2018届高三文科数学一模试题
2018年唐山市高三年级高考一模数学文科试卷及解析
![2018年唐山市高三年级高考一模数学文科试卷及解析](https://img.taocdn.com/s3/m/a6c72b74050876323012122f.png)
87,80 和 92,90 , 84,85 和 100,95 , 100,95 和 92,90 共有 6 个,
7
2018 年唐山市高三年级高考一模数学文科试卷及解析
则 5 次考试,任取 2 次,恰有一次两人“实力相当”的概率为
63 ,
10 5
另法:这 5 次考试中,分数差的绝对值分别为 13,7,1,5,2,则从中任取两次,
)
2
2018 年唐山市高三年级高考一模数学文科试卷及解析
A. 3 6 2 2 6
B . 3 6 2 4 6 C.
63 46
D. 5 3 4 6
10. 已知向量 a sin 4 x ,cos 4 x ,向量 b 1,1 ,函数 f x a b ,则下列说法正
2
2
确的是( )
A. f x 是奇函数
B . f x 的一条对称轴为直线 x 4
ac cosB a2 b2 7 bc ,则 B
.
4
三、解答题 :共 70 分. 解答应写出文字说明、证明过程或演算步骤 . 第 17-21 题 为必考题,每个试题考生都必须作答 . 第 22、23 题为选考题,考生根据要求作答 . (一)必考题:共 60 分 .
17. 已知数列 an 满足: 2an an 1 an 1 n 2, n N ,且 a1 1,a2 2 .
分差绝对值的情况为 13,7 , 13,1 , 13,5 , 13,2 , 7,1 , 7,5 , 7,2 , 1,5 , 1,2 , 5,2
共 10 种,
其中符合条件的情况有 13,1 , 13,2 , 7,1 , 7,2 , 1,5 , 5,2 共 6 种情况,
则 5 次考试,任取 2 次,恰有一次两人“实力相当”的概率为
2018年高考模拟卷数学(文)试题Word版含答案
![2018年高考模拟卷数学(文)试题Word版含答案](https://img.taocdn.com/s3/m/f238be8468dc5022aaea998fcc22bcd126ff42a7.png)
2018年高考模拟卷数学(文)试题Word版含答案2018年高中毕业班教学质量检测高考模拟数学(文科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设复数z满足(1-i)z=1+3i(i为虚数单位),则z在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.已知全集U=Z,A={x∈Z|x^2-x-2≥0},B={-1,0,1,2},则(C∩A)∩B=()A.{-1,2}B.{-1,0}C.{0,1}D.{1,2}3.若-1<sinα+cosα<1,则()A.sinα<cosαB.cosα<sinαC.tanα<cosαD.cos2α<14.已知点(2,3)在双曲线x^2/a^2-y^2/b^2=1(a>0)的一条渐近线上,则a=()A.3B.4C.2D.235.“a^2=1”是“函数f(x)=lg((2+x)/(1-x))+(a^2-1)/2为奇函数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.执行以下程序框架,则输出A的值是()int A=0;for(int i=1;i<=6;i++){A=A*10+i;XXX<<A<<endl;A.B.xxxxxxxxC.D.xxxxxxx7.边长为4的正三角形ABC中,点D在边AB上,AD=DB,M是BC的中点,则AM×CD=()A.16B.12√3C.-8/3D.-88.等比数列{a_n}共有2n+1项,其中a_1=1,偶数项和为170,奇数项和为341,则n=()A.3B.4C.7D.99.函数f(x)=x^2cos(x)在(-π/2,π/2)的图象大致是()A。
B。
C。
D。
10.抛物线x^2=4y的焦点为F,过F作斜率为-3的直线l 与抛物线在y轴右侧的部分相交于点A,过A作抛物线准线的垂线,垂足为H,则△AHF的面积是()A.4B.3/3C.4/3D.811.将函数f(x)=sin(ωx)(ω>0)的图象向左平移π/4个单位得到函数g(x)的图象,若函数g(x)的图象关于直线x=ω对称且在区间(-ω,ω)内单调递增,则ω的值为()A.3π/2B.2π/3C.3π/4D.π/212.若函数f(x)={-x-e^(x+1),x≤a。
吉林省长春市普通高中2018届高三数学一模考试卷 文(含解析)
![吉林省长春市普通高中2018届高三数学一模考试卷 文(含解析)](https://img.taocdn.com/s3/m/e4882caf312b3169a551a44b.png)
普通高中2018届高三质量监测(一)数学试题卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 集合,,则( )A。
B。
C. D。
【答案】B【解析】集合,所以。
故选B。
点睛:1.用描述法表示集合,首先要弄清集合中代表元素的含义,再看元素的限制条件,明确集合类型,是数集、点集还是其他的集合.2.求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解.3.在进行集合的运算时要尽可能地借助Venn图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn 图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.2。
设为虚数单位,则( )A. B。
C。
2 D. -2【答案】D【解析】. 故选D。
3。
已知圆的圆心坐标为,则()A. 8B. 16C. 12 D。
13【答案】D【解析】由圆的标准方程可知圆心为,即。
故选D.4. 等差数列中,已知,且公差,则其前项和取最小值时的的值为()A。
6 B. 7 C. 8 D。
9【答案】C【解析】由题意知,有,所以当时前项和取最小值。
故选C.点睛:在解决等差、等比数列的运算问题时,有两个处理思路,一是利用基本量,将多元问题简化为一元问题,虽有一定量的运算,但思路简洁,目标明确;二是利用等差、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用。
但在应用性质时要注意性质的前提条件,有时需要进行适当变形。
在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法。
5. 已知某班级部分同学一次测验的成绩统计如图,则其中位数和众数分别为( )A. 92,94 B。
92,86 C. 99,86 D。
95,91【答案】B【解析】由茎叶图可知,中位数为92,众数为86。
故选B.6。
顶点为坐标原点,始边在轴的非负半轴上,终边在轴上的角的集合是( )A。
2018年河南省郑州市高考数学一模试卷(文科)
![2018年河南省郑州市高考数学一模试卷(文科)](https://img.taocdn.com/s3/m/55c0158d25c52cc58ad6bea7.png)
2018年省市高考数学一模试卷〔文科〕一、选择题:本大题共12个小题,每题5分,共60分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1.〔5分〕复数〔i为虚数单位〕等于〔〕A.﹣1﹣3i B.﹣1+3i C.1﹣3i D.1+3i2.〔5分〕设集合A={x|1<x<2},B={x|x<a},假设A∩B=A,那么a的取值围是〔〕A.{a|a≤2} B.{a|a≤1} C.{a|a≥1} D.{a|a≥2}3.〔5分〕设向量=〔1,m〕,=〔m﹣1,2〕,且≠,假设〔﹣〕⊥,那么实数m=〔〕A.2 B.1 C.D.4.〔5分〕以下说确的是〔〕A.“假设a>1,那么a2>1〞的否命题是“假设a>1,那么a2≤1〞B.“假设am2<bm2,那么a<b〞的逆命题为真命题∈〔0,+∞〕,使成立C.∃xD.“假设,那么〞是真命题5.〔5分〕我国古代数学典籍《九章算术》“盈缺乏〞中有一道两鼠穿墙问题:“今有垣厚十尺,两鼠对穿,初日各一尺,大鼠日自倍,小鼠日自半,问几何日相逢?〞现用程序框图描述,如下图,那么输出结果n=〔〕A.4 B.5 C.2 D.36.〔5分〕假设某几何体的三视图〔单位:cm〕如下图,那么该几何体的体积等于〔〕A.10cm3B.20cm3 C.30cm3D.40cm37.〔5分〕假设将函数f〔x〕=sin〔2x+〕图象上的每一个点都向左平移个单位,得到g〔x〕的图象,那么函数g〔x〕的单调递增区间为〔〕A.[kπ﹣,kπ+]〔k∈Z〕B.[kπ+,kπ+]〔k∈Z〕C.[kπ﹣,kπ﹣]〔k∈Z〕D.[kπ﹣,kπ+]〔k∈Z〕8.〔5分〕数列{an }的前n项和为Sn,a1=1,a2=2,且an+2﹣2an+1+an=0〔n∈N*〕,记Tn =,那么T2018=〔〕A.B.C.D.9.〔5分〕函数,假设函数f〔x〕在R上有两个零点,那么实数a的取值围是〔〕A.〔0,1] B.[1,+∞〕C.〔0,1〕D.〔﹣∞,1]10.〔5分〕椭圆的左顶点和上顶点分别为A,B,左、右焦点分别是F1,F2,在线段AB上有且只有一个点P满足PF1⊥PF2,那么椭圆的离心率的平方为〔〕A.B.C.D.11.〔5分〕我市某高中从高三年级甲、乙两个班中各选出7名学生参加2018年全国高中数学联赛〔初赛〕,他们取得的成绩〔总分值140分〕的茎叶图如下图,其中甲班学生成绩的中位数是81,乙班学生成绩的平均数是86,假设正实数a,b满足a,G,b成等差数列且x,G,y成等比数列,那么的最小值为〔〕A.B.2 C.D.912.〔5分〕假设对于任意的正实数x,y都有成立,那么实数m的取值围为〔〕A.B.C.D.二、填空题〔此题共4小题,每题5分,共20分〕13.〔5分〕设变量x,y满足约束条件那么目标函数z=4x﹣y的最小值为.14.〔5分〕如果直线ax+2y+3a=0与直线3x+〔a﹣1〕y=a﹣7平行,那么a=.15.〔5分〕数列{an }满足,且a1+a2+a3+…+a10=1,那么log2〔a101+a102+…+a110〕=.16.〔5分〕双曲线的右焦点为F,过点F向双曲线的一条渐近线引垂线,垂足为M,交另一条渐近线于N,假设,那么双曲线的渐近线方程为.三、解答题:解容许写出文字说明,证明过程或演算步骤.17.〔12分〕在△ABC中,角A,B,C的对边分别为a,b,c,且2ccosB=2a+b.〔1〕求角C;〔2〕假设△ABC的面积为,求ab的最小值.18.〔12分〕2017年10月份市进展了高三学生的体育学业水平测试,为了考察高中学生的身体素质比情况,现抽取了某校1000名〔男生800名,女生200名〕学生的测试成绩,根据性别按分层抽样的方法抽取100名进展分析,得到如下统计图表:男生测试情况:抽样情况病残免试不合格合格良好优秀人数5101547x女生测试情况抽样情况病残免试不合格合格良好优秀人数2310y2〔1〕现从抽取的1000名且测试等级为“优秀〞的学生中随机选出两名学生,求选出的这两名学生恰好是一男一女的概率;〔2〕假设测试等级为“良好〞或“优秀〞的学生为“体育达人〞,其它等级的学生〔含病残免试〕为“非体育达人〞,根据以上统计数据填写下面列联表,并答复能否在犯错误的概率不超过0.010的前提下认为“是否为体育达人〞与性别有关?男性女性总计体育达人非体育达人总计临界值表:P〔K2≥k〕0.100.050.0250.0100.005k2.7063.841 5.024 6.6357.879附:〔,其中n=a+b+c+d〕19.〔12分〕如图,在三棱锥P﹣ABC中,平面PAB⊥平面ABC,AB=6,,,D,E 为线段AB上的点,且AD=2DB,PD⊥AC.〔1〕求证:PD⊥平面ABC;〔2〕假设,求点B到平面PAC的距离.20.〔12分〕圆C:x2+y2+2x﹣2y+1=0和抛物线E:y2=2px〔p>0〕,圆心C到抛物线焦点F的距离为.〔1〕求抛物线E的方程;〔2〕不过原点的动直线l交抛物线于A,B两点,且满足OA⊥OB.设点M为圆C 上任意一动点,求当动点M到直线l的距离最大时的直线l方程.21.〔12分〕函数f〔x〕=lnx﹣a〔x+1〕,a∈R在〔1,f〔1〕〕处的切线与x轴平行.〔1〕求f〔x〕的单调区间;〔2〕假设存在x0>1,当x∈〔1,x〕时,恒有成立,求k的取值围.22.〔10分〕在平面直角坐标系xOy中,直线l过点〔1,0〕,倾斜角为α,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程是.〔1〕写出直线l的参数方程和曲线C的直角坐标方程;〔2〕假设,设直线l与曲线C交于A,B两点,求△AOB的面积.23.设函数f〔x〕=|x+3|,g〔x〕=|2x﹣1|.〔1〕解不等式f〔x〕<g〔x〕;〔2〕假设2f〔x〕+g〔x〕>ax+4对任意的实数x恒成立,求a的取值围.2018年省市高考数学一模试卷〔文科〕参考答案与试题解析一、选择题:本大题共12个小题,每题5分,共60分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1.〔5分〕复数〔i为虚数单位〕等于〔〕A.﹣1﹣3i B.﹣1+3i C.1﹣3i D.1+3i【解答】解:==﹣1﹣3i应选A2.〔5分〕设集合A={x|1<x<2},B={x|x<a},假设A∩B=A,那么a的取值围是〔〕A.{a|a≤2} B.{a|a≤1} C.{a|a≥1} D.{a|a≥2}【解答】解:∵A∩B=A,∴A⊆B.∵集合A={x|1<x<2},B={x|x<a},∴a≥2应选:D.3.〔5分〕设向量=〔1,m〕,=〔m﹣1,2〕,且≠,假设〔﹣〕⊥,那么实数m=〔〕A.2 B.1 C.D.【解答】解:∵〔﹣〕⊥,∴〔﹣〕•=0,即2﹣•=0,即1+m2﹣〔m﹣1+2m〕=0,即m2﹣3m+2=0,得m=1或m=2,当m=1时,量=〔1,1〕,=〔0,2〕,满足≠,当m=2时,量=〔1,2〕,=〔1,2〕,不满足≠,综上m=1,应选:B.4.〔5分〕以下说确的是〔〕A.“假设a>1,那么a2>1〞的否命题是“假设a>1,那么a2≤1〞B.“假设am2<bm2,那么a<b〞的逆命题为真命题∈〔0,+∞〕,使成立C.∃xD.“假设,那么〞是真命题【解答】解:“假设a>1,那么a2>1〞的否命题是“假设a≤1,那么a2≤1〞,故A错;“假设am2<bm2,那么a<b〞的逆命题为假命题,比方m=0,假设a<b,那么am2=bm2,故B错;对任意x>0,均有3x<4x成立,故C错;对假设,那么〞的逆否命题是“假设α=,那么sinα=〞为真命题,那么D正确.应选D.5.〔5分〕我国古代数学典籍《九章算术》“盈缺乏〞中有一道两鼠穿墙问题:“今有垣厚十尺,两鼠对穿,初日各一尺,大鼠日自倍,小鼠日自半,问几何日相逢?〞现用程序框图描述,如下图,那么输出结果n=〔〕A.4 B.5 C.2 D.3【解答】解:模拟执行程序,可得a=1,A=1,S=0,n=1S=2不满足条件S≥10,执行循环体,n=2,a=,A=2,S=不满足条件S≥10,执行循环体,n=3,a=,A=4,S=不满足条件S≥10,执行循环体,n=4,a=,A=8,S=满足条件S≥10,退出循环,输出n的值为4.应选:A.6.〔5分〕假设某几何体的三视图〔单位:cm〕如下图,那么该几何体的体积等于〔〕A.10cm3B.20cm3 C.30cm3D.40cm3【解答】解:由三视图知几何体为三棱柱削去一个三棱锥如图:棱柱的高为5;底面为直角三角形,直角三角形的直角边长分别为3、4,∴几何体的体积V=×3×4×5﹣××3×4×5=20〔cm3〕.应选B.7.〔5分〕假设将函数f〔x〕=sin〔2x+〕图象上的每一个点都向左平移个单位,得到g〔x〕的图象,那么函数g〔x〕的单调递增区间为〔〕A.[kπ﹣,kπ+]〔k∈Z〕B.[kπ+,kπ+]〔k∈Z〕C.[kπ﹣,kπ﹣]〔k∈Z〕D.[kπ﹣,kπ+]〔k∈Z〕【解答】解:将函数f〔x〕=sin〔2x+〕图象上的每一个点都向左平移个单位,得到g〔x〕=sin[2〔x+〕+]=﹣sin2x的图象,故此题即求y=sin2x的减区间,令2kπ+≤2x≤2kπ+,求得kπ+≤x≤kπ+,故函数g〔x〕的单调递增区间为[kπ+,kπ+],k∈Z,应选:B.8.〔5分〕数列{an }的前n项和为Sn,a1=1,a2=2,且an+2﹣2an+1+an=0〔n∈N*〕,记Tn =,那么T2018=〔〕A.B.C.D.【解答】解:数列{an }的前n项和为Sn,a1=1,a2=2,且an+2﹣2an+1+an=0〔n∈N*〕,那么:数列为等差数列.设公差为d,那么:d=a2﹣a1=2﹣1=1,那么:an=1+n﹣1=n.故:,那么:,所以:,=,=,=.所以:.应选:C9.〔5分〕函数,假设函数f〔x〕在R上有两个零点,那么实数a的取值围是〔〕A.〔0,1] B.[1,+∞〕C.〔0,1〕D.〔﹣∞,1]【解答】解:当x≤0时,f〔x〕单调递增,∴f〔x〕≤f〔0〕=1﹣a,当x>0时,f〔x〕单调递增,且f〔x〕>﹣a.∵f〔x〕在R上有两个零点,∴,解得0<a≤1.应选A.10.〔5分〕椭圆的左顶点和上顶点分别为A,B,左、右焦点分别是F1,F2,在线段AB上有且只有一个点P满足PF1⊥PF2,那么椭圆的离心率的平方为〔〕A.B.C.D.【解答】解:方法一:依题意,作图如下:A〔﹣a,0〕,B〔0,b〕,F1〔﹣c,0〕,F2〔c,0〕,∴直线AB的方程为,整理得:bx﹣ay+ab=0,设直线AB上的点P〔x,y〕,那么bx=ay﹣ab,x=y﹣a,∵PF1⊥PF2,那么•=〔﹣c﹣x,﹣y〕•〔c﹣x,﹣y〕=x2+y2﹣c2=〔〕2+y2﹣c2,令f〔y〕=〔〕2+y2﹣c2,那么f′〔y〕=2〔y﹣a〕×+2y,∴由f′〔y〕=0得:y=,于是x=﹣,∴•=〔﹣〕2+〔〕2﹣c2=0,整理得:=c2,又b2=a2﹣c2,整理得:c4+3c2c2﹣a4=0,两边同时除以a4,由e2=,∴e4﹣3e2+1=0,∴e2=,又椭圆的离心率e∈〔0,1〕,∴e2=.椭圆的离心率的平方,应选B.方法二:由直线AB的方程为,整理得:bx﹣ay+ab=0,由题意可知:直线AB与圆O:x2+y2=c2相切,可得d==c,两边平方,整理得:c4+3c2c2﹣a4=0,两边同时除以a4,由e2=,e4﹣3e2+1=0,∴e2=,又椭圆的离心率e∈〔0,1〕,∴e2=.椭圆的离心率的平方,应选B.11.〔5分〕我市某高中从高三年级甲、乙两个班中各选出7名学生参加2018年全国高中数学联赛〔初赛〕,他们取得的成绩〔总分值140分〕的茎叶图如下图,其中甲班学生成绩的中位数是81,乙班学生成绩的平均数是86,假设正实数a,b满足a,G,b成等差数列且x,G,y成等比数列,那么的最小值为〔〕A.B.2 C.D.9【解答】解:甲班学生成绩的中位数是80+x=81,得x=1;由茎叶图可知乙班学生的总分为76+80×3+90×3+〔0+2+y+1+3+6〕=598+y,乙班学生的平均分是86,且总分为86×7=602,所以y=4,假设正实数a、b满足:a,G,b成等差数列且x,G,y成等比数列,那么xy=G2,2G=a+b,即有a+b=4,a>0,b>0,那么+=〔a+b〕〔+〕=〔1+4++〕≥〔5+2〕=×9=,当且仅当b=2a=时,的最小值为.12.〔5分〕假设对于任意的正实数x,y都有成立,那么实数m的取值围为〔〕A.B.C.D.【解答】解:根据题意,对于〔2x﹣〕•ln≤,变形可得〔2x﹣〕ln≤,即〔2e﹣〕ln≤,设t=,那么〔2e﹣t〕lnt≤,t>0,设f〔t〕=〔2e﹣t〕lnt,〔t>0〕那么其导数f′〔t〕=﹣lnt+﹣1,又由t>0,那么f′〔t〕为减函数,且f′〔e〕=﹣lne+﹣1=0,那么当t∈〔0,e〕时,f′〔t〕>0,f〔t〕为增函数,当t∈〔e,+∞〕时,f′〔t〕<0,f〔t〕为减函数,那么f〔t〕的最大值为f〔e〕,且f〔e〕=e,假设f〔t〕=〔2e﹣t〕lnt≤恒成立,必有e≤,解可得0<m≤,即m的取值围为〔0,];应选:D.二、填空题〔此题共4小题,每题5分,共20分〕13.〔5分〕设变量x,y满足约束条件那么目标函数z=4x﹣y的最小值为 1 .【解答】解:设变量x,y满足约束条件在坐标系中画出可行域三角形,平移直线4x﹣y=0经过点A〔1,3〕时,4x﹣y最小,最小值为:1,那么目标函数z=4x﹣y的最小值:1.故答案为:1.14.〔5分〕如果直线ax+2y+3a=0与直线3x+〔a﹣1〕y=a﹣7平行,那么a= 3 .【解答】解:∵直线ax+2y+3a=0与直线3x+〔a﹣1〕y=a﹣7平行,∴,解得a=3.故答案为:3.15.〔5分〕数列{an }满足,且a1+a2+a3+…+a10=1,那么log2〔a101+a102+…+a110〕=100 .【解答】解:∵,∴log2an+1﹣log2an=1,即,∴.∴数列{an}是公比q=2的等比数列.那么a101+a102+…+a110=〔a1+a2+a3+…+a10〕q100=2100,∴log2〔a101+a102+…+a110〕=.故答案为:100.16.〔5分〕双曲线的右焦点为F,过点F向双曲线的一条渐近线引垂线,垂足为M,交另一条渐近线于N,假设,那么双曲线的渐近线方程为y=±x .【解答】解:由题意得右焦点F〔c,0〕,设一渐近线OM的方程为y=x,那么另一渐近线ON的方程为y=﹣x,由FM的方程为y=﹣〔x﹣c〕,联立方程y=x,可得M的横坐标为,由FM的方程为y=﹣〔x﹣c〕,联立方程y=﹣x,可得N的横坐标为.由2=,可得2〔﹣c〕=﹣c,即为﹣c=,由e=,可得﹣1=,即有e4﹣5e2+4=0,解得e2=4或1〔舍去〕,即为e=2,即c=2a,b=a,可得渐近线方程为y=±x,故答案为:y=±x.三、解答题:解容许写出文字说明,证明过程或演算步骤.17.〔12分〕在△ABC中,角A,B,C的对边分别为a,b,c,且2ccosB=2a+b.〔1〕求角C;〔2〕假设△ABC的面积为,求ab的最小值.【解答】解:〔1〕由正弦定理可知:===2R,a=2RsinA,b=2RsinB,c=2RsinC,由2ccosB=2a+b,那么2sinCcosB=2sin〔B+C〕+sinB,∴2sinBcosC+sinB=0,由0<B<π,sinB≠0,cosC=﹣,0<C<π,那么C=;〔2〕由S=absinC=c,那么c=ab,由c2=a2+b2﹣2abcosC=a2+b2+ab,∴=a2+b2+ab≥3ab,当且仅当a=b时取等号,∴ab≥12,故ab的最小值为12.18.〔12分〕2017年10月份市进展了高三学生的体育学业水平测试,为了考察高中学生的身体素质比情况,现抽取了某校1000名〔男生800名,女生200名〕学生的测试成绩,根据性别按分层抽样的方法抽取100名进展分析,得到如下统计图表:男生测试情况:抽样情况病残免试不合格合格良好优秀人数5101547x女生测试情况抽样情况病残免试不合格合格良好优秀人数2310y2〔1〕现从抽取的1000名且测试等级为“优秀〞的学生中随机选出两名学生,求选出的这两名学生恰好是一男一女的概率;〔2〕假设测试等级为“良好〞或“优秀〞的学生为“体育达人〞,其它等级的学生〔含病残免试〕为“非体育达人〞,根据以上统计数据填写下面列联表,并答复能否在犯错误的概率不超过0.010的前提下认为“是否为体育达人〞与性别有关?男性女性总计体育达人非体育达人总计临界值表:P〔K2≥k〕0.100.050.0250.0100.0052.7063.841 5.024 6.6357.879k附:〔,其中n=a+b+c+d〕【解答】解:〔1〕按分层抽样男生应抽取80名,女生应抽取20名;∴x=80﹣〔5+10+15+47〕=3,y=20﹣〔2+3+10+2〕=3;抽取的100名且测试等级为优秀的学生中有三位男生,设为A,B,C;两位女生设为a,b;从5名任意选2名,总的根本领件有AB,AC,Aa,Ab,BC,Ba,Bb,Ca,Cb,ab,共10个;设“选出的两名学生恰好是一男一女为事件A〞;那么事件包含的根本领件有Aa,Ab,Ba,Bb,Ca,Cb共6个;∴P〔A〕==;〔2〕填写2×2列联表如下:男生女生总计体育达人50555非体育达人301545总计8020100那么K2=≈9.091;∵9.091>6.635且P〔K2≥6.635〕=0.010,∴在犯错误的概率不超过0.010的前提下认为“是否为‘体育达人’与性别有关〞.19.〔12分〕如图,在三棱锥P﹣ABC中,平面PAB⊥平面ABC,AB=6,,,D,E 为线段AB上的点,且AD=2DB,PD⊥AC.〔1〕求证:PD⊥平面ABC;〔2〕假设,求点B到平面PAC的距离.【解答】证明:〔1〕连接CD,据题知AD=4,BD=2,∵AC2+BC2=AB2,∴∠ACB=90°,∴cos,∴=8,∴CD=2,∴CD2+AD2=AC2,∴CD⊥AB,又∵平面PAB⊥平面ABC,∴CD⊥平面PAB,∴CD⊥PD,∵PD⊥AC,CD∩AC=C,∴PD⊥平面ABC.解:〔2〕∵,∴PD=AD=4,∴PA=4,在Rt△PCD中,PC==2,∴△PAC是等腰三角形,∴,设点B到平面PAC的距离为d,由VE﹣PAC =VP﹣AEC,得,∴d==3,故点B到平面PAC的距离为3.20.〔12分〕圆C:x2+y2+2x﹣2y+1=0和抛物线E:y2=2px〔p>0〕,圆心C到抛物线焦点F的距离为.〔1〕求抛物线E的方程;〔2〕不过原点的动直线l交抛物线于A,B两点,且满足OA⊥OB.设点M为圆C 上任意一动点,求当动点M到直线l的距离最大时的直线l方程.【解答】解:〔1〕圆C :x 2+y 2+2x ﹣2y+1=0可化为〔x+1〕2+〔y ﹣1〕2=1, 那么圆心为〔﹣1,1〕.抛物线E :y 2=2px 〔p >0〕,焦点坐标F 〔〕, 由于:圆心C 到抛物线焦点F 的距离为. 那么:, 解得:p=6.故抛物线的方程为:y 2=12x〔2〕设直线的方程为x=my+t ,A 〔x 1,y 1〕,B 〔x 2,y 2〕, 那么:,整理得:y 2﹣12my ﹣12t=0, 所以:y 1+y 2=12m ,y 1y 2=﹣12t . 由于:OA ⊥OB . 那么:x 1x 2+y 1y 2=0.即:〔m 2+1〕y 1y 2+mt 〔y 1+y 2〕+t 2=0. 整理得:t 2﹣12t=0, 由于t ≠0, 解得t=12.故直线的方程为x=my+12, 直线经过定点〔12,0〕.当CN ⊥l 时,即动点M 经过圆心C 〔﹣1,1〕时到直线的距离取最大值. 当CP ⊥l 时,即动点M 经过圆心C 〔﹣1,1〕时到动直线L 的距离取得最大值. k MP =k CP =﹣, 那么:m=.此时直线的方程为:x=, 即:13x ﹣y ﹣156=0.21.〔12分〕函数f 〔x 〕=lnx ﹣a 〔x+1〕,a ∈R 在〔1,f 〔1〕〕处的切线与x 轴平行.〔1〕求f 〔x 〕的单调区间;〔2〕假设存在x0>1,当x∈〔1,x〕时,恒有成立,求k的取值围.【解答】解:〔1〕由可得f〔x〕的定义域为〔0,+∞〕,∵f′〔x〕=﹣a,∴f′〔1〕=1﹣a=0,解得:a=1,∴f′〔x〕=,令f′〔x〕>0,解得:0<x<1,令f′〔x〕<0,解得:x>1,故f〔x〕在〔0,1〕递增,在〔1,+∞〕递减;〔1〕不等式f〔x〕﹣+2x+>k〔x﹣1〕可化为lnx﹣+x﹣>k〔x﹣1〕,令g〔x〕=lnx﹣+x﹣﹣k〔x﹣1〕,〔x>1〕,g′〔x〕=,∵x>1,令h〔x〕=﹣x2+〔1﹣k〕x+1,h〔x〕的对称轴是x=,①当≤1时,即k≥﹣1,易知h〔x〕在〔1,x〕上递减,∴h〔x〕<h〔1〕=1﹣k,假设k≥1,那么h〔x〕≤0,∴g′〔x〕≤0,∴g〔x〕在〔1,x〕递减,∴g〔x〕<g〔1〕=0,不适合题意.假设﹣1≤k<1,那么h〔1〕>0,∴必存在x0使得x∈〔1,x〕时,g′〔x〕>0,∴g〔x〕在〔1,x〕递增,∴g〔x〕>g〔1〕=0恒成立,适合题意.②当>1时,即k<﹣1,易知必存在x0使得h〔x〕在〔1,x〕递增,∴h〔x〕>h〔1〕=1﹣k>0,∴g′〔x〕>0,∴g〔x〕在〔1,x〕递增,∴g〔x〕>g〔1〕=0恒成立,适合题意.综上,k的取值围是〔﹣∞,1〕.22.〔10分〕在平面直角坐标系xOy中,直线l过点〔1,0〕,倾斜角为α,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程是.〔1〕写出直线l的参数方程和曲线C的直角坐标方程;〔2〕假设,设直线l与曲线C交于A,B两点,求△AOB的面积.【解答】〔1〕直线L的参数方程为:〔α为参数〕.曲线C的极坐标方程是,转化为直角坐标方程为:y2=8x〔2〕当时,直线l的参数方程为:〔t为参数〕,代入y2=8x得到:.〔t1和t2为A和B的参数〕,所以:,t1t2=﹣16.所以:.O到AB的距离为:d=.那么:=.23.设函数f〔x〕=|x+3|,g〔x〕=|2x﹣1|.〔1〕解不等式f〔x〕<g〔x〕;〔2〕假设2f〔x〕+g〔x〕>ax+4对任意的实数x恒成立,求a的取值围.【解答】解:〔1〕由得|x+3|<|2x﹣1|,即|x+3|2<|2x﹣1|2,那么有3x2﹣10x﹣8>0,∴x<﹣或x>4,故不等式的解集是〔﹣∞,﹣〕∪〔4,+∞〕;〔2〕由,设h〔x〕=2f〔x〕+g〔x〕=2|x+3|+|2x﹣1|=,当x≤﹣3时,只需﹣4x﹣5>ax+4恒成立,即ax<﹣4x﹣9,∵x≤﹣3<0,∴a>=﹣4﹣恒成立,∴a>,∴a>﹣1,当﹣3<x<时,只需7>ax+4恒成立,即ax﹣3<0恒成立,只需,∴,∴﹣1≤a≤6,当x≥时,只需4x+5>ax+4恒成立,即ax<4x+1,∵x≥>0,∴a<=4+恒成立,∵4+>4,且无限趋近于4,∴a≤4,综上,a的取值围是〔﹣1,4].。
(完整版)2018年高考全国卷1文科数学试题及含答案
![(完整版)2018年高考全国卷1文科数学试题及含答案](https://img.taocdn.com/s3/m/00b5eb74aef8941ea66e0545.png)
2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己の姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目の答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出の四个选项中,只有一项是符合题目要求の。
1.已知集合{}02A =,,{}21012B =--,,,,,则A B =I A .{}02,B .{}12,C .{}0D .{}21012--,,,, 2.设1i2i 1iz -=++,则z = A .0B .12C .1D .23.某地区经过一年の新农村建设,农村の经济收入增加了一倍.实现翻番.为更好地了解该地区农村の经济收入变化情况,统计了该地区新农村建设前后农村の经济收入构成比例.得到如下饼图:则下面结论中不正确の是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入の总和超过了经济收入の一半4.已知椭圆C :22214x y a +=の一个焦点为(20),,则C の离心率为A .13B .12C .22D .2235.已知圆柱の上、下底面の中心分别为1O ,2O ,过直线12O O の平面截该圆柱所得の截面是面积为8の正方形,则该圆柱の表面积为 A .122πB .12πC .82πD .10π6.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处の切线方程为A .2y x =-B .y x =-C .2y x =D .y x =7.在△ABC 中,AD 为BC 边上の中线,E 为AD の中点,则EB =u u u rA .3144AB AC -u u ur u u u r B .1344AB AC -u u ur u u u r C .3144AB AC +u u ur u u u rD .1344AB AC +u u ur u u u r8.已知函数()222cos sin 2f x x x =-+,则 A .()f x の最小正周期为π,最大值为3 B .()f x の最小正周期为π,最大值为4 C .()f x の最小正周期为2π,最大值为3 D .()f x の最小正周期为2π,最大值为49.某圆柱の高为2,底面周长为16,其三视图如右图.圆柱表面上の点M 在正视图上の对应点为A ,圆柱表面上の点N 在左视图上の对应点为B ,则在此圆柱侧面上,从M 到N の路径中,最短路径の长度为 A .217 B .25 C .3D .210.在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成の角为30︒,则该长方体の体积为 A .8B .62C .82D .8311.已知角αの顶点为坐标原点,始边与x 轴の非负半轴重合,终边上有两点()1A a ,,()2B b ,,且 2cos 23α=,则a b -=A .15BCD .112.设函数()201 0x x f x x -⎧=⎨>⎩,≤,,则满足()()12f x f x +<のx の取值范围是A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞,二、填空题(本题共4小题,每小题5分,共20分)13.已知函数()()22log f x x a =+,若()31f =,则a =________.14.若x y ,满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩≤≥≤,则32z x y =+の最大值为________.15.直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB =________.16.△ABC の内角A B C ,,の对边分别为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则△ABC の面积为________.三、解答题:共70分。
山东济南市2018届高三数学一模试题文科有答案
![山东济南市2018届高三数学一模试题文科有答案](https://img.taocdn.com/s3/m/8605e071804d2b160b4ec059.png)
山东济南市2018届高三数学一模试题(文科有答案)高考模拟考试文科数学一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则()A.B.C.D.2.若命题“或”与命题“非”都是真命题,则()A.命题与命题都是真命题B.命题与命题都是假命题C.命题是真命题,命题是假命题D.命题是假命题,命题是真命题3.欧拉公式(为虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数集,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位.特别是当时,被认为是数学上最优美的公式,数学家们评价它是“上帝创造的公式”.根据欧拉公式可知,表示的复数在复平面中位于()A.第一象限B.第二象限C.第三象限D.第四象限4.下列曲线中离心率为的是()A.B.C.D.5.若,,则的值为()A.B.C.或D.6.已知变量,满足约束条件,若,则的取值范围是()A.B.C.D.7.将函数的图象向左平移个单位后得到函数的图象,则()A.为奇函数,在上单调递减B.为偶函数,在上单调递增C.周期为,图象关于点对称D.最大值为1,图象关于直线对称8.如图,在正方体中,为的中点,则在该正方体各个面上的正投影可能是()A.①②B.①④C.②③D.②④9.函数的图象大致为()A.B.C.D.10.执行如图所示的程序框图,当输入时,输出的结果为()A.-1008B.1009C.3025D.302811.已知双曲线:的两条渐近线是,,点是双曲线上一点,若点到渐近线距离是3,则点到渐近线距离是()A.B.1C.D.312.设,分别是函数和的零点(其中),则的取值范围是()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分.13.已知向量,满足,,,则.14.如图,茎叶图记录了甲、乙两名射击运动员的5次训练成绩(单位:环),则成绩较为稳定的那位运动员成绩的方差为.15.在平面四边形中,,,,,则线段的长度为.16.一个密闭且透明的正方体容器中装有部分液体,已知该正方体的棱长为2,如果任意转动该正方体,液面的形状都不可能是三角形,那么液体体积的取值范围为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.每22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.记为数列的前项和,已知,.(1)求数列的通项公式;(2)设,求数列的前项和.18.如图,在四棱锥中,底面为等腰梯形,,,,分别为线段,的中点.(1)证明:平面;(2)若平面,,求四面体的体积.19.2018年2月22日上午,山东省省委、省政府在济南召开山东省全面展开新旧动能转换重大工程动员大会,会议动员各方力量,迅速全面展开新旧动能转换重大工程.某企业响应号召,对现有设备进行改造,为了分析设备改造前后的效果,现从设备改造前后生产的大量产品中各抽取了200件产品作为样本,检测一项质量指标值,若该项质量指标值落在内的产品视为合格品,否则为不合格品.图1是设备改造前的样本的频率分布直方图,表1是设备改造后的样本的频数分布表.表1:设备改造后样本的频数分布表质量指标值频数4369628324(1)完成下面的列联表,并判断是否有99%的把握认为该企业生产的这种产品的质量指标值与设备改造有关;设备改造前设备改造后合计合格品不合格品合计(2)根据图1和表1提供的数据,试从产品合格率的角度对改造前后设备的优劣进行比较;(3)根据市场调查,设备改造后,每生产一件合格品企业可获利180元,一件不合格品亏损100元,用频率估计概率,则生产1000件产品企业大约能获利多少元?附:0.1500.1000.0500.0250.0102.0722.7063.8415.0246.63520.如图,在平面直角坐标系中,点在抛物线:上,直线:与抛物线交于,两点,且直线,的斜率之和为-1.(1)求和的值;(2)若,设直线与轴交于点,延长与抛物线交于点,抛物线在点处的切线为,记直线,与轴围成的三角形面积为,求的最小值.21.设函数,.(1)讨论的单调性;(2)当时,记的最小值为,证明:.(二)选考题:共10分.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题记分.22.[选修4-4:坐标系与参数方程]在直角坐标系中,过点的直线的参数方程为(为参数).以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求直线的普通方程和曲线的直角坐标方程;(2)若直线与曲线相交于,两点,求的值.23.[选修4-5:不等式选讲]已知函数.(1)求不等式的解集;(2)当时,恒成立,求实数的取值范围. 2018年济南市高三教学质量检测文科数学参考答案一、选择题1-5:CDCDB6-10:ADBCB11、12:AD二、填空题13.14.215.16.三、解答题17.解:(1)由,得当时,;当时,.所以.(2),所以.18.(1)证明:连接、,交于点,∵为线段的中点,,,∴,∴四边形为平行四边形,∴为的中点,又是的中点,∴,又平面,平面,∴平面.(2)解法一:由(1)知,四边形为平行四边形,∴,∵四边形为等腰梯形,,,∴,∴三角形是等边三角形,∴,做于,则,∵平面,平面,∴平面平面,又平面平面,,平面,∴平面,∴点到平面的距离为,又∵为线段的中点,∴点到平面的距离等于点到平面的距离的一半,即,又,∴.解法二:,平面,平面,∴平面,∴点到平面的距离等于点到平面的距离,做于点,由,知三角形是等边三角形,∴,∵平面,平面,∴平面平面,又平面平面,,平面,∴平面,∴点到平面的距离为,又为线段的中点,∴,∴.18.如图,在四棱锥中,底面为等腰梯形,,,,分别为线段,的中点.(1)证明:平面;(2)若平面,,求四面体的体积.19.解:(1)根据图1和表1得到列联表:设备改造前设备改造后合计合格品172192364不合格品28836合计200200400将列联表中的数据代入公式计算得:.∵,∴有99%的把握认为该企业生产的这种产品的质量指标值与设备改造有关.(2)根据图1和表1可知,设备改造后产品为合格品的概率约为,设备改造前产品为合格品的概率约为;即设备改造后合格率更高,因此,设备改造后性能更好. (3)用频率估计概率,1000件产品中大约有960件合格品,40件不合格品,,所以该企业大约获利168800元.20.解:(1)将点代入抛物线:,得,,得,设,,则,,解法一:,由已知得,所以,.解法二:,由已知得.(2)在直线的方程中,令得,,直线的方程为:,即,由,得,解得:,或,所以,由,得,,切线的斜率,切线的方程为:,即,由,得直线、交点,纵坐标,在直线,中分别令,得到与轴的交点,,所以,,,当时,函数单调递减;当时,函数单调递增;∴当时,最小值为.21.解:(1)的定义域为,,当时,,在上单调递增;当时,当,,单调递减;当,,单调递增;综上,当时,在上单调递增;当时,在上单调递减,在上单调递增.(2)由(1)知,,即.解法一:,,∴单调递减,又,,所以存在,使得,∴当时,,单调递增;当时,,单调递减;∴,又,即,,∴,令,则在上单调递增,又,所以,∴.解法二:要证,即证,即证:,令,则只需证,,当时,,单调递减;当时,,单调递增;所以,所以,即.22.【解析】(1)由已知得:,消去得,∴化为一般方程为:,即::.曲线:得,,即,整理得,即::.(2)把直线的参数方程(为参数)代入曲线的直角坐标方程中得:,即,设,两点对应的参数分别为,,则,∴.23.【解析】(1)当时,,∴,故;当时,,∴,故;当时,,∴,故;综上可知:的解集为.(2)由(1)知:,【解法一】如图所示:作出函数的图象,由图象知,当时,,解得:,∴实数的取值范围为.【解法二】当时,恒成立,∴,当时,恒成立,∴,当时,恒成立,∴,综上,实数的取值范围为.。
2018年河南省高考数学一模试卷(文科)
![2018年河南省高考数学一模试卷(文科)](https://img.taocdn.com/s3/m/671c5006bceb19e8b9f6ba4e.png)
2018年河南省高考数学一模试卷(文科)一、选择题(本题共12小题,每小题5分,共60分)1. 已知集合A={x|x<0, 或x>2},B=N,则集合(∁R A)∩B中元素的个数为()A.2B.3C.4D.52. 若复数(a+3i)(1−2i)(a∈R,i为虚数单位)是纯虚数,则实数a的值为()A.−6B.13C.32D.√133. 已知f(x)=sinx−tanx,命题p:∃x0∈(0, π2),f(x0)<0,则()A.p是假命题,¬p:∀x∈(0, π2),f(x)≥0B.p是假命题,¬p:∃x0∈(0, π2),f(x0)≥0C.p是真命题,¬p:∀x∈(0, π2),f(x)≥0D.p是真命题,¬p:∃x0∈(0, π2),f(x0)≥04. 已知程序框图如图,则输出i的值为()A.7B.9C.11D.135. 设不等式组{x+y≤4y−x≥0x−1≥0,表示的平面区域为D,则z=y+1x的取值范围为()A.[32, 4] B.(32, 4) C.[2, 4] D.[32, 2]6. 已知a=0.63.1,b=4.10.6,c=log0.64.1,则a,b,c的大小关系为()A.a>b>cB.b>a>cC.b>c>aD.a>c>b7. 《九章算术》是我国古代数学名著,在《九章算术》中将底面为矩形且有一侧棱垂直于底面的四棱锥称为“阳马”,若某“阳马”的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该“阳马”的表面积为( )A.1+√2B.1+2√2C.2+√2D.2+2√28. 已知数列:11,21,12,31,22,13,41,32,23,14,…,依它的前10项的规律,这个数列的第2018项a 2018等于( ) A.131 B.163C.64D.6329. 若等边三角形ABC 的边长为3,平面内一点M 满足6CM →−3CA →=2CB →,则AM →⋅BM →的值为( ) A.−152B.−2C.2D.15210. 关于函数f(x)=3sin(2x −π3)+1(x ∈R),下列命题正确的是( ) A.由f(x 1)=f(x 2)=1可得x 1−x 2是π的整数倍 B.y =f(x)的表达式可改写成f(x)=3cos(2x +π6)+1 C.y =f(x)的图象关于点(3π4, 1)对称 D.y =f(x)的图象关于直线x =−π12对称11. 设函数f(x)=mx 2−mx −1,若对于x ∈[1, 3],f(x)<−m +4恒成立,则实数m 的取值范围为( )A.(−∞, 0]B.[0,57) C.(−∞,0)∪(0,57) D.(−∞,57)12. 设双曲线的方程为x 2a 2−y 2b 2=1(a >0, b >0),若双曲线的渐近线被圆M:x 2+y 2−10x =0所截得的两条弦长之和为12,已知△ABP 的顶点A ,B 分别为双曲线的左、右焦点,顶点P 在双曲线上,则|sinP||sinA−sinB|的值等于( ) A.35B.√73C.53D.√7二、填空题(本题共4小题,每小题5分,共20分)已知圆的方程为x 2+y 2−6x −8y =0,则该圆过点(3, 5)的最短弦长为________.若函数f(x)={x(x −b),x ≥0,ax(x +2),x <0(a, b ∈R)为奇函数,则f(a +b)的值为________.a4+4,S n为数列{a n}的前n项和,S15=________.在等差数列{a n}中,a6=12已知三棱柱ABC−A1B1C1的底面是正三角形,侧棱AA1⊥底面ABC,若有一半径为2的球与三棱柱的各条棱均相切,则AA1的长度为________.三、解答题(共70分)已知△ABC的三个内角A,B,C的对边分别为a,b,c,且sin2B+sin2C−sin2A= sinBsinC.求A;(2)已知D为BC中点,AD=√19,BC=√7,求△ABC的面积.2如图所示,在四棱锥P−ABCD中,底面ABCD为直角梯形,AB // CD,∠BAD=90∘,DC=DA=2AB=2√5,点E为AD的中点,BD∩CE=H,PH⊥平面ABCD,且PH= 4.(1)求证:PC⊥BD(2)线段PC上是否存在一点F,使三棱锥P−BFD的体积为5√2?若存在,请找出点F 的位置;若不存在,请说明理由.某地区为了解学生学业水平考试的状况,从参加学业水平考试的学生中抽出160名,统计他们的数学成绩(均为整数),得到频率分布直方图如图所示.(1)估计这次考试数学成绩的平均分和众数;(2)假设成绩在[90,100]的学生中有3人得满分100分,有2人得99分,其余学生的数学成绩都不相同.现从90分以上的学生中任取2人,求这两人成绩相同的概率.x2y222px(p >0)的焦点,点(2, 4)在抛物线C 2上. (1)求椭圆的方程;(2)若过椭圆右焦点F 的直线l 与椭圆C 1交于A ,B 两点,记△ABP 三条边所在直线斜率乘积为t ,求t 的最大值.已知a ≠0,函数f(x)={−x 3+x 2,x <ealnx,x ≤e.(1)讨论函数f(x)的零点的个数;(2)若函数的图象上存在两点M ,N ,使得△MON 是以O 为直角顶点的直角三角形(其中O 为坐标原点),且斜边MN 的中点恰好在y 轴上,求实数a 的取值范围. [选修4-4:坐标系与参数方程选讲]在直角坐标系xOy 中,已知直线l 1:{x =tcosαy =tsinα (t 为参数),l 2:{x =tcos(α+π4)y =tsin(α+π4)(t 为参数),其中α∈(0, 3π4),以原点O 为极点,x 轴非负半轴为极轴,取相同长度单位建立极坐标系,曲线C 的极坐标方程为ρ−4cosθ=0.(1)写出l 1,l 2的极坐标方程和曲线C 的直角坐标方程;(2)设l 1,l 2分别与曲线C 交于点A ,B (非坐标原点),求|AB|的值. [选修4-5:不等式选讲]设函数f(x)=|x −a|(a >0).(1)当a =2时,解不等式f(x)≥1−2x ;(2)已知f(x)+|x −1|的最小值为3,且m 2n =a(m >0, n >0),求m +n 的最小值.参考答案与试题解析2018年河南省高考数学一模试卷(文科)一、选择题(本题共12小题,每小题5分,共60分)1.【答案】B【考点】交、并、补集的混合运算【解析】可先求出∁R A={x|0≤x≤2},然后进行交集的运算即可.【解答】∁R A={x|0≤x≤2};∴(∁R A)∩B={0, 1, 2}.2.【答案】A【考点】复数的运算【解析】利用复数代数形式的乘法运算化简,再由实部为0且虚部不为0联立求得a值.【解答】∵(a+3i)(1−2i)=(a+6)+(3−2a)i是纯虚数,∴{a+6=03−2a≠0,解得a=−6.3.【答案】C【考点】命题的真假判断与应用命题的否定【解析】利用特称值,判断特称命题的真假,利用命题的否定关系,特称命题的否定是全称命题写出结果.【解答】f(x)=sinx−tanx,x∈(0, π2),当x=π4时,∴f(x)=√22−1<0,命题p:∃x0∈(0, π2),f(x0)<0,是真命题,命题p:∃x0∈(0, π2),f(x0)<0,则¬p:∀x∈(0, π2),f(x)≥0.4.【答案】D【考点】【解析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量i的值,模拟程序的运行过程,可得答案.【解答】当S=1时,不满足退出循环的条件,故S=1,i=3;当S=1时,不满足退出循环的条件,故S=3,i=5;当S=3时,不满足退出循环的条件,故S=15,i=7;当S=15时,不满足退出循环的条件,故S=105,i=9;当S=105时,不满足退出循环的条件,故S=945,i=11;当S=945时,不满足退出循环的条件,故S=10395,i=13;当S=10395时,满足退出循环的条件,故输出的i=13,5.【答案】A【考点】简单线性规划【解析】画出约束条件的可行域,利用目标函数的几何意义求解即可.【解答】不等式组{x+y≤4y−x≥0x−1≥0,表示的平面区域为D,如图:则z=y+1x的几何意义是可行域内的点与(0, −1)连线的斜率,由图象可知QB的斜率最小,QA的斜率最大,B(2, 2),A(1, 3),则z=y+1x 的最大值为:4,最小值为:32.6.【答案】B【考点】对数值大小的比较【解析】利用指数函数、对数函数的单调性直接求解.【解答】∵0<a=0.63.1<0.60=1,b=4.10.6>4.10=1,c=log0.64.1<log0.61=0,∴a,b,c的大小关系为b>a>c.7.【答案】C【考点】由三视图求表面积由三视图知该几何体是侧棱垂直于底面的四棱锥, 画出图形结合图形求出它的表面积. 【解答】解:由三视图知该几何体是侧棱垂直于底面的四棱锥,如图所示;正视图和侧视图是腰长为1的两个全等的等腰直角三角形, ∴ 四棱锥的底面是正方形,且边长为1,其中一条侧棱PD ⊥底面ABCD ,且侧棱PD =1,∴ 四棱锥的四个侧面都为直角三角形,且PA =PC =√2, ∴ 四棱锥的表面积为S =S 底面ABCD +2S △PAD +2S △PAB=1+2×12×1×1+2×12×1×√2=2+√2. 故选C . 8.【答案】 D【考点】数列的概念及简单表示法 【解析】观察数列的特征,得出它的项数是1+2+3+...+k =k(k+1)2(k ∈N ∗),在每一个k 段内是k 个分数(k ∈N ∗, k ≥3),且它们的分子分母和为k +1;进而求出第2018项即可. 【解答】观察数列:11,21,12,31,22,13,41,32,23,14,…, 得出:它的项数是1+2+3+...+k =k(k+1)2(k ∈N ∗),并且在每一个k 段内,是k 个分数(k ∈N ∗, k ≥3),且它们的分子分母和为k +1(k ∈N ∗, k ≥3); 由k =63时,k(k+1)2=2016<2018(k ∈N ∗),故a 2018在64段中,∴ 该数列的第2018项a 2018为第64组的第2项, 故a 2018=632,【答案】 B【考点】平面向量数量积的运算向量加减混合运算及其几何意义 【解析】根据条件可先求出CA →∗CB →=92,而由6CM →−3CA →=2CB →即可得出CM →=12CA →+13CB →,这样即可用CA →,CB →分别表示出AM →,BM →,然后进行数量积的运算即可. 【解答】解:等边三角形ABC 的边长为3; ∴ CA →⋅CB →=|CA →||CB →|cos60∘=92;6CM →−3CA →=2CB →; ∴ CM →=12CA →+13CB →;∴ AM →=AC →+CM →=−CA →+12CA →+13CB →=−12CA →+13CB →,BM →=BC →+CM →=−CB →+12CA →+13CB →=12CA →−23CB →; ∴ AM →⋅BM →=(−1CA →+1CB →)⋅(1CA →−2CB →)=−14CA →2+12CA →⋅CB →−29CB →2=−94+94−2=−2. 故选B . 10.【答案】 D【考点】正弦函数的图象 【解析】 此题暂无解析 【解答】得x =kπ2+π6(k ∈Z),所以x 1=k 1π2+π6(k 1∈Z ),x 2=k 2π2+π6(k 2∈Z ),所以x 1−x 2=π2(k 1−k 2)(k 1,k 2∈Z ),是π2的整数倍,故A 错误;由f(x)=3sin (2x −π3)+1,得f(x)=−3cos (2x −π3+π2)+1=−3cos (2x +π6)+1,故B 错误;由2x −π3=kπ(k ∈Z),得x =kπ2+π6(k ∈Z).令kπ2+π6=3π4(k ∈Z),解得k =76,不符合题意,故C 错误;由2x −π3=kπ+π2(k ∈Z),得x =kπ2+5π12(k ∈Z).令k =−1,则x =−π12,即y =f(x)的图象关于直线x =−π12对称,故D 正确. 故选D . 11.【答案】 D【考点】二次函数的性质 二次函数的图象 【解析】利用分离参数法,再求出对应函数在x ∈[1, 3]上的最大值,即可求m 的取值范围. 【解答】由题意,f(x)<−m +4,可得m(x 2−x +1)<5. ∵ 当x ∈[1, 3]时,x 2−x +1∈[1, 7], ∴ 不等式f(x)<0等价于m <5x 2−x+1. ∵ 当x =3时,5x 2−x+1的最小值为57, ∴ 若要不等式m <5x 2−x+1恒成立,则必须m <57,因此,实数m 的取值范围为(−∞, 57),12.【答案】 C【考点】 双曲线的特性 【解析】根据垂径定理求出圆心到直线的距离为d =4,再根据点到直线的距离公式可得3|sinP|2c 2R2c 2a =53【解答】双曲线的一条渐近线方程为y=bax,双曲线的渐近线被圆M:x2+y2−10x=0,即(x−5)2+y2=25所截得的两条弦长之和为12,设圆心到直线的距离为d,则d=√25−9=4,∴√a2+b2=4,即5b=4c,即b=45c∵a2=c2−b2=925c2,∴a=35c,∴|AP−BP|=2a,由正弦定理可得APsinB =PBsinA=ABsinP=2R,∴sinB=AP2R ,sinA=BP2R,sinP=2c2R,∴|sinP||sinA−sinB|=2c2R|BP2R−AP2R|=2c2a=53,二、填空题(本题共4小题,每小题5分,共20分)【答案】4√6【考点】直线与圆的位置关系【解析】根据题意,将圆的一般方程变形为标准方程,分析可得其圆心与半径,设P为(3, 5),圆心为M,分析可得当过点P(3, 5)的直线与连接P与圆心的直线垂直时,弦最短,结合点到直线的距离公式分析可得答案.【解答】根据题意,圆的方程为x2+y2−6x−8y=0,其标准方程为(x−3)2+(y−4)2=25,其圆心为(3, 4),半径为5,设P为(3, 5),圆心为M,分析可得当过点P(3, 5)的直线与连接P与圆心的直线垂直时,弦最短,则弦长l=2×√r2−|MP|2=4√6;【答案】−1【考点】函数的求值分段函数的应用【解析】由已知中函数f(x)为奇函数,f(−x)=−f(x)恒成立,可得a,b的值,进而可得f(a+【解答】解:∵ 函数为奇函数, 故f(−x)=−f(x)恒成立, 故{a =−1,−b =2a,即{a =−1,b =2, ∴ f(x)={x 2−2x,x ≥0,−x 2−2x,x <0,∴ f(a +b)=f(1)=1−2=−1. 故答案为−1. 【答案】 120【考点】等差数列的前n 项和 【解析】等差数列{a n }中,a 6=12a 4+4,可得2a 6−a 4=8=a 8.代入S 15=15(a 1+a 15)2=15a 8,即可得出. 【解答】等差数列{a n }中,a 6=12a 4+4,∴ 2a 6−a 4=8=a 8. S 15=15(a 1+a 15)2=15a 8=15×8=120.【答案】 2√3【考点】柱体、锥体、台体的体积计算 【解析】由题意求出正三棱柱的高、底面边长,即可求出AA 1的长度. 【解答】由题意,△ABC 的外接圆即为球的大圆,r =2, 设底面△ABC 外接圆圆心G ,即GA =GB =GC =2,从而正三角形ABC 边长2√3, 设球心O ,由题意,E 、D 在球面上,OE =OD =2, F 为DE 中点,则OF ⊥DE ,OF =GD =12GC =1, 在Rt △OEF 中,OE =2,OF =1,∴ EF =√3, ∴ DE =2√3, ∴ AA 1=2√3.三、解答题(共70分)【答案】(1)由正弦定理:sin 2B +sin 2C −sin 2A =sinBsinC . 转换为:b 2+c 2−a 2=bc , 即:cosA =b 2+c 2−a 22bc=12,由于:0<A <π,则:A =π3.(2)由于:a 2=b 2+c 2−2bccosA =7, 所以:b 2+c 2−bc =7①. 由于:D 为BC 中点, 则:AD →2=12(AB →+AC →),所以:4AD →2=(AB →+AC →)2, 即:b 2+c 2+bc =19② 由①②得:bc =6, 所以:S △ABC =12bcsinA =3√32【考点】 三角形求面积 【解析】(1)直接利用余弦定理求出A 的值.(2)利用余弦定理和向量的线性运算及三角形的面积公式求出结果. 【解答】(1)由正弦定理:sin 2B +sin 2C −sin 2A =sinBsinC . 转换为:b 2+c 2−a 2=bc , 即:cosA =b 2+c 2−a 22bc=12,由于:0<A <π, 则:A =π3.(2)由于:a 2=b 2+c 2−2bccosA =7, 所以:b 2+c 2−bc =7①. 由于:D 为BC 中点, 则:AD →2=12(AB →+AC →),所以:4AD →2=(AB →+AC →)2, 即:b 2+c 2+bc =19② 由①②得:bc =6, 所以:S △ABC =12bcsinA =3√32【答案】证明:∵ AB // CD ,∠BAD =90∘,∴ ∠EDC =∠BAD =90∘,∵ DC =DA =2AB ,E 为AD 的中点,∴ AB =ED ,则△BAD ≅△EDC , ∴ ∠DBA =∠DEH .∵ ∠DBA +∠ADB =90∘,∴ ∠DEH +∠ADB =90∘,则BD ⊥EC . 又∵ PH ⊥平面ABCD ,BD ⊂平面ABCD ,∴ BD ⊥PH . 又∵ PH ∩EC =H ,且PH 、EC ⊂平面PEC , ∴ BD ⊥平面PEC ,∵ PC ⊂平面PEC ,∴ PC ⊥BD ;假设线段PC 上存在一点F ,使三棱锥P −BFD 的体积为5√2,由(1)可知,△DHE∽△DAB,且求得BD=EC=5,AB=DE=√5,∴DHDA =EHBA=DEDB,∴EH=1,HC=4,DH=2,HB=3.∵PH、EC、BD两两垂直,且PH=HC=4,∴∠HPC=45∘,∵BD⊥平面PEC,∴V P−BFD=V B−PHF+V D−PHF=13S△PHF×BD=13×12×PH×PF×sin45∘×5=5√23PF=5√2.∴PF=3,∵PC=4√2>3,∴线段PC上存在一点F,满足PF=3,使三棱锥P−BFD的体积为5√2.【考点】柱体、锥体、台体的体积计算直线与平面垂直【解析】(1)由已知证明△BAD≅△EDC,得到∠DBA=∠DEH,再由∠DBA+∠ADB=90∘,可得∠DEH+∠ADB=90∘,即BD⊥EC.又PH⊥平面ABCD,得BD⊥PH.由线面垂直的判定可得BD⊥平面PEC,进一步得到PC⊥BD;(2)由(1)可知,△DHE∽△DAB,解三角形可得EH,HC,DH,HB的值,结合PH、EC、BD两两垂直,且PH=HC=4,求得∠HPC=45∘,则BD⊥平面PEC,再由等积法求得PF=3,可得线段PC上存在一点F,满足PF=3,使三棱锥P−BFD的体积为5√2.【解答】证明:∵AB // CD,∠BAD=90∘,∴∠EDC=∠BAD=90∘,∵DC=DA=2AB,E为AD的中点,∴AB=ED,则△BAD≅△EDC,∴∠DBA=∠DEH.∵∠DBA+∠ADB=90∘,∴∠DEH+∠ADB=90∘,则BD⊥EC.又∵PH⊥平面ABCD,BD⊂平面ABCD,∴BD⊥PH.又∵PH∩EC=H,且PH、EC⊂平面PEC,∴BD⊥平面PEC,∵PC⊂平面PEC,∴PC⊥BD;假设线段PC上存在一点F,使三棱锥P−BFD的体积为5√2,由(1)可知,△DHE∽△DAB,且求得BD=EC=5,AB=DE=√5,∴DHDA =EHBA=DEDB,∴EH=1,HC=4,DH=2,HB=3.∵PH、EC、BD两两垂直,且PH=HC=4,∴∠HPC=45∘,∵BD⊥平面PEC,∴V P−BFD=V B−PHF+V D−PHF=13S△PHF×BD=13×12×PH×PF×sin45∘×5=5√23PF=5√2.∴PF=3,∵PC=4√2>3,∴线段PC上存在一点F,满足PF=3,使三棱锥P−BFD的体积为5√2.【答案】解:(1)利用区间中点值估算这160名学生的平均分为45×0.05+55×0.15+65×0.2+75×0.3+85×0.25+95×0.05=72(分),众数的估计值为75分.(2)由频率分布直方图知,在160人中,90分以上的学生数为160×0.005×10=8(人).设“从8人中任取2人,这两人成绩相同”为事件A,记这8人编号分别为1,2,3,4,5,6,7,8,其中4号、5号成绩为99分,6号、7号、8号的成绩为100分.由题意,从8人中任取2人,基本事件有(1, 2),(1, 3),(1, 4),(1, 5),(1, 6),(1, 7),(1, 8),(2, 3),(2, 4),(2, 5),(2, 6),(2, 7),(2, 8),(3, 4),(3, 5),(3, 6),(3, 7),(3, 8),(4, 5),(4, 6),(4, 7),(4, 8),(5, 6),(5, 7),(5, 8),(6, 7),(6, 8),(7, 8),共28个.其中事件A所包含的基本事件为(4, 5),(6, 7),(6,8),(7, 8),共4个.由古典概型概率计算公式得P(A)=428=17.【考点】频率分布直方图列举法计算基本事件数及事件发生的概率【解析】此题暂无解析【解答】解:(1)利用区间中点值估算这160名学生的平均分为45×0.05+55×0.15+65×0.2+75×0.3+85×0.25+95×0.05=72(分),众数的估计值为75分.(2)由频率分布直方图知,在160人中,90分以上的学生数为160×0.005×10=8(人).设“从8人中任取2人,这两人成绩相同”为事件A,记这8人编号分别为1,2,3,4,5,6,7,8,其中4号、5号成绩为99分,6号、7号、8号的成绩为100分.由题意,从8人中任取2人,基本事件有(1, 2),(1, 3),(1, 4),(1, 5),(1, 6),(1, 7),(1, 8),(2, 3),(2, 4),(2, 5),(2, 6),(2, 7),(2, 8),(3, 4),(3, 5),(3, 6),(3, 7),(3, 8),(4, 5),(4, 6),(4, 7),(4, 8),(5, 6),(5, 7),(5, 8),(6, 7),(6, 8),(7, 8),共28个.其中事件A所包含的基本事件的个数为(4, 5),(6, 7),(6,8),(7, 8),共4个.由古典概型概率计算公式得P(A)=428=17.【答案】点(2,在抛物线C 2上,∴ p =4,即c =2,即a 2+b 2=c 2=4,① ∵ 点P(2,(1)在椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)上,∴ 4a 2+9b 2=1,②,由①②解得a 2=16,b 2=12, ∴ 椭圆方程为x 216+y 212=1;(Ⅱ)椭圆的右焦点为F(2, 0),由题意可得直线k 的斜率存在, 设直线l 的方程为y =k(x −(2),(x 1, y 1),B(x 2, y 2),当k ≠0时,y k =x −2,得t =k ⋅y 1−3x 1−2⋅y 2−3x 2−3=k 3⋅y 1−3y 1⋅y 2−3y 2=k 3[1−3(1y 1+1y 2)+9y 1y 2]联立直线方程和椭圆方程,消去x ,得(4+3k 2)y 2+12ky −36=0,显然可知△>0,则y 1+y 2=−12k4k 2+3,y 1y 2=−−36k 24k 2+3,∴ t =k 3(1−3y 1+y 2y 1y 2+9y1y 2)=−k 2−34k =−(k +38)2+964则当k =0时,t =0也满足上式,即t =−k 2−34k =0, ∴ 当k =−38时,t max =964. 【考点】 椭圆的定义 【解析】(1)先求出c ,再根据点P(2, 3)在椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)上,即可求出a 2=16,b 2=12,问题得以解决.(2)右焦点F(2, 0),直线l:y =k(x −2),(与椭圆的交点A(x 1, y 1),B(x 2, y 2),从而联立方程再用韦达定理,再写出k PA ,k PB ,从而化简t =k PA ⋅k PB ⋅k .从而求最大值即可. 【解答】 点(2,在抛物线C 2上,∴ p =4,即c =2,即a 2+b 2=c 2=4,① ∵ 点P(2,(1)在椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)上, ∴ 4a 2+9b 2=1,②,由①②解得a 2=16,b 2=12, ∴ 椭圆方程为x 216+y 212=1;(Ⅱ)椭圆的右焦点为F(2, 0),由题意可得直线k 的斜率存在,设直线l 的方程为y =k(x −(2),(x 1, y 1),B(x 2, y 2),当k ≠0时,y k =x −2,得t =k ⋅y 1−3x 1−2⋅y 2−3x 2−3=k 3⋅y 1−3y 1⋅y 2−3y 2=k 3[1−3(1y 1+1y 2)+9y 1y 2]联立直线方程和椭圆方程,消去x ,得(4+3k 2)y 2+12ky −36=0,显然可知△>0,则y 1+y 2=−12k4k 2+3,y 1y 2=−−36k 24k 2+3,∴ t =k 3(1−3y 1+y 2y 1y 2+9y 1y 2)=−k 2−34k =−(k +38)2+964则当k =0时,t =0也满足上式,即t =−k 2−34k =0, ∴ 当k =−38时,t max =964.【答案】若−x 3+x 2=0,解得x =0或x =1,此时有两个零点,x =0或x =1, 若a >0时,f(x)=alnx ≥alne =a >0此时无零点, 当a <0时,f(x)=alnx ≤alne =a <0此时无零点, 综上所述,函数f(x)有两个零点0或1,假设曲线y =f(x)上存在两点M 、N 满足题设要求,则点M 、N 只能在y 轴两侧.不妨设M (t, f(t))(t >0),则N(−t, t 3+t 2),∵ △MON 是以O 为直角顶点的直角三角形,∴ OM →⋅ON →=0,即−t 2+f(t)(t 3+t 2)=0 ①.若方程①有解,存在满足题设要求的两点M 、N ;若方程①无解,不存在满足题设要求的两点M 、N .若0<t <e ,则f(t)=−t 3+t 2代入①式得:−t 2+(−t 3+t 2)(t 3+t 2)=0, 即t 4−t 2+1=0,而此方程无解,因此t ≥e ,此时f(t)=alnt , 代入①式得:−t 2+(alnt)(t 3+t 2)=0,即1a =(t +1)lnt ②,令ℎ(x)=(x +1)lnx(x ≥e), 则ℎ′(x)=lnx +1+1x >0,∴ ℎ(x)在[e, +∞)上单调递增,∵ t ≥e ,∴ ℎ(t)≥ℎ(e)=e +1,∴ ℎ(t)的取值范围是[e +1, +∞). ∴ 对于0<a ≤1e+1,方程②总有解,即方程①总有解, 故a 的取值范围为(0, 1e+1].【考点】分段函数的应用 【解析】(1)根据函数零点和方程根的关系即可判断,(2)假设曲线y =f(x)上存在两点M 、N 满足题设要求,则点M 、N 只能在y 轴两侧.不妨设M (t, f(t))(t >0),则N(−t, t 3+t 2),运用向量垂直的条件:数量积为0,构造函数ℎ(x)=(x +1)lnx(x ≥e),运用导数判断单调性,求得最值,即可得到a 的范围. 【解答】若−x3+x2=0,解得x=0或x=1,此时有两个零点,x=0或x=1,若a>0时,f(x)=alnx≥alne=a>0此时无零点,当a<0时,f(x)=alnx≤alne=a<0此时无零点,综上所述,函数f(x)有两个零点0或1,假设曲线y=f(x)上存在两点M、N满足题设要求,则点M、N只能在y轴两侧.不妨设M(t, f(t))(t>0),则N(−t, t3+t2),∵△MON是以O为直角顶点的直角三角形,∴OM→⋅ON→=0,即−t2+f(t)(t3+t2)=0①.若方程①有解,存在满足题设要求的两点M、N;若方程①无解,不存在满足题设要求的两点M、N.若0<t<e,则f(t)=−t3+t2代入①式得:−t2+(−t3+t2)(t3+t2)=0,即t4−t2+1=0,而此方程无解,因此t≥e,此时f(t)=alnt,代入①式得:−t2+(alnt)(t3+t2)=0,即1a=(t+1)lnt②,令ℎ(x)=(x+1)lnx(x≥e),则ℎ′(x)=lnx+1+1x>0,∴ℎ(x)在[e, +∞)上单调递增,∵t≥e,∴ℎ(t)≥ℎ(e)=e+1,∴ℎ(t)的取值范围是[e+1, +∞).∴对于0<a≤1e+1,方程②总有解,即方程①总有解,故a的取值范围为(0, 1e+1].[选修4-4:坐标系与参数方程选讲]【答案】l1,l2的极坐标方程为θ1=α(ρ∈R),θ2=α+π4(ρ∈R).曲线C的极坐标方程方程为ρ−4cosθ=0.即得ρ2−4ρcosθ=0,利用ρ2x2+y2,x=ρcosθ得曲线C的直角坐标方程为(x−2)2+y2=4.因为ρ1=4cosα,ρ2=4cos(α+π4),所以|AB|2=ρ12+ρ22−2ρ1.ρ2cosπ4=16[cos2α+cos2(α+π4)−√2cosαcos(α+π4)]=16[cos2α+12(cosα−sinα)2−cosα(cosα−sinα)]=8,所以|AB|的值为2√2.【考点】参数方程与普通方程的互化【解析】(1)考查直线l1,l2参数方程与极坐标方程的互化,曲线C的极坐标方程与直角坐标方程的互化.重点都是消去参数t.(2)利用l1,l2极坐标方程,结合余弦定理,计算出|AB|的长度.【解答】l1,l2的极坐标方程为θ1=α(ρ∈R),θ2=α+π4(ρ∈R).曲线C的极坐标方程方程为ρ−4cosθ=0.即得ρ2−4ρcosθ=0,利用ρ2x2+y2,x=ρcosθ得曲线C的直角坐标方程为(x−2)2+y2=4.因为ρ1=4cosα,ρ2=4cos(α+π4),所以|AB|2=ρ12+ρ22−2ρ1.ρ2cosπ4=16[cos2α+cos2(α+π4)−√2cosαcos(α+π4)]=16[cos2α+12(cosα−sinα)2−cosα(cosα−sinα)]=8,所以|AB|的值为2√2.[选修4-5:不等式选讲]【答案】当x≥2时,x−2≥1−2x,得x≥1,故x≥2,当x<2时,2−x≥1−2x,得x≥−1,故−1≤x<2,综上,不等式的解集是{x|x≥−1};∵f(x)+|x−1|的最小值是3,∴f(x)+|x−1|≥|x−a−(x−1)|=|a−1|=3,故a=4,∵m+n=m2+m2+n≥3√m2∗m2∗n3=3,当且仅当m2=n即m=2,n=1时取“=”.【考点】绝对值三角不等式【解析】(1)通过讨论x的范围,求出不等式的解集即可;(2)根据绝对值不等式的性质求出a的值,结合基本不等式的性质求出m+n的最小值即可.【解答】当x≥2时,x−2≥1−2x,得x≥1,故x≥2,当x<2时,2−x≥1−2x,得x≥−1,故−1≤x<2,综上,不等式的解集是{x|x≥−1};∵f(x)+|x−1|的最小值是3,∴f(x)+|x−1|≥|x−a−(x−1)|=|a−1|=3,故a=4,∵m+n=m2+m2+n≥3√m2∗m2∗n3=3,当且仅当m2=n即m=2,n=1时取“=”.。
(完整版)2018年高考文科数学(全国I卷)试题及答案(可编辑修改word版)
![(完整版)2018年高考文科数学(全国I卷)试题及答案(可编辑修改word版)](https://img.taocdn.com/s3/m/d160ef2e5ef7ba0d4b733bb1.png)
EB A. - 绝密★启用前注意事项:2018 年普通高等学校招生全国统一考试文科数学1. 答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3. 考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共 12 小题,每小题 5 分,共 60 分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合 A = {0, 2} , B = {- 2,- 1, 0,1, 2} ,则 A B =A .{0, 2}B .{1, 2}C .{0}D .{-2, -1, 0,1, 2}2.设 z = 1 - i+ 2i ,则| z |=1 + iA. 0B. 1 2C .1D . 3. 某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番. 为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是 A .新农村建设后,种植收入减少 B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半x 2 4. 已知椭圆C : a y 2+= 1 的一个焦点为(2, 0) ,则C 的离心率为 4 A.13B. 12C.2 2D. 2 235. 已知圆柱的上、下底面的中心分别为O 1 , O 2 ,过直线O 1O 2 的平面截该圆柱所得的截面是面积为8 的正方形,则该圆柱的表面积为 A .12 2πB.2π C. 8 2π D. 0π6. 设函数 f (x ) = x 3 + (a - 1)x 2 + ax . 若 f (x ) 为奇函数,则曲线 y = f (x ) 在点(0, 0) 处的切线方程为A. y = -2xB. y = -xC. y = 2xD. y = x 7. 在△ABC 中,AD 为 BC 边上的中线,E 为 AD 的中点,则=3 1AB AC B . 1 - 3 AC 22AB4 4 4 4C . + AB 2 ⎨ ⎩ 3 1 AB ACD . 1 + 3AC4 44 48. 已知函数 f (x ) = 2 cos 2 x - sin 2 x + 2 ,则A. f (x ) 的最小正周期为π ,最大值为3B. f (x ) 的最小正周期为π ,最大值为 4C. f (x ) 的最小正周期为2π ,最大值为3D. f (x ) 的最小正周期为2π ,最大值为 49. 某圆柱的高为 2,底面周长为 16,其三视图如右图.圆柱表面上的点 M 在正视图上的对应点为 A ,圆柱表面上的点 N 在左视图上的对应点为 B ,则在此圆柱侧面上,从 M 到 N 的路径中,最短路径的长度为A. 2B. 2C. 3D. 210. 在长方体 ABCD - A 1B 1C 1D 1 中, AB = BC = 2 , AC 1 与平面 BB 1C 1C 所成的角为30︒ ,则该长方体的体积为A. 8B. 6C. 8D. 8 11. 已知角的顶点为坐标原点,始边与 x 轴的非负半轴重合,终边上有两点 A (1, a ) , B (2, b ) ,且cos 2= 2,则3| a - b |=A.15B.5 5C. 2 55D .1⎧2-x , 12. 设函数 f (x ) = ⎨ ⎩1, x ≤ 0,x > 0, 则满足 f (x + 1) < f (2x ) 的 x 的取值范围是A . (-∞, -1]B . (0, +∞)C . (-1, 0)D . (-∞, 0)二、填空题:本题共 4 小题,每小题 5 分,共 20 分。
2018年全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版)
![2018年全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版)](https://img.taocdn.com/s3/m/7107f79e27284b73f3425014.png)
关注公众号”一个高中僧“获取更多高中资料
第 3 页(共 28 页)
18.(12 分)如图,在平行四边形 ABCM 中,AB=AC=3,∠ACM=90°,以 AC 为 折痕将△ACM 折起,使点 M 到达点 D 的位置,且 AB⊥DA.
(1)证明:平面 ACD⊥平面 ABC; (2)Q 为线段 AD 上一点,P 为线段 BC 上一点,且 BP=DQ= DA,求三棱锥
A.12 π
B.12π
C.8 π
D.10π
【考点】LE:棱柱、棱锥、棱台的侧面积和表面积. 菁优网版权所有
【专题】11:计算题;35:转化思想;49:综合法;5F:空间位置关系与距离.
【分析】利用圆柱的截面是面积为 8 的正方形,求出圆柱的底面直径与高,然后
求解圆柱的表面积.
【解答】解:设圆柱的底面直径为 2R,则高为 2R,
(2)估计该家庭使用节水龙头后,日用水量小于 0.35m3 的概率; (3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按 365 天计算,
同一组中的数据以这组数据所在区间中点的值作代表)
20.(12 分)设抛物线 C:y2=2x,点 A(2,0),B(﹣2,0),过点 A 的直线 l 与 C 交于 M,N 两点.
参考答案与试题解析
一、选择题:本题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选 项中,只有一项是符合题目要求的。
1.(5 分)已知集合 A={0,2},B={﹣2,﹣1,0,1,2},则 A∩B=( )
A.{0,2}
B.{1,2}
C.{0}
D.{﹣2,﹣1,0,1,2}
【考点】1E:交集及其运算. 菁优网版权所有
问题解决问题的能力.
2018全国高考1卷文科数学试题及答案(官方) word版
![2018全国高考1卷文科数学试题及答案(官方) word版](https://img.taocdn.com/s3/m/f64589636bec0975f465e2fb.png)
2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合{}02A=,,{}21012B=--,,,,,则A B=()A.{}02,B.{}12,C.{}0D.{}21012--,,,,2.设121iz ii-=++,则z=()A.0 B.12C.1D.23.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.已知椭圆C:22214x ya+=的一个焦点为()2,0,则C的离心率()A.13B.12C.22D.2235.已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( ) A .122π B .12π C .82π D .10π6.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为( )A .2y x =-B .y x =-C .2y x =D .y x =7.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =( ) A .3144AB AC - B .1344AB AC - C .3144AB AC +D .1344AB AC +8.已知函数()222cos sin 2f x x x =-+,则( )A .()f x 的最小正周期为π,最大值为3B .()f x 的最小正周期为π,最大值为4C .()f x 的最小正周期为2π,最大值为3D .()f x 的最小正周期为2π,最大值为49.某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A .217B .25C .3D .210.在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30︒,则该长方体的体积为( ) A .8B .62C .82D .8311.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1,A a ,()2,B b ,且2cos 23α=,则a b -=( ) A .15BCD .112.设函数()201 0x x f x x -⎧=⎨>⎩,≤,,则满足()()12f x f x +<的x 的取值范围是( )A .(]1-∞,B .()0+∞,C .()10-,D .()0-∞,二、填空题(本题共4小题,每小题5分,共20分)13.已知函数()()22log f x x a =+,若()31f =,则a =________.14.若x y ,满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩≤≥≤,则32z x y =+的最大值为________.15.直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB = ________.16.ABC △的内角A B C ,,的对边分别为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则ABC △的面积为________.三、解答题(共70分。
淮北市2018届高三第一次模拟考试数学文科试卷含答案
![淮北市2018届高三第一次模拟考试数学文科试卷含答案](https://img.taocdn.com/s3/m/2a746c43be23482fb4da4cc3.png)
淮北市2018届高三第一次模拟考试数学试题(文科)本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。
全卷满分150分,考试时间120分钟。
考生注意事项:1.答题前,考生务必在试题卷、答题卡规定的地方填写自己的座位号、姓名。
考生要认真核对答题卡上粘贴的条形码的“考场座位号、姓名”与考生本人考场座位号、姓名是否一致。
2.第1卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选出其他答案标号。
第II 卷用0.5毫米的黑色签字笔在答题卡上书写作答,在试题卷上作答,答案无效。
3.考试结束,监考员将试题卷和答题卡一并收回。
第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题.每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案涂在答题卡上.1.已知}{0322≤--=x x x A ,{}12+==x y y B ,则=B A ( D ) A.]3,1[- B. [-3,2] C. ]3,2[ D. ]3,1[ 2.设复数Z 满足(1)i Z i +=,则||Z =( A )A.22B.21C. 2D.23.已知两条不同直线1l 和2l 及平面α,则直线21//l l 的一个充分条件是( D )A .α//1l 且2l α⊆B .α//1l 且α//2lC .α//1l 且2l α⊄D .α⊥1l 且α⊥2l4.执行如图所示的程序框图,则输出的k=8,则判断框中应添加的条件是( B )A.89s >B. 78s >C. 89s <D. 910s ≥ 5.)(的大致图像是函数xx y ||log 2=( A )A. B. C. D.6.若点),(y x P 满足线性约束条件020,0y x y -≤-+≥⎨⎪≥⎪⎩,则22(2)(x y ++的范围是( B )A.9,34⎡⎤⎢⎥⎣⎦B.9,94⎡⎤⎢⎥⎣⎦C.[]3,7D.32⎡⎢⎣7.某三棱锥的三视图如图所示,该三棱锥的表面积是 ( C )A .5628+B .32+C . 5630+D .48+8.已知函数13,0()ln ,0x x f x x x +⎧≤⎪=⎨>⎪⎩,关于x 方程[]2()0f x a -=有三个不同的实数根,则a 的取值范围是( A )A. (]0,9B.(]0,3C.(0D. []0,39.已知双曲线2212221,x yF Fa b-=的两焦点分别为,P是双曲线上一点,1212PF PF PF PF+=-,1230PF F∠=︒,则此双曲线的离心率是( B )D.110.在一个长为2米宽为1米的红布上均匀放置了200枚直径为2.5cm的硬币,用一个内径为5cm的套圈去套硬币,当硬币完全在套圈中时算是套中,每掷一次套圈(套圈圆心在红布上),能套中硬币的概率为( A )A.64πB.32πC.16πD.8π11.nS是等差数列{}n a的前n项和,2018201620172018,S S S S<<,则0nS<时n的最大值是( D )A.2017B.2018C.4033D.403412.函数()f x在定义域R内可导,若(1)(3)f x f x+=-,且当(,2)x∈-∞时,/(2)()0x f x-<,设1(0),(),(3)2a fb fc f===,则,,a b c的大小关系是( C )A. a b c>> B.c a b>> C.c b a>> D. b c a>>第II卷(非选择题,共80分)二、填空题:本大题共4小题,每小题5分,共20分。
2018届普通高等学校招生全国统一考试高三数学模拟试题(一)文
![2018届普通高等学校招生全国统一考试高三数学模拟试题(一)文](https://img.taocdn.com/s3/m/6f87e46fbb68a98271fefae4.png)
普通高等学校招生全国统一考试模拟试题文科数学(一)本试卷满分150分,考试时间120分钟.注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题纸上.2.回答选择题时,选出每小题答案后,用铅笔把答题纸上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题纸上,写在本试卷上无效.3.考试结束后,将本试卷和答题纸一并交回.一、选择题:本题共12小题。
每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}1,420,A x x B x x =>=-≤则A .{}1AB x x ⋂=>B .A B ⋂=∅C .{}1A B x x ⋃=>D .A B R ⋃=2.已知数据12340,,,x x x x ⋅⋅⋅,是某班40名同学某次月考的化学成绩(单位:分),现将这40名同学的化学成绩的平均数x 与这40个数据合在一起,并将这41个数据的平均数、中位数、众数分别与原来的平均数、中位数、众数相比较,则下列说法中正确的是A .平均数不变,中位数、众数变大B .平均数变大,中位数、众数可能不变C .平均数变小,中位数、众数可能不变D .平均数不变,中位数、众数可能不变3.下列各式的运算结果中,在复平面内对应的点位于第二象限的是A .()1i i -+B .i(1+i)2C .()()2211i i -+D .1i i-4.剪影是我国剪纸艺术中的一种古老形式,通过外轮廓表现人物和物象的形状,由于受轮廓造型的局限,一般以表现人物或其他物体的侧面居多.如图是一幅长50cm 、宽40cm 的矩形剪影,为估算剪影中美女图案的面积,现向剪影内随机投掷1200粒芝麻(假设芝麻均落在剪影内),其中恰有300粒芝麻落在美女图案内,据此估计美女图案的面积为A .250cm 2B .500cm 2C .1000cm 2D .20003cm 2 5.已知双曲线22:14x C y -=的左、右焦点分别为12,F F ,点A 在双曲线C 上,且2AF x ⊥轴,点B 与点A 关于原点O 对称,则四边形12AF BF 的面积为ABCD6.已知实数,x y 满足约束条件10,40,20,x y y x y z x y --≤⎧⎪+-≥≤⎨⎪-≤⎩若恒成立,则实数z 的最大值为 A .35 B .23 C .1 D .537.如图,在正方体ABCD —A 1B 1C 1D 1中,P 为线段AD 的中点,Q 为线段B 1C 1上的动点,则下列说法中错误的是A .线段PQ 与平面CDD 1C 1可能平行B .当Q 为线段B 1C 1的中点时,线段PQ 与DD 1所成的角为4π C.PQ ≥D .1CD PQ 与不可能垂直8.函数()2cos sin 2x x f x x-=的部分图像大致为9.已知函数()ln 4x f x x =-,则下列说法中正确的是 A .()f x 在区间(),0-∞内单调递增 B .()f x 在区间(4,+∞)内单调递增C .()f x 的图像关于点(2,0)对称D .()f x 的图像关于直线x =2对称 10.执行如图所示的程序框图,若输出的S 的值为负数,则①②中可以分别填入A .“S=1”“n <9?”B .“S=1”“n <8?”C .“S=2”“n <99?”D .“S=2”“n<100?”11.如图,在平面四边形ABCD 中,AD=2,sin sin 14CAD BAC ∠=∠+ cos 2,BC B BC B D ABC π=+=∆且,则的面积的最大值为A B C .7 D .1412.已知椭圆()2221024x y C b b+=<<:的左焦点为F ,点()4,0M -,斜率不为0的直线l 经过点F 与椭圆C 交于A ,B 两点,若直线MA 与直线MB 关于x 轴对称,则椭圆C 的离心率是A .14B .12C .34D 二、填空题:本题共4小题,每小题5分,共20分.13.已知向量()()1,1,3,a b x ==,若a b a -在方向上的投影是0,则x 的值为_________.14.曲线()24f x x x=-在点()()1,1f 处的切线l 与坐标轴围成的三角形的面积为_________. 15.已知()3,,tan 20183,cos 24ππαππαα⎛⎫⎛⎫∈-=+= ⎪ ⎪⎝⎭⎝⎭则___________. 16.已知菱形ABCD 的边长为2,A=60°,将△ABD 沿对角线BD 折起,使得AC=3,则四面体ABCD 的外接球的表面积为__________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题.每个试题考生都必须作答.第22,23题为选考题。
2018年唐山市高三年级高考一模数学文科试卷及解析
![2018年唐山市高三年级高考一模数学文科试卷及解析](https://img.taocdn.com/s3/m/9a6ff23858fb770bf78a5538.png)
2018年高三第一次模拟考试文科数学试题一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2,1,1,2A =--,集合{}|B k A y kx R =∈=在上为增函数,则A B 的子集个数为()A.1B.2C.3D.42.设a 为1i -的虚部,b 为()21i +的实部,则a b +=()A.-1B.-2C.-3D.03.已知具有线性相关的变量,x y ,设其样本点为()(),1,2,,8i i i A x y i = ,回归直线方程为1ˆ2y x a =+,若()1186,2OA OA OA +++= ,(O 为原点),则a =()A.18B.18-C.14D.14-4.已知非向量()(),2,,2a x x b x ==-,则0x <或4x >是向量a 与b 夹角为锐角的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.已知00:,5100n p n N ∃∈<,则p ⌝为()A.,5100n n N ∀∈<B.,5100n n N ∀∈≥ C.00,5100n n N ∃∈≥D.00,5100n n N ∃∈>6.2002年国际数学家大会在北京召开,会标是以我国古代数学家赵爽的弦图为基础设计.弦图是由四个全等的直角三角形与一个小正方形拼成的一个大正方形(如图).如果小正方形的边长为2,大正方形的边长为10,直角三角形中较小的锐角为θ,则sin cos 23ππθθ⎛⎫⎛⎫+-+= ⎪ ⎪⎝⎭⎝⎭()A.433+B.433- C.433-+D.433--7.如图所示的程序框图中,输出的S 为()A.99223-B.100223- C.101223-D.102223-8.已知函数()f x 既是二次函数又是幂函数,函数()g x 是R 上的奇函数,函数()()()11g x h x f x =++,则()()()()()()()()()201820172016101201620172018h h h h h h h h h ++++++-+-+-+-= ()A.0B.2018C.4036D.40379.如图是某几何体的三视图,则该几何体的表面积为()3626+326++ C.6346D.34610.已知向量44sin ,cos 22x x a ⎛⎫= ⎪⎝⎭ ,向量()1,1b = ,函数()f x a b = ,则下列说法正确的是()A.()f x 是奇函数B.()f x 的一条对称轴为直线4x π=C.()f x 的最小正周期为2πD.()f x 在,42ππ⎛⎫⎪⎝⎭上为减函数11.已知双曲线()222109x y b b-=>的左顶点为A ,虚轴长为8,右焦点为F ,且F与双曲线的渐近线相切,若过点A 作F 的两条切线,切点分别为,M N ,则MN =()A.8B.42C.23D.4312.定义在R 上的偶函数()f x 满足()()1f x f x +=-,当[]0,1x ∈时,()21f x x =-+,设函数()()11132x g x x -⎛⎫=-<< ⎪⎝⎭,则函数()f x 与()g x 的图象所有交点的横坐标之和为()A.2B.4C.6D.8二、填空题:本题共4小题,每小题5分,满分20分,将答案填在答题纸上13.抛物线的顶点在原点,焦点在x 轴上,抛物线上的点()2,P a -到焦点的距离为3,则a =.14.甲、乙、丙三个各自独立地做同一道数学题,当他们都把自己的答案公布出来之后,甲说:我做错了;乙说:丙做对了;丙说:我做错了.在一旁的老师看到他们的答案并听取了他们的意见后说:“你们三个人中有一个人做对了,有一个说对了.”请问他们三个人中做对了的是.15.已知实数,x y 满足2202200x y x y x y --≥⎧⎪++≥⎨⎪-≥⎩,若32z x y =-取得最小值时的最优解(),x y 满足()20ax by ab +=>,则4a bab+的最小值为.16.已知,,a b c 分别为ABC ∆的三个内角,,A B C 的对边,3,2a b ==,且227cosB a 4ac b bc =-+,则B =.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.已知数列{}n a 满足:()1122,n n n a a a n n N ++-=+≥∈,且121,2a a ==.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足()*1121,n n n n a b a b n n N ++=≥∈ ,且11b =.求数列{}n b 的通项公式,并求其前n 项和n T .18.某大学导师计划从自己所培养的研究生甲、乙两人中选一人,参加雄安新区某部门组织的计算机技能大赛,两人以往5次的比赛成绩统计如下:(满分100分,单位:分).第一次第二次第三次第四次第五次甲的成绩87878410092乙的成绩10080859590(1)试比较甲、乙二人谁的成绩更稳定;(2)在一次考试中若两人成绩之差的绝对值不大于2,则称两人“实力相当”.若从上述5次成绩中任意抽取2次,求恰有一次两人“实力相当”的概率.19.如图,四棱台1111A B C D ABCD -中,1A A ⊥底面111,3,23,2ABCD A B A A AB AC ====,平面11A ACC ⊥平面11,C CDD M 为1C C 的中点.(1)证明:1AM D D ⊥;(2)若030ABC ∠=,且AC BC ≠,求点A 到平面11B BCC的距离.20.椭圆()2222:10x y C a b a b +=>>的离心率为12,且过点31,2⎛⎫- ⎪⎝⎭.(1)求椭圆C 的方程;(2)设(),P x y 为椭圆C 上任一点,F 为其右焦点,点P '满足()4,0PP x '=-.①证明:PP PF'为定值;②设直线12y x m =+与椭圆C 有两个不同的交点A B 、,与y 轴交于点M .若,,AF MF BF 成等差数列,求m 的值.21.已知函数()a f x x x=+.(1)判断函数()f x 的单调性;(2)设函数()ln 1g x x =+,证明:当()0,x ∈+∞且0a >时,()()f x g x >.(二)选考题:共10分.请考生在22、23两题中任选一题作答,并用2B 铅笔将答题卡上所选题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分;不涂,按本选考题的首题进行评分.22.在平面直角坐标系xOy 中,曲线1C 的参数方程为21x t y t a =⎧⎪⎨=⎪⎩(t 为参数,0a >),在以O 为极点,x 轴的正半轴为极轴的极坐标系中,直线:cos sin 0l b ρθρθ-+=与2:4cos C ρθ=- 相交于A B 、两点,且090AOB ∠=.(1)求b 的值;(2)直线l 与曲线1C 相交于M N 、,证明:22C M C N (2C 为圆心)为定值.23.已知函数()1f x x =+.(1)解关于x 的不等式()210f x x -+>;(2)若函数()()()1g x f x f x m =-++,当且仅当01x ≤≤时,()g x 取得最小值,求()1,2x ∈-时,函数()g x 的值域.试卷答案一、选择题1-5:DABBB 6-10:ACDCD11、12:DB二、填空题13.22±14.甲15.916.6π(或30°)三、解答题17.解:(1)由()*1122,n n n a a a n n N +-=+≥∈知数列{}n a 为等差数列,且首项为1,公差为211a a -=,所以n a n =;(2)∵()121n n nb n b +=+,∴()11112n n b b n n n +=≥+ ,∴数列n b n ⎧⎫⎨⎬⎩⎭是以111b =为首项,12为公比的等比数列,112n n b n -⎛⎫= ⎪⎝⎭,从而12n n n b -=,01221123122222n n n n n T ---=+++++ ,23111231222222nn nn nT --=+++++ ,∴1111112212112nn n n n nn n n T --+=++++-=-=-- ,所以1242n n n T -+=-.18.解:(1)∵90,90x x ==甲乙,2231.6,50S S ==甲乙,22S S <甲乙,∴甲的成绩更稳定;(2)考试有5次,任选2次,基本事件有()87,100和()87,80,()87,100和()84,85,()87,100和()100,95,()87,100和()92,90,()87,80和()84,85,()87,80和()100,95,()87,80和()92,90,()84,85和()100,95,()84,85和()92,90,()100,95和()92,90共10个,其中符合条件的事件有()87,100和()84,85,()87,100和()92,90,()87,80和()84,85,()87,80和()92,90,()84,85和()100,95,()100,95和()92,90共有6个,则5次考试,任取2次,恰有一次两人“实力相当”的概率为63105=,另法:这5次考试中,分数差的绝对值分别为13,7,1,5,2,则从中任取两次,分差绝对值的情况为()()()()()()()()()()13,7,13,1,13,5,13,2,7,1,7,5,7,2,1,5,1,2,5,2共10种,其中符合条件的情况有()()()()()()13,1,13,2,7,1,7,2,1,5,5,2共6种情况,则5次考试,任取2次,恰有一次两人“实力相当”的概率为63105=.19.(1)证明:连接1AC ,∵1111A B C D ABCD -为四棱台,四边形1111A B C D 四边形ABCD ,∴111112A B A C AB AC==,由2AC =得,111A C =,又∵1A A ⊥底面ABCD ,∴四边形11A ACC 为直角梯形,可求得12C A =,又2,AC M =为1CC 的中点,所以1AM C C ⊥,又∵平面11A ACC ⊥平面11C CDD ,平面11A ACC ⋂平面111C CDD C C =,∴AM ⊥平面111,C CDD D D ⊂平面11C CDD ,∴1AM D D ⊥;(2)解:在ABC ∆中,03,2,30AB AC ABC ==∠=,利用余弦定理可求得,4BC =或2BC =,由于AC BC ≠,所以4BC =,从而222AB AC BC +=,知AB AC ⊥,又∵1A A ⊥底面ABCD ,则平面11A ACC ⊥底面,ABCD AC 为交线,∴AB ⊥平面11A ACC ,所以1AB CC ⊥,由(1)知1,AM CC AB AM A ⊥⋂=,∴1CC ⊥平面ABM (连接BM ),∴平面ABM ⊥平面11B BCC ,过点A 作AN BM ⊥,交BM 于点N ,则AN ⊥平面11B BCC ,在Rt ABM ∆中可求得3,15AM BM ==,所以155AN =,所以,点A 到平面11B BCC 的距离为215.20.解:(1)由12c a =得2234a b =,把点31,2⎛⎫- ⎪⎝⎭代入椭圆方程为221914a b +=,∴221913a a +=得24a =,∴23b =,椭圆的标准方程为22143x y +=;(2)由(1)知221,143x y c +==,()()22222111131244442x PF x y x x x x ⎛⎫=-+=--=-+=- ⎪⎝⎭ ,而4PP x '=-,∴2PP PF'= 为定值;②直线12y x m =+与椭圆C 联立,2212143y x m x y ⎧=+⎪⎪⎨⎪+=⎪⎩得2230x mx m ++-=,()2243022m m m ∆=-->⇒-<<,设112211,,,22A x x m B x x m ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭,则21212,3x x m x x m +=-=- ,由①知()()12114,422AF x BF x =-=-,∴21244,122x x mAF BF MF m ++=-=+=+∵,,AF MF BF 成等差数列,∴2AF BF MF +=,即2412m m +=+解得125m =或43m =-,又因为22m -<<,所以43m =-.21.解:(1)因为()()22210a x af x x x x-'=-=≠,①若()0,0a f x '≤>,∴()f x 在()(),0,0,-∞+∞为增函数;②若0a >,则()200f x x a x a '>⇒->⇒<或x a>())2000f x x a a x a x '<⇒-<⇒<≠,∴函数()f x 的单调递增区间为(),,,a a -∞+∞,单调递减区间为()(,a a -;(2)令()()()()ln 10ah x f x g x x x x x =-=+-->,()22211a x x a h x x x x --'=--=,设()20p x x x a =--=的正根为0x ,所以2000x x a --=,∵()1110p a a =--=-<,∴01x >,()h x 在()00,x 上为减函数,在()0,x +∞上为增函数,()()2000000000min00ln 1ln 12ln 2x x ah x h x x x x x x x x x -==+--=+--=--,令()()2ln 21F x x x x =-->,()12120x F x x x-'=-=>恒成立,所以()F x 在()1,+∞上为增函数,又∵()12020F =--=,∴()0F x >,即()min 0h x >,所以,当()0,x ∈+∞时,()()f x g x >.22.(1)解:直线l 和圆2C 的普通方程分别为()220,24x y b x y -+=++=,090AOB ∠=,∴直线l 过圆2C 的圆心()22,0C -,所以20,2b b -+==;(2)证明:曲线()21:0C x ay a =>,可知直线l 的参数方程为22222x t y t ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数)代入曲线1C 得21224022t a t ⎛⎫-++= ⎪ ⎪⎝⎭,21402a a ∆=+>恒成立,设M N 、两点对应的参数分别为12t t 、,则124812t t == ,所以22128C M C N t t == 为定值.2018年唐山市高三年级高考一模数学文科试卷及解析1123.解:(1)2211011x x x x +-+>⇒+>-,①211211x x x x ≥-⎧⇒-<<⎨+>-⎩,②2111x x x φ<-⎧⇒⎨-->-⎩,所以,不等式的解集为{}|12x x -<<;(2)()1111g x x x m x x m x x m m =+++=-+++≥-+++=+,当且仅当()()10x x m -++≥ 时取等号,∴110m ++=,得2m =-,∴()1g x x x =+-,故当()1,2x ∈-时,()21101012112x x g x x x x -+-<<⎧⎪=≤≤⎨⎪-<<⎩,所以()g x 在()1,2x ∈-时的值域为[)1,3.。
2018届高三第一次模拟考试(数学文)
![2018届高三第一次模拟考试(数学文)](https://img.taocdn.com/s3/m/3ea33d33915f804d2b16c178.png)
试卷类型:A江门市2018年高考模拟考试数 学(文科)本试卷共4页,21小题,满分150分。
考试用时120分钟。
注意事项:⒈答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
⒉选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
⒊非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
⒋作答选做题时,请先用2B 铅笔填涂选做题的题号(或题组号)对应的信息点,再作答。
漏涂、错涂、多涂的,答案无效。
⒌考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
参考公式:锥体的体积公式Sh V 31=,其中S 是锥体的底面积,h 是锥体的高. 如果事件A 、B 互斥,那么)()()(B P A P B A P +=+.一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.⒈设函数)1ln()(x x f -=的定义域为M ,xx x g +-=11)(2的定义域为N ,则=N MA.{}0<x xB.{}10≠>x x x 且C.{}10-≠<x x x 且D.{}10-≠≤x x x 且 ⒉若复数()21i a ⋅+(i 为虚数单位)是纯虚数,则实数=aA.1±B.1-C.0D.1⒊已知)(cos 3sin )(R x x x x f ∈+=,函数)(ϕ+=x f y 的图象关于直线0=x 对称,则ϕ的值可以是 A.2π B.3π C.4π D.6π⒋已知)1 , 1(-A 、)1 , 3(B 、)3 , 1(C ,则ABC ∆的BC 边上的高所在直线方程为A.0=+y xB.02=+-y xC.02=++y xD.0=-y x ⒌已知数列{}n a 的前n 项和22+⨯=n n p S ,{}n a 是等比数列的充要条件是A.1=pB.2=pC.1-=pD.2-=p⒍如图1,分别以正方形ABCD 的四条边为直径画半圆,重叠部分如图中阴影区域,若向该正方形内随机投一点,则该点落在阴影区域的概率为图1∙ ∙ ∙ ∙ A.24π- B.22-π C.44π- D.42-π ⒎直线1-=kx y 与曲线x y ln =相切,则k =A.0B.1-C.1D.1±⒏某高中在校学生2000人,高一级与高二级人数相同并都比搞三级多1人.为了响应“阳光体育运动”号召,学校举行了“元旦”跑步和登山比赛活动.每人都参加而且只参与了其中一项比赛,各年级参与比赛人数情况如下表:其中a ∶b ∶2=c ∶3∶5,全校参与登山的人数占总人数的5.为了了解学生对本次活动的满意程度,从中抽取一个200人的样本进行调查,则高二级参与跑步的学生中应抽取A.36人B.60人C.24人D.30人⒐已知a 、b 是两异面直线,b a ⊥,点a P ∉且b P ∉.下列命题中,真命题是 A.在上述已知条件下,一定存在平面α,使α∈P ,α//a 且α//b . B.在上述已知条件下,一定存在平面α,使α∉P ,α⊂a 且α⊥b . C.在上述已知条件下,一定存在直线c ,使c P ∈,c a //且c b //. D.在上述已知条件下,一定存在直线c ,使c P ∉,c a ⊥且c b ⊥.⒑当函数的自变量取值区间与值域区间相同时,我们称这样的区间为该函数的保值区间.函数的保值区间有] , (m -∞、] , [n m 、) , [∞+n 三种形式.以下四个二次函数图象的对称轴是直线l ,从图象可知,有2个保值区间的函数是二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分.㈠必做题(11~13题)⒒如图2,圆心在第二象限,半径为1,并且 与x 、y 轴都相切的圆的方程为 .⒓n S 是等差数列{}n a 的前n 项和,若11=S ,42=S ,则=n a .⒔阅读图3的框图,若输入3=m ,则输出=i . (参考数值:923.62009log 3≈)㈡选做题(14~15题,考生只能从中选做一题) ⒕(坐标系与参数方程选做题)在极坐标系中,直线(cos 2sin 2)20ρθθ-+=被曲线C :2=ρ所截得弦的中点的极坐标为 .⒖(几何证明选讲选选做题)ABCD 是平行四边形,E 、F 分别是AB 、BC 的中点,G AC DE = ,H AC DF = .若BC AB 2=,则ADG ∆与CDH ∆的面积之比=∆∆CDHADG S S.三、解答题:本大题共6小题,满分80分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京市东城区2018年高三总复习练习一数学(文史类)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
第I 卷1至2页。
第II 卷3至8页。
共150分。
考试时间120分钟。
第I 卷 (选择题共60分) 注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上。
3.考试结束,监考人将本试卷和答题卡一并收回。
参考公式:三角函数的和差化积公式2cos2sin2sin sin ϕ-θϕ+θ=ϕ+θ, 2sin2cos 2sin sin ϕ-θϕ+θ=ϕ-θ, 2cos2cos 2cos cos ϕ-θϕ+θ=ϕ+θ, 2sin2sin 2cos cos ϕ-θϕ+θ-=ϕ-θ, 正棱台、圆台的侧面积公式l )c 'c (21S +=台侧其中c ′、c 分别表示上、下底面周长,l 表示斜高或母线长 台体的体积公式h )S S 'S 'S (31V ++=台体其中S ′、S 分别表示上、下底面积,h 表示高第I 卷 (选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.数轴上三点A 、B 、C 的坐标分别为2、3、5,则点C 分有向线段AB 所成的比为 A .23 B .23- C .32 D .32- 2.函数1x 2y +=的反函数为A .)1x (log y 2-=(x>1)B .)1x (log y 2+=(x>-1)C .1x log y 2-=(x>0)D .1x log y 2+=(x>0) 3.若数列}a {n 的前n 项和公式为)1n (log S 3n +=,则5a 等于 A .6log 5 B .56log 3C .6log 3D .5log 3 4.设3x 4)1x (6)1x (4)1x (S 234-+-+-+-=,则S 等于 A .4x B .1x 4+ C .4)2x (- D .4x 4+ 5.函数y=cos(x-1)图象的一个对称中心的坐标是( ) A .)0 12(,+πB .)0 12(,-πC .(π+1,0) D .(π-1,0) 6.两圆04y x 0y 2y x 2222=-+=-+与的位置关系是A .相交B .内切C .外切D .内含7.已知圆台的轴截面是上、下底边长分别为2和4,底角为60°的等腰梯形,则圆台侧面展开图的面积为A .24πB .8πC .6πD .3π8.已知图①中的图象对应的函数为y=f(x),则图②中的图象对应的函数在下列给出的四式中,只可能是A .y=f(|x|)B .y=|f(x)|C .y=f(-|x|)D .y=-f(|x|)9.已知正四棱台1111D C B A ABCD -的上下底面边长分别为2和4,侧棱长为2,则它的一条侧棱1AA 与截面B B DD 11所成角的正弦值为 A .21B .22C .23 D .26 10.已知)23(41sin ππ∈α-=α,,,)223(54cos ππ∈β=β,,,则α+β是A .第一象限角B .第二象限角C .第三象限角D .第四象限角 11.如图,已知多面体ABC-DEFG 中,AB 、AC 、AD 两两互相垂直,平面ABC//平面DEFG ,平面BEF//平面ADGC ,AB=AD=DG=2,AC=EF=1,则该多面体的体积为 A .2 B .4 C .6 D .812.椭圆1by a x 2222=+(a>b>0)的半焦距为c ,若直线y=2x 与椭圆一个交点的横坐标恰为c ,则椭圆的离心率为 A .222- B .2122- C .13- D .12-第II 卷(非选择题共90分) 注意事项:1.第II 卷共6页,用钢笔或圆珠笔直接答在试题卷中。
2.答卷前将密封线内的项目填写清楚。
二、填空题:本大题共4小题,每小题4分,共16分。
把答案填在题中横线上。
13.设复数i 3z i 1z 21+=-=,,则21z z z =在复平面内对应的点位于第__________象限。
14.将抛物线x 4y 2=绕其焦点按逆时针方向旋转90°后,所得抛物线的方程为____________________。
15.空间内五个点中的任意三点都不共线且仅有四个点共面,则这五个点最多可以确定__________个平面。
16.已知集合A 、B 、C ,A={直线},B={平面},C=A ∪B ,若a ∈A ,b ∈B ,c ∈C ,在下列命题中①c //a b c b a ⇒⎩⎨⎧⊥⊥ ②c a b //c b a ⊥⇒⎩⎨⎧⊥ ③c //a b //c b //a ⇒⎩⎨⎧ ④c a b c b //a ⊥⇒⎩⎨⎧⊥正确命题的序号是__________________。
(注:把你认为正确的序号都填上)。
三、解答题:本大题共6小题,共74分。
解答应写出文字说明、证明过程或演算步骤。
17.(本小题满分12分)已知△ABC 中,三内角A 、B 、C 的对边分别为a 、b 、c ,若a 、b 、c 成等差数列, 求证:2CA cos2C A cos2-=+。
18.(本小题满分12分)已知函数)1x (log )x (f 2+=,将y=f(x)的图象向左平移1个单位,再将图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),得到函数y=g(x)的图象。
(I )求y=g(x)的解析式及定义域;(II )求函数F(x)=f(x-1)-g(x)的最大值。
19.(本小题满分12分)在直三棱柱111C B A ABC -中,∠ABC=90°,BC=2,1EB 4CC 11==,。
D 、F 、G 分别为11111C A C B CC 、、的中点,EF 与D B 1相交于H 。
(I )求证:ABD D B 1平面⊥;(II )求证:平面EGF//平面ABD ;(III )求平面EGF 与平面ABD 的距离。
20.(本小题满分12分)已知数列}a {n 是首项为a (a ≠0)的等差数列,其前n 项的和为n S ,数列}b {n 的通项nS b nn =,其前n 项的和为n T 。
(I )用等差数列定义证明数列}b {n 是等差数列; (II )若78T S n n =,求)b a n (lim nn n -∞→的值。
21.(本小题满分12分)运输一批海鲜,可在汽车、火车、飞机三种运输工具中选择。
它们的速度分别为50千米/小时,100千米/小时,500千米/小时,每千米的运费分别为a 元、b 元、c 元,且b<a<c 。
又这批海鲜在运输过程中的损耗为500元/小时。
若使用三种运输工具分别运输时各自的总费用(运费与损耗之和)互不相等。
试确定使用哪种运输工具总费用最省。
(题中字母均为正的已知量) 22.(本小题满分14分) 已知(0,5-)是中心在原点,长轴在x 轴上的椭圆的一个顶点,离心率为23。
(I )求椭圆方程; (II )直线m x 21y +=与椭圆相交于A 、B 两点,椭圆的左右焦点分别为21F F 和,求以21F F 和AB 为对角线的四边形B AF F 21面积的最大值。
参考答案:一、1.B 2.C 3.B 4.A 5.A 6.B 7.C 8.C 9.B 10.B 11.B 12.D 二、 13.四14.)1y (4)1x (2+=-15.7 16.② 三、17.证明:由已知,2b=a+c ………………………………………………………2分 由正弦定理,得4RsinB=2RsinA+2RsinC ………………………………………………………4分 即 2sinB=sinA+sinC2CA cos2C A sin 22B cos 2B sin4-+= 2CA cos2C A sin 22C A sin 2C A cos 4-+=++ ……………………………………10分 02C A sin ≠+2CA cos2C A cos 2-=+∴ …………………………………………………………12分 18.解:(I )由已知,将函数)1x (log y 2+=进行坐标变换⎪⎩⎪⎨⎧→+→2y y 1x x 得)11x (log 2y2++=,)2x (log 2y 2+= )2x (log 2)x (g 2+=∴。
(x>-2) ………………………………………………4分(II ))2x (log 2x log )x (g )1x (f )x (F 22+-=--= (x>0)4x4x 1log )2x (1log 222++=+= …………………………………………6分 ∵x>0, 381log 4x4x 21log )x (F 22-==+⋅≤∴ ……………………………………10分 当且仅当x4x =,即x=2时取等号。
3)2(F )x (F max -==∴。
…………………………………………………………………12分19.(I )证:由直三棱柱的性质,得平面ABC ⊥平面C C BB 11,又由已知,AB ⊥BC , ∴AB ⊥平面C C BB 11。
又C C BB D B 111平面⊂,D B AB 1⊥∴ ……………………………………………………2分由已知,111C B DC CD BC ===在Rt △BCD 与11B DC Rt ∆中可求得︒=∠=∠45DC B BDC 11 则︒=∠90BDB 1,即BD D B 1⊥。
又AB ∩BD=B ,ABD D B 1平面⊥∴。
……………………………………………………4分(II )证:由F B EB 11=,在F EB Rt 1∆中,求得︒=∠︒=∠45DBB 45FEB 11又。
∴EF//BD …………………………………………………………………………………5分 而ABD BD 平面⊂,ABD EF 平面⊄,∴EF ∥平面ABD 。
……………………………………………………………………6分 ∵G 、F 分别为1111C B C A 、的中点,∴AB //GF ,AB //B A ,B A //GF 1111则又………………………………………………7分 而ABD AB 平面⊂,ABD GF 平面⊄,∴GF//平面ABD ………………………………………………8分 ∵EGF EF 平面⊂,F GF EF EGF GF =⊂ ,平面,∴平面EGF//平面ABD ……………………………………………………9分 (III )解:∵ABD D B 1平面⊥,平面EGF//平面ABD 。