圆锥曲线与方程单元教学设计

合集下载

人教版高中数学《圆锥曲线和方程》全部教案设计的

人教版高中数学《圆锥曲线和方程》全部教案设计的

椭圆及其标准方程一、教学目标(一)知识教学点使学生理解椭圆的定义,掌握椭圆的标准方程的推导及标准方程.(二)能力训练点通过对椭圆概念的引入与标准方程的推导,培养学生分析探索能力,增强运用坐标法解决几何问题的能力.(三)学科渗透点通过对椭圆标准方程的推导的教学,可以提高对各种知识的综合运用能力.二、教材分析1.重点:椭圆的定义和椭圆的标准方程.(解决办法:用模型演示椭圆,再给出椭圆的定义,最后加以强调;对椭圆的标准方程单独列出加以比较.)2.难点:椭圆的标准方程的推导.(解决办法:推导分4步完成,每步重点讲解,关键步骤加以补充说明.) 3.疑点:椭圆的定义中常数加以限制的原因.(解决办法:分三种情况说明动点的轨迹.)三、活动设计提问、演示、讲授、详细讲授、演板、分析讲解、学生口答.四、教学过程(一)椭圆概念的引入前面,大家学习了曲线的方程等概念,哪一位同学回答:问题1:什么叫做曲线的方程?求曲线方程的一般步骤是什么?其中哪几个步骤必不可少?对上述问题学生的回答基本正确,否则,教师给予纠正.这样便于学生温故而知新,在已有知识基础上去探求新知识.提出这一问题以便说明标准方程推导中一个同解变形.问题3:圆的几何特征是什么?你能否可类似地提出一些轨迹命题作广泛的探索?一般学生能回答:“平面内到一定点的距离为常数的点的轨迹是圆”.对同学提出的轨迹命题如:“到两定点距离之和等于常数的点的轨迹.”“到两定点距离平方差等于常数的点的轨迹.”“到两定点距离之差等于常数的点的轨迹.”教师要加以肯定,以鼓励同学们的探索精神.比如说,若同学们提出了“到两定点距离之和等于常数的点的轨迹”,那么动点轨迹是什么呢?这时教师示范引导学生绘图:取一条一定长的细绳,把它的两端固定在画图板上的F1和F2两点(如图2-13),当绳长大于F1和F2的距离时,用铅笔尖把绳子拉紧,使笔尖在图板上慢慢移动,就可以画出一个椭圆.教师进一步追问:“椭圆,在哪些地方见过?”有的同学说:“立体几何中圆的直观图.”有的同学说:“人造卫星运行轨道”等……在此基础上,引导学生概括椭圆的定义:平面内到两定点F1、F2的距离之和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做焦距.学生开始只强调主要几何特征——到两定点F1、F2的距离之和等于常数、教师在演示中要从两个方面加以强调:(1)将穿有铅笔的细线拉到图板平面外,得到的不是椭圆,而是椭球形,使学生认识到需加限制条件:“在平面内”.(2)这里的常数有什么限制吗?教师边演示边提示学生注意:若常数=|F1F2|,则是线段F1F2;若常数<|F1F2|,则轨迹不存在;若要轨迹是椭圆,还必须加上限制条件:“此常数大于|F1F2|”.(二)椭圆标准方程的推导1.标准方程的推导由椭圆的定义,可以知道它的基本几何特征,但对椭圆还具有哪些性质,我们还一无所知,所以需要用坐标法先建立椭圆的方程.如何建立椭圆的方程?根据求曲线方程的一般步骤,可分:(1)建系设点;(2)点的集合;(3)代数方程;(4)化简方程等步骤.(1)建系设点建立坐标系应遵循简单和优化的原则,如使关键点的坐标、关键几何量(距离、直线斜率等)的表达式简单化,注意充分利用图形的对称性,使学生认识到下列选取方法是恰当的.以两定点F1、F2的直线为x轴,线段F1F2的垂直平分线为y轴,建立直角坐标系(如图2-14).设|F1F2|=2c(c>0),M(x,y)为椭圆上任意一点,则有F1(-1,0),F2(c,0).(2)点的集合由定义不难得出椭圆集合为:P={M||MF1|+|MF2|=2a}.(3)代数方程(4)化简方程化简方程可请一个反映比较快、书写比较规范的同学板演,其余同学在下面完成,教师巡视,适当给予提示:①原方程要移项平方,否则化简相当复杂;注意两次平方的理由详见问题3说明.整理后,再平方得(a2-c2)x2+a2y2=a2(a2-c2)②为使方程对称和谐而引入b,同时b还有几何意义,下节课还要(a>b>0).关于证明所得的方程是椭圆方程,因教材中对此要求不高,可从略.示的椭圆的焦点在x轴上,焦点是F1(-c,0)、F2(c,0).这里c2=a2-b2.2.两种标准方程的比较(引导学生归纳)0)、F2(c,0),这里c2=a2-b2;-c)、F2(0,c),这里c2=a2+b2,只须将(1)方程的x、y互换即可得到.教师指出:在两种标准方程中,∵a2>b2,∴可以根据分母的大小来判定焦点在哪一个坐标轴上.(三)例题与练习例题平面内两定点的距离是8,写出到这两定点的距离的和是10的点的轨迹的方程.分析:先根据题意判断轨迹,再建立直角坐标系,采用待定系数法得出轨迹方程.解:这个轨迹是一个椭圆,两个定点是焦点,用F1、F2表示.取过点F1和F2的直线为x轴,线段F1F2的垂直平分线为y轴,建立直角坐标系.∵2a=10,2c=8.∴a=5,c=4,b2=a2-c2=52-45=9.∴b=3因此,这个椭圆的标准方程是请大家再想一想,焦点F1、F2放在y轴上,线段F1F2的垂直平分练习1 写出适合下列条件的椭圆的标准方程:练习2 下列各组两个椭圆中,其焦点相同的是[ ]由学生口答,答案为D.(四)小结1.定义:椭圆是平面内与两定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹.3.图形如图2-15、2-16.4.焦点:F1(-c,0),F2(c,0).F1(0,-c),F2(0,c).五、布置作业1.如图2-17,在椭圆上的点中,A1与焦点F1的距离最小,|A1F1|=2,A2 F1的距离最大,|A2F1|=14,求椭圆的标准方程.3.求适合下列条件的椭圆的标准方程:是过F1的直线被椭圆截得的线段长,求△ABF2的周长.作业答案:4.由椭圆定义易得,△ABF2的周长为4a.六、板书设计椭圆及其标准方程一、教学目标(一)知识教学点使学生理解椭圆的定义,掌握椭圆的标准方程的推导及标准方程.(二)能力训练点通过对椭圆概念的引入与标准方程的推导,培养学生分析探索能力,增强运用坐标法解决几何问题的能力.(三)学科渗透点通过对椭圆标准方程的推导的教学,可以提高对各种知识的综合运用能力.二、教材分析1.重点:椭圆的定义和椭圆的标准方程.(解决办法:用模型演示椭圆,再给出椭圆的定义,最后加以强调;对椭圆的标准方程单独列出加以比较.)2.难点:椭圆的标准方程的推导.(解决办法:推导分4步完成,每步重点讲解,关键步骤加以补充说明.)3.疑点:椭圆的定义中常数加以限制的原因.(解决办法:分三种情况说明动点的轨迹.)三、活动设计提问、演示、讲授、详细讲授、演板、分析讲解、学生口答.四、教学过程(一)椭圆概念的引入前面,大家学习了曲线的方程等概念,哪一位同学回答:问题1:什么叫做曲线的方程?求曲线方程的一般步骤是什么?其中哪几个步骤必不可少?对上述问题学生的回答基本正确,否则,教师给予纠正.这样便于学生温故而知新,在已有知识基础上去探求新知识.提出这一问题以便说明标准方程推导中一个同解变形.问题3:圆的几何特征是什么?你能否可类似地提出一些轨迹命题作广泛的探索?一般学生能回答:“平面内到一定点的距离为常数的点的轨迹是圆”.对同学提出的轨迹命题如:“到两定点距离之和等于常数的点的轨迹.”“到两定点距离平方差等于常数的点的轨迹.”“到两定点距离之差等于常数的点的轨迹.”教师要加以肯定,以鼓励同学们的探索精神.比如说,若同学们提出了“到两定点距离之和等于常数的点的轨迹”,那么动点轨迹是什么呢?这时教师示范引导学生绘图:取一条一定长的细绳,把它的两端固定在画图板上的F1和F2两点(如图2-13),当绳长大于F1和F2的距离时,用铅笔尖把绳子拉紧,使笔尖在图板上慢慢移动,就可以画出一个椭圆.教师进一步追问:“椭圆,在哪些地方见过?”有的同学说:“立体几何中圆的直观图.”有的同学说:“人造卫星运行轨道”等……在此基础上,引导学生概括椭圆的定义:平面内到两定点F1、F2的距离之和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做焦距.学生开始只强调主要几何特征——到两定点F1、F2的距离之和等于常数、教师在演示中要从两个方面加以强调:(1)将穿有铅笔的细线拉到图板平面外,得到的不是椭圆,而是椭球形,使学生认识到需加限制条件:“在平面内”.(2)这里的常数有什么限制吗?教师边演示边提示学生注意:若常数=|F1F2|,则是线段F1F2;若常数<|F1F2|,则轨迹不存在;若要轨迹是椭圆,还必须加上限制条件:“此常数大于|F1F2|”.(二)椭圆标准方程的推导1.标准方程的推导由椭圆的定义,可以知道它的基本几何特征,但对椭圆还具有哪些性质,我们还一无所知,所以需要用坐标法先建立椭圆的方程.如何建立椭圆的方程?根据求曲线方程的一般步骤,可分:(1)建系设点;(2)点的集合;(3)代数方程;(4)化简方程等步骤.(1)建系设点建立坐标系应遵循简单和优化的原则,如使关键点的坐标、关键几何量(距离、直线斜率等)的表达式简单化,注意充分利用图形的对称性,使学生认识到下列选取方法是恰当的.以两定点F1、F2的直线为x轴,线段F1F2的垂直平分线为y轴,建立直角坐标系(如图2-14).设|F1F2|=2c(c>0),M(x,y)为椭圆上任意一点,则有F1(-1,0),F2(c,0).(2)点的集合由定义不难得出椭圆集合为:P={M||MF1|+|MF2|=2a}.(3)代数方程(4)化简方程化简方程可请一个反映比较快、书写比较规范的同学板演,其余同学在下面完成,教师巡视,适当给予提示:①原方程要移项平方,否则化简相当复杂;注意两次平方的理由详见问题3说明.整理后,再平方得(a2-c2)x2+a2y2=a2(a2-c2)②为使方程对称和谐而引入b,同时b还有几何意义,下节课还要(a>b>0).关于证明所得的方程是椭圆方程,因教材中对此要求不高,可从略.示的椭圆的焦点在x轴上,焦点是F1(-c,0)、F2(c,0).这里c2=a2-b2.2.两种标准方程的比较(引导学生归纳)0)、F2(c,0),这里c2=a2-b2;-c)、F2(0,c),这里c2=a2+b2,只须将(1)方程的x、y互换即可得到.教师指出:在两种标准方程中,∵a2>b2,∴可以根据分母的大小来判定焦点在哪一个坐标轴上.(三)例题与练习例题平面内两定点的距离是8,写出到这两定点的距离的和是10的点的轨迹的方程.分析:先根据题意判断轨迹,再建立直角坐标系,采用待定系数法得出轨迹方程.解:这个轨迹是一个椭圆,两个定点是焦点,用F1、F2表示.取过点F1和F2的直线为x轴,线段F1F2的垂直平分线为y轴,建立直角坐标系.∵2a=10,2c=8.∴a=5,c=4,b2=a2-c2=52-45=9.∴b=3因此,这个椭圆的标准方程是请大家再想一想,焦点F1、F2放在y轴上,线段F1F2的垂直平分练习1 写出适合下列条件的椭圆的标准方程:练习2 下列各组两个椭圆中,其焦点相同的是[ ]由学生口答,答案为D.(四)小结1.定义:椭圆是平面内与两定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹.3.图形如图2-15、2-16.4.焦点:F1(-c,0),F2(c,0).F1(0,-c),F2(0,c).五、布置作业1.如图2-17,在椭圆上的点中,A1与焦点F1的距离最小,|A1F1|=2,A2 F1的距离最大,|A2F1|=14,求椭圆的标准方程.3.求适合下列条件的椭圆的标准方程:是过F1的直线被椭圆截得的线段长,求△ABF2的周长.作业答案:4.由椭圆定义易得,△ABF2的周长为4a.六、板书设计椭圆的几何性质一、教学目标(一)知识教学点通过椭圆标准方程的讨论,使学生掌握椭圆的几何性质,能正确地画出椭圆的图形,并了解椭圆的一些实际应用.(二)能力训练点通过对椭圆的几何性质的教学,培养学生分析问题和解决实际问题的能力.(三)学科渗透点使学生掌握利用方程研究曲线性质的基本方法,加深对直角坐标系中曲线与方程的关系概念的理解,这样才能解决随之而来的一些问题,如弦、最值问题等.二、教材分析1.重点:椭圆的几何性质及初步运用.(解决办法:引导学生利用方程研究曲线的性质,最后进行归纳小结.) 2.难点:椭圆离心率的概念的理解.(解决办法:先介绍椭圆离心率的定义,再分析离心率的大小对椭圆形状的影响,最后通过椭圆的第二定义讲清离心率e的几何意义.)3.疑点:椭圆的几何性质是椭圆自身所具有的性质,与坐标系选择无关,即不随坐标系的改变而改变.(解决办法:利用方程分析椭圆性质之前就先给学生说明.)三、活动设计提问、讲解、阅读后重点讲解、再讲解、演板、讲解后归纳、小结.四、教学过程(一)复习提问1.椭圆的定义是什么?2.椭圆的标准方程是什么?学生口述,教师板书.(二)几何性质根据曲线的方程研究曲线的几何性质,并正确地画出它的图形,是b>0)来研究椭圆的几何性质.说明:椭圆自身固有几何量所具有的性质是与坐标系选择无关,即不随坐标系的改变而改变.1.范围即|x|≤a,|y|≤b,这说明椭圆在直线x=±a和直线y=±b所围成的矩形里(图2-18).注意结合图形讲解,并指出描点画图时,就不能取范围以外的点.2.对称性先请大家阅读课本椭圆的几何性质2.设问:为什么“把x换成-x,或把y换成-y?,或把x、y同时换成-x、-y时,方程都不变,所以图形关于y轴、x轴或原点对称的”呢?事实上,在曲线的方程里,如果把x换成-x而方程不变,那么当点P(x,y)在曲线上时,点P关于y轴的对称点Q(-x,y)也在曲线上,所以曲线关于y轴对称.类似可以证明其他两个命题.同时向学生指出:如果曲线具有关于y轴对称、关于x轴对称和关于原点对称中的任意两种,那么它一定具有另一种对称.如:如果曲线关于x轴和原点对称,那么它一定关于y轴对称.事实上,设P(x,y)在曲线上,因为曲线关于x轴对称,所以点P1(x,-y)必在曲线上.又因为曲线关于原点对称,所以P1关于原点对称点P2(-x,y)必在曲线上.因P(x,y)、P2(-x,y)都在曲线上,所以曲线关于y轴对称.最后指出:x轴、y轴是椭圆的对称轴,原点是椭圆的对称中心即椭圆中心.3.顶点只须令x=0,得y=±b,点B1(0,-b)、B2(0,b)是椭圆和y轴的两个交点;令y=0,得x=±a,点A1(-a,0)、A2(a,0)是椭圆和x轴的两个交点.强调指出:椭圆有四个顶点A1(-a,0)、A2(a,0)、B1(0,-b)、B2(0,b).教师还需指出:(1)线段A1A2、线段B1B2分别叫椭圆的长轴和短轴,它们的长分别等于2a和2b;(2)a、b的几何意义:a是长半轴的长,b是短半轴的长;这时,教师可以小结以下:由椭圆的范围、对称性和顶点,再进行描点画图,只须描出较少的点,就可以得到较正确的图形.4.离心率教师直接给出椭圆的离心率的定义:等到介绍椭圆的第二定义时,再讲清离心率e的几何意义.先分析椭圆的离心率e的取值范围:∵a>c>0,∴ 0<e<1.再结合图形分析离心率的大小对椭圆形状的影响:(2)当e接近0时,c越接近0,从而b越接近a,因此椭圆接近圆;(3)当e=0时,c=0,a=b两焦点重合,椭圆的标准方程成为x2+y2=a2,图形就是圆了.(三)应用为了加深对椭圆的几何性质的认识,掌握用描点法画图的基本方法,给出如下例1.例1 求椭圆16x2+25y2=400的长轴和短轴的长、离心率、焦点和顶点的坐标,并用描点法画出它的图形.本例前一部分请一个同学板演,教师予以订正,估计不难完成.后一部分由教师讲解,以引起学生重视,步骤是:(2)描点作图.先描点画出椭圆在第一象限内的图形,再利用椭圆的对称性就可以画出整个椭圆(图2-19).要强调:利用对称性可以使计算量大大减少.本例实质上是椭圆的第二定义,是为以后讲解抛物线和圆锥曲线的统一定义做准备的,同时再一次使学生熟悉求曲线方程的一般步骤,因此,要详细讲解:设d是点M到直线l的距离,根据题意,所求轨迹就是集合P={M将上式化简,得:(a2-c2)x2+a2y2=a2(a2-c2).这是椭圆的标准方程,所以点M的轨迹是椭圆.由此例不难归纳出椭圆的第二定义.(四)椭圆的第二定义1.定义平面内点M与一个定点的距离和它到一定直线的距离的比是常数线叫做椭圆的准线,常数e是椭圆的离心率.2.说明这时还要讲清e的几何意义是:椭圆上一点到焦点的距离和它到准线的距离的比.(五)小结解法研究图形的性质是通过对方程的讨论进行的,同一曲线由于坐标系选取不同,方程的形式也不同,但是最后得出的性质是一样的,即与坐标系的选取无关.前面我们着重分析了第一个标准方程的椭圆的性质,类似可以理解第二个标准方程的椭圆的性质.布置学生最后小结下列表格:五、布置作业1.求下列椭圆的长轴和短轴的长、焦距、离心率、各个顶点和焦点坐标、准线方程:(1)25x2+4y2-100=0,(2)x2+4y2-1=0.2.我国发射的科学实验人造地球卫星的运行轨道是以地球的中心为一个焦点的椭圆,近地点距地面266Km,远地点距地面1826Km,求这颗卫星的轨道方程.3.点P与一定点F(2,0)的距离和它到一定直线x=8的距离的比是1∶2,求点P的轨迹方程,并说明轨迹是什么图形.的方程.作业答案:4.顶点(0,2)可能是长轴的端点,也可能是短轴的一个端点,故分两种情况求方程:六、板书设计椭圆的几何性质一、教学目标(一)知识教学点通过椭圆标准方程的讨论,使学生掌握椭圆的几何性质,能正确地画出椭圆的图形,并了解椭圆的一些实际应用.(二)能力训练点通过对椭圆的几何性质的教学,培养学生分析问题和解决实际问题的能力.(三)学科渗透点使学生掌握利用方程研究曲线性质的基本方法,加深对直角坐标系中曲线与方程的关系概念的理解,这样才能解决随之而来的一些问题,如弦、最值问题等.二、教材分析1.重点:椭圆的几何性质及初步运用.(解决办法:引导学生利用方程研究曲线的性质,最后进行归纳小结.) 2.难点:椭圆离心率的概念的理解.(解决办法:先介绍椭圆离心率的定义,再分析离心率的大小对椭圆形状的影响,最后通过椭圆的第二定义讲清离心率e的几何意义.)3.疑点:椭圆的几何性质是椭圆自身所具有的性质,与坐标系选择无关,即不随坐标系的改变而改变.(解决办法:利用方程分析椭圆性质之前就先给学生说明.)三、活动设计提问、讲解、阅读后重点讲解、再讲解、演板、讲解后归纳、小结.四、教学过程(一)复习提问1.椭圆的定义是什么?2.椭圆的标准方程是什么?学生口述,教师板书.(二)几何性质根据曲线的方程研究曲线的几何性质,并正确地画出它的图形,是b>0)来研究椭圆的几何性质.说明:椭圆自身固有几何量所具有的性质是与坐标系选择无关,即不随坐标系的改变而改变.1.范围即|x|≤a,|y|≤b,这说明椭圆在直线x=±a和直线y=±b所围成的矩形里(图2-18).注意结合图形讲解,并指出描点画图时,就不能取范围以外的点.2.对称性先请大家阅读课本椭圆的几何性质2.设问:为什么“把x换成-x,或把y换成-y?,或把x、y同时换成-x、-y时,方程都不变,所以图形关于y轴、x轴或原点对称的”呢?事实上,在曲线的方程里,如果把x换成-x而方程不变,那么当点P(x,y)在曲线上时,点P关于y轴的对称点Q(-x,y)也在曲线上,所以曲线关于y轴对称.类似可以证明其他两个命题.同时向学生指出:如果曲线具有关于y轴对称、关于x轴对称和关于原点对称中的任意两种,那么它一定具有另一种对称.如:如果曲线关于x轴和原点对称,那么它一定关于y轴对称.事实上,设P(x,y)在曲线上,因为曲线关于x轴对称,所以点P1(x,-y)必在曲线上.又因为曲线关于原点对称,所以P1关于原点对称点P2(-x,y)必在曲线上.因P(x,y)、P2(-x,y)都在曲线上,所以曲线关于y轴对称.最后指出:x轴、y轴是椭圆的对称轴,原点是椭圆的对称中心即椭圆中心.3.顶点只须令x=0,得y=±b,点B1(0,-b)、B2(0,b)是椭圆和y轴的两个交点;令y=0,得x=±a,点A1(-a,0)、A2(a,0)是椭圆和x轴的两个交点.强调指出:椭圆有四个顶点A1(-a,0)、A2(a,0)、B1(0,-b)、B2(0,b).教师还需指出:(1)线段A1A2、线段B1B2分别叫椭圆的长轴和短轴,它们的长分别等于2a和2b;(2)a、b的几何意义:a是长半轴的长,b是短半轴的长;这时,教师可以小结以下:由椭圆的范围、对称性和顶点,再进行描点画图,只须描出较少的点,就可以得到较正确的图形.4.离心率教师直接给出椭圆的离心率的定义:等到介绍椭圆的第二定义时,再讲清离心率e的几何意义.先分析椭圆的离心率e的取值范围:∵a>c>0,∴ 0<e<1.再结合图形分析离心率的大小对椭圆形状的影响:(2)当e接近0时,c越接近0,从而b越接近a,因此椭圆接近圆;(3)当e=0时,c=0,a=b两焦点重合,椭圆的标准方程成为x2+y2=a2,图形就是圆了.(三)应用为了加深对椭圆的几何性质的认识,掌握用描点法画图的基本方法,给出如下例1.例1 求椭圆16x2+25y2=400的长轴和短轴的长、离心率、焦点和顶点的坐标,并用描点法画出它的图形.本例前一部分请一个同学板演,教师予以订正,估计不难完成.后一部分由教师讲解,以引起学生重视,步骤是:(2)描点作图.先描点画出椭圆在第一象限内的图形,再利用椭圆的对称性就可以画出整个椭圆(图2-19).要强调:利用对称性可以使计算量大大减少.本例实质上是椭圆的第二定义,是为以后讲解抛物线和圆锥曲线的统一定义做准备的,同时再一次使学生熟悉求曲线方程的一般步骤,因此,要详细讲解:设d是点M到直线l的距离,根据题意,所求轨迹就是集合P={M将上式化简,得:(a2-c2)x2+a2y2=a2(a2-c2).这是椭圆的标准方程,所以点M的轨迹是椭圆.由此例不难归纳出椭圆的第二定义.(四)椭圆的第二定义1.定义平面内点M与一个定点的距离和它到一定直线的距离的比是常数线叫做椭圆的准线,常数e是椭圆的离心率.2.说明这时还要讲清e的几何意义是:椭圆上一点到焦点的距离和它到准线的距离的比.(五)小结解法研究图形的性质是通过对方程的讨论进行的,同一曲线由于坐标系选取不同,方程的形式也不同,但是最后得出的性质是一样的,即与坐标系的选取无关.前面我们着重分析了第一个标准方程的椭圆的性质,类似可以理解第二个标准方程的椭圆的性质.布置学生最后小结下列表格:五、布置作业1.求下列椭圆的长轴和短轴的长、焦距、离心率、各个顶点和焦点坐标、准线方程:(1)25x2+4y2-100=0,(2)x2+4y2-1=0.2.我国发射的科学实验人造地球卫星的运行轨道是以地球的中心为一个焦点的椭圆,近地点距地面266Km,远地点距地面1826Km,求这颗卫星的轨道方程.3.点P与一定点F(2,0)的距离和它到一定直线x=8的距离的比是1∶2,求点P的轨迹方程,并说明轨迹是什么图形.的方程.作业答案:4.顶点(0,2)可能是长轴的端点,也可能是短轴的一个端点,故分两种情况求方程:六、板书设计双曲线及其标准方程一、教学目标(一)知识教学点使学生掌握双曲线的定义和标准方程,以及标准方程的推导.(二)能力训练点在与椭圆的类比中获得双曲线的知识,从而培养学生分析、归纳、推理等能力.(三)学科渗透点本次课注意发挥类比和设想的作用,与椭圆进行类比、设想,使学生得到关于双曲线的定义、标准方程一个比较深刻的认识.二、教材分析1.重点:双曲线的定义和双曲线的标准方程.(解决办法:通过一个简单实验得出双曲线,再通过设问给出双曲线的定义;对于双曲线的标准方程通过比较加深认识.)2.难点:双曲线的标准方程的推导.(解决办法:引导学生完成,提醒学生与椭圆标准方程的推导类比.)3.疑点:双曲线的方程是二次函数关系吗?(解决办法:教师可以从引导学生回忆函数定义和观察双曲线图形来解决,同时让学生在课外去研究在什么附加条件下,双曲线方程可以转化为函数式.)三、活动设计提问、实验、设问、归纳定义、讲解、演板、口答、重点讲解、小结.四、教学过程(一)复习提问1.椭圆的定义是什么?(学生回答,教师板书)。

圆锥曲线单元教学设计

圆锥曲线单元教学设计

圆锥曲线单元教学设计圆锥曲线是高中数学中的重要内容,它包括抛物线、椭圆和双曲线。

本篇文章将介绍一个针对圆锥曲线单元的教学设计。

教学目标:1. 理解圆锥曲线的定义和性质;2. 掌握圆锥曲线的标准方程及其参数方程;3. 能够绘制和分析抛物线、椭圆和双曲线的图像;4. 能够求解与圆锥曲线相关的实际问题。

教学步骤:引入圆锥曲线的概念(5分钟)在引入这个单元时,可以通过一个真实生活中的例子来引起学生的兴趣。

例如,讲解如何利用椭圆形的体育场跑道最大限度地提高观众的视线质量。

介绍抛物线(15分钟)首先,向学生介绍抛物线的定义和基本特征,如焦点、准线和对称轴等。

然后,通过示例演示如何根据给定的抛物线方程绘制其图像,并讨论特殊情况,如开口向上和向下的抛物线。

讲解椭圆和双曲线(20分钟)接下来,介绍椭圆和双曲线的定义和基本特征,如焦点、顶点、长轴和短轴等。

然后,通过示例演示如何根据给定的椭圆和双曲线方程绘制其图像,并讨论特殊情况,如离心率等于1的双曲线。

解决实际问题(15分钟)利用已经学到的知识,给学生提供一些实际问题,让他们运用圆锥曲线的相关概念和方程进行求解。

例如,计算一个卫星的轨道方程或寻找一条抛物线的最佳拋物面。

练习和巩固(15分钟)给学生提供一些练习题,让他们巩固所学的知识。

可以包括求解方程、绘制图像和解决实际问题等各个方面。

总结和评估(10分钟)在课程结束前,对所学的内容进行总结,并对学生的掌握程度进行评估。

可以通过提问、小测验或作业等形式进行评估。

教学资源:1. 教科书和课件:提供基本概念和理论知识;2. 演示工具:用于绘制图像和解决问题;3. 实际问题和练习题:应用知识和巩固学习。

教学评价:通过对学生的参与和表现进行观察,将他们在课堂上所做的练习和答题情况作为评估的依据。

此外,还可以采用简答题或解决实际问题的考试形式来评估学生的综合能力。

通过这个教学设计,学生将能够全面理解和掌握圆锥曲线的概念和性质。

高中数学圆锥曲线与方程教案

高中数学圆锥曲线与方程教案

高中数学圆锥曲线与方程教案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第二章圆锥曲线与方程一、课程目标在必修阶段学习平面解析几何初步的基础上,在本模块中,学生将学习圆锥曲线与方程,了解圆锥曲线与二次方程的关系,掌握圆锥曲线的基本几何性质,感受圆锥曲线在刻画现实世界和解决实际问题中的作用。

结合已学过的曲线及其方程的实例,了解曲线与方程的对应关系,进一步体会数形结合的思想。

二、学习目标:(1)、圆锥曲线:①了解圆锥曲线的实际背景,感受圆锥曲线在刻画现实世界和解决实际问题中的作用。

②经历从具体情境中抽象出椭圆、抛物线模型的过程,掌握它们的定义、标准方程、几何图形及简单性质。

③了解双曲线的定义、几何图形和标准方程,知道双曲线的有关性质。

④能用坐标法解决一些与圆锥曲线有关的简单几何问题(直线与圆锥曲线的位置关系)和实际问题。

⑤通过圆锥曲线的学习,进一步体会数形结合的思想。

三、本章知识结构框图:2.1 求曲线的轨迹方程(新授课)一、教学目标知识与技能:结合已经学过的曲线及方程的实例,了解曲线与方程的对应关系,了解两条曲线交点的求法;能根据曲线的已知条件求出曲线的方程,并初步学会通过方程来研究曲线的性质。

过程与方法:通过求曲线方程的学习,可培养我们的转化能力和全面分析问题的能力,帮助我们理解研究圆锥曲线的基本方法。

情感、态度与价值观:通过曲线与方程概念的学习,可培养我们数与形相互联系,对立统一的辩证唯物主义观。

二、教学重点与难点重点:求动点的轨迹方程的常用技巧与方法.难点:作相关点法求动点的轨迹方法.三、教学过程(一)复习引入平面解析几何研究的主要问题是:1、根据已知条件,求出表示平面曲线的方程;2、通过方程,研究平面曲线的性质.我们已经对常见曲线圆、椭圆、双曲线以及抛物线进行过这两个方面的研究,今天在上面已经研究的基础上来对根据已知条件求曲线的轨迹方程的常见技巧与方法进行系统分析.(二)几种常见求轨迹方程的方法1.直接法由题设所给(或通过分析图形的几何性质而得出)的动点所满足的几何条件列出等式,再用坐标代替这等式,化简得曲线的方程,这种方法叫直接法.例1、(1)求和定圆x2+y2=R2的圆周的距离等于R的动点P的轨迹方程;(2)过点A(a,o)作圆O∶x2+y2=R2(a>R>o)的割线,求割线被圆O截得弦的中点的轨迹.对(1)分析:动点P的轨迹是不知道的,不能考查其几何特征,但是给出了动点P的运动规律:|OP|=2R或|OP|=0.解:设动点P(x,y),则有|OP|=2R或|OP|=0.即x2+y2=4R2或x2+y2=0.故所求动点P的轨迹方程为x2+y2=4R2或x2+y2=0.对(2)分析:题设中没有具体给出动点所满足的几何条件,但可以通过分析图形的几何性质而得出,即圆心与弦的中点连线垂直于弦,它们的斜率互为负倒数.解答为:设弦的中点为M(x,y),连结OM,则OM⊥AM.∵k OM·k AM=-1,其轨迹是以OA为直径的圆在圆O内的一段弧(不含端点).2.定义法利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件.直平分线l交半径OQ于点P(见图2-45),当Q点在圆周上运动时,求点P的轨迹方程.分析:∵点P在AQ的垂直平分线上,∴|PQ|=|PA|.又P在半径OQ上.∴|PO|+|PQ|=R,即|PO|+|PA|=R.故P点到两定点距离之和是定值,可用椭圆定义写出P点的轨迹方程.解:连接PA ∵l⊥PQ,∴|PA|=|PQ|.又P在半径OQ上.∴|PO|+|PQ|=2.由椭圆定义可知:P点轨迹是以O、A为焦点的椭圆.3.相关点法若动点P(x,y)随已知曲线上的点Q(x0,y0)的变动而变动,且x0、y0可用x、y表示,则将Q点坐标表达式代入已知曲线方程,即得点P的轨迹方程.这种方法称为相关点法(或代换法).例3、已知抛物线y2=x+1,定点A(3,1),B为抛物线上任意一点,点P在线段AB上,且有BP∶PA=1∶2,当B点在抛物线上变动时,求点P的轨迹方程.分析:P点运动的原因是B点在抛物线上运动,因此B可作为相关点,应先找出点P与点B的联系.解:设点P(x,y),且设点B(x0,y0)∵BP∶PA=1∶2,且P为线段AB的内分点.4.待定系数法求圆、椭圆、双曲线以及抛物线的方程常用待定系数法求.例4、已知抛物线y2=4x和以坐标轴为对称轴、实轴在y轴上的双曲线仅有2,求此双曲线方两个公共点,又直线y=2x被双曲线所截的的线段长等于5程。

高中圆锥曲线单元教学设计

高中圆锥曲线单元教学设计

高中圆锥曲线单元教学设计导语:圆锥曲线作为高中数学中的重要内容,对于学生的数学思维能力和几何直观的理解能力有着重要的影响。

本文将围绕高中圆锥曲线单元的教学设计展开讨论,从教学目标、教学内容、教学策略和评价方法等方面进行详细解析,旨在为广大数学教师提供一些教学思路和方法。

一、教学目标:1. 掌握圆锥曲线的定义和性质,了解圆锥曲线的分类;2. 能够应用圆锥曲线的概念和性质进行问题求解;3. 培养学生的几何直观感知能力和数学证明能力;4. 培养学生的数学建模能力。

二、教学内容:1. 圆锥曲线的定义和性质;2. 椭圆、抛物线和双曲线的基本概念和性质;3. 圆锥曲线的方程与图形的绘制;4. 圆锥曲线的焦点、准线和直极线等相关概念。

三、教学策略:1. 激发学生兴趣:通过生动有趣的例子引入,激发学生对圆锥曲线的兴趣;2. 合作学习:采用小组合作学习模式,让学生在小组中相互讨论,互相学习,提高学生的主动参与度;3. 视觉辅助材料:使用多媒体和动画等视觉辅助材料,帮助学生直观地理解圆锥曲线的概念和性质;4. 实践探究:设计一些简单的实践活动,让学生亲自绘制圆锥曲线图形,提高学生的动手能力和空间想象力;5. 数学建模:引导学生运用所学知识解决实际问题,培养学生的数学建模能力。

四、教学过程:1. 导入环节引入圆锥曲线的概念,通过一些日常生活中的例子,引发学生对圆锥曲线的思考,激发学生的学习兴趣。

2. 讲解与演示通过多媒体展示圆锥曲线的定义和性质,以及椭圆、抛物线和双曲线的基本概念和性质。

结合实例,讲解圆锥曲线的方程与图形的绘制方法。

3. 实践探究给学生准备一些纸张、铅笔和尺子等工具,让他们在小组中自行探究绘制圆锥曲线的方法。

学生可以互相讨论,互相学习,提高学生的动手能力和空间想象力。

4. 数学建模设计一些实际问题,引导学生将所学的圆锥曲线知识运用到问题解决中。

通过实际问题的解决过程,培养学生的数学建模能力和问题解决能力。

《圆锥曲线》主题单元教学实施方案

《圆锥曲线》主题单元教学实施方案
《圆锥曲线》主题单元教学实施方案
主题单元名称
圆锥曲线
学科
数学
学生年级 、班级
高二实验班
学生人数
60
专题1:曲线的形成
任务名称
实施细节说明
实施前
确定教学环境
多媒体教室
落实前需技能
检查课前预习学案的情况
准备教学资源
1、提前准备好上课使用的相关材料
(多媒体课件,画板,细绳,笔)
2、课前检查多媒体教室,检查电脑和相应软件配置,确保能够正常使用。
3、调试好实物投影仪
4、预习圆锥曲线,完成学案
5、提供自我评价表、小组评价表
实施中
一、探究认识圆锥曲线
.1、创设情境:多媒体演示椭圆创造问题情境,引入新课
2、形成椭圆定义::
.通过学生观察、思考、讨论,概括出椭圆的定义
3、合理建系,推导椭圆方程
布置讨论任务,组织小组讨论
1).复习求曲线的方程的基本步骤
1、曲线的大小由什么确定?
2、曲线的开口大小及扁平程度跟什么有关?
3、怎样发现并证明曲线具备对称性?
4、怎样发现并确定定点?
组织各小组讨论探讨,并汇报讨论成果
形成结论
根据汇总结果,老师引导学生列表,形成结论,小组内交流
实施后
学生成果展示
展示各小组的探讨成果
评价学生活动成果
1请几个小组展示成果,教师根据评价量规给其中一组打分
准备教学资源
1.提前准备好上课使用的相关材料
2.检查教室计算机和投影仪是否可用
3、提供自我评价表、小组评价表
4、预习圆锥曲线,完成学案
实施中
复习圆ቤተ መጻሕፍቲ ባይዱ曲线定义及方程
通过学生讨论、汇报交流

圆锥曲线(单元)教学设计

圆锥曲线(单元)教学设计

圆锥曲线(单元)教学设计一、教材的地位和知识结构:本单元是在学生学习完必修教材的直线与圆的基础上进行的.圆锥曲线是解析几何的重要内容,分为椭圆、双曲线、抛物线三部分。

而椭圆又是学生遇到的第一种圆锥曲线,能否学好椭圆的定义、标准方程及其简单的几何性质,是学生能否比较系统地学好另外两种圆锥曲线的基础,甚至是学生能否学好解析几何的关键。

而椭圆在教材中具有“承上启下”的作用,前面是二次曲线中最特殊的圆,后面是双曲线、抛物线。

圆→椭圆→双曲线→抛物线的定义、方程、性质知识链背后贯穿着一条暗线:点与距离和建立适当的直角坐标系求方程问题即坐标法。

在圆锥曲线的教学中始终贯穿坐标法这一重要思想。

因此改变原来的课时“匀速运动”的教学方式,在整个单元的知识结构、特有的育人价值思考的基础上,把椭圆的教学作为“教学结构”阶段;双曲线、抛物线的教学作为“运用结构”阶段。

即采取“长程两段”的教学策略。

二、“教学结构”阶段知识目标:掌握椭圆的定义、标准方程、简单几何性质;能力目标:培养学生的思维能力、探究能力、归纳抽象能力以及等价转化思想为重点的教学思想.情感与态度目标:通过动手实验,激发学生学习的兴趣,应用运动变化的观点看待问题,体现数学的美学价值。

培养学生的探索精神和观察、分析、归纳的能力。

教学重点:椭圆定义的形成、标准方程、几何性质;理解坐标法的基本思想。

教学难点:椭圆定义的语言表述、符号表示、标准方程的化简。

教学方法:“三放三收”的设计方案。

创设问题、启发引导、探究活动、归纳总结.椭圆定义与方程的教学过程:椭圆的几何性质可采取数形结合方法学习。

重点是让学生改变线段的长度,多画几个椭圆,这样学生会发现影响椭圆扁圆程度因素,对“椭圆性质”的学习起重要作用。

整个椭圆教学阶段速度放慢,用圆锥曲线一半的教学课时,让学生从椭圆定义的形成→标准方程的建立→几何性质的问题出发,在问题解决的过程中发现和建构知识,充分地感悟和体验知识之间的内在关联的结构存在,逐渐形成学习的方法结构。

圆锥曲线大单元教学设计

圆锥曲线大单元教学设计

➢ 教学反思
通过圆锥曲线大单元教学,绝大多数学生可以掌握 知识脉络,初步形成学科素养,但还是有一部分学生不 爱主动思考,疏于练习,不能构建知识网络,掌握的知 识断层。在以后的教学过程中,教师要充分发挥引导作 用,让学生端正学习态度、学会思考、给学生提供更多 探索的机会,让学生实际操作,将知识内化,融会贯通!
➢ 教材内容体系变化
➢ 新教材知内容
➢ 例题和习题变化
0.5m 改为1m 12题
➢ 教学目标分析
➢ 重点、难点
椭圆标准方程的推导与化简 双曲线标准方程的推导与化简
➢ 课时变化
➢ 单元教学流程设计
1.梳理知识框架
2.设计单元教学思路
以三种曲线的“个性特征”为明线,引导学生认识三种曲线;同时,通过讲 解“具体例子+拓展性素材”的方式渗透和明确圆锥曲线统一定义,并在引 出抛物线概念时进行归纳。
引领性,双曲线、抛物线的研究通过类比椭圆完成。
4.设计教学流程:
在“问题串”的引导下,设计以下教学流程: 通过具体情境(如行星运行轨道),让学生了解椭圆的背景与应用; 结合情境、通过信息技术动态演示,让学生描述图形的几何特征,即椭圆是到
两个定点的距离之和为定长的动点的轨迹; 结合几何特征合理地建立坐标系,用代数语言描述这些特征与问题; 借助几何图形的特点,形成研究椭圆性质的思路,利用方程,并通过直观想象
谢谢!
强调“先用几何眼光观察与思考,再用代数方法解决”,在明确几何特征的 基础上,再以坐标法和数形结合思想为暗线,建立坐标系、求标准方程,然 后通过方程、运用代数方法进一步探索圆锥曲线的性质及位置关系。
在研究圆锥曲线性质时,注重培养学生直观想象、逻辑推理等核心素养和理 性思维。
3.确定方法和策略

《圆锥曲线与方程》单元教学设计

《圆锥曲线与方程》单元教学设计

《圆锥曲线与方程》单元教学设计一、教学内容分析1、实际背景分析该单元选自人教版数学选修2-1.圆锥曲线与科研、生产以及人类生活关系密切,早在16、17世纪之交,开普勒就发现了行星绕太阳运行的轨道是一个椭圆;探照灯反射镜是抛物线绕其对称轴旋转形成的抛物面;发电厂冷却塔的外形线是双曲线,……现代航空航天领域内圆锥曲线也有重要的应用。

圆锥曲线在实际生产生活中有着巨大的作用,主要来自于它们的几何特征及其特性。

2、数学视角分析《圆锥曲线与方程》是中学数学解析几何的主要内容,研究圆锥曲线的性质,是圆的几何性质的推广与延伸,是运用坐标法从代数的角度来研究圆锥曲线性质,为了解决这个问题,让学生更好地理解和学习圆锥曲线的性质,先了解曲线与方程的关系,研究如何建立曲线的方程,把几何的形与代数的数通过这个关系有机的联系起来,充分运用数的运算来解决形的问题,达到数形统一,体现数形结合的思想。

对于圆锥曲线的几何特征与方程的研究,延续了必修课程《必修2》中研究直线与圆的方程的方法,通过图形探究圆锥曲线的几何特征,建立它们的方程,并通过方程来研究他们的简单性质,进而利用坐标法解决一些圆锥曲线有关的简单几何问题和实际问题。

3、课程标准视角分析(1)学生学习方式的转变问题。

在本部分内容中,延续了《必修2》中研究直线与圆的方程的思想,所以应该引导学生通过积极主动的探索来完成圆锥曲线的学习,教师通过圆锥曲线背景的介绍,激发学生的学习兴趣,在研究了椭圆方程及性质的基础上,用类比的方法来研究双曲线和抛物线的方程及性质,经历直观感知,定义、建立方程、研究性质的基本过程,感受坐标法的作用,体会数形结合法的思想。

(2)学生思维能力培养的问题。

“高中数学课程应注意提高学生的数学思维能力,这是数学教育的基本目标之一。

”这是课标对学生思维培养的要求,在圆锥曲线这部分知识的学习中,牵涉到数和形的结合问题,这里有直观感知,观察发现,归纳类比、抽象概括,符号(方程)表示,运算求解,数学建模等,通过这些方法在学生学习中的运用,来提高学生的数学思维能力。

圆锥曲线与方程教学单元设计

圆锥曲线与方程教学单元设计

圆锥曲线与方程教学单元设计介绍本单元旨在帮助学生了解和掌握圆锥曲线和方程的基本概念和性质。

通过本单元的研究, 学生将能够分辨不同类型的圆锥曲线, 并能够理解和应用各种圆锥曲线的方程。

目标- 了解圆锥曲线的定义和分类- 掌握椭圆、双曲线和抛物线的基本特征和数学方程- 理解并应用圆锥曲线的方程解决实际问题- 培养学生的数学思维和推理能力教学内容1. 圆锥曲线的定义和分类- 介绍圆锥曲线的概念和由圆锥截割产生的几何图形- 分类圆锥曲线为椭圆、双曲线和抛物线2. 椭圆- 定义椭圆和其数学方程- 解释椭圆的特征和性质- 演示椭圆的一些实际应用案例3. 双曲线- 定义双曲线和其数学方程- 解释双曲线的特征和性质- 演示双曲线的一些实际应用案例4. 抛物线- 定义抛物线和其数学方程- 解释抛物线的特征和性质- 演示抛物线的一些实际应用案例5. 圆锥曲线方程的应用- 给定一些实际问题,引导学生建立和解决圆锥曲线方程- 强调应用解方程的重要性和实际意义教学方法- 教师讲解:通过清晰的解说和示意图,向学生介绍圆锥曲线的基本概念和数学方程。

- 小组讨论:组织学生进行小组讨论,互相交流和分享对圆锥曲线的理解和应用。

- 解题练:提供一系列的练题,让学生应用所学知识解决问题。

- 实际案例:结合实际场景和问题,引导学生应用圆锥曲线方程解决实际问题。

评估方法- 学生作业:布置练题,检验学生对圆锥曲线和方程的理解和应用能力。

- 小组讨论表现:评估学生在小组讨论中的积极参与度和贡献。

- 实际案例解答:评估学生对实际问题的分析和解决能力。

参考资料- 福利明. 圆锥曲线与方程. 北京大学出版社,2010年。

- 高等数学教材,第三版。

《圆锥曲线与方程》教案1(人教A版选修1-1)

《圆锥曲线与方程》教案1(人教A版选修1-1)

圆锥曲线与方程课题:小结与复习教学目的:1.椭圆的定义、标准方程、焦点、焦距,椭圆的几何性质,椭圆的画法;双曲线的定义、标准方程、焦点、焦距,双曲线的几何性质,双曲线的画法,等轴双曲线;抛物线的定义、标准方程、焦点、焦距,抛物线的几何性质,抛物线的画法,2.结合教学内容对学生进行运动变化和对立统一的观点的教育教学重点:椭圆、双曲线、抛物线的定义、方程和几何性质;坐标法的应用.教学难点:椭圆、双曲线的标准方程的推导过程;利用定义、方程和几何性质求有关焦点、焦距、准线等.授课类型:复习课课时安排:1课时教具:多媒体、实物投影仪教学过程:抛物线: 椭圆、双曲线、抛物线分别是满足某些条件的点的轨迹,由这些条件可以求出它们的标准方程,并通过分析标准方程研究这三种曲线的几何性质1.椭圆定义:在平面内,到两定点距离之和等于定长(定长大于两定点间的距离)的动点的轨迹2.椭圆的标准方程:12222=+b y a x ,12222=+b x a y (0>>b a )3.椭圆的性质:由椭圆方程12222=+by a x (0>>b a )(1)范围: a x a ≤≤-,b y b ≤≤-,椭圆落在b y a x ±=±=,组成的矩形中.(2)对称性:图象关于y 轴对称.图象关于x 轴对称.图象关于原点对称原点叫椭圆的对称中心,简称中心.x 轴、y 轴叫椭圆的对称轴.从椭圆的方程中直接可以看出它的范围,对称的截距(3)顶点:椭圆和对称轴的交点叫做椭圆的顶点椭圆共有四个顶点: )0,(),0,(2a A a A -,),0(),,0(2b B b B -加两焦点)0,(),0,(21c F c F -共有六个特殊点21A A 叫椭圆的长轴,21B B 叫椭圆的短轴.长分别为b a 2,2 b a ,分别为椭圆的长半轴长和短半轴长椭圆的顶点即为椭圆与对称轴的交点(4)离心率: 椭圆焦距与长轴长之比ace =⇒2)(1a b e -=10<<e椭圆形状与e 的关系:0,0→→c e ,椭圆变圆,直至成为极限位置圆,此时也可认为圆为椭圆在0=e 时的特例,,1a c e →→椭圆变扁,直至成为极限位置线段21F F ,此时也可认为圆为椭圆在1=e 时的特例4.双曲线的定义:平面内到两定点21,F F 的距离的差的绝对值为常数(小于21F F )的动点的轨迹叫双曲线 即a MF MF 221=- 这两个定点叫做双曲线的焦点,两焦点间的距离叫做焦距在同样的差下,两定点间距离较长,则所画出的双曲线的开口较开阔(→两条平行线)两定点间距离较短(大于定差),则所画出的双曲线的开口较狭窄(→两条射线)双曲线的形状与两定点间距离、定差有关 5.双曲线的标准方程及特点:(1)双曲线的标准方程有焦点在x 轴上和焦点y 轴上两种:焦点在x 轴上时双曲线的标准方程为:12222=-b y a x (0>a ,0>b );焦点在y 轴上时双曲线的标准方程为:12222=-bx a y (0>a ,0>b )6.c b a ,,有关系式222b a c +=成立,且0,0,0>>>c b a 其中a 与b 的大小关系:可以为b a b a b a ><=,,7焦点的位置:从椭圆的标准方程不难看出椭圆的焦点位置可由方程中含字母2x 、2y 项的分母的大小来确定,分母大的项对应的字母所在的轴就是焦点所在的轴而双曲线是根据项的正负来判断焦点所在的位置,即2x 项的系数是正的,那么焦点在x 轴上;2y 项的系数是正的,那么焦点在y 轴上8.双曲线的几何性质: (1)范围、对称性由标准方程12222=-by a x ,从横的方向来看,直线x=-a,x=a 之间没有图象,从纵的方向来看,随着x 的增大,y 的绝对值也无限增大,所以曲线在纵方向上可无限伸展,不像椭圆那样是封闭曲线双曲线不封闭,但仍称其对称中心为双曲线的中心 (2)顶点顶点:()0,),0,(21a A a A -,特殊点:()b B b B -,0),,0(21实轴:21A A 长为2a, a 叫做半实轴长虚轴:21B B 长为2b ,b 叫做虚半轴长 双曲线只有两个顶点,而椭圆则有四个顶点,这是两者的又一差异 (3)渐近线过双曲线12222=-b y a x 的渐近线x a b y ±=(0=±bya x )(4)离心率双曲线的焦距与实轴长的比aca c e ==22,叫做双曲线的离心率范围:1>e 双曲线形状与e 的关系:1122222-=-=-==e ac a a c a b k ,e 越大,即渐近线的斜率的绝对值就大,这是双曲线的形状就从扁狭逐渐变得开阔由此可知,双曲线的离心率越大,它的开口就越阔 9.等轴双曲线定义:实轴和虚轴等长的双曲线叫做等轴双曲线,这样的双曲线叫做等轴双曲线 等轴双曲线的性质:(1)渐近线方程为:x y ±=;(2)渐近线互相垂直;(3)离心率2=e10.共渐近线的双曲线系如果已知一双曲线的渐近线方程为x a b y ±=)0(>±=k x kakb,那么此双曲线方程就一定是:)0(1)()(2222>±=-k kb y ka x 或写成λ=-2222by a x 11.共轭双曲线以已知双曲线的实轴为虚轴,虚轴为实轴,这样得到的双曲线称为原双曲线的共轭双曲线 区别:三量a,b,c 中a,b 不同(互换)c 相同共用一对渐近线 双曲线和它的共轭双曲线的焦点在同一圆上确定双曲线的共轭双曲线的方法:将1变为-1 12.双曲线的焦点弦:定义:过焦点的直线割双曲线所成的相交弦 焦点弦公式:当双曲线焦点在x 轴上时,过左焦点与左支交于两点时: )(221x x e a AB +--=过右焦点与右支交于两点时:)(221x x e a AB ++-= 当双曲线焦点在y 轴上时,过左焦点与左支交于两点时:)(221y y e a AB +--= 过右焦点与右支交于两点时:)(221y y e a AB ++-= 13.双曲线的通径:定义:过焦点且垂直于对称轴的相交弦 ab d 22=14 抛物线定义:平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线 15.抛物线的准线方程:(1))0(22>=p px y , 焦点:)0,2(p ,准线l :2p x -= (2))0(22>=p py x , 焦点:)2,0(p ,准线l :2p y -=(3))0(22>-=p px y , 焦点:)0,2(p -,准线l :2p x =(4) )0(22>-=p py x , 焦点:)2,0(p -,准线l :2p y =相同点:(1)抛物线都过原点;(2)对称轴为坐标轴;(3)准线都与对称轴垂直,垂足与焦点在对称轴上关于原点对称 它们到原点的距离都等于一次项系数绝对值的41,即242pp = 不同点:(1)图形关于X 轴对称时,X 为一次项,Y 为二次项,方程右端为px 2±、左端为2y ;图形关于Y 轴对称时,X 为二次项,Y 为一次项,方程右端为py 2±,左端为2x (2)开口方向在X 轴(或Y 轴)正向时,焦点在X 轴(或Y 轴)的正半轴上,方程右端取正号;开口在X 轴(或Y 轴)负向时,焦点在X 轴(或Y 轴)负半轴时,方程右端取负号 16.抛物线的几何性质 (1)范围因为p >0,由方程()022>=p px y 可知,这条抛物线上的点M 的坐标(x ,y)满足不等式x≥0,所以这条抛物线在y 轴的右侧;当x 的值增大时,|y|也增大,这说明抛物线向右上方和右下方无限延伸. (2)对称性以-y 代y ,方程()022>=p px y 不变,所以这条抛物线关于x 轴对称,我们把抛物线的对称轴叫做抛物线的轴. (3)顶点抛物线和它的轴的交点叫做抛物线的顶点.在方程()022>=p px y 中,当y=0时,x=0,因此抛物线()022>=p px y 的顶点就是坐标原点.(4)离心率抛物线上的点M 与焦点的距离和它到准线的距离的比,叫做抛物线的离心率,用e 表示.由抛物线的定义可知,e=1. 17抛物线的焦半径公式:抛物线)0(22>=p px y ,0022x pp x PF +=+= 抛物线)0(22>-=p px y ,0022x pp x PF -=-= 抛物线)0(22>=p py x ,0022y pp y PF +=+= 抛物线)0(22>-=p py x ,0022y pp y PF -=-= 18.直线与抛物线:(1)位置关系:相交(两个公共点或一个公共点);相离(无公共点);相切(一个公共点) 将b kx y l +=:代入0:22=++++F Ey Dx Cy Ax C ,消去y ,得到 关于x 的二次方程02=++c bx ax (*) 若0>∆,相交;0=∆,相切;0<∆,相离 综上,得: 联立⎩⎨⎧=+=pxy b kx y 22,得关于x 的方程02=++c bx ax 当0=a (二次项系数为零),唯一一个公共点(交点) 当0≠a ,则若0>∆,两个公共点(交点) 0=∆,一个公共点(切点) 0<∆,无公共点 (相离) (2)相交弦长: 弦长公式:21k ad +∆=, (3)焦点弦公式:抛物线)0(22>=p px y , )(21x x p AB ++= 抛物线)0(22>-=p px y , )(21x x p AB +-=抛物线)0(22>=p py x , )(21y y p AB ++= 抛物线)0(22>-=p py x ,)(21y y p AB +-= (4)通径:定义:过焦点且垂直于对称轴的相交弦 通径:p d 2= (5)若已知过焦点的直线倾斜角θ则⎪⎩⎪⎨⎧=-=px y p x k y 2)2(20222=--⇒p y k p y ⎪⎩⎪⎨⎧-==+⇒221212py y k p y y (6)常用结论:⎪⎩⎪⎨⎧=-=pxy p x k y 2)2(20222=--⇒p y k p y 和04)2(22222=++-p k x p p k x k 221p y y -=⇒和421px x =四、【例题】1.动点A 到定点F 1(0, -2)和F 2(0, 2)的距离的和为4,则动点A 的轨迹为 ( B ) A. 椭圆 B. 线段 C. 无图形 D. 两条射线;2.动点P 到定点F 1(1, 0)的距离比它到定点F 2(3, 0)的距离小2,则点P 的轨迹是 ( C ) A .双曲线 B .双曲线的一支 C .一条射线 D .两条射线3.人造地球卫星的运行轨道是以地心为一个焦点的椭圆.设地球半径为R ,卫星近地点、远地点离地面的距离分别为 r 1、r 2 ,求卫星轨道的离心率. 4.两定点的坐标分别为A (-1, 0),B (2, 0),动点M 满足∠MBA =2∠MAB ,求动点M 的轨迹方程. 五【课后作业】 六、板书设计(略) 七、课后记:。

《圆锥曲线与方程》复习课教案

《圆锥曲线与方程》复习课教案

一、课题:《圆锥曲线与方程》的复习二、教学目的:1、通过小结与复习,使同学们完整准确地理解和掌握三种曲线的特点以及它们之间的区别与联系。

2、通过本节教学使学生较全面地掌握本章所教的各种方法与技巧,尤其是解析几何的基本方法――坐标法;并在教学中进一步培养他们形与数结合的思想、化归的思想以及“应用数学”的意识3、结合教学内容对学生进行运动变化、自我总结和对立统一的观点的教育 三、教学方法:讲授法、练习法四、教学重点:自我总结并引导学生对三种曲线的标准方程和图形、性质的总结 五、教学难点:做好思路分析,引导学生找到解题的落足点,使学生能够自己独立对知识进行总结 六、教学过程: (一)知识梳理: 1.曲线与方程⑴曲线C 上的点与二元方程()0,=y x f 的实数解建立如下关系: ①曲线上的点的坐标都是这个方程的解; ②以上这个方程的解为坐标的点都是曲线上的点.⑵求曲线的方程的一般步骤①建系;②设点;③列方程;④化简;⑤检查. 2.圆锥曲线的定义⑴平面内满足()212122F F a a PF PF >=+的点P 的轨迹叫做椭圆,定义可实现椭圆上的点到两焦点的距离的相互转化.⑵平面内满足()212122F F a a PF PF <=-的点P 的轨迹叫做双曲线,()212122F F a a PF PF <=-表示焦点2F 对应的一支,定义可实现双曲线上的点到两焦点的距离的相互转化.⑶平面内与一个顶点F 与一条定直线l (不经过点F )距离相等的点的轨迹叫做抛物线,定义可实现抛物线上的点到焦点与到准线距离的相互转化. 3.圆锥曲线的标准方程椭圆、双曲线有两种形式的标准方程,抛物线有四种形式的标准方程.根据曲线方程的形式来确定焦点的位置,根据焦点的位置选择恰当的方程形式. 4.圆锥曲线的简单几何性质⑴圆锥曲线的范围往往作为解题的隐含条件. ⑵双曲线焦点位置不同,渐近线方程不同.⑶椭圆有四个顶点,双曲线有两个顶点,抛物线有一个顶点⑷椭圆、双曲线有两条对称轴和一个对称中心,抛物线只有一条对称轴. ⑸圆锥曲线中基本量p e c b a ,,,,的几何意义及相互转化. 6.直线与圆锥曲线的位置关系⑴直线与圆锥曲线的公共点个数等于由它们的方程构成的方程组解的个数. ⑵直线与椭圆有一个公共点,直线与椭圆相切,但直线与双曲线、抛物线不一定相切,双曲线与平行于渐近线的直线,抛物线与平行(重合)于轴的直线,都只有一个公共点但不相切.7.直线与圆锥曲线相交的弦长⑴求弦长的方法是将直线与圆锥曲线的方程联立后,求出两点坐标,利用两点间距离公式,常用的方法是结合韦达定理,如直线b kx y +=与圆锥曲线相交于()()2211,,,y x B y x A 两点,弦长()21221241x x x x k AB -++=.⑵过抛物线焦点的弦长问题结合定义来解决能化简计算. 8.元圆锥曲线有关的“中点弦”弦的中点坐标与斜率可由曲线方程得到关系,此法称为“点差法”,灵活运用科简化计算,但要以直线与曲线相交为前提,即消元后的方程判别式大于零. 9.当直线过x 轴上的点()0,m M 时,设直线方程为m ty x +=与抛物线方程()022>=p px y 联立消元后的方程较简。

第二章圆锥曲线与方程教案[1]

第二章圆锥曲线与方程教案[1]

第二章圆锥曲线与方程一、授课课题:§2.1 椭圆二、教学目标(三维目标):1、知识与技能:理解椭圆的概念,掌握椭圆的定义、会用椭圆的定义解决实际问题;理解椭圆标准方程的推导过程与化简无理方程的常用的方法;了解求椭圆的动点的伴随点的轨迹方程的一般方法.2、过程与方法:进一步培养学生能用解析法研究几何问题的能力,渗透数形结合思想,注意培养学生观察问题、发现问题和解决问题的能力。

3、情感、态度与价值观:通过运用椭圆的知识解决实际问题的学习,从而激发学生学习数学的热情和兴趣。

三、教学重点:椭圆的标准方程四、教学难点:会根据不同的已知条件,利用待定系数法求椭圆的标准方程。

五、教学方法:尝试,探究六、教学手段(教学用具):课件七、课时安排:一课时八、学情分析:导学生用其他方法来解.另解:设椭圆的标准方程为()222210x y a b a b +=>>,因点53,22⎛⎫- ⎪⎝⎭在椭圆上,则22222591104464a a b b a b ⎧⎧+==⎪⎪⇒⎨⎨=⎪⎪⎩-=⎩. 例2 如图,在圆224x y +=上任取一点P ,过点P 作x 轴的垂线段PD ,D 为垂足.当点P 在圆上运动时,线段PD 的中点M 的轨迹是什么?分析:点P 在圆224x y +=上运动,由点P 移动引起点M 的运动,则称点M 是点P 的伴随点,因点M 为线段PD 的中点,则点M 的坐标可由点P 来表示,从而能求点M 的轨迹方程.引申:设定点()6,2A ,P 是椭圆221259x y +=上动点,求线段AP 中点M的轨迹方程.解法剖析:①(代入法求伴随轨迹)设(),M x y ,()11,P x y ;②(点与伴随点的关系)∵M 为线段AP 的中点,∴112622x x y y =-⎧⎨=-⎩;③(代入已知轨迹求出伴随轨迹),∵22111259x y +=,∴点M 的轨迹方程为()()223112594x y --+=;④伴随轨迹表示的范围. 例3如图,设A ,B 的坐标分别为()5,0-,()5,0.直线AM ,BM 相交于点M ,且它们的斜率之积为49-,求点M 的轨迹方程.分析:若设点(),M x y ,则直线AM ,BM 的斜率就可以用含,x y 的式子表示,由于直线AM ,BM 的斜率之积是49-,因此,可以求出,x y 之间的关系式,即得到点M 的轨迹方程.解法剖析:设点(),M x y ,则()55AM y k x x =≠-+,()55BM yk x x =≠-;代入点M 的集合有4559y y x x ⨯=-+-,化简即可得点M 的轨迹方程. 引申:如图,设△ABC 的两个顶点(),0A a -,(),0B a ,顶点C 在移动,且AC BC k k k ⨯=,且0k <,试求动点C 的轨迹方程. 引申目的有两点:①让学生明白题目涉与问题的一般情形;②当k 值在变化时,线段AB 的角色也是从椭圆的长轴→圆的直径→椭圆的短轴.三.随堂练习第45页1、2、3、4、四.课堂小结1.椭圆的定义,应注意什么问题? 2.求椭圆的标准方程,应注意什么问题五.板书设计:六.布置作业七.教学反思(手写)一、授课课题:§2.1.2椭圆的几何性质 二、教学目标(三维目标):1、知识与技能:(1)通过对椭圆标准方程的讨论,理解并掌握椭圆的几何性质;(2)能够根据椭圆的标准方程求焦点、顶点坐标、离心率并能根据其性质画图; (3)培养学生分析问题、解决问题的能力,并为学习其它圆锥曲线作方法上的准备 2、过程与方法: 使学生体会从具体到一般的认知过程,培养学生抽象、概括的能力 3、情感、态度与价值观: 培养他们的辨析能力以与培养他们的良好的思维品质,在练习过程中进行辩证唯物主义思想教育.三、教学重点: 椭圆的几何性质. 通过几何性质求椭圆方程并画图 四、教学难点: 椭圆离心率的概念的理解.五、教学方法:尝试,探究六、教学手段(教学用具):课件 七、课时安排:一课时 八、学情分析:一.课题导入复习:1.椭圆的定义,椭圆的焦点坐标,焦距.2.椭圆的标准方程.二.讲授新课(一)通过提出问题、分析问题、解决问题激发学生的学习兴趣,在掌握新知识的同时培养能力.[在解析几何里,是利用曲线的方程来研究曲线的几何性质的,我们现在利用焦点在x 轴上的椭圆的标准方程来研究其几何性质.]已知椭圆的标准方程为:)0(12222>>=+b a by a x1.范围[我们要研究椭圆在直角坐标系中的范围,就是研究椭圆在哪个区域里,只要讨论方程中x ,y 的范围就知道了.] 问题1 方程中x 、y 的取值范围是什么?由椭圆的标准方程可知,椭圆上点的坐标()都适合不等式22a x ≤1, 22by ≤1 即 x 2≤a 2, y 2≤b 2 所以 ≤a , ≤b即 -a ≤x ≤a, -b ≤y ≤b这说明椭圆位于直线x =±a, y =±b 所围成的矩形里。

高中数学新课圆锥曲线方程教案

高中数学新课圆锥曲线方程教案

高中数学新课圆锥曲线方程教案一、教学目标1. 理解圆锥曲线的基本概念,掌握圆锥曲线的定义及其性质。

2. 学习圆锥曲线的标准方程及其求法。

3. 能够运用圆锥曲线方程解决实际问题,提高数学应用能力。

二、教学内容1. 圆锥曲线的定义与性质1.1 圆锥曲线的定义1.2 圆锥曲线的性质2. 圆锥曲线的标准方程2.1 椭圆的标准方程2.2 双曲线的标准方程2.3 抛物线的标准方程三、教学重点与难点1. 重点:圆锥曲线的定义、性质及标准方程的求法。

2. 难点:圆锥曲线标准方程的推导与应用。

四、教学方法1. 采用问题驱动法,引导学生主动探究圆锥曲线的定义与性质。

2. 利用图形演示,让学生直观理解圆锥曲线的特点。

3. 运用类比法,引导学生发现圆锥曲线标准方程的规律。

4. 注重实践操作,让学生在解决问题中巩固圆锥曲线方程的应用。

五、教学准备1. 教学课件:圆锥曲线的相关图片、图形演示等。

2. 教学素材:圆锥曲线的实例问题。

3. 学生用书:《高中数学》圆锥曲线相关章节。

教案篇幅有限,后续章节(六、七、八、九、十)将陆续提供。

请随时查阅。

六、教学过程1. 导入:通过展示生活中的圆锥曲线实例,如旋转的伞、地球卫星轨道等,引导学生关注圆锥曲线在现实世界中的应用。

2. 新课导入:介绍圆锥曲线的定义,引导学生理解圆锥曲线的形成过程。

3. 性质探讨:引导学生发现圆锥曲线的性质,如对称性、渐近线等。

4. 标准方程求法:讲解椭圆、双曲线、抛物线的标准方程求法。

5. 巩固练习:布置相关练习题,让学生巩固所学知识。

七、课堂互动1. 小组讨论:让学生分组讨论圆锥曲线的性质,分享各自的发现。

2. 提问环节:鼓励学生提问,解答学生关于圆锥曲线方程的疑问。

3. 案例分析:分析实际问题,引导学生运用圆锥曲线方程解决实际问题。

八、课后作业1. 完成学生用书上的课后练习题。

2. 选取一个实际问题,运用圆锥曲线方程进行解答。

九、教学反思2. 反思教学方法:观察学生对圆锥曲线方程的掌握情况,调整教学方法,提高教学效果。

圆锥曲线与方程一教案

圆锥曲线与方程一教案

圆锥曲线与方程一教案名思教育-----我的成功不是偶然的名思教育个性化辅导教案学生:教师:日期:班主任:时段:课题教学目标圆锥曲线与方程一圆锥曲线基本概念与性质重难点透视数形结合思想,模拟简化知识点剖析序号123知识点圆锥曲线基本概念与性质圆锥曲线解题方法例题精讲预估时间30分钟30分钟60分钟掌握情况教学内容一、本章知识网络结构:【典型例题】1.直线的基本问题:直线的方程几种形式、直线的斜率、两条直线平行与垂直的条件、两直线交点、点到直线的距离。

例1已知l1:2某m2y2m0与l2:y3某6,若两直线平行,则m的值为_____.例2经过圆某22某y20的圆心C,且与直线某y0垂直的直线方程是.2.圆的基本问题:圆的标准方程和一般方程、两圆位置关系.5)的最长弦和最短弦分别为AC和BD,例3已知圆的方程为某y6某8y0.设该圆过点(3,则四边形ABCD的面积为3.圆锥曲线的基本问题:椭圆、双曲线、抛物线的标准方程及其性质,求简单的曲线方程.例4已知点P在抛物线y=4某上,那么点P到点Q(2,-1)的距离与点P到抛物线焦点距离之和取得最小值时,点P的坐标为例5已知圆C:某y6某4y80.以圆C与坐标轴的交点分别作为双曲线的一个焦点和顶22222海到无边天作岸,山高绝顶我为峰名思教育-----我的成功不是偶然的点,则适合上述条件的双曲线的标准方程为.4.直线与圆锥曲线的位置关系例6若圆C的半径为1,圆心在第一象限,且与直线4某3y0和某轴相切,则该圆的标准方程是某2y21的右顶点为A,右焦点为F。

过点F 平行双曲线的一条渐近线的直线与例7(过双曲线916双曲线交于点B,则△AFB的面积为______________某2y2例8在平面直角坐标系中,椭圆221(ab0)的焦ab距为2c,以O为圆心,a为半径的圆做圆M,若过点a2Pc,0,所作圆M的两切线互相垂直,则该椭圆的离心率为某2y2例9设b0,椭圆方程为221,2bb抛物线方程为某8(yb).如图4所示,过点F(0,b2)作某轴的平行线,与抛物线在第一象限的交点为G,已知抛物线在点G的切线经过椭圆的右焦点F1.(1)求满足条件的椭圆方程和抛物线方程;(2)设A,B分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点P,使得△ABP为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标).2课堂总结课后作业:课堂反馈:○非常满意○满意○一般○差学生签字:校长签字:___________海到无边天作岸,山高绝顶我为峰。

第三章 圆锥曲线与方程教案

第三章  圆锥曲线与方程教案

第三章 圆锥曲线与方程§1 椭 圆1.1椭圆及其标准方程(一)教学目标 1.知识与技能目标理解椭圆的概念,掌握椭圆的定义、会用椭圆的定义解决实际问题;理解椭圆标准方程的推导过程及化简无理方程的常用的方法;了解求椭圆的动点的伴随点的轨迹方程的一般方法.2.过程与方法目标能用数学符号或自然语言的描述椭圆的定义,能正确且直观地绘作图形,反过来根据图形能用数学术语和数学符号表示. 3情感、态度与价值观目标通过作图展示与操作,必须让学生认同:圆、椭圆、双曲线和抛物线都是圆锥曲线, 是因它们都是平面与圆锥曲面相截而得其名; (二)教学过程 (1)引入提出两个问题:第一、你能理解为什么把圆、椭圆、双曲线和抛物线叫做圆锥曲线;第二、你能举出现实生活中圆锥曲线的例子.(2)新课讲授过程(i )由上述探究过程容易得到椭圆的定义. (ii )椭圆标准方程的推导过程 提问:已知图形,建立直角坐标系的一般性要求是什么?第一、充分利用图形的对称性;第二、注意图形的特殊性和一般性关系.无理方程的化简过程是教学的难点,注意无理方程的两次移项、平方整理.设参量b 的意义:第一、便于写出椭圆的标准方程;第二、,,a b c 的关系有明显的几何意义.类比:写出焦点在y 轴上,中心在原点的椭圆的标准方程()222210y x a b a b+=>>.(iii )例题讲解与引申例1 已知椭圆两个焦点的坐标分别是()2,0-,()2,0,并且经过点53,22⎛⎫- ⎪⎝⎭,求它的标准方程..练习:第65页1、2、3 作业:第68页1、2、41.2 椭圆的简单几何性质(一)教学目标 1.知识与技能目标了解用方程的方法研究图形的对称性;理解椭圆的范围、对称性及对称轴,对称中心、离心率、顶点的概念;掌握椭圆的标准方程、会用椭圆的定义解决实际问题; 2.过程与方法目标通过学生的积极参与和积极探究,培养学生的分析问题和解决问题的能力. 3.情感、态度与价值观目标在合作、互动的教学氛围中,通过师生之间、学生之间的交流、合作、互动实现共同探究,教学相长的教学活动情境,结合教学内容,培养学生科学探索精神、审美观和科学世界观,激励学生创新. (二)教学过程 (1)引入①由椭圆的标准方程和非负实数的概念能得到椭圆的范围;②由方程的性质得到椭圆的对称性;③先定义圆锥曲线顶点的概念,容易得出椭圆的顶点的坐标及长轴、短轴的概念; (2)新课讲授过程(i )通过复习和预习,知道对椭圆的标准方程的讨论来研究椭圆的几何性质.通过对曲线的范围、对称性及特殊点的讨论,可以从整体上把握曲线的形状、大小和位置.要从范围、对称性、顶点及其他特征性质来研究曲线的几何性质. (ii )椭圆的简单几何性质①范围:由椭圆的标准方程可得,222210y x b a =-≥,进一步得:a x a -≤≤,同理可得:b y b -≤≤,即椭圆位于直线x a =±和y b =±所围成的矩形框图里;②对称性:由以x -代x ,以y -代y 和x -代x ,且以y -代y 这三个方面来研究椭圆的标准方程发生变化没有,从而得到椭圆是以x 轴和y 轴为对称轴,原点为对称中心; ③顶点:先给出圆锥曲线的顶点的统一定义,即圆锥曲线的对称轴与圆锥曲线的交点叫做圆锥曲线的顶点.因此椭圆有四个顶点,由于椭圆的对称轴有长短之分,较长的对称轴叫做长轴,较短的叫做短轴;④离心率: 椭圆的焦距与长轴长的比ace =叫做椭圆的离心率(10<<e ),⎩⎨⎧→→→椭圆图形越扁时当01a ,,b ,c e ;⎩⎨⎧→→→椭圆越接近于圆时当a,b ,c e 00 . (iii )例题讲解与引申、扩展例:求椭圆221625400x y +=的长轴和短轴的长、离心率、焦点和顶点的坐标.扩展:已知椭圆()22550mx y m m +=>的离心率为5e =m 的值. 练习:第65页2作业:第68页A 组5、6 B 组1椭圆中焦点三角形的性质及应用定义:椭圆上任意一点与两焦点所构成的三角形称为焦点三角形。

湖北省高三数学上册 第二单元《圆锥曲线与方程》全套教案

湖北省高三数学上册 第二单元《圆锥曲线与方程》全套教案

高中数学选修2-1 第二章 圆锥曲线与方程2.1.1曲线与方程(1)【使用说明及学法指导】1.先自学课本,理解概念,完成导学提纲;2.小组合作,动手实践。

【学习目标】1.理解曲线的方程、方程的曲线;2.求曲线的方程.【重点】理解曲线的方程、方程的曲线【难点】求曲线的方程一、自主学习1.预习教材P 34~ P 36, 找出疑惑之处复习1:画出函数22y x = (12)x -≤≤的图象.复习2:画出两坐标轴所成的角在第一、三象限的平分线,并写出其方程.2.导学提纲探究1:到两坐标轴距离相等的点的集合是什么?写出它的方程.问题:能否写成y x =,为什么?新知:曲线与方程的关系:一般地,在坐标平面内的一条曲线C 与一个二元方程(,)0F x y =之间,如果具有以下两个关系:1.曲线C 上的点的坐标,都是 的解;2.以方程(,)0F x y =的解为坐标的点,都是 的点,那么,方程(,)0F x y =叫做这条曲线C 的方程;曲线C 叫做这个方程(,)0F x y =的曲线.注意:1︒ 如果……,那么……;2︒ “点”与“解”的两个关系,缺一不可;3︒ 曲线的方程和方程的曲线是同一个概念,相对不同角度的两种说法;4︒ 曲线与方程的这种对应关系,是通过坐标平面建立的.试试:1.点(1,)P a 在曲线2250x xy y +-=上,则a =___ .2.曲线220x xy by +-=上有点(1,2)Q ,则b = .二、典型例题例1 证明与两条坐标轴的距离的积是常数(0)k k >的点的轨迹方程式是xy k =±.变式:到x 轴距离等于5的点所组成的曲线的方程是50y -=吗?例2设,A B 两点的坐标分别是(1,1)--,(3,7),求线段AB 的垂直平分线的方程.变式:已知等腰三角形三个顶点的坐标分别是(0,3)A,(2,0)B-,(2,0)C.中线AO(O 为原点)所在直线的方程是0x=吗?为什么?小结:三、拓展探究1.下列方程的曲线分别是什么?(1)2xyx= (2)222xyx x-=-(3) log a xy a=2.离原点距离为2的点的轨迹是什么?它的方程是什么?为什么?四、课堂小结1.知识:2.数学思想、方法:五、课后巩固1. 与曲线y x =相同的曲线方程是( ).A .2x y x= B .y =.y =.2log 2x y = 2.直角坐标系中,已知两点(3,1)A ,(1,3)B -,若点C 满足OC =αOA +βOB ,其中α,β∈R ,α+β=1, 则点C 的轨迹为 ( ) .A .射线B .直线C .圆D .线段3.(1,0)A ,(0,1)B ,线段AB 的方程是( ).A .10x y -+=B .10x y -+=(01)x ≤≤C .10x y +-=D .10x y -+=(01)x ≤≤4.已知方程222ax by +=的曲线经过点5(0,)3A 和点(1,1)B ,则a = ,b = . 5.已知两定点(1,0)A -,(2,0)B ,动点p 满足12PA PB =,则点p 的轨迹方程是 .6.课本第37页A 组1题 、2题2.1.2 曲线与方程(2)【使用说明及学法指导】1.先自学课本,理解概念,完成导学提纲;2.小组合作,动手实践。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆锥曲线与方程单元教学设计Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998课题名称《圆锥曲线与方程》单元教学设计设计者姓名郭晓泉设计者单位华亭县第二中学联系电话电子邮箱《圆锥曲线与方程》单元教学设计一、教学内容分析1、实际背景分析该单元选自人教版数学选修2-1.圆锥曲线与科研、生产以及人类生活关系密切,早在16、17世纪之交,开普勒就发现了行星绕太阳运行的轨道是一个椭圆;探照灯反射镜是抛物线绕其对称轴旋转形成的抛物面;发电厂冷却塔的外形线是双曲线,……现代航空航天领域内圆锥曲线也有重要的应用。

圆锥曲线在实际生产生活中有着巨大的作用,主要来自于它们的几何特征及其特性。

2、数学视角分析《圆锥曲线与方程》是中学数学解析几何的主要内容,研究圆锥曲线的性质,是圆的几何性质的推广与延伸,是运用坐标法从代数的角度来研究圆锥曲线性质,为了解决这个问题,让学生更好地理解和学习圆锥曲线的性质,先了解曲线与方程的关系,研究如何建立曲线的方程,把几何的形与代数的数通过这个关系有机的联系起来,充分运用数的运算来解决形的问题,达到数形统一,体现数形结合的思想。

对于圆锥曲线的几何特征与方程的研究,延续了必修课程《必修2》中研究直线与圆的方程的方法,通过图形探究圆锥曲线的几何特征,建立它们的方程,并通过方程来研究他们的简单性质,进而利用坐标法解决一些圆锥曲线有关的简单几何问题和实际问题。

3、课程标准视角分析(1)学生学习方式的转变问题。

在本部分内容中,延续了《必修2》中研究直线与圆的方程的思想,所以应该引导学生通过积极主动的探索来完成圆锥曲线的学习,教师通过圆锥曲线背景的介绍,激发学生的学习兴趣,在研究了椭圆方程及性质的基础上,用类比的方法来研究双曲线和抛物线的方程及性质,经历直观感知,定义、建立方程、研究性质的基本过程,感受坐标法的作用,体会数形结合法的思想。

(2)学生思维能力培养的问题。

“高中数学课程应注意提高学生的数学思维能力,这是数学教育的基本目标之一。

”这是课标对学生思维培养的要求,在圆锥曲线这部分知识的学习中,牵涉到数和形的结合问题,这里有直观感知,观察发现,归纳类比、抽象概括,符号(方程)表示,运算求解,数学建模等,通过这些方法在学生学习中的运用,来提高学生的数学思维能力。

(3)发展学生的应用意识。

圆锥曲线几何性质在现实中有很多重要的应用,让学生通过学习去解决一些实际问题,如求某航天器的运行轨迹方程问题,确定生源的问题,等等。

另外,在解决圆锥曲线有关问题时,对运算求解能力,分析问题、解决问题的能力要求都比较高,这需要学生综合利用前面所学的基本知识来解决问题,在教学中应根据实际情况来采用适当的方法发展学生的应用意识。

(4)巩固“双基”,发展思想。

在学习中,仍然要以基础知识的夯实为主,让学生掌握圆锥曲线的定义、方程、图形及几何性质,形成基本的解决问题的技能,在此基础上,体会数学结合思想、类比思想(研究双曲线和抛物线方程、性质时类比椭圆的进行)、函数与方程思想的应用(在求解直线与圆锥曲线有关问题时,要利用函数与方程思想),提高学生的运算求解能力和分析解决问题的能力。

(5)信息技术手段的应用:在学生直观感知圆锥曲线图形的基础上,可以借助信息技术手段来做出椭圆、双曲线、抛物线图形,利用动态演示来帮助学生观察学习,例如对离心率的教学,通过演示椭圆的变化来让学生认识离心率的作用,加深学生的影响。

4、教材中几个值得注意的问题(1)注意知识内容的衔接。

必修《数学2》中的直线与方程、圆与方程,以及选修2-1(选修1-1)中的圆锥曲线与方程,系列4中的“选修4-4坐标系与参数方程”共同构成了经典的解析几何内容,教学时,应该注意这些知识的衔接,把圆锥曲线的教学放在整个解析几何内容教学中通盘来考虑,如课标中对椭圆的要求是“理解”,对双曲线的要求是“了解”,而抛物线的内容理科要求“理解”,文科要求“了解”,这些要求应该落实好,最好不要超越,研究和学习的过程从研究直线与方程、圆的方程的方法入手,充分利用坐标法,将各部分内容有机地联系在一起。

(2)圆锥曲线的第二定义和统一定义不做作,对非标准形式的圆锥曲线方程也不作要求。

在教材中,对圆锥曲线的第二定义,都是在习题当中给出的,对学有余力的学生,数学学习兴趣浓厚的学生,可以引导他们去解决这些问题。

关于圆锥曲线的统一定义及非标准形式的方程,在教材中是以“阅读和思考”的方式给出的,可以让学生作为课外延伸学习的内容,在具体的教学中不可补充这样的教学内容,以免增加学生的学习负担,增大教学的难度。

(3)关于曲线方程和函数与图像之间的关系问题。

这两者是不同的研究对象,但它们之间有一定的联系,也存在一定的区别。

在教材中,安排了“探究与发现:为什么二次函数2(0)y ax bx c a =++≠的图像是抛物线”。

即可以从函数的角度来研究抛物线的性质,也可根据其几何特征来研究其性质,而图像可以是函数的表现形式,也可以是曲线的表现形式,这里可以利用配方把二次函数变成224()24b ac b y a x a a-=++,再移项便得2214()()24b ac b x y a a a-+=-,不是和抛物线的标准方程很相似吗这样让学生更清楚地认识到二次函数的图像就是抛物线。

5、教学方法视角的分析圆锥曲线是解析几何的经典内容,它的教学必须结合实际背景来展开。

(1)通过直观展示来介绍圆锥曲线的背景知识,激发学生学习兴趣,提高学生的学习热情。

(2)充分利用坐标法,利用直观感知、研究特征、建立方程、研究性质的思路解决学生学习椭圆的知识问题,再利用类比的方法让学生通过自主探究来完成双曲线与抛物线的知识学习。

(3)利用解析几何的特点,将“形”与“数”结合,渗透数形结合思想在学习圆锥曲线知识当中得作用,引导学生从代数的角度去研究图形的几何性质。

(4)运用好问题教学法.发挥教材例习题的作用,设计合理的问题让学生去解决,帮助学生深入理解和运用圆锥曲线知识解决相应的问题,形成基本的分析和解决问题的能力。

(5)归纳整理方法的使用.教材中有很多轨迹问题在椭圆与双曲线中是对应出现的,可以引导学生比较分析,并归纳整理解决问题的办法。

如到两定点的连线斜率之积是定值的问题,圆锥曲线第二定义的问题等。

(6)使用好探究教学法.在圆锥曲线当中,有很多问题值得研究解决,教学中应根据学生的实际情况,利用教材的探究问题引导学生去探索学习,提高学生的创造性思维能力。

二、教学目标分析在课程标准当中,对《圆锥曲线与方程》的教学目标做了如下规定:(1)圆锥曲线:①“了解圆锥曲线的实际背景,感受圆锥曲线在刻画现实世界和解决实际问题中的作用”。

数学的知识来自于现实生活,又作用于现实生活,而圆锥曲线在实际生活中有更多领域的应用,因此,让学生了解圆锥曲线的实际背景,激发学习兴趣,增加课程学习的求知欲望。

②“经历从具体情境中抽象出椭圆、抛物线模型的过程,掌握它们的定义、标准方程、几何图形及简单性质”。

这里重点是利用坐标法,根据椭圆、抛物线的定义,从图形的几何特征出发,建立适当的坐标系,研究建立椭圆、抛物线的方程,再从方程出发结合图形来研究它们的几何性质及简单的应用。

③“了解双曲线的定义、几何图形和标准方程,知道双曲线的有关性质”。

为了降低学生的学习难度,对双曲线的要求相比椭圆和抛物线有所降低,属于“了解”的范畴,仿照椭圆方程及性质的研究可以研究双曲线的方程及相关性质。

④“能用坐标法解决一些与圆锥曲线有关的简单几何问题(直线与圆锥曲线的位置关系)和实际问题”。

传统上讲,主要是直线与圆锥曲线的位置关系问题,也会出现圆和圆锥曲线的位置关系问题,研究的方式可借助直线与圆的研究方式进行,充分利用方程思想,有必要说明的是,为了学生更好地解决问题,可以补充一元二次方程根与系数的关系。

⑤“通过圆锥曲线的学习,进一步体会数形结合的思想”。

数形结合思想是数学当中一种重要的思想方法,在解析几何中运用尤其突出,通过本部分的学习,应该让学生学会用数形结合思想去解决一些相关的问题,借助直观来解决复杂繁难的数学问题。

(2)曲线与方程“结合已学过的曲线及其方程的实例,了解曲线与方程的对应关系,进一步感受数形结合的基本思想”。

对曲线与方程的概念,学生理解比较困难,也比较抽象,因此,要求通过实例来让学生体会和感受。

根据以上目标规定,还得注意以下两点:(1)关于能力目标:要会根据条件求椭圆、抛物线及双曲线的方程,在有关圆锥曲线性质的应用中,要去强化学生的运算求解能力,提高学生分析和解决问题的能力,在思维能力方面,要引导学生善于使用函数与方程思想和数形结合思想来解决问题,特别是数形结合思想,它是解决圆锥曲线问题中必不可少的思想方法。

(2)关于情感态度价值观:主要让学生在了解圆锥曲线的实际背景过程中感受圆锥曲线在刻画现实世界和解决问题中的作用,在建立圆锥曲线方程的过程中感受从具体情境抽象出一般规律的思想和方法,进一步体会数形结合在解析几何中的作用与价值,经历“坐标法”使数学的“形”和“数”有机结合的过程,体会人类研究数学时所付出的艰辛劳动,以及数学为社会所做的贡献。

三、学习者特征分析1、学习者的学习基础:学生在数学《必修2》中学习了直线与方程、圆的方程,这是解析几何的初步知识,里面介绍了坐标法建立直线与圆的方程的过程,学生了解了利用代数方法来研究几何图形的性质,这里学习圆锥曲线是学习圆的方程的延续,可以借助学习圆的方程的方法来推进这部分知识的学习,说明在方法上学生具有一定的基础。

2、学习者的思维特质:在学完高中数学的全部必修课程,学生的数学思维能力得到提升,数学学习的基础基本形成,独立思考解决问题的能力进一步得到加强,这时候让学生去探究学习圆锥曲线的有关性质就有了一定的思维支撑。

但是学生的思维的创新性和批判性还是比较欠缺的,所以,在圆锥曲线的大量探索性问题面前,需要老师进行更多的引导。

3、学习者的运算求解能力不一定适应这部分的学习。

在圆锥曲线的学习中,学生要有较好的计算处理能力,特别是对解方程的要求比较高,在学生以前所学的解一次方程(组)的基础上,难以适应这里的解方程,因为很多涉及到二次方程组,从实践中看,学生这方面有问题,特别是解决直线与圆锥曲线的位置关系问题的时候,计算最容易出错,学生对含参的方程组整理成一元二次方程感到很麻烦,教师应在学生解决直线与圆的位置关系问题基础上再强化。

4、学习者分析问题、解决问题的能力可能难以满足这部分内容的学习。

从圆锥曲线方程的建立过程看,需要直观感知,给出定义,再建立适当的坐标系,列出条件,转化为代数方程,化简处理,得到简单方程,最后抽象出标准方程,这里需要学生更高的分析问题与解决问题的能力,还有一个数学建模过程,而学生在以往经验的基础上是难以独立完成的,特别是直角坐标系的建立,如何建,为什么会像教材里面那样去选择,学生会有很多疑问,需要我们很好地思考解决。

相关文档
最新文档