离散数学课件初等数论 共23页
合集下载
离散数学关系-PPT
离散数学关系
基本要求和重难点:
• 基本要求
了解序偶与笛卡尔积,掌握关系得性质和运算,重 点掌握关系闭包运算得求法和偏序关系及哈斯图 得正确画法。
• 重难点
关系5种性质得判断,关系得闭包运算和偏序关系 得性质及特殊元素得判断。
引言
日常生活中,大家熟知一些常见关系, 例:家庭集合,有父子关系、夫妻关系等。 全校同学作为一个集合,有同班关系,同组关系。 在计算机科学中,在计算机逻辑设计中,应用了等 价关系,相容关系。 在编译原理、关系数据库、数据结构、数学中也有 关系。
例题
返回第5、3节目录
五、传递性例题
例: A={1,2,3,4} R={<1,4>,<4,3>,<1,3>,<3,1>,<1,2>,<3,2>,<2,3>, <4,2>,<1,1>,<3,3>} R不就是传递得
返回传递性
返回第5、3节目录
六、举 例
自反性 反自反性 对称性 反对称性 传递性
任何集合上得
返回总目录
一、自反性
自反性
定义: 若xA,均有xRx,那么称R就是自反得。
A上关系R就是自反得x(xA xRx)
在关系矩阵中,反映为主对角线元素均为1 在关系图中,反映为每结点都有自回路 例1: A={1,2,3},R={<1,1>,<2,2>,<3,3>,<1,2>}
1 23
例2:“=”关系和“≤”关系就是自反得吗?
S={<4,2>,<2,5>,<3,1>,<1,3>}
基本要求和重难点:
• 基本要求
了解序偶与笛卡尔积,掌握关系得性质和运算,重 点掌握关系闭包运算得求法和偏序关系及哈斯图 得正确画法。
• 重难点
关系5种性质得判断,关系得闭包运算和偏序关系 得性质及特殊元素得判断。
引言
日常生活中,大家熟知一些常见关系, 例:家庭集合,有父子关系、夫妻关系等。 全校同学作为一个集合,有同班关系,同组关系。 在计算机科学中,在计算机逻辑设计中,应用了等 价关系,相容关系。 在编译原理、关系数据库、数据结构、数学中也有 关系。
例题
返回第5、3节目录
五、传递性例题
例: A={1,2,3,4} R={<1,4>,<4,3>,<1,3>,<3,1>,<1,2>,<3,2>,<2,3>, <4,2>,<1,1>,<3,3>} R不就是传递得
返回传递性
返回第5、3节目录
六、举 例
自反性 反自反性 对称性 反对称性 传递性
任何集合上得
返回总目录
一、自反性
自反性
定义: 若xA,均有xRx,那么称R就是自反得。
A上关系R就是自反得x(xA xRx)
在关系矩阵中,反映为主对角线元素均为1 在关系图中,反映为每结点都有自回路 例1: A={1,2,3},R={<1,1>,<2,2>,<3,3>,<1,2>}
1 23
例2:“=”关系和“≤”关系就是自反得吗?
S={<4,2>,<2,5>,<3,1>,<1,3>}
《离散数学图论》课件
最短路径问题
实现方法:使用 队列数据结构, 将起始节点入队, 然后依次处理队 列中的每个节点, 直到找到目标节
点或队列为空
Dijkstra算法和Prim算法
Dijkstra算法:用于 求解单源最短路径问 题,通过不断更新最 短路径来寻找最短路 径。
Prim算法:用于求解 最小生成树问题,通过 不断寻找最小权重的边 来构建最小生成树。
图的矩阵表示
邻接矩阵的定义和性质
定义:邻接矩阵是一个n*n的矩阵,其 中n是图的顶点数,矩阵中的元素表示 图中顶点之间的连接关系。
性质:邻接矩阵中的元素只有0和1, 其中0表示两个顶点之间没有边相连, 1表示两个顶点之间有一条边相连。
应用:邻接矩阵可以用于表示图的连通 性、路径长度等信息,是图论中常用的 表示方法之一。
图像处理:优化图像分割, 提高图像质量
物流配送:优化配送路径, 降低配送成本
社交网络:优化社交网络 结构,提高用户活跃度
感谢您的观看
汇报人:PPT
数学:用于图论、组合数 学、代数拓扑等领域
物理学:用于量子力学、 统计力学等领域
生物学:用于蛋白质结构、 基因调控等领域
社会科学:用于社会网络 分析、经济模型等领域
图的基本概念
图的定义和表示方法
图的定义:由节点和边组成的数学结构,节点表示对象,边表示对象之间的关系
节点表示方法:用点或圆圈表示 边表示方法:用线或弧线表示 图的表示方法:可以用邻接矩阵、邻接表、关联矩阵等方式表示
顶点和边的基本概念
顶点:图中的基本元素,表示一个对象或事件 边:连接两个顶点的线,表示两个对象或事件之间的关系 度:一个顶点的度是指与其相连的边的数量 路径:从一个顶点到另一个顶点的边的序列 连通图:图中任意两个顶点之间都存在路径 强连通图:图中任意两个顶点之间都存在双向路径
实现方法:使用 队列数据结构, 将起始节点入队, 然后依次处理队 列中的每个节点, 直到找到目标节
点或队列为空
Dijkstra算法和Prim算法
Dijkstra算法:用于 求解单源最短路径问 题,通过不断更新最 短路径来寻找最短路 径。
Prim算法:用于求解 最小生成树问题,通过 不断寻找最小权重的边 来构建最小生成树。
图的矩阵表示
邻接矩阵的定义和性质
定义:邻接矩阵是一个n*n的矩阵,其 中n是图的顶点数,矩阵中的元素表示 图中顶点之间的连接关系。
性质:邻接矩阵中的元素只有0和1, 其中0表示两个顶点之间没有边相连, 1表示两个顶点之间有一条边相连。
应用:邻接矩阵可以用于表示图的连通 性、路径长度等信息,是图论中常用的 表示方法之一。
图像处理:优化图像分割, 提高图像质量
物流配送:优化配送路径, 降低配送成本
社交网络:优化社交网络 结构,提高用户活跃度
感谢您的观看
汇报人:PPT
数学:用于图论、组合数 学、代数拓扑等领域
物理学:用于量子力学、 统计力学等领域
生物学:用于蛋白质结构、 基因调控等领域
社会科学:用于社会网络 分析、经济模型等领域
图的基本概念
图的定义和表示方法
图的定义:由节点和边组成的数学结构,节点表示对象,边表示对象之间的关系
节点表示方法:用点或圆圈表示 边表示方法:用线或弧线表示 图的表示方法:可以用邻接矩阵、邻接表、关联矩阵等方式表示
顶点和边的基本概念
顶点:图中的基本元素,表示一个对象或事件 边:连接两个顶点的线,表示两个对象或事件之间的关系 度:一个顶点的度是指与其相连的边的数量 路径:从一个顶点到另一个顶点的边的序列 连通图:图中任意两个顶点之间都存在路径 强连通图:图中任意两个顶点之间都存在双向路径
离散数学教程PPT课件
A=B C或A=B C或A=B C,则公式A是n+1层公式, n max( i, j)。
例(1)p q r (2)r q p q p
第23页/共292页
1.2 命题公式及其赋值
( p q) r
p:2是素数,q:3是偶数,r:2是有理数 p:2是素数,q:3是偶数,r:2是无理数
例2.等值等价式p q p q q p
等值演算的应用: 1.验证等值式 ( p q) ( p r) p (q r) 2.判定公式的类型 ( p q) p q,( p ( p q)) r, p ((( p q) p) q) 3.解决工作生活中的判断问题
甲、已、丙3人根据口音对王教授是哪人进行了判断: 甲说:王教授不是苏州人,是上海人 已说:王教授不是上海人,是苏州人 丙说:王教授既不是上海人,也不是杭州人
例:1.如果3+3=6,那么雪是白的。 2.除非我能工作完成了,我才去看电影。 3.只要天下雨,我就回家。 4.我回家仅当天下雨。 p→q的逻辑关系为q是p的必要条件或p是q的充分条件。
第15页/共292页
1.1 命题和命题联结词
5).等价词 由命题p、q和 组成的复合命题记作p q,读作“p当且仅当q”。 是自然语言中的“充要条件”,“当且仅当”的逻辑抽象。
1.3 命题公式的等值式
定义1.设A和B是两个命题公式,若A B为重言式, 则称公式A, B是等值的公式,记作A B。
例1.证明(p q) (q p); p p p.
注意: 和 的区别 是公式间的关系符号,如:p q 是命题联结词.p q
第28页/共292页
1.3 命题公式的等值式
1.1 命题和命题联结词
例:1)海洋的面积比陆地的面积大。 例 q2:): 22p6:6海 9洋 9。 。的面积比陆地的面积大。 r3:)火火星星上上有有生生命命。。 s4:)三三角角形形的的内内角角和和等等于 于118800。 。 55))你你喜 喜欢 欢数学吗吗?? 66))我我们 们要 要努 努力力学学习习。。 77))啊啊, ,我 我的 的天天哪哪!! 88))我我正 正在 在说 说谎 谎。。
例(1)p q r (2)r q p q p
第23页/共292页
1.2 命题公式及其赋值
( p q) r
p:2是素数,q:3是偶数,r:2是有理数 p:2是素数,q:3是偶数,r:2是无理数
例2.等值等价式p q p q q p
等值演算的应用: 1.验证等值式 ( p q) ( p r) p (q r) 2.判定公式的类型 ( p q) p q,( p ( p q)) r, p ((( p q) p) q) 3.解决工作生活中的判断问题
甲、已、丙3人根据口音对王教授是哪人进行了判断: 甲说:王教授不是苏州人,是上海人 已说:王教授不是上海人,是苏州人 丙说:王教授既不是上海人,也不是杭州人
例:1.如果3+3=6,那么雪是白的。 2.除非我能工作完成了,我才去看电影。 3.只要天下雨,我就回家。 4.我回家仅当天下雨。 p→q的逻辑关系为q是p的必要条件或p是q的充分条件。
第15页/共292页
1.1 命题和命题联结词
5).等价词 由命题p、q和 组成的复合命题记作p q,读作“p当且仅当q”。 是自然语言中的“充要条件”,“当且仅当”的逻辑抽象。
1.3 命题公式的等值式
定义1.设A和B是两个命题公式,若A B为重言式, 则称公式A, B是等值的公式,记作A B。
例1.证明(p q) (q p); p p p.
注意: 和 的区别 是公式间的关系符号,如:p q 是命题联结词.p q
第28页/共292页
1.3 命题公式的等值式
1.1 命题和命题联结词
例:1)海洋的面积比陆地的面积大。 例 q2:): 22p6:6海 9洋 9。 。的面积比陆地的面积大。 r3:)火火星星上上有有生生命命。。 s4:)三三角角形形的的内内角角和和等等于 于118800。 。 55))你你喜 喜欢 欢数学吗吗?? 66))我我们 们要 要努 努力力学学习习。。 77))啊啊, ,我 我的 的天天哪哪!! 88))我我正 正在 在说 说谎 谎。。
《离散数学概述》PPT课件
同 子代数 种
的 积代数 同
类 商代数 型
的 新代数系统
22
半群与群
广群 二元运算的封闭性
结合律
半群
交换律
交换半群
单位元 交换律
独异点
每个元素可逆 交换律
群
交换独异点 实例
Abel群
生成元
Klein群 循环群
有限个元素
有限群
编辑ppt
实例
n元置换群
23
图论
图论是离散数学的重要组成部分,是近代应用数学的重要分支。
由于在计算机内,机器字长总是有限的, 它代表离散的数或其
它离散对象,因此随着计算机科学和技术的迅猛发展,离散数
学就显得重要。
编辑ppt
5
离散数学的内容
数理逻辑: “证明”在计算科学的某些领域至关重要,构 造一个证明和写一个程序的思维过程在本质上是一样的。
组合分析:解决问题的一个重要方面就是计数或枚举对象。
编辑ppt
20
代数系统
近世代数,……,是关于运算的学说,是关于运算规则 的学说,但它不把自己局限在研究数的运算性质上,而 是企图研究一般性元素的运算性质。
——M.Klein
数学之所以重要,其中心原因在于它所提供的数学系统 的丰富多彩;此外的原因是,数学给出了一个系统,以 便于使用这些模型对物理现实和技术领域提出问题,回 答问题,并且也就探索了模型的行为。
1736年是图论历史元年,因为在这一年瑞士数学家欧拉(Euler) 发表了图论的首篇论文——《哥尼斯堡七桥问题无解》,所以人
们普遍认为欧拉是图论的创始人。
1936年,匈牙利数学家寇尼格(Konig)出版了图论的第一部专 著《有限图与无限图理论》,这是图论发展史上的重要的里程碑 ,它标志着图论将进入突飞猛进发展的新阶段。
离散数学课件ppt课件
联结词可以嵌套使用,在嵌套使用时,规定如下优先顺序: ( ),┐,∧,∨,→, ,对于同一优先级的联结词,先出现 者先运算。
例1.7 令 P : 北京比天津人口多 Q:22 4 R : 乌鸦是白色的
求下列复合命题的真值:
1P Q P Q R 2Q R P R 3P R P R
解 P,Q,R的真值分别为1,1,0。容易算出 (1)、(2)、(3)的真值分别为1,1,0。
2.在自然语言中,“如果P,则Q”中的前件P与后件Q往 往具有某种内在联系。而在数理逻辑中,P与Q可以无任何内 在联系。
3.在数学或其它自然科学中,“如果P,则Q”往往表达 的是前件P为真,后件Q也为真的推理关系。但在数理逻辑中, 作为一种规定,当P为假时,无论Q是真是假,P→Q均为真。 也就是说,只有P为真Q为假这一种情况使得复合命题P→Q为 假。
PQ 的真值定义为 PQ为真当且仅当P, Q同真值 因此, P, Q一真一假时, P Q为假。
复合命题P Q的真值表: P
0 0 1 1
Q
P Q
0
1
1
0
0
0
1
1
例1.6 将下列命题符号化,并指出它们的真值:
3如 两 圆O1 , O2的面积相等,则它们的半径相等;反之亦然. 4当王小红心情愉快时,她就唱歌;反之当她唱歌时,
真值为真的命题称为真命题;真值为假的命题为假命题。
说明:
1. 命题必须是陈述性语句,而不能是疑问句、命令句、 感叹句等;
2. 命题语句或者为真或者为假,二者必取其一,即命 题的真值是唯一的
判断句子是否为命题的标准: (1)陈述句 (2)有唯一的真值
例1 判断下列句子是不是命题: (1) 4是素数。
第一部分 数理逻辑
例1.7 令 P : 北京比天津人口多 Q:22 4 R : 乌鸦是白色的
求下列复合命题的真值:
1P Q P Q R 2Q R P R 3P R P R
解 P,Q,R的真值分别为1,1,0。容易算出 (1)、(2)、(3)的真值分别为1,1,0。
2.在自然语言中,“如果P,则Q”中的前件P与后件Q往 往具有某种内在联系。而在数理逻辑中,P与Q可以无任何内 在联系。
3.在数学或其它自然科学中,“如果P,则Q”往往表达 的是前件P为真,后件Q也为真的推理关系。但在数理逻辑中, 作为一种规定,当P为假时,无论Q是真是假,P→Q均为真。 也就是说,只有P为真Q为假这一种情况使得复合命题P→Q为 假。
PQ 的真值定义为 PQ为真当且仅当P, Q同真值 因此, P, Q一真一假时, P Q为假。
复合命题P Q的真值表: P
0 0 1 1
Q
P Q
0
1
1
0
0
0
1
1
例1.6 将下列命题符号化,并指出它们的真值:
3如 两 圆O1 , O2的面积相等,则它们的半径相等;反之亦然. 4当王小红心情愉快时,她就唱歌;反之当她唱歌时,
真值为真的命题称为真命题;真值为假的命题为假命题。
说明:
1. 命题必须是陈述性语句,而不能是疑问句、命令句、 感叹句等;
2. 命题语句或者为真或者为假,二者必取其一,即命 题的真值是唯一的
判断句子是否为命题的标准: (1)陈述句 (2)有唯一的真值
例1 判断下列句子是不是命题: (1) 4是素数。
第一部分 数理逻辑
离散数学课件初等数论
哥德巴赫猜想
总结词
哥德巴赫猜想是数论中一个著名的未解决的问题,它涉及到质数的分解。
详细描述
哥德巴赫猜想指出,任何一个大于2的偶数都可以表示为两个质数之和。尽管数学家们已经证明了许多特殊情况 下的结论,但这个猜想至今仍未被证明或反驳。
孪生素数猜想
总结词
孪生素数猜想是数论中一个关于质数对的未解决的问题。
费马大定理
总结词
费马大定理是数论中一个著名的未解 决的问题,它涉及到质数和幂的性质。
详细描述
费马大定理指出,对于任何整数n > 2,不 存在三个完全不同的整数x、y和z,使得 x^n + y^n = z^n。尽管数学家们已经证 明了这个定理在n=3和n=4的情况下成立, 但n>4的情况仍然是一个未解之谜。
模数方程的解法
总结词
模数方程是数学中一类重要的方程,其解法包括扩展欧几里 得算法、费马小定理和欧拉定理等。
详细描述
扩展欧几里得算法是一种求解模数方程的常用方法,它可以 找到给定模数的一组解。费马小定理和欧拉定理也是求解模 数方程的重要工具,它们可以用于证明一些重要的数学结论 。
05
初等数论中的问题与猜想
整数的因数分解
因数分解是将一个整数表示为若干个 因数的乘积的过程。完全平方数的因 数分解具有特殊性,即可以表示为两 个相同正整数的乘积。
因数分解是解决整数相关问题的重要 手段,如求解一元二次方程、判断一 个数是否为质数等。
同余方程
• 同余方程是模运算下的等式,即两个或多个整数对某个正整数同余时满足的等式。同余方程在数论和密码学中有广泛的应 用,如求解线性同余方程、模简化等。
数论的基本概念
02
01
03
离散数学的ppt课件
科学中的许多问题。
03
例如,利用图论中的最短路径算法和最小生成树算法
等,可以优化网络通信和数据存储等问题。
运筹学中的应用
01
运筹学是一门应用数学学科, 主要研究如何在有限资源下做 出最优决策,离散数学在运筹 学中有着广泛的应用。
02
利用离散数学中的线性规划、 整数规划和非线性规划等理论 ,可以解决运筹学中的许多问 题。
并集是将两个集合中的所有元素合 并在一起,形成一个新的集合。
详细描述
例如,{1, 2, 3}和{2, 3, 4}的并集是 {1, 2, 3, 4}。
总结词
补集是取一个集合中除了某个子集 以外的所有元素组成的集合。
详细描述
例如,对于集合{1, 2, 3},{1, 2}的 补集是{3}。
集合的基数
总结词
)的数学分支。
离散数学的学科特点
03
离散数学主要研究对象的结构、性质和关系,强调推
理和证明的方法。
离散数学的应用领域
计算机科学
01
离散数学是计重要的工具和方法。
通信工程
02
离散数学在通信工程中广泛应用于编码理论、密码学、信道容
量估计等领域。
集合的基数是指集合中元素的数量。
详细描述
例如,集合{1, 2, 3}的基数是3,即它包含三个元素。
03 图论
图的基本概念
顶点
图中的点称为顶点或节点。
边
连接两个顶点的线段称为边。
无向图
边没有方向,即连接两个顶点的线段可以是双向 的。
有向图
边有方向,即连接两个顶点的线段只能是从一个顶 点指向另一个顶点。
研究模态算子(如necessity、possibility)的语义和语法。
离散数学初等数论PPT课件
10!=28×34×52×7, 故10!的二进制表示中从最低位数起有8个连续的0.
8
素数的分布
定理11.2 有无穷多个素数. 证 用反证法. 假设只有有穷多个素数, 设为p1,p2,…,pn, 令m=p1p2…pn+1. 显然, pi m, 1≤i≤n. 因此, 要么m本身 是素数,要么存在大于pn的素数整除m, 矛盾.
成立.
12
实例
例3 判断157和161是否是素数. 解 157 , 161都小于13, 小于13的素数有: 2, 3, 5, 7, 11. 检查结果如下:
2 157, 3 157, 5 157, 7 157, 11 157 结论: 157是素数.
2 161, 3 161, 5 161, 7|161(161=7×23) 结论:161是合数.
14
11.2 最大公约数与最小公倍数
• 公约数、最大公约数 • 公倍数、最小公倍数 • 辗转相除法 • 互素
15
最大公约数与最小公倍数
d是a与b的公因子(公约数): d |a且d |b m是a与b的公倍数: a | m且b| m 定义11.3 设a和b是两个不全为0的整数, 称a与b的公因子中 最大的为a与b的最大公因子, 或最大公约数, 记作gcd(a,b). 设a和b是两个非零整数, 称a与b最小的正公倍数为a与b的 最小公倍数, 记作lcm(a,b). 例如 gcd(12,18)=6, lcm(12,18)=36. 对任意的正整数a, gcd(0,a)=a, gcd(1,a)=1, lcm(1,a)=a.
1
2
k
p p p lcm(a,b)=
mr 1 a ,s1)xm ( r 2 a ,s2)x( mr k a ,sk)x(
8
素数的分布
定理11.2 有无穷多个素数. 证 用反证法. 假设只有有穷多个素数, 设为p1,p2,…,pn, 令m=p1p2…pn+1. 显然, pi m, 1≤i≤n. 因此, 要么m本身 是素数,要么存在大于pn的素数整除m, 矛盾.
成立.
12
实例
例3 判断157和161是否是素数. 解 157 , 161都小于13, 小于13的素数有: 2, 3, 5, 7, 11. 检查结果如下:
2 157, 3 157, 5 157, 7 157, 11 157 结论: 157是素数.
2 161, 3 161, 5 161, 7|161(161=7×23) 结论:161是合数.
14
11.2 最大公约数与最小公倍数
• 公约数、最大公约数 • 公倍数、最小公倍数 • 辗转相除法 • 互素
15
最大公约数与最小公倍数
d是a与b的公因子(公约数): d |a且d |b m是a与b的公倍数: a | m且b| m 定义11.3 设a和b是两个不全为0的整数, 称a与b的公因子中 最大的为a与b的最大公因子, 或最大公约数, 记作gcd(a,b). 设a和b是两个非零整数, 称a与b最小的正公倍数为a与b的 最小公倍数, 记作lcm(a,b). 例如 gcd(12,18)=6, lcm(12,18)=36. 对任意的正整数a, gcd(0,a)=a, gcd(1,a)=1, lcm(1,a)=a.
1
2
k
p p p lcm(a,b)=
mr 1 a ,s1)xm ( r 2 a ,s2)x( mr k a ,sk)x(
《离散数学讲义》课件
离散概率分布的定义
离散概率分布是描述随机事件在有限或可数无限的可 能结果集合中发生的概率的数学工具。
离散概率分布的种类
常见的离散概率分布包括二项分布、泊松分布、几何 分布等。
离散概率分布的应用
离散概率分布在统计学、计算机科学、物理学等领域 都有广泛的应用。
参数估计和假设检验
参数估计
参数估计是根据样本数据推断总体参数的过 程,包括点估计和区间估计两种方法。
假设检验
假设检验是用来判断一个假设是否成立的统计方法 ,包括参数检验和非参数检验两种类型。
参数估计和假设检验的应 用
在统计学中,参数估计和假设检验是常用的 数据分析方法,用于推断总体特征和比较不 同总体的差异。
方差分析和回归分析
方差分析
方差分析是一种用来比较不同组数据的平均值是否存在显著差异 的统计方法。
《离散数学讲义》ppt课件
目 录
• 离散数学简介 • 集合论 • 图论 • 离散概率论 • 逻辑学 • 离散统计学 • 应用案例分析
01
离散数学简介
离散数学的起源和定义
起源
离散数学起源于17世纪欧洲的数学研 究,最初是为了解决当时的一些实际 问题,如组合计数和图论问题。
定义
离散数学是研究离散对象(如集合、 图、树、逻辑等)的数学分支,它不 涉及连续的变量或函数。
联结词:如与(&&)、或(||)、非(!)等,用 于组合简单命题。
03
04
命题公式:由简单命题通过联结词组合而 成的复合命题。
命题逻辑的推理规则
05
06
肯定前件、否定后件、析取三段论、合取 三段论等推理规则。
谓词逻辑
个体词
表示具体事物的符号。
离散概率分布是描述随机事件在有限或可数无限的可 能结果集合中发生的概率的数学工具。
离散概率分布的种类
常见的离散概率分布包括二项分布、泊松分布、几何 分布等。
离散概率分布的应用
离散概率分布在统计学、计算机科学、物理学等领域 都有广泛的应用。
参数估计和假设检验
参数估计
参数估计是根据样本数据推断总体参数的过 程,包括点估计和区间估计两种方法。
假设检验
假设检验是用来判断一个假设是否成立的统计方法 ,包括参数检验和非参数检验两种类型。
参数估计和假设检验的应 用
在统计学中,参数估计和假设检验是常用的 数据分析方法,用于推断总体特征和比较不 同总体的差异。
方差分析和回归分析
方差分析
方差分析是一种用来比较不同组数据的平均值是否存在显著差异 的统计方法。
《离散数学讲义》ppt课件
目 录
• 离散数学简介 • 集合论 • 图论 • 离散概率论 • 逻辑学 • 离散统计学 • 应用案例分析
01
离散数学简介
离散数学的起源和定义
起源
离散数学起源于17世纪欧洲的数学研 究,最初是为了解决当时的一些实际 问题,如组合计数和图论问题。
定义
离散数学是研究离散对象(如集合、 图、树、逻辑等)的数学分支,它不 涉及连续的变量或函数。
联结词:如与(&&)、或(||)、非(!)等,用 于组合简单命题。
03
04
命题公式:由简单命题通过联结词组合而 成的复合命题。
命题逻辑的推理规则
05
06
肯定前件、否定后件、析取三段论、合取 三段论等推理规则。
谓词逻辑
个体词
表示具体事物的符号。
《离散数学》完整课件
第三节 复合关系与逆关系
本节讨论关系的复合运算与逆运算极其 性质;主要考虑了下列问题:
1.关系的复合是否满足交换律、结合律、 关系的复合对于集合的并(交)是否有分 配律;
2.关系的复合运算与逆运算在关系图和 关系矩阵上的反应;
3.关系的复合运算与关系的逆运算之间 的运算规律.
返回本章首页
11 2021/6/7
|A|<|B|三条中有且仅有一条成立;
2.Bernstein定理:设A,B是两个集合,若|A|≥|B| 且|A| ≤ |B|,则集合A,B等势;
3.设A是任意集合,P(A)为A的幂集,则P(A)的基 数大于A的基数.
返回本章首页
23 2021/6/7
本章小结
本章的主要内容有:集合的等势、有限 集与无限集、可数集与不可数集、较为 常见的集合的基数等.集合的基数反映了 集合的元素的多少,它是集合的一种性 质,一种与该集合等势的集合构成的集 合族的共同性质.
返回本章首页
17 2021/6/7
第九节 复合映射与逆映射
映射的复合就是关系的复合,须注意的是 复合的次序,主要内容有:
1.映射的复合具有结合律,但不符合交换律; 2.区分了左逆与右逆;给出里左逆、右逆
与单射、满射之间的关系; 3.可逆与左、右逆之间的关系.
返回本章首页
18 2021/6/7
本章小结
1.本节首先给出了公式的蕴涵关系的三个等价定 义,及蕴涵关系具有的性质,给出了15个基本蕴 涵式;
2.把蕴涵概念推广,得到公式的逻辑结果的定义;
3.为了研究推理,还引进演绎的概念;
4.用实例说明推理方法.
返回本章首页
30 2021/6/7
第六节 形式演绎
精品课程《离散数学》PPT课件(全)
言1
为什么学习离散数学?
离散数学是现代数学的一个重要分支,是计算机科学与技术 的理论基础,所以又称为计算机数学,是计算机科学与技术 专业的核心、骨干课程。
它以研究离散量的结构和相互间的关系为主要目标,其研 究对象一般是有限个或可数个元素,因此它充分描述了计算 机科学离散性的特点。
离散数学是什么课?
真值为1
25
1.1 命题符号化及联结词
以下命题中出现的a是给定的一个正整数: (3) 只有 a能被2整除, a才能被4整除。
(4) 只有 a能被4整除, a才能被2整除。
解: 令r: a能被4整除, s: a能被2整除。 真值不确定 (3)符号化为 s r (4)符号化为 r s
真值为1
26
19
1.1 命题符号化及联结词
3.析取词 设p,q为二命题,复合命题“p或q” 称为p与q的析取式,记作p ∨ q,符号∨称 为析取联结词。 运算规则:
p 0 0 1 1 q 0 1 0 1 p∨q 0 1 1 1
20
1.1 命题符号化及联结词
析取运算特点:只有参与运算的二命题全为假时,运算结果才 为假,否则为真。 相容或:二者至少有一个发生,也可二者都发生 排斥或:二者只有一个发生,即非此即彼 例如: (1)小王爱打球或爱跑步。 设p:小王爱打球。 q:小王爱跑步。 则上述命题可符号化为:p ∨ q (2)张晓静是江西人或湖南人。 设p:江西人。 q:湖南人。 则上述命题就不可简单符号化为:p ∨ q 而应描述为(p∧ q) ∨( p∧q)(也可用异或联接词∨)
(1)星期天天气好,带儿子去了动物园; (2)星期天天气好,却没带儿子去动物园; (3)星期天天气不好,却带儿子去了动物园; (4)星期天天气不好,没带儿子去动物园。
离散数学课件第一章
图的连通性
04
CHAPTER
逻辑基础
命题逻辑中的基本概念包括命题、真值和逻辑运算,通过这些基本概念可以表达和推理复杂的命题关系。
命题逻辑在计算机科学、人工智能、自动化等领域有广泛应用,是形式化方法的重要基础。
命题逻辑是研究命题之间关系的逻辑分支,主要涉及命题的否定、合取、析取、蕴含等基本运算。
命题逻辑
详细描述
集合的运算包括并集、交集、差集等。并集是指两个或多个集合合并为一个新的集合,包含所有元素;交集是指两个或多个集合中共有的元素组成的集合;差集是指从一个集合中去掉另一个集合中的元素后剩余的元素组成的集合。这些运算在离散数学中有着广泛的应用。
总结词
集合的运算
集合的基数是指集合中元素的个数,通常用大写字母表示。
鸽巢原理
THANKS
感谢您的观看。
集合论
图论是研究图(由节点和边构成的结构)的数学分支,它广泛应用于计算机科学和工程学科。
图论
逻辑是离散数学的另一个重要分支,它研究推理的形式和规则,是计算机科学和人工智能的基础。
逻辑
组合数学是研究计数、排列和组合问题的数学分支,它在计算机科学和统计学中有重要的应用。
组合数学
离散数学的研究内容
02
CHAPTER
离散数学课件第一章
目录
绪论 集合论基础 图论基础 逻辑基础 组合数学基础
01
CHAPTER
绪论
离散数学是研究离散对象(如集合、图、树等)的数学分支,它不涉及连续的量或函数。
离散数学的定义
离散数学的起源
离散数学的特点
离散数学的起源可以追溯到古代数学,如欧几里得几何和数论。
离散数学强调结构、关系和组合,而不是连续性和微积分。
数学离散数学PPT课件
(b) 对公式 A: F(x, y)∧M→F(u, x)中的 F, 欲代以 B: G(x1)∨H(x2, s)→H(t, x2), 则只需x , y , u不是B内的约 束变元, 而且s , t不是A内的约束变元。 代入结果为 (G(x)∨H(y, s)→H(t, y))∧M→(G(u)∨H(x, s)→H(t, x))
第22页/共41页
表 1.7 -1 含有量词的永真公式概要表
第23页/共41页
谓词演算规则
1、代入规则 2、替换规则 3、对偶原理
第24页/共41页
1. 代入规则
(i)自由个体变元的代入:在一公式中, 任一自由个体变元 可代以另一个体变元, 只需该个体变元出现的各处都同样代入, 且代入的变元不允许在原来公式中以约束变元出现。 例: 在公式xP(x, y)∨Q(w, y)中, 将y代以z, 则得xP(x, z)∨Q(w, z), 将y代以w, 则得xP(x, w)∨Q(w, w)。 所得公式称为原公式的代入实例。
1.后边的r个自由变元 不允许在原公式中以约束变元出现; 2. F(x1,x2, …, xn)中的变元也不允许在代入的公式中以约束变元 出现。
第26页/共41页
例: (a) 对公式(P→Q) (P∨Q)中的P代以xP(x), Q代以S(x), 得
(xP(x)→S(x)) (xP(x)∨S(x))
Q4
xP(x) xQ(x)
E14
第31页/共41页
(b) 证明
x(P(x) Q(x)) x(R(x) Q(x)) (R(x) P(x))
证: 根据CP规则, 上式等价于
x(P(x) Q(x)) x(R(x) Q(x)) (R(x) P(x))
而 x(P(x) Q(x)) x(R(x) Q(x))
第22页/共41页
表 1.7 -1 含有量词的永真公式概要表
第23页/共41页
谓词演算规则
1、代入规则 2、替换规则 3、对偶原理
第24页/共41页
1. 代入规则
(i)自由个体变元的代入:在一公式中, 任一自由个体变元 可代以另一个体变元, 只需该个体变元出现的各处都同样代入, 且代入的变元不允许在原来公式中以约束变元出现。 例: 在公式xP(x, y)∨Q(w, y)中, 将y代以z, 则得xP(x, z)∨Q(w, z), 将y代以w, 则得xP(x, w)∨Q(w, w)。 所得公式称为原公式的代入实例。
1.后边的r个自由变元 不允许在原公式中以约束变元出现; 2. F(x1,x2, …, xn)中的变元也不允许在代入的公式中以约束变元 出现。
第26页/共41页
例: (a) 对公式(P→Q) (P∨Q)中的P代以xP(x), Q代以S(x), 得
(xP(x)→S(x)) (xP(x)∨S(x))
Q4
xP(x) xQ(x)
E14
第31页/共41页
(b) 证明
x(P(x) Q(x)) x(R(x) Q(x)) (R(x) P(x))
证: 根据CP规则, 上式等价于
x(P(x) Q(x)) x(R(x) Q(x)) (R(x) P(x))
而 x(P(x) Q(x)) x(R(x) Q(x))
《离散数学数论》课件
素数与合数的应用
素数的应用
在密码学中,大素数是生成加密密钥的 重要材料;在计算机科学中,素数的性 质被用于实现一些加密算法和散列函数 等。
VS
合数的应用
在计算机科学中,合数的性质被用于实现 一些算法和数据结构,如快速排序、堆排 序等;在数学中,合数的性质被用于证明 一些数学定理和猜想等。
04
CHAPTER
THANKS
谢谢
02
在计算机科学中,最大公约数 和最小公倍数的概念也被广泛 应用,如算法设计、数据结构 等领域。
03
在日常生活和工作中,最大公 约数和最小公倍数的概念也有 很多应用,如解决时间安排问 题、资源分配问题等。
05
CHAPTER
同余方程
同余方程的定义
同余方程
01
在数论中,同余方程是一个关于模的等式,表示两个或多个整
离散概率论的应用领域
离散概率论在计算机科学、统计学、决策理论等 领域有广泛应用。
3
离散概率论与连续概率论的联系
离散概率论是连续概率论的离散化形式,两者在 概念和方法上有许多相似之处。
离散概率论的基本概念
样本空间
样本空间是随机实验所有可能结果的集合。
概率
概率是用来描述随机事件发生可能性大小的 数值。
计算机科学
在计算机科学中,同余方程可以用于实现快速模运算,从而提高 算法的效率。
数论研究
同余方程也是数论研究中的一个重要工具,可以用于研究整数的 性质和结构。
06
CHAPTER
离散概率论基础
离散概率论简介
1 2
离散概率论的定义
离散概率论是研究离散随机现象的数学分支,主 要研究离散随机事件、离散随机变量等。
离散数学PPT【共34张PPT】
15
18.4 点着色
定义17.9 (1) 图G的一种点着色——给图G的每个顶点涂上一种颜色,
使相邻顶点具有不同颜色 (2) 对G进行k着色(G是k-可着色的)——能用k种颜色给G
的顶点着色 (3) G的色数(G)=k——G是k-可着色的,但不是(k1)-可着色
的.
16
关于顶点着色的几个简单结果
定理17.19 (G)=1当且仅当G为零图 定理17.20 (Kn)=n 定理17.21 若G为奇圈或奇阶轮图,则(G)=3,若G为偶阶轮 图,则(G)=4. 定理17.22 若G的边集非空,则(G)=2当且仅当G为二部图.
路径 (7) M的交错圈——由M与EM中的边交替出现构成的G中圈
上图中,只有第一个图存在完美匹配
8
可增广路径及交错圈
(1)
(2)
(3)
设红色边在匹配M中,绿色边不在M中,则图(1)中的两条路 径均为可增广的交错路径;(2)中的全不是可增广的交错路 径;(3)中是一个交错圈. 不难看出,可增广交错路径中,不在M中的边比在M中的边 多一条. 交错圈一定为偶圈.
立集 (3) 最大点独立集——元素最多的点独立集 (4) 点独立数——最大点独立集中的元素个数,记为0
(1)
(2)
在图中,点独立数依次为2, 2, 3.
(3)
2
极大独立集与极小支配集
定理18.1 设G=<V,E>中无孤立点,则G的极大点独立集都是 极小支配集. 证明线索: (1) 设V*为G的极大点独立集,证明它也是支配集.
定理17.28 偶圈边色数为2,奇圈边色数为3. 定理17.29 (Wn) = n1, n4. 定理17.30 二部图的边色数等于最大度. 定理17.31 n为奇数(n1)时,(Kn)=n;
18.4 点着色
定义17.9 (1) 图G的一种点着色——给图G的每个顶点涂上一种颜色,
使相邻顶点具有不同颜色 (2) 对G进行k着色(G是k-可着色的)——能用k种颜色给G
的顶点着色 (3) G的色数(G)=k——G是k-可着色的,但不是(k1)-可着色
的.
16
关于顶点着色的几个简单结果
定理17.19 (G)=1当且仅当G为零图 定理17.20 (Kn)=n 定理17.21 若G为奇圈或奇阶轮图,则(G)=3,若G为偶阶轮 图,则(G)=4. 定理17.22 若G的边集非空,则(G)=2当且仅当G为二部图.
路径 (7) M的交错圈——由M与EM中的边交替出现构成的G中圈
上图中,只有第一个图存在完美匹配
8
可增广路径及交错圈
(1)
(2)
(3)
设红色边在匹配M中,绿色边不在M中,则图(1)中的两条路 径均为可增广的交错路径;(2)中的全不是可增广的交错路 径;(3)中是一个交错圈. 不难看出,可增广交错路径中,不在M中的边比在M中的边 多一条. 交错圈一定为偶圈.
立集 (3) 最大点独立集——元素最多的点独立集 (4) 点独立数——最大点独立集中的元素个数,记为0
(1)
(2)
在图中,点独立数依次为2, 2, 3.
(3)
2
极大独立集与极小支配集
定理18.1 设G=<V,E>中无孤立点,则G的极大点独立集都是 极小支配集. 证明线索: (1) 设V*为G的极大点独立集,证明它也是支配集.
定理17.28 偶圈边色数为2,奇圈边色数为3. 定理17.29 (Wn) = n1, n4. 定理17.30 二部图的边色数等于最大度. 定理17.31 n为奇数(n1)时,(Kn)=n;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例3 gcd(12,18)=6, lcm(12,18)=36. 对任意的正整数a, gcd(0,a)=a, gcd(1,a)=1, lcm(1,a)=a.
19.2 最大公约数和最小公倍数
定理4: (1) 若a | m, b | m, 则 lcm(a,b)| m. (2) 若d |a, d |b, 则d | gcd(a,b). 证 (1) 记M=lcm(a,b), 设m=qM+r, 0≤r<M.
欧几里得算法-辗转相除法
除法算法: a=qb+r, 0≤r <|b|, 记余数r=a mod b 例如, 20 mod 6=2, 13 mod 4=3, 10 mod 2=0
定理5: 设a=qb+r, 其中a, b, q, r 都是整数, 则 gcd(a,b) = gcd(b,r).
证明:只需证a与b和b与r有相同的公因子. 设d是a与b的公因
-3d -2d -d 0 d 2d 3d
性质:令a,b,c为整数,有如下结论: 1)若a |b且a |c, 则 x, y, 有a | xb+yc. 2)若a |b且b |c, 则a |c. 3)若 a |b,那么对于所有整数 m≠0都有 a | mb.
19.1 素数
2. 素数 定义2:大于 1 且只能被 1 和自身整除的正整数称为素数
19.2 最大公约数和最小公倍数
利用整数的素因子分解, 求最大公约数和最小公倍数. 设
ap1r1p2r2pkrk, bp1s1p2s2 pk sk, 其中p1,p2,…,pk是不同的素数, r1,r2,…,rk,s1,s2,…,sk是非负
整数. 则
gcd(a,b)=
p p p , mr1 i,n s1)(mri2,n s2)(
欧几里得算法-辗转相除法
C语言代码:
int gcd(int x,int y) { int g;
if (x < 0) x = -x; if (y < 0) y = -y; if (x+y = = 0)
printf("Error!\n"); g = y; while(x>0){
g = x; x = y%x; Hale Waihona Puke = g; } return g; }
19.1 素数
定理 2:如果n是合数,那么n必有一个小于或等于 n 的素
因子。
证:如果n是合数,它有一个因子a,使得1< a < n, 于是 nab,这样 a n或b n,这个因子或是素
数,或是有素因子。无论哪种情况,n都有小于或等于
n 的素因子
例2:证明101是素数。 证明思路:101不含有不超过 101 的素因子。
由a | m, a | M, 及r=mqM, 可推出a | r. 同理, 有b | r. 即, r是a
和b的公倍数. 根据最小公倍数的定义, 必有r=0. 得证M | m. (2) 记D=gcd(a,b), 令m=lcm(d,D). 若m=D, 自然有d |D, 结 论成立. 否则m>D, 注意到d |a, D|a, 由(1), 得m |a. 同理, m |b. 即, m是a和b的公因子, 与D是a和b的最大公约数矛盾.
子, 即d |a且d |b. 注意到, r=aqb, 由性质可得d |r. 从而,
d |b且d |r, 即d也是b与r的公因子. 反之一样, 设d是b与r的公 因子, 即d |b且d |r. 注意到, a=qb+r, 故有d |a. 从而, d |a且d |b, 即d也是a与b的公因子.
欧几里得算法-辗转相除法
19.2 最大公约数和最小公倍数
d是a与b的公因子(公约数): d |a且d |b m是a与b的公倍数: a | m且b | m 定义3:设a和b是两个不全为0的整数, 称a与b的公因子中 最大的为a与b的最大公因子, 或最大公约数, 记作gcd(a,b). 设a和b是两个非零整数, 称a与b最小的正公倍数为a与b的 最小公倍数, 记作lcm(a,b).
19.1 素数
定理 3:有无穷多个素数。
梅森数(Marin Mersenne): 2p1, 其中p为素数。 当n是合数时, 2n1一定是合数,
2ab1=(2a1)(2a(b1)+2a(b2)+…+2a+1). 梅森数可能是素数, 也可能是合数: 221=3, 231=7, 251=31, 271=127都是素数, 而2111=2047=23×89是合数. 到2019年找到的最大梅森素数是2134669171, 有4百万位.
(质数)。大于 1 又不是素数的正整数称为合数。
算术基本定理:每个正整数都可以唯一地表示为素数的乘 积,其中素数因子从小到大依次出现,即 ap1r1p2r2..p.krk
例1:100, 641, 999的素因子分解为: 100=2×2×5×5=22×52 641=641 999=3×3×3×37=33×37
初等数论
主要内容
素数 最大公约数与最小公倍数 同余 在计算机科学中的应用
19.1 素数
1. 整除 定义1:设a, b是两个整数,且a≠0, 若存在整数c 使 b=ac,则称b 被a 整除,或 a 整除b,记作 a|b. 此时, 又称 b 是a 的倍数,a是b 的因子. 把 a不整除 b 记作 a b.
1
2
mrik,n sk)( k
p p p lcm(a,b)=
mr a 1,s1 x)(mr a 2,sx 2)(
1
2
mr a k,sx k)( k
例4 求150和220的最大公约数和最小公倍数. 解 150=2×3×52, 168=23×3×7.
gcd(150,168)=21×31×50×70=6, lcm(150,168)=23×31×52×71=4200.
最大公因数的求法:辗转相除法
例5:求gcd(15,36)
gcd(54,30)
36=15 2+6
54=30+24
15=6 2+3
30=24+6
6=3 2+0
24=4 6+0
因此,gcd(15,36)=3
gcd(54,30)=6
原理: gcd(a,b) = gcd(b,r)
这里,gcd(36,15) = gcd(6,15) = gcd(6,3) = 3
19.2 最大公约数和最小公倍数
定理4: (1) 若a | m, b | m, 则 lcm(a,b)| m. (2) 若d |a, d |b, 则d | gcd(a,b). 证 (1) 记M=lcm(a,b), 设m=qM+r, 0≤r<M.
欧几里得算法-辗转相除法
除法算法: a=qb+r, 0≤r <|b|, 记余数r=a mod b 例如, 20 mod 6=2, 13 mod 4=3, 10 mod 2=0
定理5: 设a=qb+r, 其中a, b, q, r 都是整数, 则 gcd(a,b) = gcd(b,r).
证明:只需证a与b和b与r有相同的公因子. 设d是a与b的公因
-3d -2d -d 0 d 2d 3d
性质:令a,b,c为整数,有如下结论: 1)若a |b且a |c, 则 x, y, 有a | xb+yc. 2)若a |b且b |c, 则a |c. 3)若 a |b,那么对于所有整数 m≠0都有 a | mb.
19.1 素数
2. 素数 定义2:大于 1 且只能被 1 和自身整除的正整数称为素数
19.2 最大公约数和最小公倍数
利用整数的素因子分解, 求最大公约数和最小公倍数. 设
ap1r1p2r2pkrk, bp1s1p2s2 pk sk, 其中p1,p2,…,pk是不同的素数, r1,r2,…,rk,s1,s2,…,sk是非负
整数. 则
gcd(a,b)=
p p p , mr1 i,n s1)(mri2,n s2)(
欧几里得算法-辗转相除法
C语言代码:
int gcd(int x,int y) { int g;
if (x < 0) x = -x; if (y < 0) y = -y; if (x+y = = 0)
printf("Error!\n"); g = y; while(x>0){
g = x; x = y%x; Hale Waihona Puke = g; } return g; }
19.1 素数
定理 2:如果n是合数,那么n必有一个小于或等于 n 的素
因子。
证:如果n是合数,它有一个因子a,使得1< a < n, 于是 nab,这样 a n或b n,这个因子或是素
数,或是有素因子。无论哪种情况,n都有小于或等于
n 的素因子
例2:证明101是素数。 证明思路:101不含有不超过 101 的素因子。
由a | m, a | M, 及r=mqM, 可推出a | r. 同理, 有b | r. 即, r是a
和b的公倍数. 根据最小公倍数的定义, 必有r=0. 得证M | m. (2) 记D=gcd(a,b), 令m=lcm(d,D). 若m=D, 自然有d |D, 结 论成立. 否则m>D, 注意到d |a, D|a, 由(1), 得m |a. 同理, m |b. 即, m是a和b的公因子, 与D是a和b的最大公约数矛盾.
子, 即d |a且d |b. 注意到, r=aqb, 由性质可得d |r. 从而,
d |b且d |r, 即d也是b与r的公因子. 反之一样, 设d是b与r的公 因子, 即d |b且d |r. 注意到, a=qb+r, 故有d |a. 从而, d |a且d |b, 即d也是a与b的公因子.
欧几里得算法-辗转相除法
19.2 最大公约数和最小公倍数
d是a与b的公因子(公约数): d |a且d |b m是a与b的公倍数: a | m且b | m 定义3:设a和b是两个不全为0的整数, 称a与b的公因子中 最大的为a与b的最大公因子, 或最大公约数, 记作gcd(a,b). 设a和b是两个非零整数, 称a与b最小的正公倍数为a与b的 最小公倍数, 记作lcm(a,b).
19.1 素数
定理 3:有无穷多个素数。
梅森数(Marin Mersenne): 2p1, 其中p为素数。 当n是合数时, 2n1一定是合数,
2ab1=(2a1)(2a(b1)+2a(b2)+…+2a+1). 梅森数可能是素数, 也可能是合数: 221=3, 231=7, 251=31, 271=127都是素数, 而2111=2047=23×89是合数. 到2019年找到的最大梅森素数是2134669171, 有4百万位.
(质数)。大于 1 又不是素数的正整数称为合数。
算术基本定理:每个正整数都可以唯一地表示为素数的乘 积,其中素数因子从小到大依次出现,即 ap1r1p2r2..p.krk
例1:100, 641, 999的素因子分解为: 100=2×2×5×5=22×52 641=641 999=3×3×3×37=33×37
初等数论
主要内容
素数 最大公约数与最小公倍数 同余 在计算机科学中的应用
19.1 素数
1. 整除 定义1:设a, b是两个整数,且a≠0, 若存在整数c 使 b=ac,则称b 被a 整除,或 a 整除b,记作 a|b. 此时, 又称 b 是a 的倍数,a是b 的因子. 把 a不整除 b 记作 a b.
1
2
mrik,n sk)( k
p p p lcm(a,b)=
mr a 1,s1 x)(mr a 2,sx 2)(
1
2
mr a k,sx k)( k
例4 求150和220的最大公约数和最小公倍数. 解 150=2×3×52, 168=23×3×7.
gcd(150,168)=21×31×50×70=6, lcm(150,168)=23×31×52×71=4200.
最大公因数的求法:辗转相除法
例5:求gcd(15,36)
gcd(54,30)
36=15 2+6
54=30+24
15=6 2+3
30=24+6
6=3 2+0
24=4 6+0
因此,gcd(15,36)=3
gcd(54,30)=6
原理: gcd(a,b) = gcd(b,r)
这里,gcd(36,15) = gcd(6,15) = gcd(6,3) = 3