建筑结构与受力分析基础
建筑结构的力学分析方法
![建筑结构的力学分析方法](https://img.taocdn.com/s3/m/5a335babafaad1f34693daef5ef7ba0d4b736d74.png)
建筑结构的力学分析方法建筑结构的力学分析方法是建筑工程领域中的重要基础理论之一,它通过对结构物所受力学作用进行分析,确定结构的承载能力和稳定性,为工程设计、施工和使用提供依据。
本文将介绍一些常用的建筑结构力学分析方法,包括受力分析、应力分析和位移分析等。
一、受力分析受力分析是建筑结构力学分析的基础,它通过对结构物受力情况进行研究,确定负荷的作用点、大小和方向。
常用的受力分析方法有静力分析和动力分析。
静力分析是指建筑结构在静止状态下所受的力学作用。
通过对结构物的几何形状和受力情况进行分析,可以计算出各个构件所受的内力和外力。
静力分析常用的方法有受力平衡法和受力分解法。
受力平衡法是根据力的平衡条件,通过分析力的合成与分解,确定结构物各个部分的受力情况。
受力分解法是将外力分解为垂直和水平方向的力,通过分析结构物在不同方向上的受力情况,来求解结构的内力。
动力分析是指建筑结构在受到动力荷载作用下的力学响应。
它主要应用于地震工程和风力工程中。
动力分析的方法有模态分析和响应谱分析。
模态分析是通过对结构物的振动模态进行分析,计算出各个模态的振型、振动频率和振动模态下的内力。
响应谱分析是通过结构物在地震或风荷载作用下的响应谱进行分析,计算出结构物在频率和幅值上的响应。
二、应力分析应力分析是建筑结构力学分析的重要内容,它通过对结构物材料的强度和变形特性进行分析,确定结构的强度和稳定性。
常用的应力分析方法有材料力学和有限元分析。
材料力学是通过应力-应变关系进行分析,计算出结构物在受力下的应力和应变。
常用的应力分析方法有轴力分析、弯矩分析和剪力分析。
轴力分析是研究结构物在受到轴向力作用时的应力分布和承载能力。
弯矩分析是研究结构物在受到弯曲力作用时的应力分布和承载能力。
剪力分析是研究结构物在受到剪切力作用时的应力分布和承载能力。
有限元分析是一种数值计算方法,它将结构物分解为有限个单元,利用数值计算的方法求解结构的应力和应变。
建筑结构与力学模型分析
![建筑结构与力学模型分析](https://img.taocdn.com/s3/m/80dea79285254b35eefdc8d376eeaeaad0f31645.png)
建筑结构与力学模型分析建筑结构在建筑设计中起着至关重要的作用。
通过力学模型的分析,我们可以了解建筑结构所受到的各种力的作用,并对结构的承载能力和安全性进行评估。
本文将以建筑结构与力学模型分析为题,探讨建筑结构的基本原理和力学模型的应用。
一、建筑结构的基本原理建筑结构是指由构件组成的系统,能够承受自身重量以及外部荷载作用下的力和力偶,并将其传递到地基上。
建筑结构的基本原理包括平衡条件、截面强度和变形控制。
1. 平衡条件建筑结构在静力学中必须满足平衡条件。
平衡条件包括转动平衡和受力平衡两个方面。
转动平衡是指结构的每一部分都不发生转动。
受力平衡是指结构的每一部分所受到的外部力和力偶之和等于零。
2. 截面强度截面强度是指结构构件截面所能承受的最大荷载。
截面强度的大小取决于构件材料的性能和构件的几何形状。
常见的截面形状包括矩形、圆形和T形等。
3. 变形控制在设计建筑结构时,需要控制结构的变形,以确保结构的稳定性和使用性能。
变形控制包括两个方面:一是限制结构的最大变形,以防止结构过度变形导致破坏;二是控制结构的变形分布,以保证结构各部分的变形均匀。
二、力学模型的应用力学模型是一种模拟建筑结构受力情况的方法。
通过建立力学模型,可以对结构的力学性能进行分析和评估。
常见的力学模型包括静力模型和动力模型。
1. 静力模型静力模型是基于静力学原理建立的模型,用于分析结构在静力荷载作用下的力学性能。
静力模型的分析可以包括结构的内力、应力分布、变形等方面。
静力模型常用于桥梁、建筑和机械结构等的设计和分析。
2. 动力模型动力模型是基于动力学原理建立的模型,用于分析结构在动态荷载作用下的响应。
动力模型的分析可以包括结构的振动频率、振型、应力和变形等方面。
动力模型常用于地震工程和风工程等领域的设计和分析。
三、建筑结构与力学模型的应用示例为了更好地理解建筑结构与力学模型的应用,以下是一个建筑结构的力学模型分析示例。
假设我们需要分析一座高层建筑的结构。
建筑结构的力学分析
![建筑结构的力学分析](https://img.taocdn.com/s3/m/dddd2bbffbb069dc5022aaea998fcc22bcd143a9.png)
建筑结构的力学分析在建筑设计和施工中,力学分析是一个至关重要的环节。
通过力学分析,我们可以评估建筑结构的稳定性、抗风抗震性能等方面,并确保建筑的安全可靠。
本文将以建筑结构的力学分析为主题,介绍其中的基本原理和方法。
一、力学分析的基础概念力学分析是研究物体受力及其变形规律的学科。
在建筑结构力学分析中,常见的基础概念包括载荷、应力、变形、强度等。
1.载荷载荷是指作用在建筑结构上的外力。
常见的载荷包括自重、风载、地震力、温度变化等。
根据实际情况,我们需要对这些载荷进行准确的估计和分析。
2.应力应力是物体内部受力分布的结果。
在建筑结构力学分析中,应力可分为压应力、拉应力和剪应力等。
通过应力分析,我们可以了解建筑结构在不同载荷下的受力情况。
3.变形变形是指物体在受力作用下发生的形状或尺寸改变。
建筑结构的变形可能会导致结构的破坏或失稳,因此需要对其进行准确的分析和控制。
4.强度强度是指物体抵抗外部力量破坏的能力。
在建筑结构中,强度分析是确保结构安全可靠的重要环节。
通过对材料的强度和结构的受力情况进行分析,可以评估结构的承载能力。
二、建筑结构力学分析的方法建筑结构力学分析的方法多种多样,常见的方法包括静力分析、动力分析和有限元分析等。
1.静力分析静力分析是建筑结构力学分析中最常用的方法之一。
通过分析物体在静力平衡条件下受力和变形的规律,可以得出结构的受力分布、应力状态等信息。
静力分析可以包括静力平衡方程的建立、受力构件的内力计算等步骤。
2.动力分析动力分析是研究物体在动力载荷作用下的受力和变形规律的方法。
在建筑结构力学分析中,动力分析常用于评估建筑结构的抗风抗震性能。
通过建立动力平衡方程和非静力平衡方程,可以分析结构受力响应、共振等问题。
3.有限元分析有限元分析是一种基于数值计算的力学分析方法。
通过将结构划分为有限个小单元,建立结构的刚度矩阵和质量矩阵,并利用适当的边界条件,可以得到结构的受力、变形等信息。
有限元分析是一种高效且准确的力学分析方法,在现代建筑设计中得到广泛应用。
结构的计算简图及受力分析
![结构的计算简图及受力分析](https://img.taocdn.com/s3/m/2cd0c855fbd6195f312b3169a45177232f60e421.png)
结构的计算简图及受力分析3.1 荷载的分类实际的建筑结构由于其作用和工作条件不同,作用在它们上面的力也显示出多种形式。
如图3.1所示的工业厂房结构,屋架所受到的力有:屋面板的自重传给屋架的力,屋架本身的自重,风压力和雪压力以及两端柱或砖墙的支承力等。
图3.1在建筑力学中,我们把作用在物体上的力一般分为两类:一类是主动力,例如重力、风压力等;另一类是约束力,如柱或墙对梁的支承力。
通常把作用在结构上的主动力称为荷载。
荷载多种多样,分类方法各不相同,主要有以下几种分类方法:(1)荷载按其作用在结构上的空间范围可分为集中荷载和分布荷载作用于结构上一点处的荷载称为集中荷载。
满布在体积、面积和线段上的荷载分别称为体荷载、面荷载和线荷载,统称为分布荷载。
例如梁的自重,用单位长度的重力来表示,单位是N/m或kN/m,作用在梁的轴线上,是线荷载。
对于等截面匀质材料梁,单位长度自重不变,可将其称为线均布荷载,常用字母q表示(图3.2)。
当荷载不均匀分布时,称为非均布荷载,如水对水池侧壁的压力是随深度线性增加的,呈三角形分布。
图3.2(2)荷载按其作用在结构上的时间分为恒载和活载恒荷载是指永久作用在结构上的荷载,其大小和位置都不再发生变化,如结构的自重。
活荷载是指作用于结构上的可变荷载。
这种荷载有时存在、有时不存在,作用位置可能是固定的也可能是移动的,如风荷载、雪荷载、吊车荷载等。
各种常用的活荷载可参见《建筑结构荷载规范》。
(3)荷载按其作用在结构上的性质分为静力荷载和动力荷载静力荷载是指荷载从零缓慢增加到一定值,不会使结构产生明显冲击和振动,因而可以忽略惯性力影响的荷载,如结构自重及人群等活荷载。
动力荷载是指大小和方向随时间明显变化的荷载,它使结构的内力和变形随时间变化,如地震力等。
3.2 约束与约束反力1)约束和约束反力的概念所谓约束,是指能够限制某构件位移(包括线位移和角位移)的其他物体(如支承屋架的柱子,见图 3.1)。
建筑结构基础知识
![建筑结构基础知识](https://img.taocdn.com/s3/m/2b4a898f09a1284ac850ad02de80d4d8d15a01b4.png)
建筑结构基础知识建筑结构是指建筑物的骨架,用于支撑和传递荷载,以保证建筑物的稳定性和安全性。
建筑结构设计的基础知识包括结构概念、荷载、设计标准、材料力学等。
一、结构概念1.结构系统:建筑结构可分为框架结构、桁架结构、壳体结构、悬索结构等。
不同结构系统的选择会影响建筑物的空间形式和结构性能。
2.承重原理:结构要能够通过柱、梁、墙等传递荷载到地基上,实现整体的稳定。
常用的承重方式有受压、受拉、受弯等。
3.结构类型:根据主要受力构件的形式和布置,结构可分为框架结构、壳体结构、拉索结构等。
不同类型的结构可满足不同的设计要求。
二、荷载1.重力荷载:指建筑物和其内部设施自身所承受的重量,包括建筑材料、家具、设备等。
2.水平荷载:主要包括风荷载和地震荷载。
风荷载是指建筑物由于风力作用而引起的力,地震荷载是地震活动对建筑物所产生的力。
3.温度荷载:建筑物由于温度变化而引起的荷载,特别是在长跨度的结构中,温度荷载的影响不容忽视。
三、设计标准1.建筑结构设计依据国家和地方相关规范进行,例如中国的《建筑抗震设计规范》、《建筑结构荷载标准》等。
2.标准规定了结构设计所需的技术要求,包括材料的选用、构件的尺寸和截面设计等。
四、材料力学1.结构材料:建筑结构所使用的材料有混凝土、钢材、木材等。
不同的材料具有不同的力学性能和受力特征。
2.材料强度:指材料在外力作用下抵抗破坏的能力。
建筑结构设计中要考虑材料的抗压、抗拉、抗剪等强度指标。
3.梁的受力性能:梁是建筑结构中常用的构件,其受力性能与横截面形状、尺寸、材料特性等相关。
五、结构分析与设计1.结构分析:通过对建筑结构的受力分析,确定结构的内力分布和变形情况,评估结构的稳定性和安全性。
2.结构设计:根据给定的荷载和结构要求,确定结构材料、构件形式和尺寸,达到要求的安全性和使用性能。
总之,建筑结构设计的基础知识包括结构概念、荷载、设计标准、材料力学等。
只有掌握了这些基本原理和方法,才能进行科学合理的建筑结构设计,确保建筑物的稳定性和安全性。
建造师考级建筑结构基础理论
![建造师考级建筑结构基础理论](https://img.taocdn.com/s3/m/aad1a044854769eae009581b6bd97f192279bf1a.png)
建造师考级建筑结构基础理论建造师考级是对建筑行业从业者进行专业能力认定的重要方式之一。
其中,建筑结构基础理论是建造师考试的重要内容之一。
本文将围绕建筑结构基础理论展开论述,帮助考生更好地准备和理解该知识点。
1. 建筑结构基础理论的概述建筑结构基础理论是指建筑结构设计和施工所需要的基本理论知识。
它包括材料力学、结构力学、受力分析、结构设计等内容。
掌握建筑结构基础理论对于建造师考试的顺利通过和日后工作的顺利进行非常重要。
2. 材料力学材料力学是建筑结构基础理论的基础,它主要研究固体材料在受力作用下的变形和破坏规律。
在建筑结构设计中,材料力学的应用涉及到材料的强度、刚度等参数的计算和选择,从而确保结构的安全可靠。
3. 结构力学结构力学是研究结构受力和结构变形规律的学科。
它主要包括静力学、动力学和稳定性等方面内容。
在建筑结构设计中,结构力学的原理和方法被广泛应用于结构的分析和优化,以保证结构在不同荷载作用下的稳定和安全。
4. 受力分析受力分析是建筑结构设计的基本步骤,通过受力分析可以确定结构中各个构件的受力状态和大小。
常见的受力分析方法包括静力学平衡条件、弹性力学理论等。
受力分析的准确与否直接影响到建筑结构的安全性和可靠性。
5. 结构设计结构设计是建筑工程中最关键的环节之一,它是指根据结构需求和设计标准,选取材料和断面尺寸,确定结构的受力性能和变形限值等。
结构设计需要综合考虑结构的安全性、经济性和可操作性等因素,以便满足工程的要求。
6. 建筑结构基础理论的实践应用建筑结构基础理论不仅仅是理论知识,更应该能够灵活应用于实际工程中。
建筑结构基础理论的实践应用包括结构计算、结构分析、结构设计和施工管理等方面。
只有掌握了基础理论,并能够熟练应用于实践,才能够成为一名优秀的建造师。
在准备建造师考试时,建筑结构基础理论是重点和难点之一。
考生需要充分理解并掌握上述内容,并通过大量的习题和实际案例分析进行巩固和实践。
同时,建议考生辅之以参加培训班和模拟考试,以提高考试的通过率。
高层建筑的结构与受力分析
![高层建筑的结构与受力分析](https://img.taocdn.com/s3/m/59698393b8f3f90f76c66137ee06eff9aef849fe.png)
高层建筑的结构与受力分析高层建筑由于其高度较高,所以在设计和施工过程中需要特别重视其结构与受力分析。
本文将对高层建筑的结构和受力分析进行详细探讨。
一、高层建筑的结构类型高层建筑的结构类型多种多样,常见的包括框架结构、筒体结构、剪力墙结构等。
每种结构类型都有其独特的特点和适用范围。
1. 框架结构:框架结构是高层建筑最常见的结构类型之一。
它利用垂直柱和水平梁构成的框架来承担建筑的荷载。
框架结构具有灵活性和适应性,适用于不同形状和高度的建筑。
2. 筒体结构:筒体结构是一种通过建筑物外围的承重墙、柱和板板形成的结构类型。
筒体结构具有较好的抗侧向力能力和稳定性,适用于地震等自然灾害频发的地区。
3. 剪力墙结构:剪力墙结构采用设置剪力墙来承担建筑的纵向荷载,是一种高度抗震的结构类型。
剪力墙结构在地震区域的高层建筑中广泛采用,能够有效地抵抗地震力的作用。
二、高层建筑的受力分析高层建筑的受力分析对于确保建筑物的安全和稳定性至关重要。
在设计和施工过程中,需对各种力的作用进行合理分析和计算。
1. 垂直荷载:高层建筑承受的垂直荷载包括自重荷载和使用荷载。
自重荷载是指建筑本身的重量,而使用荷载是指建筑内外部设施、人员活动等产生的荷载。
设计师需要根据建筑的功能和用途,准确计算垂直荷载的作用。
2. 水平荷载:高层建筑需要考虑到水平荷载,包括风荷载和地震荷载。
风荷载是指风对建筑物表面产生的压力,地震荷载是指地震对建筑物的作用力。
在设计过程中,需根据具体地点的风速和地震烈度,合理计算水平荷载。
3. 温度荷载:高层建筑由于在使用过程中会受到温度的变化而产生热胀冷缩的作用。
设计师需要考虑到温度变化对建筑物的影响,并通过合理的设计和材料选择来减少温度荷载对建筑物的影响。
三、高层建筑结构设计的关键要素高层建筑的结构设计有许多关键要素需要考虑,下面将介绍其中几个重要要素。
1. 强度和稳定性:高层建筑的结构必须具备足够的强度和稳定性,以承受各种荷载的作用。
建筑受力分析及结构设计
![建筑受力分析及结构设计](https://img.taocdn.com/s3/m/216d6c63bf23482fb4daa58da0116c175f0e1ebe.png)
建筑受力分析及结构设计在建筑设计中,受力分析和结构设计是至关重要的步骤。
受力分析是指对建筑材料所承受的多种外力的作用和影响进行科学合理的分析和计算,以找出最佳的材料和结构方案;结构设计则是根据受力分析的结果,选用合适的结构材料和结构体系,确保建筑在长期使用中稳定和安全。
一、受力分析建筑受力分析是建筑设计的首要任务之一。
在受力分析中,需要考虑各种力的作用,包括重力、风力、地震力、荷载和温度变化等因素。
重力是建筑所承受的最重要的负荷。
建筑物本身的质量就是一种重力,楼层之间的荷载传递、地震作用等都是造成建筑物产生重力的原因。
风力也是建筑受力的一个主要因素。
建筑物所受的风压力取决于建筑物的高度和形状、建筑物所处的地理位置以及风速等因素。
地震力是指地震发生时,地表震动产生在建筑物上的作用力。
荷载是指建筑物承受的各种静荷载和动荷载,如人的重量、雪、雨水压力以及交通载荷等。
温度变化也是影响建筑物结构的一个因素,因为温度变化会导致建筑结构的胀缩以及某些构件的膨胀或收缩。
二、结构设计结构设计是建筑受力分析的结果。
在结构设计中,需要选择合适的结构材料和结构体系。
常见的结构材料包括钢筋和混凝土。
钢筋混凝土结构是目前主要使用的一种结构体系。
同时,木材和石材也可以作为结构材料来使用。
悬索结构、拱形结构和桁架结构都是常用的建筑结构体系。
悬索结构是一种基于吊索原理的结构体系,主要利用承载大荷载的高强度钢丝绳或钢缆悬挂载体。
拱形结构是指用石材、钢筋混凝土或钢材构建的弧形结构,可以承受大的荷载并分散压力。
桁架结构是由许多小形杆件组合起来,形成一个稳定的三维结构,被广泛应用于大型建筑的桥梁和体育场馆等。
在结构设计中,需要根据具体情况来选择合适的结构材料和结构体系。
不同的结构体系具有不同的优点和缺点,如悬挂式结构的自重较轻,但是对地基的要求比较高;拱形结构的承载能力强,但是建造成本比较高;桁架结构的高度可以延伸很远,但是气密性和隔热性不如其他结构体系。
建筑结构的静力与动力分析方法
![建筑结构的静力与动力分析方法](https://img.taocdn.com/s3/m/f7ed6d9477eeaeaad1f34693daef5ef7ba0d1206.png)
建筑结构的静力与动力分析方法建筑结构的静力与动力分析是在设计与施工阶段对建筑结构进行力学计算和分析的过程。
静力分析主要研究建筑结构在静力荷载作用下的力学特性,而动力分析则关注建筑结构在动力荷载作用下的响应与稳定性。
本文将介绍建筑结构的静力与动力分析方法。
一、静力分析方法静力分析是建筑设计的基础,通过对建筑结构静力平衡条件的建立和计算,确定建筑结构受力状态和内力分布。
常用的静力分析方法有刚度法和位移法。
刚度法是基于结构刚度矩阵的计算,通过建立结构梁、柱和墙等构件的刚度方程,求解结构的位移和内力。
该方法计算简单,适用于刚性结构。
位移法则是建立结构的位移方程,通过推导结构的位移和内力关系,求解结构的位移和内力。
该方法适用于柔性结构,计算结果更为准确。
二、动力分析方法动力分析是研究建筑结构在地震、风荷载等动力荷载作用下的响应与稳定性。
常用的动力分析方法有响应谱法和时程分析法。
响应谱法是利用结构的动力特性与输入地震波的响应谱进行对比,确定结构的受力响应。
该方法适用于地震荷载作用下的结构设计,其优点是计算简便。
时程分析法是通过数值模拟结构在地震或风荷载作用下的真实时程响应,考虑荷载的历时性与变化特性。
该方法适用于复杂结构的动力分析,计算结果更为精确。
三、静力与动力分析的比较静力分析和动力分析各有其特点,适用于不同的结构设计需求。
在设计过程中,静力分析常用于建筑结构的常规设计,能够满足建筑结构在正常使用荷载下的安全强度要求,计算简单快速。
而动力分析则主要应用于对建筑结构在地震、风荷载等极端荷载下的设计。
它能够更真实地预测结构在这些荷载作用下的响应,提供重要的设计依据。
四、结语建筑结构的静力与动力分析是建筑设计与施工过程中不可忽视的环节。
静力分析与动力分析各有其独特的应用场景,需要根据具体要求进行选择。
合理的分析方法能够为建筑结构的设计与施工提供准确的力学基础,保障建筑的安全与稳定。
通过本文对建筑结构的静力与动力分析方法的介绍,希望读者们对建筑结构的力学计算与分析有更深入的了解,提高设计与施工的质量和安全性。
建筑结构课程总结
![建筑结构课程总结](https://img.taocdn.com/s3/m/0bd579c19f3143323968011ca300a6c30c22f18d.png)
建筑结构课程总结建筑结构课程总结一、引言建筑结构是建筑学中的重要学科,它研究建筑物的力学性能和结构设计原理。
在建筑设计和施工过程中,合理的结构设计是确保建筑物安全可靠的基础。
本文将对我所学习的建筑结构课程进行总结,包括课程内容、教学方法以及对我的影响等方面。
二、课程内容1. 建筑材料与力学基础这一部分主要介绍了常见的建筑材料及其力学性质,包括混凝土、钢材等。
同时还学习了力学基础知识,如受力分析、应力应变关系等,为后续的结构计算打下了基础。
2. 结构静力学在这个模块中,我们学习了静力平衡原理和受力分析方法。
通过分析不同类型的梁、柱和桁架等简单结构,在掌握静力平衡原理的基础上,进一步理解了各种受力情况下的应变和变形规律。
3. 结构稳定性与抗震设计这一部分主要介绍了建筑物的稳定性问题和抗震设计原理。
我们学习了不同类型的结构稳定性分析方法,如弯曲屈曲、撑杆屈曲等。
同时还学习了抗震设计的基本原则和方法,包括地震力计算、结构抗震措施等。
4. 结构设计与计算在这个模块中,我们学习了建筑物的结构设计原理和计算方法。
通过实际案例分析和计算练习,掌握了结构设计的基本过程,包括荷载计算、受力分析、截面选取等。
同时还学习了常见结构体系的设计原则和优化方法。
三、教学方法1. 理论讲授课程以理论讲授为主要教学方法,教师通过清晰明了的语言和图示,向我们介绍建筑结构的基本概念和理论知识。
在讲解过程中,教师注重与实际工程案例的联系,使我们能够更好地理解和应用所学内容。
2. 实例分析在课程中,教师会选取一些典型的建筑工程案例进行详细分析。
通过对实际工程案例进行剖析,我们能够更好地理解结构设计的过程和方法,并且能够将理论知识与实际工程相结合。
3. 计算练习为了提高我们的计算能力和应用能力,课程中设置了大量的计算练习。
通过解决一些典型的结构计算问题,我们能够更好地掌握结构设计的基本原理和计算方法。
4. 实验教学在课程中,我们还进行了一些与建筑结构相关的实验教学。
建筑结构力学的基本原理
![建筑结构力学的基本原理](https://img.taocdn.com/s3/m/38d3f19aa48da0116c175f0e7cd184254a351b6d.png)
建筑结构力学的基本原理建筑结构力学是建筑工程中非常重要的一门学科,它涉及到建筑物在各种力的作用下的力学行为和结构的稳定性。
在本文中,我将介绍建筑结构力学的基本原理,包括受力分析、静力学平衡、应力和变形等方面。
一、受力分析在建筑结构力学中,受力分析是最基本、最重要的一步。
通过受力分析,我们可以确定建筑物内外部的力和力的作用方向。
在进行受力分析时,需要考虑建筑物所受到的各种内力和外力,如重力、风力、地震力等。
通过分析这些力的作用,可以确定建筑物的受力状态。
二、静力学平衡静力学平衡是建筑结构力学中的基本原理之一。
根据静力学平衡原理,一个物体在静止或平衡状态下,必须满足合力为零和合力矩为零的条件。
对于建筑物来说,这意味着建筑物的各个部分受力平衡,不会出现倾覆或崩塌的情况。
三、应力和变形在建筑结构力学中,应力和变形是研究建筑物在受力作用下的基本原理。
应力是指物体受到力的作用而产生的内部分子间的相互作用力,它包括正应力和剪应力。
变形是应力作用下物体形状和尺寸的改变,包括线性变形和角度变形。
建筑结构力学的目的就是研究建筑物在受力作用下的应力分布和变形情况,以确保建筑物的结构安全可靠。
四、材料强度和刚度在建筑结构力学中,材料的强度和刚度是重要的基本原理。
材料的强度表示材料能够承受的最大应力,而刚度表示材料在受力下的抵抗能力。
建筑物的结构设计必须考虑材料的强度和刚度,以确保建筑物在受力作用下不会超出材料的承受能力。
五、结构稳定性建筑结构力学的最终目标是确保建筑物的结构稳定性。
结构稳定性是指建筑物在受力作用下保持平衡、不发生倒塌或崩溃的能力。
通过合理的结构设计和力学分析,可以保证建筑物在正常使用和极端情况下的结构稳定性。
总结:建筑结构力学涉及到建筑物在各种力的作用下的力学行为和结构的稳定性。
受力分析、静力学平衡、应力和变形、材料强度和刚度以及结构稳定性是建筑结构力学的基本原理。
通过理解和应用这些原理,可以确保建筑物的结构安全可靠。
建筑力学与结构教案
![建筑力学与结构教案](https://img.taocdn.com/s3/m/2159dff064ce0508763231126edb6f1aff007139.png)
建筑力学与结构教案一、课程概述本课程是建筑学专业的基础课程之一,旨在使学生全面了解建筑力学与结构的基本原理和设计方法,掌握建筑结构的受力、稳定和变形性能,培养学生的结构思维和设计能力。
二、教学目标1.理解建筑力学与结构的基本概念和基本原理;2.学会应用静力学方法分析建筑结构的受力、稳定和变形性能;3.掌握建筑结构的设计方法和计算原理;4.培养学生的结构思维和设计能力。
三、教学内容1.建筑力学基础知识1.1力的基本概念和法则1.2受力分析方法1.3平衡条件1.4物体静力学平衡条件1.5力的合成与分解2.杆件与杆系2.1杆件的基本性质2.2杆件的变形与位移2.3质点力系和杆系的受力分析2.4共线力与力的平衡2.5不共线力与力的分解3.梁3.1悬臂梁和简支梁的受力分析3.2梁的受力图3.3梁的内力和切线方程3.4梁的受力计算和设计4.柱与墙4.1柱和墙的基本概念4.2柱和墙的受力分析4.3柱和墙的设计计算5.桁架和组合结构5.1桁架的基本概念和分类5.2桁架的受力分析和设计5.3组合结构的受力分析和设计四、教学方法1.授课方法:理论讲授和案例分析相结合,注重理论与实践的结合,教师通过讲解基本概念和原理,引导学生思考和分析解决实际问题。
2.实践环节:通过实验室实验和实际建筑结构的观察,让学生亲自感受结构的受力和变形过程,加深对理论知识的理解。
3.讨论研究:鼓励学生在小组中进行课程内容的讨论和学术交流,培养学生的团队合作和问题解决的能力。
五、教学评估方式1.平时表现:对学生的课堂参与情况、作业完成情况、实验报告等进行评估。
2.期中考试:针对学生掌握教材基本知识和理解能力进行考核。
建筑结构与受力分析 之 梁板结构
![建筑结构与受力分析 之 梁板结构](https://img.taocdn.com/s3/m/a645a3f351e79b8968022698.png)
三、单向板肋梁楼盖
2.荷载的计算
板的负荷 面积
主梁集中荷载的 负荷面积
次梁 的负 荷面 积
次梁的 间距
次梁
主梁
柱
此力分析 梁时不要, 设计柱时 不能丢!
板
主梁
1m 次梁
三、单向板肋梁楼盖
2.荷载的计算
注意!!!
若楼面梁的从属面积较大,计算梁所受 的荷载时,应在活荷载标准值前乘以一 0.6~1.0的折减系数。
楼盖的一般形式
无柱帽
有柱帽
五、无梁楼盖
1. 无梁楼盖的形式和破坏特征
楼盖的一般形式
*装配式:柱子插
入基础浇地坪分 层浇楼板分阶段提 升至相应标高临时 固定浇柱帽形成整 体(升板结构)
群柱失稳
*现浇式
五、无梁楼盖
1. 无梁楼盖的形式和破坏特征
楼盖的破坏特征
*破坏特征
五、无梁楼盖
3. 板截面设计和构造要求
* 纵向钢筋的布置按内力包罗图
* 主、次梁相交处的附加箍筋
Fl
Fl
Fl
Fl
直接受剪
间接受剪
三、单向板肋梁楼盖
5. 单向板肋梁楼盖的截面设计和构造
主梁的设计要点(附加横向钢筋)
Fl 2 f y Asb sin mnf yv Asv1
优先选用箍筋
五、无梁楼盖
1. 无梁楼盖的形式和破坏特征
高跨比 h / l中的 h为肋高 板厚:当肋间距≤700mm,
h ≥40mm
当肋间距>700mm,h ≥50mm
板的悬臂长度≤500mm,h ≥60mm 板的悬臂长度>500mm,h ≥80mm
h≥150mm
三、单向板肋梁楼盖
建筑结构计算基本原则
![建筑结构计算基本原则](https://img.taocdn.com/s3/m/4850bac570fe910ef12d2af90242a8956becaad1.png)
建筑结构计算基本原则建筑结构计算是建筑设计中的重要环节,它涉及到建筑物的稳定性、安全性和可靠性等方面。
为了确保建筑物的结构能够经受住各种外力作用,并保持稳定和安全,建筑结构计算需要遵循一些基本原则。
一、受力分析原则在进行建筑结构计算时,首先需要进行受力分析。
受力分析是指对建筑物受力情况进行研究和分析,确定各个结构构件所承受的力的大小、方向和作用点等。
只有通过准确的受力分析,才能为后续的结构计算提供准确的依据。
二、结构选型原则建筑结构的选型是指在受力分析的基础上,选择合适的结构形式和结构材料,以满足建筑物的使用要求和经济性要求。
在进行结构选型时,需要考虑建筑物的自重、荷载情况、建筑物所处的地理环境等因素,选择适合的结构形式,如框架结构、桁架结构、拱结构等,并选用合适的结构材料,如混凝土、钢材、木材等。
三、静力平衡原则静力平衡是指在建筑物受到各种外力作用时,结构内部各个构件之间的力达到平衡状态。
在进行建筑结构计算时,需要通过静力平衡原理,来确定结构内部各个构件之间的力的平衡关系,并满足结构的稳定性和安全性要求。
四、极限状态设计原则在建筑结构计算中,需要考虑建筑物在极限状态下的荷载作用,即考虑结构在设计寿命内所能承受的最大荷载。
根据国家相关标准和规范的要求,进行荷载组合和调整,确保建筑物在极限荷载作用下的结构稳定和安全性。
五、安全系数原则为了确保建筑物在使用寿命内能够保持结构的稳定和安全性,建筑结构计算中需要引入安全系数。
安全系数是指在设计过程中对设计荷载进行调整的一个比值,它考虑了结构荷载的不确定性和结构材料的强度参数的分散性,以保证结构的安全性。
六、符合规范原则建筑结构计算需要符合国家相关标准和规范的要求。
国家相关标准和规范对建筑结构的设计、计算、荷载标准等方面都有详细的规定,建筑师和结构工程师在进行结构计算时,必须遵守这些规范要求,确保建筑物的结构计算能够满足相关标准和规范的要求。
总结:建筑结构计算是保证建筑物稳定和安全的基本环节。
建筑力学
![建筑力学](https://img.taocdn.com/s3/m/8456223d10661ed9ad51f381.png)
建筑构件受力分析教学讲义第一篇建筑静力学基础引言同时作用在物体或物体系统上的一群力称为力系。
力学分析中,在不改变力系对物体作用效果的前提下,用一个简单的力系来代替复杂的力系,就称为力系的合成(力系的简化)。
对物体作用效果相同的力系称为等效力系。
物体在力系作用下,相对于地球静止或作匀速直线运动,称为平衡。
作用于物体上的力使物体处于平衡状态,则称该力系为平衡力系。
第一章力与力的性质1.1 力的基本概念1.1.1 刚体的概念在外力作用下,几何形状、尺寸的变化可忽略不计的物体。
1.1.2 力的概念力是物体之间相互的机械作用,这种作用使物体的机械运动状态发生改变,或使物体产生变形。
力使物体的运动状态发生改变的效应称为外效应,而使物体发生变形的效应称为内效应。
刚体只考虑外效应;变形固体还要研究内效应。
力的三要素力对物体的作用效果取决于力的三要素:(1)力的大小是物体相互作用的强弱程度。
在国际单位制中,力的单位为牛顿(N)或千牛顿(kN)。
(2)力的方向包含力的方位和指向两方面的涵义。
(3)力的作用点是指物体上承受力的部位。
力的作用位置实际上有一定的范围,当作用范围与物体相比很小时,可以近似地看作是一个点。
★1.2 静力学公理1.2.1 二力平衡公理F ABBFA图 2-1==(a)(b)(c)图 2-6作用在一个物体上的两个力,使该物体处于平衡状态的必要和充分条件是:这两个力的大小相等、方向相反、作用在同一条直线上。
注意:1、适用条件:刚体2、在两个力作用下平衡的杆件称为二力构件1.2.2 加减平衡力系公理在作用于某物体的力系中,加入或减去一个平衡力系,并不改变原力系对物体的作用效果。
推论(力的可传递性原理):作用于物体上的力可沿其作用线移到物体的任一点,而不改变力对物体的作用效果。
注意:1、适用条件:刚体。
1.2.3 作用与反作用公理两个物体的作用力与反作用力总是同时存在,它们大小相等,方向相反,沿同一直线,分别作用在两个物体上。
建筑结构中的受力分析方法
![建筑结构中的受力分析方法](https://img.taocdn.com/s3/m/a6a4e6690166f5335a8102d276a20029bd646393.png)
建筑结构中的受力分析方法在建筑结构中,受力分析是一项至关重要的任务。
它通过对各种受力因素的深入研究和分析,来确保建筑物在正常使用和特殊情况下的安全性和稳定性。
本文将介绍建筑结构中常见的受力分析方法,并探讨它们的应用。
一、静力学方法静力学方法是最基础和常用的受力分析方法之一。
它假设结构在受力过程中处于静止状态,不考虑时间因素和动态影响。
静力学方法主要包括受力平衡方程和杆系分析。
1. 受力平衡方程受力平衡方程是基础的受力分析工具。
它根据牛顿力学定律,通过平衡力的大小和方向来描述结构的受力状态。
在受力平衡方程中,通常需要考虑外力、内力和支座反力等因素,以确保结构在各个方向上处于平衡状态。
2. 杆系分析杆系分析是一种将结构简化为杆件的方法。
它通过将复杂结构分解为杆件系统,并对每个杆件进行受力分析,来研究结构的整体受力行为。
杆系分析可以用于分析梁、柱、桁架等结构,并结合受力平衡方程进行综合分析。
二、有限元法有限元法是一种数值计算方法,广泛应用于复杂结构的受力分析。
它将结构划分为小的单元,并建立该单元与其相邻单元之间的力学关系方程。
通过求解这些方程,可以得到结构的受力分布情况。
有限元法的优势在于可以考虑结构的非线性和动态特性,并且适用于各种复杂边界条件和荷载情况。
在实际应用中,有限元法广泛用于建筑物的承载力分析、振动分析以及变形分析等方面。
三、弹性力学方法弹性力学方法是一种基于弹性力学理论的受力分析方法。
它假设结构具有线弹性行为,并通过弹性力学理论建立结构的受力方程。
弹性力学方法主要包括应力分析、弹性平衡方程和变形分析。
1. 应力分析应力分析是利用应力张量和变形张量来描述结构受力状态的方法。
它通过计算各个点的应力大小和方向,来研究结构的应力分布情况。
应力分析可以用于分析结构的强度和稳定性等关键参数。
2. 弹性平衡方程弹性平衡方程是基于弹性力学理论和受力平衡原理的方程。
它通过平衡结构的内力和外力,来确定结构的静态平衡状态。
结构的计算简图及受力分析—荷载的简化(建筑力学)
![结构的计算简图及受力分析—荷载的简化(建筑力学)](https://img.taocdn.com/s3/m/b2ed377c42323968011ca300a6c30c225901f038.png)
3 按荷载作用的范围分 分布荷载 满布在结构的整个体积内或表面上的的荷载
体积分布荷载,N/m3或kN/m3 作用于整个体积内的分布荷载——结构自重
面分布荷载,N/m2或kN/m2 作用于结构表面的分布荷载——压力
集中荷载 当荷载的分布范围面积远小于结构的尺寸时,则可认为此荷载作 用在结构的一点。单位是N,常用字母F表示。
荷载的分类
荷 载:作用在结构上的主动力 荷载与支座反力都是其他物体作用在结构上的力,统称为作用在结构上的外力。 在外力作用下,结构内各构件之间将产生相互作用的力——内力。 结构或构件的承载能力都直接与内力有关,而内力又是由外力所引起和确定的。 在结构设计中,首先要分析和计算作用在结构上的外力,然后计算结构的内力。 因此,确定结构所受的荷载是对进行受力分析的前提,必须慎重对待。 如将荷载估计过大,则设计的结构尺寸将偏大,造成浪费;如将荷载估计过小, 则设计的结构不够安全。
荷载的分类
在工程实际中,结构所受到的荷载是多种多样的,为了便于分析,将从不 同的角度对荷载进行分类。 1 按作用在结构上的时间分 恒 载 ——长期作用在结构上的不变荷载
恒载的大小和作用位置都不发生变化。如结构的自重、土压力、预应力等。
活 载 ——暂时作用在结构上的可变荷载。 如列车、汽车、吊车、人群、风、雪荷载等。
荷载的简化
作用于实际结构上的荷载可分为体积力和表面力两大类 体积力是作用在构件整个体积内每一点处的,如自重或惯性力等。 表面力则是由其他物体通过接触面传给结构的作用力,如土压力、车辆的轮压力等。 在杆系结构的计算简图中,将杆件简化为轴线,因此不管是体积力还是表面力都简 化为作用在轴线上的力。 荷载按分布情况可简化成线分布荷载、集中荷载和集中力偶。
建筑工程的结构力学分析
![建筑工程的结构力学分析](https://img.taocdn.com/s3/m/ec0ed658c4da50e2524de518964bcf84b9d52dce.png)
06
结论与展望
结构力学在建筑工程中的重要性
确保结构安全
结构力学分析能够评估结构的承载能力和稳定性,预防因结构缺 陷引发的安全事故。
结构优化设计方法
尺寸优化
根据结构承载能力和稳定性要求 ,优化各构件的尺寸,以达到最 佳的承载效果和最小的材料用量 。
形状优化
改变结构的形状,如梁的截面形 状、柱的高度等,以改善结构的 受力性能,提高稳定性。
拓扑优化
在给定的设计区域内,通过优化 结构的布局和连接方式,寻找最 优的结构形式。
结构可靠性分析
04
结构稳定性与优化设计
结构稳定性分析
静力稳定性分析
通过计算结构在静力作用下的反应, 评估其稳定性。包括对结构的支撑、 拉力、压力等进行分析,确保结构在 各种工况下都能保持稳定。
动力稳定性分析
考虑地震、风等动态因素对结构稳定 性的影响,通过模拟地震波、风载等 作用下的结构响应,评估结构的抗震 、抗风能力。
悬索结构的分析
悬索结构的定义
悬索结构是一种由一系列悬索和吊索 组成的结构形式,主要承受竖向和水 平荷载。
悬索结构的受力特点
悬索结构的受力特点是竖向荷载通过 吊索传递至锚固点,水平荷载则通过 悬索的弯曲变形传递。因此,悬索结 构的侧向刚度较小,容易产生侧向位 移。
悬索结构的分析方法
悬索结构的分析方法主要包括静力分 析和动力分析。静力分析主要研究结 构在恒载、活载和雪载等静力作用下 的内力和变形;动力分析主要研究结 构在地震、风载等动力作用下的响应 。由于悬索结构具有较大的弯曲变形 和振动特性,因此在进行静力分析和 动力分析时需要考虑锚固点和吊索的 约束条件。
建筑结构与受力分析PPT(共 81张)
![建筑结构与受力分析PPT(共 81张)](https://img.taocdn.com/s3/m/aca4d0e6f121dd36a32d82dc.png)
第一节 一般构造要求
受弯构件:
pp
同时受到弯矩 M
lll
和剪力V 共同作用, 而N
可以忽略的构件。
M
pl
V
p
一、截面形式
受弯构件截面类型:梁、板
(a)
(b)
(c)
(d)
(e)
(f)
(g)
二、截面尺寸
应满足承载力极限状态 和正常使用极限状态
1、矩形截面和T形截面梁高h和梁宽b
4、梁的纵向构造钢筋
(一)架立钢筋
架立钢筋的直径,当梁的跨度小于4m时,不宜小于8mm; 当梁的跨度为4~6m时,不宜小于10mm;当梁的跨度大于6m 时,不宜小于12mm。
(二)梁侧构造钢筋及拉结钢筋
当梁的腹板高度hw≥450mm时,在梁的两个侧面应沿高度配置纵 向构造钢筋,每侧纵向构造钢筋的截面面积不应小于腹板截面面 积bhw的0.1%,其间距不宜大于200mm。 梁侧的构造钢筋应以拉结筋相连,拉结筋直径一般与箍筋相同, 间距为500~700mm,常取箍筋间距的整数倍。
板的高跨比(h/l0)
简支 连续
单向板
≥1/35 ≥1/40
双向板
≥1/45 ≥1/50
悬臂板
- ≥ 1/12
三、混凝土保护层
净距30mm 钢筋直径1.5d
净距25mm
b
钢筋直径d
c
c
h h0=h-60
c25mm d
c
净距25mm 钢筋直径d
h h0=h-35
b
四、纵向受力钢筋
1、配筋率
As
bh0
h0
h
As b
纵向受力钢筋截面面积As与 截面有效面积bh0 的百分比
建筑结构力学问题的数学建模与分析
![建筑结构力学问题的数学建模与分析](https://img.taocdn.com/s3/m/2015e026f4335a8102d276a20029bd64783e622a.png)
建筑结构力学问题的数学建模与分析建筑结构力学问题的数学建模与分析一直是建筑工程领域的重要研究方向。
通过数学建模,可以更好地了解和分析建筑结构在受力状态下的性能和行为。
本文将从数学建模的角度出发,探讨建筑结构力学中的一些典型问题及其分析方法。
一、弹性力学模型的建立弹性力学模型是建筑结构力学问题中最为基础和常用的模型之一。
弹性力学模型的建立涉及到材料力学的知识,以及应力、应变和位移之间的关系。
通过建立弹性力学模型,可以分析建筑结构在受力过程中的变形和应力分布情况,进而评估其受力性能和安全性。
以简支梁为例,假设其材料为线弹性材料,可以通过弹性模量和横截面惯性矩等参数来描述材料的力学性质。
根据杨氏弹性模量、横截面积和长度等参数,可以建立梁的弹性力学模型,并通过数学方程来描述其受力状态和变形情况。
进一步分析这些方程的解及其特征,可以得到梁的应力分布、挠度和刚度等重要参数,为建筑设计和工程施工提供理论依据。
二、静力平衡的模拟与分析静力平衡是建筑结构力学分析的重要基础,通过建立静力平衡方程可以分析建筑结构受力平衡的条件和力学性能。
在实际工程中,建筑结构的受力分析常常涉及到多个力和力矩的作用,通过建立力的叠加原理和力矩的平衡条件,可以完成对建筑结构受力平衡的模拟与分析。
以三维空间中的刚性结构为例,可以分析力和力矩的平衡条件,建立受力平衡方程组,并通过求解方程组得到未知力和力矩的数值。
通过受力分析可以得到结构的受力平衡状态,以及各个节点和构件的内力分布情况。
这对于建筑结构设计和工程施工具有指导意义,可以保证结构在受力状态下的稳定性和安全性。
三、振动问题的数学建模与分析振动问题是建筑结构力学分析中的一个重要问题,通过数学建模和分析可以描述结构在振动状态下的动力特性和响应行为。
在地震、风荷载等自然灾害或外力的作用下,建筑结构的振动特性对于工程安全至关重要。
以简谐振动为例,可以通过建立质点和弹簧的等效模型,以及考虑振动阻尼的影响,建立建筑结构振动问题的数学模型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
现浇柱的基础中的插筋构造示意图
柱下条形基础
当上部结构荷载较大、地基土的承载力较低时,采用无筋 扩展基础或扩展基础往往不能满足地基强度和变形的要求。为 增加基础刚度,防止由于过大的不均匀沉降引起的上部结构的 开裂和损坏,常采用柱下条形基础。
根据刚度的需要,柱下条形基础可沿纵向设置,也可沿纵 横向设置而形成双向条形基础,称为交梁基础。
筏形基础,特别是梁板式筏形基础整体刚度较 大,能很好地调整不均匀沉降,常用于高层建筑中。
筏形基础的混凝土强度等级不应低于C30。 采用筏形基础的地下室应沿四周布置钢筋混凝 土外墙,外墙厚度不应小于250mm,内墙厚度不应 小于200mm。 筏形基础的钢筋间距不应小于150mm,宜为 200~300mm,受力钢筋直径不宜小于12mm。
为保证基础的安全,必须限制基础内的拉应 力和剪应力不超过基础材料强度的设计值。
基础设计时,通过基础构造的限制来实现这一 目标,即基础的外伸宽度与基础高度的比值应小 于规范规定的台阶宽高比的允许值。
由于此类基础几乎不可能发生挠曲变形,所以 常称为刚性基础或刚性扩大基础。
无筋扩展基础可用于6层和6层以下 (三合土基础不宜超过4层)的民用建 筑和轻型厂房。
梁板式筏基的底板与基础梁的配筋除满足计算 要求外,纵横方向的底部钢筋还应有1/2~1/3贯 通全跨,其配筋率不应小于0.15%,顶部钢筋按计算
当筏板的厚度大于2000mm时,宜在板厚中间部 位设置直径不小于12mm、间距不大于300mm的双向 钢筋网。
地下室底层柱、剪力墙与梁板式筏基的基础梁 连接的构造
(8)现浇柱的基础,其插筋数量、直径以及钢筋 种类应与柱内纵向受力钢筋相同,插筋的锚固长度 应满足上述要求。当符合下列条件之一时,可将四 角的插筋伸至底板钢筋网上,其余插筋锚固在基础 顶面下la或laE
扩展基础
(a)钢筋混凝土条形基础;(b)现浇独立基础;(c)预制杯形基础
扩展基础底板受力钢筋布置示意图
箱形基础的顶板和底板纵横方向支座钢筋尚应 有1/3~1/2的钢筋连通,且连ห้องสมุดไป่ตู้钢筋的配筋率分别不 小于0.15%(纵向)、0.10%(横向),跨中钢筋按 实际需要的配筋全部连通。
箱形基础的顶板、底板及墙体均应采用双层双 向配筋。
上部结构底层柱纵向钢筋伸入箱形基础墙体的 长度应符合下列要求:
如果柱网下的地基土较软弱,土的压缩性或柱荷载的分布 沿两个柱列方向都很不均匀,则可采用交梁基础。该基础形式
构造要求:
①柱下条形基础梁的高度宜为柱距的1/4~1/ 8。翼板厚度不应小于200mm。当翼板厚度 大于250mm时,宜采用变厚度翼板,其坡度宜小于 或等于1∶3
②柱下条形基础的两端宜向外伸出,其长度宜 为第一跨度的0.25倍;既可增大基础底面积,又可使 基底反力分布比较均匀、基础内力分布比较合理。
柱下条形基础
(a)柱下单向条形基础;(b
高层建筑筏形基础
当地基特别软弱,上部荷载很大,用交梁基础 将导致基础宽度较大而又相互接近时,或有地下室,
筏形基础可分为墙下筏形基础和柱下筏形基础。 柱下筏形基础常有平板式和梁板式两种。平板式筏 形基础是在地基上做一块钢筋混凝土底板,柱子通 过柱脚支承在底板上;梁板式筏形基础分为下梁板 式和上梁板式,下梁板式基础底板上面平整,可作
(1)柱、墙的边缘至基础边缘的距离不应小于 50mm
(2)当交叉基础梁的宽度小于柱截面的边长时, 交叉基础梁连接处应设置八字角,柱角与八字角之 间的净距不宜小于50mm
(3) (4)基础梁与剪力墙的连接,可按采用。
筏形基础
(a)墙下筏形基础;(b)平板式柱下筏形基础; (c)下梁板式柱下筏形基础;(d)
(6)钢筋混凝土条形基础底板在T形及十字形交接 处,底板横向受力钢筋仅沿一个主要受力方向通长 布置,另一个方向的横向受力钢筋可布置到主要受 力方向底板宽度的1/4处。在拐角处底板横向受力
(7)钢筋混凝土柱和剪力墙纵向受力钢筋在基础 内的锚固长度la应根据钢筋在基础内的最小保护层厚 度按《混凝土规范》有关规定确定。
无筋扩展基础
(a)砖基础;(b)毛石基础;(c)灰土基础; (d)毛石混凝土基础、混凝土基础
扩展基础
扩展基础是指柱下钢筋混凝土独立基础和墙下 钢筋混凝土条形基础。这种基础抗弯和抗剪性能良 好,特别适用于“宽基浅埋”或有地下水时。
由于扩展基础有较好的抗弯能力,通常被看作 柔性基础。这种基础能发挥钢筋的抗弯性能及混凝 土抗压性能,适用范围广。
③现浇柱与条形基础梁的交接处,其平面尺寸
④条形基础梁顶部和底部的纵向受力钢筋除满 足计算要求外,顶部钢筋按计算配筋全部贯通,底 部通长钢筋不应少于底部受力钢筋截面总面积的1/ 3
⑤柱下条形基础的混凝土强度等级不应低于C20 ⑥基础垫层和钢筋保护层厚度、底板钢筋的部 分构造要求可参考扩展基础的规定。
高层建筑箱形基础
箱形基础是由底板、顶板、钢筋混凝土纵横隔 墙构成的整体现浇钢筋混凝土结构。
箱形基础具有较大的基础底面、较深的埋置深 度和中空的结构形式,上部结构的部分荷载可用开 挖卸去的土的重量得以补偿。与一般的实体基础比 较,它能显著地提高地基的稳定性,降低基础沉降
箱形基础的混凝土强度等级不应低于C30 箱形基础外墙宜沿建筑物周边布置,内墙沿上 部结构的柱网或剪力墙位置纵横均匀布置,墙体水 平截面总面积不宜小于箱形基础外墙外包尺寸的水 平投影面积的1/10。 无人防设计要求的箱基,基础底板不应小于 300mm,外墙厚度不应小于250mm,内墙厚度不应 小于200mm,顶板厚度不应小于200mm
(1)锥形基础的边缘高度不宜小于200mm;阶梯 形基础的每阶高度宜为300~500mm
(2)垫层的厚度不宜小于70mm;垫层混凝土强度 等级应为C10
(3)扩展基础底板受力钢筋的最小直径不宜小于 10mm;间距不宜大于200mm,也不宜小于100mm。
(4)钢筋混凝土强度等级不应小于C20
(5)当柱下钢筋混凝土独立基础的边长和墙下钢 筋混凝土条形基础的宽度大于或等于2.5m 时,底 板受力钢筋的长度可取边长或宽度的0.9倍,并宜交