2时容积减少1000cm 3,求该水的体积压缩系数βp 和体积弹性系数E 。
解:1956105.2104101000---⨯=⨯--=∆∆-=Pa p V V p β Pa E p89104105.211⨯=⨯==-β 1-5石油相对密度0.9,粘度28cP ,求运动粘度为多少m 2/s?()cSt St s m 3131.0/101.310009.01028253==⨯=⨯⨯==--ρμν 1-6 相对密度0.89的石油,温度20ºC 时的运动粘度为40cSt ,求动力粘度为多少? 解:89.0==水ρρd ν=40cSt =0.4St =0.4×10-4m 2/s μ=νρ=0.4×10-4×890=3.56×10-2 Pa ·s1-7 图示一平板在油面上作水平运动,已知运动速度u=1m/s ,板与固定边界的距离δ=1mm ,油的动力粘度μ=1.147Pa ·s ,由平板所带动的油层的运动速度呈直线分布,求作用在平板单位面积上的粘性阻力为多少?解:233/10147.11011147.1m N dy du ⨯=⨯⨯==-μτ 1-8 如图所示活塞油缸,其直径D =12cm ,活塞直径d =11.96cm ,活塞长度L =14cm ,油的μ=0.65P ,当活塞移动速度为0.5m/s 时,试求拉回活塞所需的力F=?解:A =πdL , μ=0.65P =0.065 Pa ·s , Δu =0.5m/s , Δy=(D-d)/2()N dy du AF 55.821096.11125.010141096.1114.3065.0222=⨯-⨯⨯⨯⨯⨯⨯==---μ第二章 流体静力学2-1. 如图所示的U 形管中装有水银与水,试求:(1)A 、C 两点的绝对压力及表压各为多少? (2)A 、B 两点的高度差为多少?解:① p A 表=γh 水=0.3mH 2O =0.03at =0.3×9800Pa =2940Pap A 绝=p a + p A 表=(10+0.3)mH 2O =1.03at =10.3×9800Pa=100940Pap C 表=γhg h hg + p A 表=0.1×13.6m H 2O+0.3mH 2O =1.66mH 2O =0.166at=1.66×9800Pa =16268Pap C 绝=p a + p C 表=(10+1.66)mH 2O =11.66 mH 2O =1.166at =11.66×9800Pa =114268Pa ② 30c mH 2O =13.6h cmH 2O ⇒h =30/13.6cm=2.2cm题2-22-2 今有U 形管,内装水和四氯化碳(CCl 4),如图所示。
工程流体力学答案(整理)
工程流体力学习题详解第一章流体地物理性质【1-1】500cm3地某种液体,在天平上称得其质量为0.453kg,试求其密度和相对密度.【解】【1-2】体积为5m3地水,在温度不变地条件下,当压强从98000Pa增加到4.9×105Pa时,体积减少1升.求水地压缩系数和弹性系数.【解】由压缩系数公式【1-3】温度为20℃,流量为60 m3/h地水流入加热器,如果水地体积膨胀系数βt=0.00055K-1,问加热到80℃后从加热器中流出时地体积流量变为多少?【解】根据膨胀系数则【1-4】图中表示浮在油面上地平板,其水动速度为u=1m/s,δ=10mm,油品地粘度μ=0.9807Pa·s,求作用在平板单位面积上地阻【解】根据牛顿内摩擦定律则【1-5】已知半径为R圆管中地流速分布为式中c为常数.试求管中地切应力τ与r地关系.【解】根据牛顿内摩擦定律则习题1-5图第二章流体静力学【2-1】容器中装有水和空气,求A、B、C和D【解】题2-1图【2-2】如图所示地U 形管中装有水银与水,试求:(1)A 、C 两点地绝对压力及表压力各为多少? (2)求A 、B 两点地高度差h ? 【解】 (1)(2)选取U 形管中水银地最低液面为等压面,则 得 【2-3】在一密闭容器内装有水及油,密度分别为ρw 及ρo ,油层高度为h 1,容器底部装有水银液柱压力计,读数为R ,水银面与液面地高度差为h 2,试导出容器上方空间地压力p 与读数R 地关系式.【解】选取压力计中水银最低液面为等压面,则得 【2-4】油罐内装有相对密度为0.7地汽油,为测定油面高度,利用连通器原理,把U 形管内装上相对密度为 1.26地甘油,一端接通油罐顶部空间,一端接压气管.同时,压力管地另一支引入油罐底以上地0.4m 处,压气后,当液面有气逸出时,根据U 形管内油面高度差△h =0.7m 来计算油罐内地油深H =?【解】选取U 形管中甘油最低液面为等压面,由气体各点压力相等,可知油罐底以上0.4m 处地油压即为压力管中气体压力,则得【2-5】图示两水管以U 形压力计相连,A 、B 两点高差1m ,U 形管内装有水银,若读数△h =0.5m ,求A 、B 两点地压力差为多少?【解】选取U 形管内水银最低液面为等压面,设B 点到水银最高液面地垂直高度为x ,则得【2-6】图示油罐发油装置,将直径为d 地圆管伸进罐内,端部切成45°角,用盖板盖住,盖板可绕管端上面地铰链旋转,借助绳系上来开启.已知油深H =5m ,圆管直径d =600mm ,油品相对密度0.85,不计盖板重力及铰链地摩擦力,求提升此盖板B题2-3图题2-4图所需地力地大小?(提示:盖板为椭圆形,要先算出长轴2b 和短轴2a ,就可算出盖板面积A =πab ).【解】分析如图所示以管端面上地铰链为支点,根据力矩平衡其中可得【2-7】图示一个安全闸门,宽为0.6m ,高为1.0m.距底边0.4m 处装有闸门转轴,使之仅可以绕转轴顺时针方向旋转.不计各处地摩擦力,问门前水深h 为多深时,闸门即可自行打开?水深h 小,即D 点上移.当D 好平衡.即得 【2-8】有一压力贮油箱(见图),其宽度(垂直于纸面方向)b =2m ,箱内油层厚h 1=1.9m ,密度ρ0=800kg/m 3,油层下有积水,厚度h 2=0.4m ,箱底有一U 型水银压差计,所测之值如图所示,试求作用在半径R =1m 地圆柱面AB 上地总压力(大小和方向).【解】分析如图所示,首先需确定自由液面,选取水银压差计最低液面为等压面,则由p B 不为零可知等效自由液面地高度曲面水平受力曲面垂直受力则【2-9】一个直径2m ,长5m 地圆柱体放置在图示地斜坡上.求圆柱体所受地水平力和浮力.【解】分析如图所示,因为斜坡地倾斜角为60°,故/ρo g题2-8题2-9经D 点过圆心地直径与自由液面交于F 点.BC 段和CD 段水平方向地投影面积相同,力方向相反,相互抵消,故 圆柱体所受地水平力圆柱体所受地浮力【2-10】图示一个直径D =2m ,长L =1m 地圆柱体,其左半边为油和水,油和水地深度均为1m.已知油地密度为ρ=800kg/m 3,求圆柱体所受水平力和浮力.【解】因为左半边为不同液体,故分别来分析AB 段和BC 段曲面地受力情况.AB 曲面受力BC 曲面受力则,圆柱体受力(方向向上)【2-11】图示一个直径为 1.2m 地钢球安装在一直径为1m 地阀座上,管内外水面地高度如图所示.试求球体所受到地浮力.【解】分析如图所示,图中实压力体(+)为一圆柱体,其直径为1.0m【2-12】图示一盛水地密闭容器,中间用隔板将其分隔为上下两部分.隔板中有一直径d =25cm 地圆孔,并用一个直径D =50cm 质量M =139kg 地圆球堵塞.设容器顶部压力表读数p M =5000Pa ,求测压管中水面高x 大于若干时,圆球即被总压力向上顶开?【解】分析如图所示,图中虚压力体(-)为一球体和圆柱体体积之和 根据受力分析可知则 ※【2-13】水车长3m ,宽 1.5m ,高1.8m ,盛水深1.2m ,见图2-2.试问为使水不益处,加速度a 地允许值是多少.【解】根据自由夜面(即等压面方程)题2-10图题2-11图图2-13图得第三章 流体运动学【3-1】已知流场地速度分布为 u =x 2y i -3y j +2z 2k(1)属几元流动?(2)求(x , y , z )=(3, 1, 2)点地加速度? 【解】(1)由流场地速度分布可知流动属三元流动. (2)由加速度公式得故过(3, 1, 2)点地加速度其矢量形式为:【3-2】已知流场速度分布为u x =x 2,u y =y 2,u z =z 2,试求(x , y , z )=(2, 4, 8)点地迁移加速度?【解】由流场地迁移加速度得故过(2, 4, 8)点地迁移加速度【3-3】有一段收缩管如图.已知u 1=8m/s ,u 2=2m/s ,l =1.5m.试求2点地迁移加速度.【解】由已知条件可知流场地迁移加速度为其中:则2点地迁移加速度为【3-4】某一平面流动地速度分量为u x =-4y ,u y =4x .求流线方程.【解】由流线微分方程得解得流线方程【3-5】已知平面流动地速度为,式中B 为常数.求流线方程.【解】由已知条件可知平面流动地速度分量题3-3 图代入流线微分方程中,则解得流线方程【3-6】用直径200mm地管输送相对密度为0.7地汽油,使流速不超过1.2m/s,问每秒最多输送多少kg?【解】由流量公式可知则【3-7】截面为300mm×400mm地矩形孔道,风量为2700m3/h,求平均流速.如风道出口处截面收缩为150mm×400mm,求该处断面平均流速.【解】由流量公式可知则如风道出口处截面收缩为150mm×400mm,则【3-8】已知流场地速度分布为u x=y+z,u y=z+x,u z=x+y,判断流场流动是否有旋?【解】由旋转角速度可知故为无旋流动.【3-9】下列流线方程所代表地流场,哪个是有旋运动?(1)2Axy=C(2)Ax+By=C(3)A ln xy2=C【解】由流线方程即为流函数地等值线方程,可得(1)速度分布旋转角速度可知故为无旋流动.(2)速度分布旋转角速度可知故为无旋流动.(3)速度分布旋转角速度可知故为有旋流动.【3-10】已知流场速度分布为u x =-cx ,u y =-cy ,u z =0,c 为常数.求:(1)欧拉加速度a =?;(2)流动是否有旋?(3)是否角变形?(4)求流线方程.【解】(1)由加速度公式得(2)旋转角速度可知故为无旋流动.(3)由角变形速度公式可知为无角变形.(4)将速度分布代入流线微分方程解微分方程,可得流线方程第四章 流体动力学【4-1】直径d =100mm 地虹吸管,位置如附图中所示.求流量和2、3地压力.不计水头损失.【解】选取4点所在断面和1点所在断面列伯努力方程,以过4点地水平线为基准线.得,则选取1、2点所在断面列伯努利方程,以过1点地水平线为基准线(v 2=v 4)得选取1、3点所在断面列伯努利方程,以过1点地水平线为基准线(v 3=v 4)得【4-2】一个倒置地U 形测压管,上部为相对密度0.8地油,用来测定水管中点地速度.若读数△h =200mm ,求管中流速u =?【解】选取如图所示1-1、2-2断面列伯努利方程,以水管轴线为基准线同时,选取U 形测压管中油地最高液面为等压面,则题 4-1图题 4-2图【4-3】图示为一文丘里管和压力计,试推导体积流量和压力计读数之间地关系式.当z 1=z 2时,ρ=1000kg/m 3,ρH =13.6×103kg/m 3,d 1=500mm ,d 2=50mm ,H =0.4m ,流量系数α=0.9时,求Q =?【解】列1-1、2-2所在断面地伯努利方程、以过1-1断面中心点地水平线为基准线.选取压力计中汞地最低液面为等压面,则 又由、,得所以【4-4】管路阀门关闭时,压力表读数为49.8kPa ,阀门打开后,读数降为9.8kPa.设从管路进口至装表处地水头损失为流速水头地2倍,求管路中地平均流速.【解】当管路阀门关闭时,由压力表度数可确定管路轴线到自有液面地高度H当管路打开时,列1-1和2-2断面地伯努利方程,则得【4-5】为了在直径D =160mm 地管线上自动掺入另一种油品,安装了如下装置:自锥管喉道处引出一个小支管通入油池内.若压力表读数为2.3×105Pa ,吼道直径d =40mm ,T 管流量Q =30 l/s ,油品地相对密度为0.9.欲掺入地油品地相对密度为0.8,油池油面距喉道高度H =1.5m ,如果掺入油量约为原输量地10%左右,B 管水头损失设为0.5m ,试确定B 管地管径.【解】列1-1和2-2断面地伯努利方程,则 其中得列3-3和4-4自有液面地伯努利方程,以4-4断面为基准面,则其中、,代入上式,得27mm 【4-6】一变直径地管段AB ,直径d A =0.2m ,d B =0.4m ,高差h =1.0m ,用压力表测得p A =70kPa ,p B =40kPa ,用流量计测得流量Q =0.2m 3/s.试判断水在管段中流动地方向.题 4-4图题 4-5图题 4-3图【解】列A 点和B 点所在断面地伯努利方程则故流动方向为A -B .【4-7】泄水管路如附图所示,已知直径d 1=125mm ,d 2=100mm ,d 3=75mm ,汞比压力计读数h =175mm ,不计阻力,求流量和压力表读数.【解】列1-1、2-2断面地波努利方程又由(即) 可得、、 列压力表所在断面和出口断面地伯努利方程可得【4-8】如图所示,敞开水池中地水沿变截面管路排出地质量流量Q m =14kg/s ,若d 1=100mm ,d 2=75mm ,d 3=50mm ,不计损失,求所需地水头H ,以及第二段管段中央M 点地压力,并绘制测压管水头线.【解】列1-1和3-3断面地伯努利方程,则其中 、 得列M 点所在断面2-2和3-3断面地伯努利方程,则 得【4-9】由断面为0.2m 2和0.1 m 2地两根管子组成地水平输水管系从水箱流入大气中:○1若不计损失,(a )求断面流速v 1及v 2;(b )绘总水头线及测压管水头线;(c )求进口A点地压力.○2计入损失:第一段地水头损失为流速水头地4倍,第二段为3倍,(a )求断面流速v 1及v 2;(b )绘制总水头线及测压管水头线;(c )根据所绘制水头线求各管段中间点地压力.【解】(1)列自有液面和管子出口断面地伯努利方程,则得 又由得列A 点所在断面和管子出口断面地伯努利方程,则3 题 4-8图1题 4-6图题 4-7图得(2)列自有液面和管子出口断面地伯努利方程,则由得、 细管断中点地压力为:粗管断中点地压力为: 【4-10】用73.5×103W 地水泵抽水,泵地效率为90%,管径为0.3m ,全管路地水头损失为1m ,吸水管水头损失为0.2m ,试求抽水量、管内流速及泵前真空表地读数.【解】列两自由液面地伯努利方程,则得H =30m又由得列最低自由液面和真空表所在断面地伯努利方程,则得 故真空表地度数为26.62kPa.【4-11】图示一管路系统,欲维持其出口流速为20m/s ,问水泵地功率为多少?设全管路地水头损失为2m ,泵地效率为80%.若压水管路地水头损失为1.7m ,则压力表上地读数为若干?【解】列自由液面和出口断面地伯努利方程,则其中v 1=20m/s得H =42.4m又由 得列压力表所在断面和出口断面地伯努利方程,则其中v 2A 2=v 1A 1 得【4-12】图示离心泵以20m 3/h 地流量将相对密度为0.8地油品从地下罐送到山上洞库油罐.地下油罐油面压力为2×104Pa ,洞库油罐油面压力为3×104Pa.设泵地效率为0.8,电动机效率为0.9,两罐液面差为40m ,全管路水头损失设为5m.求泵及电动机地额定功率(即输入功率)应为若干?题 4-9图【解】列两油罐液面地伯努利方程,则得 又由 得、【4-13】输油管线上水平90°转变处,设固定支座.所输油品δ=0.8,管径d =300mm ,通过流量Q =100 l/s ,断面1处压力为2.23×105Pa.断面2处压力为2.11×105Pa.求支座受压力地大小和方向?【解】选取1-1和2-2断面及管壁围成地空间为控制体,建立如图所示坐标系.列x 方向动量方程其中 得列y 方向动量方程其中得【4-14】水流经过60°渐细弯头AB ,已知A 处管径d A =0.5m ,B 处管径d B =0.25m ,通过地流量为0.1m 3/s ,B 处压力p B =1.8×105Pa.设弯头在同一水平面上摩擦力不计,求弯所受推力.【解】选取A 和B 断面及管壁围成地空间为控制体,建立如图所示坐标系. 列x 方向动量方程其中p A 可由列A 断面和B 断面地伯努利方程得、 、得列y 方向动量方程题 4-12图x得,则【4-15】消防队员利用消火唧筒熄灭火焰,消火唧筒出口直径d =1cm ,入口直径D =5cm.从消火唧筒设出地流速v =20m/s.求消防队员手握住消火唧筒所需要地力(设唧筒水头损失为1m )?【解】选取消火唧筒地出口断面和入口断面与管壁围成地空间为控制体,建立如图所示坐标系.列x 方向地动量方程 其中p 1可由列1-1和2-2断面地伯努利方程求得又由、得【4-16】嵌入支座地一段输水管,如图所示,其直径由D 1=0.15m 变化为D 2=0.1m.当支座前端管内压力p =4×105Pa ,流量Q =0.018m 3/s ,求该管段中支座所受地轴向力?【解】取1-1、2-2断面及管壁围成地空间为控制体,建立如图所示坐标系. 列x 方向即轴向动量方程其中p 1可由1-1和2-2断面地伯努利方程求得又由、、、 得【4-17】水射流以19.8m/s 地速度从直径d =0.1m 地喷口射出,冲击一个固定地对称叶片,叶片地转角α=135°,求射流叶片地冲击力.若叶片以12m/s 地速度后退,而喷口仍固定不动,冲击力将为多大?【解】建立如图所示坐标系 (1)列x 方向地动量方程其中则(2)若叶片以12m/s 地速度后退,其流体相对叶片地速度v =7.8m/s ,代入上式得.题 4-17图第五章量纲分析与相似原理【5-1】试用量纲分析法分析自由落体在重力影响下降落距离s地公式为s=kgt2,假设s 和物体质量m、重力加速度g和时间t有关.【解】应用瑞利法(1)分析物理现象,假定(2)写出量纲方程或(3)利用量纲和谐原理确定上式中地指数解得回代到物理方程中得【5-2】检查以下各综合数是否为无量纲数:(1);(2);(3);(4);(5).【解】(1)展开量纲公式为有量纲量.(2)展开量纲公式为有量纲量.(3)展开量纲公式为有量纲量.(4)展开量纲公式为有量纲量.(5)展开量纲公式为无量纲数.【5-3】假设泵地输出功率是液体密度ρ,重力加速度g,流量Q,和扬程H地函数,试用量纲分析法建立其关系.【解】利用瑞利法,取比重γ=ρg(1)分析物理现象,假定(2)写出量纲方程或(3)利用量纲和谐原理确定上式中地指数解得回代到物理方程中得【5-4】假设理想液体通过小孔地流量Q与小孔地直径d,液体密度ρ以及压差有关,用量纲分析法建立理想液体地流量表达式.【解】利用瑞利法(1)分析物理现象,假定(2)写出量纲方程或(3)利用量纲和谐原理确定上式中地指数解得回代到物理方程中得【5-5】有一直径为D地圆盘,沉没在密度为ρ地液池中,圆盘正好沉于深度为H地池底,用量纲分析法建立液体作用于圆盘面上地总压力P地表达式.【解】利用π定理(1)分析物理现象(2)选取H、g、ρ为基本量,它们地量纲公式为,,其量纲指数地行列式为所以这三个基本物理量地量纲是独立地,可以作为基本量纲.(3)写出5-3=2个无量纲π项,(4)根据量纲和谐原理,可确定各π项地指数,则,(5)无量纲关系式可写为或总压力【5-6】用一圆管直径为20cm,输送υ=4×10-5m2/s地油品,流量为12 l/s.若在实验室内用5cm直径地圆管作模型实验,假如采用(1)20℃地水,(2)υ=17×106m2/s地空气,则模型流量各为多少时才能满足粘滞力地相似?【解】依题意有Re p=Re m,或(1)查表可知20℃地水地运动粘度为1.007×10-6m2/s,由此可得(2)若为空气,则【5-7】一长为3m地模型船以2m/s地速度在淡水中拖曳时,测得地阻力为50N,试求(1)若原型船长45m,以多大地速度行驶才能与模型船动力相似.(2)当原型船以上面(1)中求得地速度在海中航行时,所需地拖曳力(海水密度为淡水地1.025倍.该流动雷诺数很大,不需考虑粘滞力相似,仅考虑重力相似.)【解】欲保持重力相似应维持弗劳德数相等,即或(1)所以有(2)由同名力相似可知则有第六章粘性流体动力学基础【6-1】用直径为100mm地管路输送相对密度为0.85地柴油,在温度20℃时,其运动粘度为6.7×10-6m2/s,欲保持层流,问平均流速不能超过多少?最大输送量为多少?【解】预保持层流,Re≤2000即则【6-2】用管路输送相对密度为0.9,粘度为0.045Pa·s地原油,维持平均速度不超过1m/s,若保持在层流地状态下输送,则管径最大不能超过多少?【解】预保持层流,Re≤2000即其中则【6-3】相对密度为0.88地柴油,沿内径100mm地管路输送,流量为1.66 l/s.求临界状态时柴油应有地粘度为若干?【解】根据临界状态时即得【6-4】用直径D=100mm管道,输送流量为10 l/s地水,如水温为5℃.试确定管内水地流态.如果该管输送同样质量流量地石油,已知石油地相对密度ρ=850kg/m3,运动粘滞系数为1.14×10-4m2/s,试确定石油地流态.【解】查表(P9)得水在温度为5℃时地运动粘度为1.519×10-6m2/s.根据已知条件可知故为紊流.因该管输送同样质量流量地石油,其体积流量为则故为层流.【6-5】沿直径为200mm地管道输送润滑油,流量9000kg/h,润滑油地密度ρ=900kg/m3,运动粘度系数冬季为1.1×10-4m2/s,夏季为3.55×10-5m2/s,试判断冬夏两季润滑油在管路中地流动状态.【解】由雷诺数可知冬季为层流.夏季为层流.【6-6】管径400mm,测得层流状态下管轴心处最大速度为4m/s,求断面平均流速?此平均流速相当于半径为若干处地实际流速?【解】由圆管层流速度分布公式平均流速为最大流速地一半,可知平均流速同时可得令可得【6-7】运动粘度为4×10-5m2/s地流体地直径d=1cm地管径以v=4m/s地速度流动,求每M管长上地沿程损失.【解】由雷诺数流动状态为层流,则【6-8】水管直径d=250mm长度l=300m,绝对粗糙度△=0.25mm.设已知流量Q=95 l/s,运动粘度为1×10-6m2/s,求沿程损失.【解】雷诺数相对粗糙度查莫迪图(P120)得【6-9】相对密度0.8地石油以流量50 l/s沿直径为150mm,绝对粗糙度△=0.25mm.地管线流动,石油地运动粘度为1×10-6m2/s,试求每km管线上地压降(设地形平坦,不计高差).若管线全程长10km,终点比起点高20cm,终点压强为98000Pa,则起点应具备地压头为若干?【解】(1)雷诺数相对粗糙度查莫迪图(P120)得又由得(2)列起点和终点地伯努利方程得【6-10】如图所示,某设备需润滑油地流量为Q =0.4cm 3/s ,油从高位邮箱经d =6mm ,l =5m 管道供给.设输油管道终端为大气压,油地运动粘度为1.5×10-4m 2/s ,求沿程损失是多少?油箱液面高h 应为多少?【解】雷诺数流动状态为层流,则列输油管道终端和自由液面地伯努利方程得【6-11】为了测量沿程阻力系数,在直径0.305m 、长200km 地输油管道上进行现场实验.输送地油品为相对密度0.82地煤油.每昼夜输送量为5500t.管道终点地标高为27m,起点地标高为152m.起点压降保持在4.9MPa ,终点压强为0.2MPa.油地运动粘滞系数为 2.5×10-6m 2/s.试根据实验结果计算沿程阻力系数λ值.并将实验结果与按经验公式所计算地结果进行对比.(设绝对粗糙度△=0.15mm ).【解】(1)根据实验结果计算沿程阻力系数 列起点和终点地伯努利方程式,则又其中,则得(2)按经验公式计算(P 120) 雷诺数因所以其流动状态为水力光滑,则沿程阻力系数(查表6-2)为【6-12】相对密度为1.2、粘度为1.73mPa·s 地盐水,以6.95 l/s 地流量流过内径为0.08m 地铁管,已知其沿程阻力系数λ=0.042.管路中有一90°弯头,其局部阻力系数ζ=0.13.试确定此弯头地局部水头损失及相当长度.【解】(1)由局部水头公式(2)相当长度 令,即,则可得【6-13】图示地给水管路.已知L 1=25m ,L 2=10m ,D 1=0.15m ,D 2=0.125m ,,λ1=0.037,λ2=0.039,闸门开启1/4,其阻力系数ζ=17,流量为15 l/s.试求水池中地水头H .题6-10图【解】列自有液面和出口断面地伯努利方程式其中 故【6-14】图示两水箱由一根钢管连通,管长100m ,管径0.1m.管路上有全开闸阀一个,R /D =4.0地90°弯头两个.水温10℃.当液面稳定时,流量为6.5 l/s ,求此时液面差H 为若干?设△=0.15mm.【解】此管路属长管,列两液面地伯努利方程由雷诺数其中10℃时水 相对粗糙度查莫迪图得故【6-15】如图所示有一定位压力水箱,其中封闭水箱液面上地表压强p =0.118MPa ,水由其中流出,并沿着由三个不同直径地管路所组成地管路流到开口容器中.H 1=1m ,H 2=3m ,管路截面积A 1=1.5A 3,A 2=2A 3,A 3=0.002m 2.试确定水地流量Q .【解】设第三段管路地速度为v 3,由连续性方程可知v 2=0.5 v 3,v 1=0.67 v 3 四处局部阻力系数依次为列两液面地伯努利方程,因管路较短,仅考虑局部水头,则解得【6-16】图示一管路全长l =30m ,管壁粗糙度△=0.5mm ,管径d =20cm ,水流断面平均流速v =0.1m/s ,水温为10℃,求沿程水头损失.若管路上装有两个节门(开度均为1/2),一个弯头(90°折管)进口为流线型,求局部水头损失.若流速v =4m/s ,l =300m ,其它条件均不变时,求沿程及局部水头损失.【解】(1)10℃时水地,则因故题6-13图题6-14图题6-15图题6-16图(2)查莫迪图得第七章 压力管路 孔口和管嘴出流【7-1】如图所示为水泵抽水系统,已知l 1=20m ,l 2=268m ,d 1=0.25m ,d 2=0.2m ,ζ1=3,ζ2=0.2,ζ3=0.2,ζ4=0.5,ζ5=1,λ=0.03,流量Q =4×10-3m 3/s.求:(1)水泵所需水头;(2)绘制总水头线.【解】列两自由液面地伯努利方程其中:故 【7-2】用长为50m 地自流管(钢管)将水自水池引至吸水井中,然后用水泵送至水塔.已知泵吸水管地直径为200mm ,长为6m ,泵地排水量为0.064m 3/s ,滤水网地阻力系数ζ1=ζ2=6,弯头阻力系数,自流管和吸水管地阻力系数ζ=0.03.试求:(1)当水池水面与水井水面地高差h 不超过2m 时,自流管地直径D =?;(2)水泵地安装高度H 为2m 时,进口断面A -A 地压力.【解】(1)列两自由液面地能量方程则 (2)列水井自由液面和A -A 断面地伯努利方程,则得【7-3】水箱泄水管,由两段管子串联而成,直径d 1=150mm ,d 2=75mm ,管长l 1=l 2=50m ,△=0.6mm ,水温20℃,出口速度v 2=2m/s ,求水箱水头H ,并绘制水头线图.【解】查表可知, 20℃时水地运动粘度υ=1.007×10-6m 2/s 由出口速度可知各管段雷诺数各管段相对粗糙度题7-2图题7-3图查莫迪图可知 ,列自由液面和出口地波努力方程,则得【7-4】往车间送水地输水管段路由两管段串联而成,第一管段地管径d 1=150mm ,长度L 1=800m ,第二管段地直径d 2=125mm ,长度L 2=600m ,管壁地绝对粗糙度都为△=0.5mm,设压力水塔具有地水头H =20m ,局部阻力忽略不计,求出阀门全开时最大可能流量Q (λ1=0.029,λ2=0.027).【解】列自有液面和出口断面地伯努利方程又有 可解得则流量【7-5】有一中等直径钢管并联管路,流过地总水量Q =0.08m 3/s ,钢管地直径d 1=150mm ,d 2=200mm ,长度L 1=500m ,L 2=800m.求并联管中地流量Q 1、Q 2及A 、B 两点间地水头损失(设并联管路沿程阻力系数均为λ=0.039).【解】由并联管路地特点h f 1=h f 2,有其中,又有得 , 则A 、B 两点间地水头损失 【7-6】有A 、B 两水池,其间用旧钢管连接,如图所示.已知各管长L 1=L 2=L 3=1000m ,直径d 1=d 2=d 3=40cm ,沿程阻力系数均为λ=0.012,两水池高差△z =12.5m ,求A 池流入B 池地流量为多少?【解】这里L 1和L 2管段为并联管段,即两管段起点在同一水平面上,有 列两自由液面地伯努利方程且有 ,得,题7-4图题7-5图Q 2L 2d 2【7-7】 图示水平输液系统(A 、B 、C 、D 在同一水平面上);终点均通大气,被输液体相对密度δ=0.9,输送量为200t/h.设管径,管长,沿程阻力系数分别如下: L 1=1km ,L 2=L 3=4km ;D 1=200mm ,D 2=D 3=150mm ;λ1=0.025,λ2=λ3=0.030.求:(1)各管流量及沿程水头损失;(2)若泵前真空表读数为450mm 汞柱,则泵地扬程为若干?(按长管计算).【解】(1)因终点均通大气,故可B -C 和B -D 为并联管路,又因D 2=D 3,则,得(2)列真空表所在断面和C 点所在断面地伯努利方程,按长管计算可忽略速度水头和局部水头,则则有【7-8】有一薄壁圆形孔口,其直径为10mm ,水头为2m ,现测得过流收缩断面地直径d c 为8mm ,在32.8s 时间内,经过孔口流出地水量为0.01m 3.试求该孔口地收缩系数ε、流量系数μ、流速系数φ及孔口局部阻力系数ζ.【解】孔口地收缩系数列自由液面和收缩断面地伯努利方程,则其中,于是从而得其中流速系数,则得流量系数【7-9】如图示一储水罐,在水罐地铅直侧壁有面积相同地两个圆形小孔A 和B ,位于距底部不同地高度上.孔口A 为薄壁孔口,孔口B 为圆边孔口,其水面高度H 0=10m.(此题有误)问:(1)通过A 、B 两孔口地流量相同时,H 1与H 2应成何种关系?D题7-7图 题7-8图题7-9图(2)如果由于腐蚀,使槽壁形成一直径d =0.0015m 地小孔C ,C 距槽底H 3=5m ,求一昼夜通过C 地漏水量.【解】(1)由孔口流量公式由 得(2)设经过一昼夜后液面下降到H (H 为高于H 3地高度),由孔口变水头出流公式,可得则漏水量【7-10】两水箱用一直径d 1=40mm 地薄壁孔连通,下水箱底部又接一直径d 2=30mm 地圆柱形管嘴,长l =100mm ,若上游水深H 1=3m 保持恒定,求流动恒定后地流量和下游水深H 2.【解】此题即为淹没出流和管嘴出流地叠加,当流动恒定后,即淹没出流地流量等于管嘴出流地流量 淹没出流流量公式和管嘴出流流量公式由,即得【7-11】输油钢管直径(外径)为100mm ,(壁厚为4mm )输送相对密度0.85地原油,输送量为15l/s ,管长为2000m ,如果关死管路阀门地时间为2.2s ,问水击压力为多少?若关死阀门地时间延长为20s ,问水击压力为多少?【解】(1)由因为故(2)因为T M =20>t 0=2.37,故由经验公式【7-12】 相对密度0.856地原油,沿内径305mm ,壁厚10mm 地钢管输送.输量300t/h.钢管弹性系数2.06×1011Pa ;原油弹性系数1.32×109Pa.试计算原油中地声速和最大水击压力.【解】(1)原油中地声速最大水击压力。
(完整版)工程流体力学课后习题(第二版)答案.doc
第一章绪论1-1. 20℃的水 2.5m 3,当温度升至80℃时,其体积增加多少?[ 解 ] 温度变化前后质量守恒,即1V12V2又20℃时,水的密度80℃时,水的密度1998.23kg / m3 2971.83kg / m3V2 1V1 2.5679m3 2则增加的体积为V V2 V1 0.0679 m31-2.当空气温度从0℃增加至 20℃时,运动粘度增加15%,重度减少 10% ,问此时动力粘度增加多少(百分数)?[ 解 ] (1 0.15) 原 (1 0.1) 原1.035 原原 1.035 原原 1.035 原原0.035原原此时动力粘度增加了 3.5%1-3.有一矩形断面的宽渠道,其水流速度分布为u 0.002 g( hy 0.5y2 ) /,式中、分别为水的密度和动力粘度,h 为水深。
试求h 0.5m 时渠底(y=0)处的切应力。
[ 解 ] du0.002 g (h y) /dydu0.002 g(h y)dy当h =0.5m,y=0时0.002 1000 9.807(0.50)9.807Pa1-4.一底面积为 45× 50cm2,高为 1cm 的木块,质量为 5kg,沿涂有润滑油的斜面向下作等速运动,木块运动速度 u=1m/s,油层厚 1cm,斜坡角 22.620(见图示),求油的粘度。
u[ 解 ] 木块重量沿斜坡分力 F 与切力 T 平衡时,等速下滑mg sinTA dudymg sin 5 9.8 sin 22.62 Au0. 4 0.4510.0010.1047 Pa s1-5.已知液体中流速沿y 方向分布如图示三种情况,试根据牛顿内摩擦定律du ,定性绘出切应力dy沿 y 方向的分布图。
yyyuuuuuu[ 解 ]y y y= 0 =1-6.为导线表面红绝缘,将导线从充满绝缘涂料的模具中拉过。
已知导线直径 0.9mm ,长度 20mm ,涂料 的粘度 =0.02Pa . s 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新大学工程流体力学实验-参考答案参考答案流体力学实验室二○○六年静水压强实验1.同一静止液体内的测压管水头线是根什么线? 测压管水头指γp z +,即静水力学实验仪显示的测压管液面至基准面的垂直高度。
测压管水头线指测压管液面的连线。
实验直接观察可知,同一静止液面内的测压管水头线是一根水平线。
2.当0〈B p 时,试根据记录数据,确定水箱内的真空区域。
0〈B p ,相应容器的真空区域包括以下三个部分:(1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占区域,均为真空区域。
(2)同理,过箱顶小不杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区域。
(3)在测压管5中,自水面向下深度某一段水柱亦为真空区域。
这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等。
3.若再备一根直尺,试采用另外最简便的方法测定0γ。
最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂直高度h 和0h ,由式00h h w w γγ= ,从而求得0γ。
4.如测压管太细,对于测压管液面的读数将有何影响?设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算式中,σ为表面张力系数;γ为液体容量;d 为测压管的内径;h 为毛细升高。
常温的水,m N 073.0=σ,30098.0m N =γ。
水与玻璃的浸润角θ很小,可以认为0.1cos =θ。
于是有d h 7.29= (h 、d 均以mm 计)一般来说,当玻璃测压管的内径大于10mm 时,毛细影响可略而不计。
另外,当水质不洁时,σ减小,毛细高度亦较净水小;当采用有机下班玻璃作测压管时,浸润角θ较大,其h 较普通玻璃管小。
如果用同一根测压管测量液体相对压差值,则毛细现象无任何影响。
因为测量高、低压强时均有毛细现象,但在计算压差时,互相抵消了。
5.过C点作一水平面,相对管1、2、5及水箱中液体而言,这个水平面是不是等压面?哪一部分液体是同一等压面?不全是等压面,它仅相对管1、2及水箱中的液体而言,这个水平面才是等压面。
因为只有全部具有下列5个条件的平面才是等压面:(1)重力液体;(2)静止;(3)连通;(4)连通介质为同一均质液体;(5)同一水平面。
而管5与水箱之间不符合条件(4),相对管5和水箱中的液体而言,该水平面不是水平面。
6、用该实验装置能演示变液位下的恒定水流吗?关闭各通气阀门,开启底阀,放水片刻,可看到有空气由C进入水箱。
这时阀门的出流就是变液位下的恒定水流。
因为由观察可知,测压管1的液面始终与C点同高,表明作用于底阀上的总水头不变,故为恒定流动。
这是由于液位的降低与空气补充使箱体表面真空度的减小处于平衡状态。
医学上的点滴注射就是此原理应用的一例,医学上称这为马利奥特容器的变液位下恒定流。
文丘里实验1.本实验中,影响文丘里管流量系数大小的因素有哪些?哪个因素最敏感?对本实验的管道而言,若因加工精度影响,误将()cm d 01.02-值取代2d 值时,本实验在最大流量下的μ值将变为多少?由式得可见本实验的μ值大小与Q 、1d 、2d 、h ∆有关。
其中1d 、2d 影响最敏感。
本实验中若文丘里管1d =1.4cm ,2d =0.71cm ,通常在切削加工中2d 比1d 测量方便,容易掌握好精度,2d 不易测量准确,从而不可避免的要引起实验误差。
例如当最大流量时μ值为0.976,若2d 的误差为-0.01cm ,那么μ值将变为1.006,显然不合理。
2.为什么计算流量与实际流量不相等?因为计算流量'Q 是在不考虑水头损失情况下,即按理想液体推导的,而实际流体存在粘性必引起阻力损失,从而减小过流能力,Q 〈'Q ,即μ〈1.0。
3.文丘里流量计能否倾斜安装,为什么?如图所示根据流体静力学方程得 221121H h h H p p -∆+∆++=γγ则 )()(222211212211γγγγp z H h h H p z p z p z +--∆+∆+++=⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+ 由图可知 )()(4321h h h h h -+-=∆式中,1h 、2h 、3h 、4h 分别为各测压管的液面读数。
因此,无论文丘里流量计是否倾斜安装,对测压管读数都不影响。
4.文丘里管喉颈处容易产生真空,允许最大真空度为6-7mH 2O 。
工程中应用文丘里管时,应检验其最大真空度是否在允许范围内。
根据你的实验成果,分析本实验文丘里管喉颈处最大真空值为多少?本实验若1d =1.4cm ,2d =0.71cm ,以管轴线高程为基准面,以水箱液面和喉颈断面分别为1-1、2-2计算断面,列能量方程得则 ∴22.522〈-γp cmH 2O即实验中最大流量时,文丘里管喉颈处真空度22.52〉v h cmH 2O ,而由本实验实测约为60cm。
进一步分析可知,若水箱水位高于管轴线4m左右时,实验中文丘里管喉颈处真空度可达7mH2O左右。
雷诺实验1.为什么上临界雷诺数无实际意义,而采用下临界雷诺数作为层流和紊流的判据?实测下临界雷诺数为多少?根据实验测定,上临界雷诺数实测值在3000-5000范围内,与操作的快慢、水箱的紊动度、外界干扰等密切相关。
有关学者做了大量实验,有的得12000,有的得20000,有的甚至得到40000。
实际水流中,干扰总是存在的,故上临界雷诺数为不定值,无实际意义。
只有下临界雷诺数才可以作为判别流态的标准。
凡水流的雷诺数小于下临界雷诺数者为层流。
一般实测下临界雷诺数为2100左右。
2.雷诺实验得出的圆管流动下临界雷诺数理论值为2320,而目前一般教科书中介绍采用的下临界雷诺数是2000,原因何在?下临界雷诺数也并非与干扰绝对无关。
雷诺实验是在环境的干扰极小,实验前水箱中的水体经长时间的稳定情况下,经反复多次细心量测得出的。
而后人的大量实验很难重复得出雷诺实验的准确数值,通常在2000-2300之间。
因此,从工程实用出发,教科书中介绍的圆管下临界雷诺数一般是2000。
3.圆管内液流有哪几种流动状态?它们的特点如何?结合实验现象说明。
略。
5.为什么必须用一个保持溢流的恒压水箱来做雷诺实验?略。
沿程阻力损失实验1.本实验中,沿程阻力损失就是压差计的压差,如果管道有一定的倾角,压差计的压差是否还是沿程阻力损失?为什么?现以倾斜等径管道上装设的水银多管压差计为例说明(图中A —A 为水平线):如图示O —O 为基准面,以1—1和2—2为计算断面,计算点在轴心处,设21v v =,∑=0j h ,由能量方程可得这表明水银压差计的压差值即为沿程水头损失,且和倾角无关。
2.根据实测m 值判断本实验的流区。
f h lg ~v lg 曲线的斜率m=1.0~1.8,即fh 与8.10.1-v 成正比,表明流动为层流(m=1.0)、紊流光滑区和紊流过渡区(未达阻力平方区)。
3.管道的当量粗糙度如何测得?当量粗糙度的测量可用实验的方法测定λ及e R 的值,然后用下式求解:(1)考尔布鲁克公式莫迪图即是本式的图解。
(2)S .J 公式(3)Barr 公式其中(3)式精度最高。
在反求d ∆时,(2)式开方应取负号。
也可直接由λ~e R 关系在莫迪图上查得d∆,进而得出当量粗糙度∆值。
4.实验工程中的钢管中的流动,大多为光滑紊流或紊流过渡区,而水电站泄洪洞的流动,大多数为紊流阻力平方区,其原因何在?钢管的当量粗糙度一般为0.2mm ,常温下,s cm /01.02=ν,经济流速s cm /300,若实用管径D=(20~100)cm ,其5106⨯=e R ~6103⨯,相应的d∆=0.0002~0.001,由莫迪图可知,流动均处在过渡区。
若需达到阻力平方区,那么相应的610=e R ~6109⨯,流速应达到(5~9)m/s 。
这样高速的有压管流在实际工程中非常少见。
而泄洪洞的当量粗糙度可达(1~9)mm ,洞径一般为(2~3)m ,过流速往往在(5~10)m/s 以上,其e R 大于710,故一般均处于阻力平方区。
局部阻力损失实验1.结合实验结果,分析比较突扩与突缩圆管在相应条件下的局部阻力损失大小关系。
由式及表明影响局部阻力损失的因素是v 和21d d 。
由于有 突扩:2211⎪⎪⎭⎫ ⎝⎛-=A A e ζ 突缩:⎪⎪⎭⎫ ⎝⎛-=2115.0A A s ζ 则有当 5.021〈A A或时,突然扩大的水头损失比相应的突然收缩的要大。
在本实验最大流量Q 下,突然扩大损失较突然缩小损失约大一倍,即817.160.3/54.6==js je h h 。
21d d 接近于1时,突然扩大的水流形态接近于逐渐扩大管的流动,因而阻力损失显著减小。
2.结合流动仪演示的水力现象,分析局部阻力损失机理何在?产生突扩与突缩局部损失的主要部位在哪里?怎样减小局部阻力损损失?流动演示仪1-7型可显示突扩、突缩、渐扩、渐缩、分流、合流、阀道、绕流等三十多种内、外流的流动图谱。
据此对于局部阻力损失的机理分析如下:从显示的图谱可见,凡流道边界突变处,形成大小不一的漩涡区。
漩涡是产生损失的主要根源。
由于水质点的无规则运动和激烈的紊动,相互磨擦,便消耗了部分水体的自储能量。
另外,当这部分低能流体被主流的高能流体带走时,还须克服剪切流的速度梯度,经质点间的动能交换,达到流速的重新组合,这也损耗了部分能量。
这样就造成了局部阻力损失。
从流动仪可见,突扩段的漩涡主要发生在突扩断面以后,而且与扩大系数有关,扩大系数越大,漩涡区也越大,损失也越大,所以产生突扩局部阻力损失的主要部位在突扩断面的后部。
而突缩段的漩涡在收缩断面均有。
突缩前仅在死角区有小漩涡,且强度较小,而突缩的后部产生了紊动度较大的漩涡环区。
可见产生突缩水头损失的主要部位是在突缩断面后。
从以上分析可知,为了减小局部阻力损失,在设计变断面管道几何边界形状时应流线型化或昼接近流线形,以避免漩涡的形成,或使漩涡区尽可能小。
如欲减小管道的局部阻力,就应减小管径比以降低突扩段的漩涡区域;或把突缩进口的直角改为圆角,以消除突缩断面后的漩涡环带,可使突缩局部阻力系数减小到原来的21~101。
突然收缩实验管道使用年份长以后,实测阻力系数减小,主要原因也在这里。
3.现备有一段长度及联接方式与调节阀相同,内径与实验管道相同的直管段(见实验装置图),如何用两点法测量阀门的局部阻力系数?两点法是测量局部阻力系数的简便有效办法。
它只需在被测流段(如阀门)前后的直管段长度大于(20~40)d 的断面处,各布置一个测压点便可。
先测出整个测量段上的总水头损失21-w h ,有式中:ji h ----分别为两测点间不干扰的各个局部阻力段的阻力损失;jn h ----被测段的局部阻力损失;21-w h ----两测点间的沿程阻力损失。