扭转实验指导书《材料力学》新设备
扭转试验指导书
扭转试验指导书圆轴扭转机械性能的测定⾦属材料扭转时的机械性能对于承受扭矩作⽤的构件⼗分重要,由于这些⼒学性能指标直接影响着受扭矩作⽤的构件(主要是各类传动轴类)的设计、制造和使⽤,⽽扭转⼒学性能的测试都要通过扭转试验来测定,因此扭转试验是⾦属⼒学性能试验中的⼀种重要试验⽅法。
在冶⾦产品的⽣产检验、控制及⾦属材料与加⼯⼯艺的开发研究⽅⾯也常应⽤扭转试验⽅法,并且⽤圆柱试样进⾏扭转试验时,试样沿长度⽅向的塑性变形始终是均匀的,各部位都相同,没有颈缩现象。
这样,对于塑性很好的材料,可以运⽤扭转试验更精确地测定其应⼒和应变的关系;对于如⼯具钢等脆性材料,在拉伸试验中难以测定其韧性状态下的机械性能,运⽤扭转试验有可能使它处于韧性状态,进⾏强度和塑性的测定。
可见,⽆论是塑性材料还是脆性材料,运⽤扭转试验测定其强度和塑性都是⼀种较为理想的测定⽅法。
根据⾦属材料的扭转试验,可以测定以下⼒学性能指标:扭转屈服极限τs、扭转强度极限τb、剪切弹性模量(⼜称切变模量)G、规定⾮⽐例扭转应⼒τP等。
⼀、扭转试验机原理简介扭转试验机主要⽤于测定⾦属或⾮⾦属材料受扭矩作⽤时的⼒学性能指标。
扭转试验机类型很多,主要有两类:⼀类为机械传动式试验机,采⽤机械传动加载,⽤摆锤式机构测扭矩;另⼀类为机械电⼦式试验机,采⽤⽀流电动机⽆级调速机械传动加载,⽤电⼦⾃动平衡随动系统测扭矩。
图23-1所⽰即为后者的⼀种。
图23-1 WNJ-1000微机控制扭转试验机根据纯扭转变形的特点,需要扭转试验机提供的⼒源应是使圆柱形试样各截⾯只绕轴线产⽣转动的扭矩。
⼀般扭转试验机都具有固定夹头和能旋转加载的主动夹头,扭转试样装夹于两夹头中,并使夹头和试样的轴线处于重合,这样作⽤于试样两端的是等⼤、反向、作⽤⾯垂直于轴线的两个⼒偶,强迫试样产⽣扭转变形。
扭转试验机的主动夹头可由⼿动或机械操作,经蜗轮、蜗杆等传动机构的传动对试样施加扭矩。
试样的抗⼒由固定夹头与其相联的摆杆、砝码或杠杆、游砣保持平衡。
材料力学实验指导书(最新)
力传感器; SCLY ——II 数字式测力仪; JDY ——III 型静态电阻应变仪(2 台) 。 如图 1 所示,从上至下依次为钢-铝叠梁、钢-钢叠梁、钢-钢楔块叠梁。 3.实验原理和方法
图 2 钢-钢组合叠梁受力简图、贴片位置图与理论应力分布图
在梁的某一横截面沿梁的高度分布 8 枚电阻应变片,贴片位置如图 2 所示。 电阻片长向与梁的轴线方向一致。梁受力时,测出每个测点的应变值
8)按以上同样方法,可对其余二组梁进行测试; 9)卸去载荷,检查数据,恢复仪器。 5.试验结果处理 1)用电阻应变仪上读出的线应变读数,通过虎克定律: σ=Eε 求出纯弯梁各测点正应力的试验值。 2)再按纯弯梁横截面上的正应力分布式:
σ= M y IZ
求出纯弯梁各测点正应力的理论值。 3)最后对试验值与理论值进行误差分析。 6.注意事项 1)检查叠梁叠放是否整齐; 2)不得用力拉扯应变片引线,不得触摸应变片; 3) 测点位置通过引线的颜色辨认; 4)初载荷 F0 和终载荷 Fn 的值要适当;建议初始载荷 200N,最大载荷 2200N ,载荷递增梯度:5OON。 5)应变片灵敏度系数 K=2.13。 7.思考题 l)如何建立钢-铝叠梁、钢-钢叠梁和钢-钢楔块叠梁横截面上正应力的理 论计算公式(同学们可展开讨论) 。 2)估计那种梁试验误差要大些,误差大的主要原因是什么?
图一
WEW-600B/1000B 微机控制液压万能试验机
二、组成 1 .试验机主机; 2 .油压机控制箱; 3 .微型计算机与打印机; 三、实验指导 1.实验目的 测定低碳钢的屈服极限 s ,强度极限 b ,伸长率 ,断面收缩率 。 2.实验装置和仪器 1) WEW-600B/1000B 微机控制液压万能试验机; 2) 拉伸试件; (图二) 3) 游标卡尺等。 (图三)
扭转试验材料力学实验报告
扭 转 实 验一.实验目的:1.学习了解微机控制扭转试验机的构造原理,并进行操作练习。
2.确定低碳钢试样的剪切屈服极限s τ、剪切强度极限b τ。
3.确定铸铁试样的剪切强度极限b τ。
4.观察不同材料的试样在扭转过程中的变形和破坏现象。
二.实验设备及工具:扭转试验机、游标卡尺、扳手。
三.试验原理:塑性材料和脆性材料扭转时的力学性能。
(在实验过程及数据处理时所支撑的理论依据。
参考材料力学、工程力学课本的介绍,以及相关的书籍介绍,自己编写。
)四.实验步骤1.b 低碳钢实验(青山试验机)(1)量直径:用游标卡尺量取试样的直径0d 。
在试样上选取3各位置,每个位置互相垂直地测量2次直径,取其平均值;然后从3个位置的平均值中取最小值作为试样的直径。
(2)安装试样:启动扭转试验机,手动“试验机测控仪”上的“左转”或“右转”键,调整活动夹头的位置,使前、后两夹头钳口的位置能满足试样平口的要求,把试样水平地放在两夹头之间,用扳手顺时针旋转,夹紧试样。
(3)调整试验机并对试样施加载荷:在电脑显示屏上调整扭矩、峰值、夹头间转角、切应变1、切应变2、试验时间的零点;选择“实验方案1”;用鼠标“新建”,在下拉菜单中,依次输入“试验编号”、“实验员”、“钢筋长度”、在“实验材料”中选择“塑性”、“材料形状”中选择“实心”和“钢筋直径”等信息后,点击“确定”;鼠标点“开始”键,就给试样施加扭矩了;在加载过程中,注意观察试样屈服时扭矩S M 的变化,并记录屈服扭矩的下限值,当扭矩达到最大值时,试样突然断裂,后按下“停止”键,使试验机停止转动。
(4)试样断裂后,取下试样,从峰值中读取最大扭矩b M 。
(5)观察试样断裂后的形状。
2. 铸铁实验(青山试验机)(1)量直径:用游标卡尺量取试样的直径0d 。
在试样上选取3各位置,每个位置互相垂直地测量2次直径,取其平均值;然后从3个位置的平均值中取最小值作为试样的直径。
(2)安装试样:启动扭转试验机,手动“试验机测控仪”上的“左转”或“右转”键,调整活动夹头的位置,使前、后两夹头钳口的位置能满足试样平口的要求,把试样水平地放在两夹头之间,用扳手顺时针旋转,夹紧试样。
扭转试验材料力学实验报告docx(二)2024
扭转试验材料力学实验报告docx(二)引言:扭转试验是材料力学实验中常用的一种试验方法,通过对材料在扭转载荷下的变形与破坏进行观察和分析,可以获得关于材料力学性能的重要数据。
本文档将对扭转试验的原理和实验过程进行详细介绍,并结合相应的示意图和数据进行分析和解读。
一、扭转试验原理1. 扭转载荷的作用机理2. 扭转角与转矩之间的关系3. 扭转试验的应用领域二、扭转试验的实验准备1. 试验设备和装置的选用2. 样品的制备和处理3. 扭转试验条件的设定4. 扭转试验的安全注意事项5. 实验前的校验和预处理三、扭转试验的实验步骤1. 材料样品的固定和装夹2. 扭转试验条件的设定和调整3. 开始扭转试验并记录相关数据4. 观察和记录样品的变形和破坏情况5. 扭转试验结束后的数据处理和分析四、扭转试验结果的数据分析1. 扭转角与转矩的关系曲线分析2. 弹性区和塑性区的划分及标定3. 材料的扭转刚度和扭转强度计算4. 扭转试验结果与其他力学性能指标的关联性分析5. 结果的可靠性评估和误差分析五、扭转试验的优化和改进1. 设备和装置的改进方向2. 试验方法和参数的优化建议3. 数据处理和分析方法的改进思路4. 实验结果和结论的潜在影响和应用方向5. 对未来扭转试验的展望和研究方向总结:通过对扭转试验的详细介绍和分析,本文档对扭转试验的原理、实验步骤、数据分析等方面进行了全面的阐述。
扭转试验对于研究材料的力学性能具有重要意义,但仍存在一些局限性和改进空间。
随着科学技术的不断进步,我们可以预见,在未来的研究中,扭转试验将得到更广泛和深入的应用,并为材料科学领域的发展做出更大的贡献。
材料力学实验指导书(正文)
实验一材料在轴向拉伸、压缩时的力学性能一、实验目的1.测定低碳钢在拉伸时的屈服极限σs、强度极限σb、延伸率δ和断面收缩率 。
2.测定铸铁在拉伸以及压缩时的强度极限σb。
3.观察拉压过程中的各种现象,并绘制拉伸图。
4.比较低碳钢(塑性材料)与铸铁(脆性材料)机械性质的特点。
二、设备及仪器1.电子万能材料试验机。
2.游标卡尺。
图1-1 CTM-5000电子万能材料试验机电子万能材料试验机是一种把电子技术和机械传动很好结合的新型加力设备。
它具有准确的加载速度和测力范围,能实现恒载荷、恒应变和恒位移自动控制。
由计算机控制,使得试验机的操作自动化、试验程序化,试验结果和试验曲线由计算机屏幕直接显示。
图示国产CTM -5000系列的试验机为门式框架结构,拉伸试验和压缩试验在两个空间进行。
图1-2 试验机的机械原理图试验机主要由机械加载(主机)、基于DSP的数字闭环控制与测量系统和微机操作系统等部分组成。
(1)机械加载部分试验机机械加载部分的工作原理如图1-2所示。
由试验机底座(底座中装有直流伺服电动机和齿轮箱)、滚珠丝杠、移动横梁和上横梁组成。
上横梁、丝杠、底座组成一框架,移动横梁用螺母和丝杠连接。
当电机转动时经齿轮箱的传递使两丝杠同步旋转,移动横梁便可水平向上或相下移动。
移动横梁向下移动时,在它的上部空间由上夹头和下夹头夹持试样进行拉伸试验;在它的下部空间可进行压缩试验。
(2)基于DSP的数字闭环控制与测量系统是由DSP平台;基于神经元自适应PID算法的全数字、三闭环(力、变形、位移)控制系统;8路高精准24Bit 数据采集系统;USB1.1通讯;专用的多版本应用软件系统等。
(3) 微机操作系统试验机由微机控制全试验过程,采用POWERTEST 软件实时动态显示负荷值、位移值、变形值、试验速度和试验曲线;进行数据处理分析,试验结果可自动保存;试验结束后可重新调出试验曲线,进行曲线比较和放大。
可即时打印出完整的试验报告和试验曲线。
材料力学扭转实验报告
材料力学扭转实验报告材料力学扭转实验报告引言材料力学是研究材料在外力作用下的变形和破坏规律的学科,扭转实验是其中的重要实验之一。
本报告旨在介绍材料力学扭转实验的原理、方法、实验装置以及实验结果的分析与讨论。
实验原理扭转实验是通过施加一个力矩来引起材料的扭转变形,从而研究材料的力学性能。
在扭转实验中,材料会发生剪切应变,而剪切应力与剪切应变之间的关系可以通过剪切模量来描述。
剪切模量是材料的一项重要力学参数,它反映了材料抵抗剪切变形的能力。
实验方法本次实验采用了经典的圆柱体扭转实验方法。
首先,选择一根具有一定长度的圆柱体样品,将其固定在扭转实验机上。
然后,通过扭转实验机施加一个力矩,使样品发生扭转变形。
同时,通过测量扭转角度和施加力矩的大小,可以得到材料的剪切模量。
实验装置本次实验所用的扭转实验装置包括扭转实验机、样品夹具、测量仪器等。
扭转实验机是用来施加力矩的设备,样品夹具用于固定样品,并保证其能够自由扭转。
测量仪器包括扭转角度测量仪和力矩测量仪,用于测量样品的扭转角度和施加的力矩。
实验结果分析与讨论通过实验测量得到的扭转角度和施加的力矩数据可以用来计算材料的剪切模量。
根据材料力学的理论知识,剪切模量可以通过以下公式计算:G = (L * T) / (J * θ)其中,G表示剪切模量,L表示样品的长度,T表示施加的力矩,J表示样品的截面转动惯量,θ表示样品的扭转角度。
通过对实验数据的处理和计算,可以得到材料的剪切模量。
进一步地,可以通过对不同材料进行扭转实验,比较其剪切模量的大小,从而分析不同材料的力学性能。
结论通过本次材料力学扭转实验,我们了解了扭转实验的原理和方法,并通过实验装置和测量仪器进行了实验。
通过对实验数据的分析和计算,我们得到了材料的剪切模量,并通过比较不同材料的剪切模量,进一步了解了材料的力学性能。
这对于我们深入了解材料的性质和应用具有重要意义。
总结材料力学扭转实验是研究材料力学性能的重要实验之一。
《材料力学》实验指导书
江西应用科技学院《材料力学》实验指导书编制人:审核人:江西应用科技学院城市建设学院2015 年 5 月实验项目一 低碳钢的拉伸实验一、实验目的1.了解微机控制万能材料试验机的工作原理,演示试验机的基本操作方法;2.测定低碳钢的抗拉强度σb 、屈服强度σS 、伸长率δ及截面收缩率ψ;3.观察低碳钢在拉伸过程中的现象和试样的破坏特征,分析断口破坏原因,绘制拉伸曲线图及断口示意图。
二、实验设备万能材料试验机、游标卡尺、直尺。
三、实验原理根据国标GB228-99的试件形状如图1-1所示,图中L 0所说试件的变形就是指这一段的变形。
L c 两端是试验机夹持的部分。
试件在拉伸时,其尺寸、较,必须按国家标准GB6397-99分为比例和定标距两种试样,表1-1L=11.3A (长试件)或5.65A (短试件)。
A 点以前,杆件仅有弹性变形,且P 和L 成线性关系,即遵守虎克定律:ΔL=EAPL(1-1) A 点以后,曲线不再保持直线,至B ´点开始屈服,以后成锯齿形,B 点为载荷下降的最低点。
B ´点的数值与试件加载速度、试件形式等有关,而B 点的数值比较稳定,工程上常取B 点的载荷作为屈服载荷。
因此屈服应力σs =P s /A 。
到C 点,材料强化,曲线继续上升,至D 点试件开始出现颈缩,载荷达到最大值P b ,抗拉强度为:σb =0b P A (1-2)试件断裂后,用游标卡尺量得标距间长度L 1和试件收缩处面积A 1,则可得试件的塑性性能:δ=10L L L -×100% (1-3) ψ=10A A A -×100% (1-4) 四、实验步骤1、试件准备1)在试件中段取标距L=10d(100mm)(低碳钢试件),用试样划线机将其划分为10等份。
2)在试件标距范围内用游标卡尺测量中间和两端三处直径,每处在互相垂直的两个方向 上个测量直径一次,选取平均直径最小的一组作为计算截面面积用。
实验三 扭转实验指导书
扭转实验指导书(试验三)实验三扭转实验在实际工程机械中,有很多传动是在扭转情况下工作。
设计扭转轴所用的许用剪应力,是根据材料在扭转破坏试验时,所测出的扭转剪切屈服极限τS或剪切强度极限τb 而求得的。
在扭转试验时,即使韧性极好的金属也能在扭转时发生断裂,由于扭转断裂后外形无明显变化,从而可以精确地计算应力和应变情况。
一、试验目的1、测定低碳钢材料的扭转时剪切屈服极限τs,剪切强度极限τb。
2、测定铸铁材料的扭转时剪切强度极限τb。
3、观察两种材料扭转时现象,断后断口情况,进行比较。
二、试验设备1、NJ—50B型扭转试验机2、游标卡尺三、扭转试样根据国家标准,扭转试样一般采用圆形截面试样,与拉伸试样相似。
不同的是两端加持部分被磨出两平行平面,以便装夹。
本次试验也用低碳钢与铸铁材料两种材料作为塑性材料和脆性材料的代表。
图3—1 扭转试样四、扭转试验机扭转试验机用于实施扭转试验以测定材料的抗扭力学性能。
本次扭转试验采用NJ-50B型扭转试验机。
见图3-2。
图2—3 NJ-50B型扭转试验机1、构造原理由加力装置和测力装置组成。
加力装置由机座及装于其导轨上的溜板和加力机构组成,溜板可沿导轨(即试样轴线方向)自由移动以保证试样只受扭矩而不受轴向力的作用,加力机构由直流电机经两级蜗杆传动减速后,驱动加力夹头转动从而对试样施加扭矩,加力夹头上安装有360°分度环以显示试样产生的扭角。
测力装置为游砣重力平衡式,来自加力夹头的扭矩T通过试样传给测力夹头,加头受力后经过传感器反映到测力表盘的指针上。
当需要变换测力量程时,转动量程选择旋钮。
2、扭转试验机操作规程1)试验前检查设备情况,加油润滑。
2)估算所测材料断裂时的最大扭矩,选择量程。
3)根据试样大小决定夹块的大小。
4)装夹试样:将试样一端夹入被动夹头,另一端夹入主动夹头。
5)主动针定在零点,将被动指针转至与主动指针重合。
6)选定主动夹头的转速,根据需要选好旋转方向。
材料力学实验-扭转
2 sin cos sin 2
(cos 2 sin 2 ) cos 2
当 45 时, 45
max ;当 135 时, 135 max 。
图 1 各种材料抵抗剪切的能力不同,因此不同材料的扭转破坏方式也不相同。低碳钢圆试件扭转到破坏时,因已 超过屈服阶段,如作为理想塑性考虑(图 2) ,横截面上的剪应力的分布趋于均匀如图 3 所示。假设应力均达到 了破坏应力(强度极限) ,则这时截面上应力 max 与破坏时扭矩 M n max 的关系为
姓名:
学号:
日期:
扭矩 M(N·m) 45.12007
二. 铸铁扭转 1.铸铁直径 d 测量 第一次测量 上部 中部 下部 【实验结果】 附后。 10.00mm 9.98mm 10.00mm
扭角ψ (°) 68.45324
相对扭角ψ 0(°) 57.72748
第二次测量 10.00mm 9.98mm 10.00mm
max 式得剪切强度极限为
max
M n max Wn
。
【实验步骤】 一. 低碳钢扭转 ① 测量试件的直径,在两个相互垂直的方向上各测一次,分上中下三个部分测量,取其平均最小值. ② 将试件固定于定位环,测量固定圆盘两端长度. ③ 启动扭转试验机并预热后,将试件一端固定于机器,按"对正"按钮使两夹头对正后,推动移动支座使试件 头部进入钳口间. ④ 将扭角测量装置放在卡盘上. ⑤ 选择试验方案为"低碳钢室温扭转试验方法(φ 10)",设定参数后将所有数据清零. ⑥ 按"运行"键,开始实验. ⑦ 试验结束,点击"生成报告"后打印. ⑧ 卸除试样,整理仪器,关闭电源. 二. 铸铁扭转 ① 测量试件的直径,在两个相互垂直的方向上各测一次,分上中下三个部分测量,取其平均最小值. ② 启动扭转试验机并预热后,将试件一端固定于机器,按"对正"按钮使两夹头对正后,推动移动支座使试件 头部进入钳口间. ② 选择试验方案为"铸铁室温扭转试验方法(φ 10)",设定参数后将所有数据清零. ③ 按"运行"键,开始实验. ④ 试验结束,点击"生成报告"后打印. ⑥ 卸除试样,整理仪器,关闭电源.
材料力学实验指导书(拉伸、扭转、冲击、应变)
C 61`材料的拉伸压缩实验一、实验目的1.观察试件受力和变形之间的相互关系;2.观察低碳钢在拉伸过程中表现出的弹性、屈服、强化、颈缩、断裂等物理现象;观察铸铁在压缩时的破坏现象。
3.测定拉伸时低碳钢的强度指标(σs、σb)和塑性指标(δ、ψ);测定压缩时铸铁的强度极限σb。
4.学习、掌握电子万能试验机的使用方法及工作原理。
二、实验设备1.微机控制电子万能试验机;2.游标卡尺。
三、实验材料拉伸实验所用试件(材料:低碳钢)如图1所示,压缩实验所用试件(材料:铸铁)如图2所示:图1 拉伸试件图2 压缩试件四、实验原理1、拉伸实验低碳钢试件拉伸过程中,通过力传感器和位移传感器进行数据采集,A/D转换和处理,并输入计算机,得到F-∆l曲线,即低碳钢拉伸曲线,见图3。
对于低碳钢材料,由图3曲线中发现OA直线,说明F正比于∆l,此阶段称为弹性阶段。
屈服阶段(B-C)常呈锯齿形,表示载荷基本不变,变形增加很快,材料失去抵抗变形能力,这时产生两个屈服点。
其中,B'点为上屈服点,它受变形大小和试件等因素影响;B 点为下屈服点。
下屈服点比较稳定,所以工程上均以下屈服点对应的载荷作为屈服载荷。
测定屈服载荷Fs 时,必须缓慢而均匀地加载,并应用σs =F s / A 0(A 0为试件变形前的横截面积)计算屈服极限。
图3 低碳钢拉伸曲线屈服阶段终了后,要使试件继续变形,就必须增加载荷,材料进入强化阶段。
当载荷达到强度载荷F b 后,在试件的某一局部发生显著变形,载荷逐渐减小,直至试件断裂。
应用公式σb =F b /A 0计算强度极限(A 0为试件变形前的横截面积)。
根据拉伸前后试件的标距长度和横截面面积,计算出低碳钢的延伸率δ和端面收缩率ψ,即%100001⨯-=l l l δ,%100010⨯-=A A A ψ 式中,l 0、l 1为试件拉伸前后的标距长度,A 1为颈缩处的横截面积。
2、压缩实验铸铁试件压缩过程中,通过力传感器和位移传感器进行数据采集,A/D 转换和处理,并输入计算机,得到F-∆l 曲线,即铸铁压缩曲线,见图4。
拉压,扭转材料力学实验指导书1
实验一 低碳钢和铸铁的拉伸实验一、实验目的要求1.测定低碳钢的流动极限S σ、强度极限b σ、延伸率δ、截面收缩率ψ和铸铁的强度极限b σ。
2.低碳钢和铸铁在拉伸过程中表现的现象,绘出外力和变形间的关系曲线(L F ∆-曲线)。
3.比较低碳钢和铸铁两种材料的拉伸性能和断口情况。
二、实验设备和仪器CMT5504/5105电子万能试验机、游标卡尺等图1-1 CMT5504/5105电子万能试验机三、拉伸试件金属材料拉伸实验常用的试件形状如图所示。
图中工作段长度l 称为标距,试件的拉伸变形量一般由这一段的变形来测定,两端较粗部分是为了便于装入试验机的夹头内。
低碳钢拉伸铸铁拉伸四、实验原理和方法1.低碳钢拉伸实验低碳钢试件在静拉伸试验中,通常可直接得到拉伸曲线,如图1—3所示。
用准确的拉伸曲线可直接换算出应力应变εσ-曲线。
首先将试件安装于试验机的夹头内,之后匀速缓图1-2 拉伸试件慢加载(加载速度对力学性能是有影响的,速度越快,所测的强度值就越高),试样依次经过弹性、屈服、强化和颈缩四个阶段,其中前三个阶段是均匀变形的。
图1-3 低碳钢拉伸曲线(1) 弹性阶段 是指拉伸图上的'OA 段,没有任何残留变形。
在弹性阶段,载荷与变形是同时存在的,当载荷卸去后变形也就恢复。
在弹性阶段,存在一比例极限点A ,对应的应力为比例极限p σ,此部分载荷与变形是成比例的。
(2) 屈服阶段 对应拉伸图上的BC 段。
金属材料的屈服是宏观塑性变形开始的一种标志,是由切应力引起的。
在低碳钢的拉伸曲线上,当载荷增加到一定数值时出现了锯齿现象。
这种载荷在一定范围内波动而试件还继续变形伸长的现象称为屈服现象。
屈服阶段中一个重要的力学性能就是屈服点。
低碳钢材料存在上屈服点和下屈服点,不加说明,一般都是指下屈服点。
上屈服点对应拉伸图中的B 点,记为SU F ,即试件发生屈服而力首次下降前的最大力值。
下屈服点记为SL F ,是指不计初始瞬时效应的屈服阶段中的最小力值,注意这里的初始瞬时效应对于液压摆式万能试验机由于摆的回摆惯性尤其明显,而对于电子万能试验机或液压伺服试验机不明显。
金属的扭转实验
金属的扭转实验指导书一、实验目的:1、 测定低碳钢扭转流动极限s τ与扭转强度极限b τ2、 测定铸铁的扭转强度极限b τ3、 观察并分析比较低碳钢、铸铁试件的断口形状二、实验设备1、扭转试验机。
2、游标卡尺。
图2-21 圆形扭转试样图图2-22 低碳钢扭转实验T-Ф曲线三、试样的制备根据国家标准GB/T10128-1988《金属室温扭转试验方法》的规定,金属扭转试验所使用的试样截面为圆形,推荐采用直径为10 mm ,标距L0分别为50mm 和100mm ,平行长度Le 分别为70mm 和120mm 的试样。
试样头部(两端部)的形状和尺寸应根据扭转试验机夹头的具体情况来确定。
如果采用其他直径的试样,其平行长度Lc应为标距加上两倍的直径。
圆形扭转试样的形状、尺寸以及加工精度见左图2-21。
四、实验原理扭转实验是材料力学实验中最基本的实验之一。
在进行扭转实验时,试样两端部被装夹在扭转试验机的夹头上。
试验机的一个夹头固定不动,另一个夹头绕轴旋转。
以实现对试样施加扭转载荷。
这时,从试验机上可读出扭矩T和对应的扭转角Φ。
通过试验机上的自动绘图装置可绘出该试样的扭矩T与扭转角Φ的关系曲线图。
1、低碳钢扭转破坏实验对低碳钢试样进行扭转实验时,通过试验机上的自动绘图装置,我们可绘出该试样在整个扭转过程中的扭矩T与扭转角Ф的关系曲线。
如图2-22所示。
由图2-22知,低碳钢在整个扭转过程中经历了弹性、屈服、强化三个阶段。
在弹性阶段——OA直线段,材料服从切变虎克定律。
即材料的切应力τ与切应变γ成正比。
在屈服阶段——AB曲线段,分两种情况来读屈服点所对应的扭矩T s。
(1)当屈服阶段图形为水平线时,此时试验机扭矩刻度盘上首次出现扭矩不增加(保持恒定)而扭转角增加时的扭矩为屈服扭矩T s。
如图2-22(a)所示。
(2)当屈服阶段图形为锯齿形状时,扭矩刻度盘上主针首次下降(回转)前的的扭矩为上屈服扭矩T su。
而在屈服阶段中最小扭矩为下屈服扭矩T sl,如图2-22(b)所示。
扭转-实验指导
扭转实验一、实验目的1.测定低碳钢扭转时的强度性能指标:扭转屈服应力s τ和抗扭强度bτ。
2.测定灰铸铁扭转时的强度性能指标:抗扭强度bτ。
3.绘制低碳钢和灰铸铁的扭转图,比较低碳钢和灰铸铁的扭转破坏形式。
二、实验设备和仪器1.扭转试验机。
2.游标卡尺。
三、实验试样按照国家标准GB10128—88《金属室温扭转试验方法》,金属扭转试样的形状随着产品的品种、规格以及试验目的的不同而分为圆形截面试样和管形截面试样两种。
其中最常用的是圆形截面试样,如图1-1a 所示。
通常,圆形截面试样的直径mm 10=d ,标距d l 5=或dl 10=,平行部分的长度为mm 20+l 。
若采用其它直径的试样,其平行部分的长度应为标距加上两倍直径。
试样头部的形状和尺寸应适合扭转试验机的夹头夹持。
由于扭转试验时,试样表面的切应力最大,试样表面的缺陷将敏感地影响试验结果,所以,对扭转试样的表面粗糙度的要求要比拉伸试样的高。
对扭转试样的加工技术要求参见国家标准GB10128—88。
四、实验原理与方法根据扭矩增量的平均值ΔT ,测得的扭转角增量的平均值ϕ∆,由此可得到切变模量pI Tl G ϕ∆∆=式中:l 为试样的标距;32/d 4p π=I 为试样在标距内横截面的极惯性矩;d 为试样的直径。
1.测定低碳钢扭转时的强度性能指标试样在外力偶矩的作用下,其上任意一点处于纯剪切应力状态。
随着外力偶矩的增加,测矩盘上的指针会出现停顿,这时指针所指示的外力偶矩的数值即为屈服力偶矩es M ,低碳钢的扭转屈服应力为pes s 43W M =τ式中:16/3p d W π=为试样在标距内的抗扭截面系数。
在测出屈服扭矩s T 后,改用电动加载,直到试样被扭断为止。
测矩盘上的从动指针所指示的外力偶矩数值即为最大力偶矩eb M ,低碳钢的抗扭强度为p eb b 43W M =τ对上述两公式的来源说明如下:低碳钢试样在扭转变形过程中,利用扭转试验机上的自动绘图装置绘出的ϕ-e M 图如图1-6所示。
扭转实验报告材料力
扭转实验报告材料力实验题目:扭转实验实验目的:1. 了解扭转实验的原理和方法;2. 掌握扭转实验的操作技巧;3. 学会分析实验数据,得出相应的结论。
实验原理:扭转实验是通过施加力矩来产生扭转变形,通过测量扭转角度和应力来分析材料的力学性质。
在实验中,将试样置于扭转装置中,通过扭转装置施加力矩,使试样发生扭转变形。
通过测量扭转角度和应力,可以得到材料的切应力与转角之间的关系。
实验步骤:1. 准备实验装置:将试样装置固定在扭转装置上,调整装置使试样水平放置,确保扭转装置的稳定;2. 测量试样尺寸:使用游标卡尺等工具测量试样的直径、长度等尺寸参数,以便后续计算;3. 施加力矩:通过手动或电动装置施加力矩,使试样产生扭转变形;4. 测量扭转角度:使用微量计或角度测量仪器,测量试样的扭转角度;5. 测量应力:使用应力计等设备测量试样上的应力;6. 记录数据并计算:记录实验数据,根据实验公式计算切应力和扭转角度的关系;7. 分析数据:根据实验所得数据,绘制切应力与转角的曲线图,并从中分析材料的力学性质。
实验结果与讨论:通过实验测量得到的数据,我们可以根据实验公式计算切应力与转角的关系。
绘制切应力-转角曲线图后,可以观察到材料的力学性质。
根据实验结果,我们可以得到以下结论:1. 在材料处于线性弹性阶段时,切应力与转角呈线性关系;2. 当材料处于屈服点之后,切应力与转角之间的关系不再是线性关系,材料开始出现塑性变形;3. 材料的硬度可以通过切应力-转角曲线中的斜率来确定;4. 材料的韧性可以通过切应力-转角曲线中的面积来确定,面积越大,材料的韧性越好。
结论:通过扭转实验,我们可以分析材料的力学性质,如弹性、硬度和韧性等。
实验中需要注意操作细节,如保证试样的水平放置、测量精度等,以获得准确的实验数据。
通过对实验结果的分析,可以得到对材料力学性质的判断和评价。
扭转实验是一种有效的实验方法,对于研究材料的力学性质具有重要的作用。
材料力学实验三、四指导书
铸铁拉伸
无
7
实验四纯弯曲梁实验
实验项目性质:验证性 所涉及课程:材料力学 计划学时:2 学时
【实验目的】 1.测定梁在纯弯曲时横截面上正应力大小和分布规律。 2.验证纯弯曲梁的正应力公式。 【实验设备】 1、力尔公司材料力学教学试验机; 2、游标卡尺、钢尺; 3、弯曲试验装置 L1 载荷 P 加载梁 C A 纯弯曲梁 L2 S D B B H
4
报告。 2、准备数据采集系统 ①启动微机。 ②启动“材料力学实验”软件。 3.试样安装 ①安装扭转夹头。 ②安装扭转试样: 将准备好的标准扭转试样,装入两夹头之间。方法是:首先将试样长度 与实验机两夹头间距离比较一下, 然后, 点击程序操作板上的 “允许加载” , 点击集中力加载下的“上升”或“下降”按钮,使动力加载梁上下移动,直 到两夹头距离适合装入试样。点击“扭转夹头复位”按钮,等待扭转上夹头 转到零点位置,再将试样装入。
Tm Wt
试件受扭,材料处于纯剪切应力状态,在试件的横截面上作用有剪应力 , 同时在与轴线成±45°的斜截面上,会出现与剪应力等值的主拉应力 1 和主压 应力 2 ,如图 2-11(a)所示。
45°
τ
σ1
σ2
45°
(a)
(b)
(c)
图 5 纯剪应力状态与扭转断口示意图
低碳钢的抗剪能力比抗拉和抗压能力差,试件将会从最外层开始,沿横截面 发生剪断破坏,如图 5(b)所示,而铸铁的抗拉能力比抗剪和抗压能力差,则试件 将会在与杆轴成 45°的螺旋面上发生拉断破坏,如图 5(c)所示。 【实验步骤及内容】 1、试样准备 ①量取试件标距: 采用标准圆截面拉伸试样 (长试件或短试件) , 试样的形状及尺寸见图 (1) 。
图 7 扭转试验加载图
材料力学扭转实验【范本模板】
§1-2 扭转实验一、实验目的1、测定低碳钢的剪切屈服点τs,抗扭强度τb。
2、测定铜棒的抗扭强度τb.3、比较低碳钢和铜棒在扭转时的变形和破坏特征。
二、设备及试样1、伺服电机控制扭转试验机(自行改造).2、0.02mm游标卡尺。
3、低碳钢φ10圆试件一根,画有两圈圆周线和一根轴向线。
4、铜棒铁φ10圆试件一根。
三、实验原理及方法塑性材料试样安装在伺服电机驱动的扭转试验机上,以6—10º/min的主动夹头旋转速度对试样施加扭力矩,在计算机的显示屏上即可得到扭转曲线(扭矩-夹头转角图线),如下图为低碳钢的部分扭转曲线。
试样变形先是弹性性的,在弹性阶段,扭矩与扭转角成线性关系。
弹性变形到一定程度试样会出现屈服。
扭转曲线扭矩首次下降前的最大扭矩为上屈服扭矩T su;屈服段中最小扭矩为下屈服扭矩T sl,通常把下屈服扭矩对应的应力值作为材料的屈服极限τs,即:τs=τsl= T sl/W。
当试样扭断时,得到最大扭矩T b,则其抗扭强度为τb= T b/W式中W为抗扭截面模量,对实心圆截面有W=πd03/16。
铸铁为脆性材料,无屈服现象,扭矩-夹头转角图线如左图,故当其扭转试样破断时,测得最大扭矩T b,则其抗扭强度为:τb= T b/W四、实验步骤1、测量试样原始尺寸分别在标距两端及中部三个位置上测量的直径,用最小直径计算抗扭截面模量.2、安装试样并保持试样轴线与扭转试验机转动中心一致。
3、低碳钢扭转破坏试验,观察线弹性阶段、屈服阶段的力学现象,记录上、下屈服点扭矩值,试样扭断后,记录最大扭矩值,观察断口特征。
4、铜棒扭转破坏试验,试样扭断后,记录最大扭矩值,观察断口特征。
五、实验数据处理1、试样直径的测量与测量工具的精度一致。
2、抗扭截面模量取4位有效数字。
3、力学性能指标数值的修约要求同拉伸实验。
六、思考题1、低碳钢扭转时圆周线和轴向线如何变化?与扭转平面假设是否相符?2、如用木材或竹材制成纤维平行于轴线的圆截面试样,受扭时它们将按怎样的方式破坏?3、根据低碳钢和铜棒的破口特征,分析两种材料扭转破坏的原因?1、比较低碳钢拉伸和扭转实验,从进入塑性变形阶段到破坏的全过程,两者变形有何明显的区别?。
材料力学实验设计-扭转实验
扭转实验一、实验目的1、测定黄铜在扭转时的剪切屈服极限τS和剪切强度极限τb。
2、观察黄铜扭转破坏过程及破坏形式。
二、实验设备及量具1、电子式扭转试验机图一主机结构图试验机由加载机构,测力单元、显示器、试验机附件(标定装置)等组成。
加载机构,安装在导轨上的加载机构,由松下伺服电机带动,通过减速器使夹头旋转,对试件施加扭矩。
试验机的正反加栽和停车,可按显示器的标志按扭。
为了适应各种材料扭力的需要,试验机具有较宽的调速范围。
无级调速0°—360°任意角度可调。
测力单元,通过夹头传来的力矩经传感器处理输出,在液晶显示器和计算机上同步显示出来,根据满意程度选择保存或打印。
2、游标卡尺三、实验原理圆截面直杆试件在受扭转时,横截面上产生剪应力。
在试验机自动绘图装置上得到扭矩和转角的关系图。
如图二所示。
图中斜直线表示了塑性材料在比例极限内,剪应力与剪应变服从胡克定律,最大剪应力发生在截面的边缘。
当扭矩继续增加超过M Pa,出现应力不增加而变形(扭转角)继续增加,转角愈大,塑性区愈深入到中心,材料开始屈服。
在屈服过程中,横截面剪应力由线性分布趋于均匀分布。
此时扭矩为M S。
M图二试件经过屈服阶段后,载荷上升,材料开始强化,应力增加,直至C点时,试件被剪断破坏。
四、实验步骤1、测量试件的直径d0,取试件两端及中部三处用游标卡尺测量,每一处都要在两个相互垂直的方向上量出直径,取其平均直径最小截面处的平均直径作为试件的直径。
确定计算长度L0,在试件中间等粗的细长部分内,量取计算长度L0 (按10倍或者5倍试件确定)。
然后,用刻线机或笔把计算长度L0分成若干等分(通常是以5mm或10mm为一等分)。
以便当试件断裂不在中间时进行换算,从而求得比较正确的伸长率。
但刻、划线时应尽量轻微。
2、调整扭转试验机夹具之间的距离,并选择相应的卡头。
3、设定参数并调零。
4、将试件安装于扭转实验机的夹具中。
5、在试件的轴线方向,用粉笔划一直线。
扭转实验报告的实验设备
扭转实验报告的实验设备扭转实验报告的实验设备实验是科学研究中不可或缺的环节,而实验设备的选择和使用则直接关系到实验结果的准确性和可靠性。
在扭转实验中,实验设备的合理选择和正确使用对于获得准确的实验数据至关重要。
本文将探讨扭转实验报告中实验设备的相关问题。
一、扭转实验的背景和意义扭转实验是一种常用的实验方法,它可以用来研究材料的力学性质和变形行为。
通过施加扭转力矩,我们可以了解材料在扭转载荷下的应力、应变关系,进而分析材料的力学性能和变形特点。
扭转实验广泛应用于材料科学、工程力学、机械设计等领域。
二、扭转实验设备的选择1. 扭转试验机扭转试验机是扭转实验中最基本的设备之一。
它通过电机提供扭转力矩,驱动材料试样进行扭转变形。
在选择扭转试验机时,需要考虑以下因素:(1)扭转力矩范围:根据实验需求确定扭转力矩的范围,选择能够满足实验要求的试验机。
(2)控制方式:扭转试验机可以采用手动控制或电脑控制。
根据实验要求和研究目的选择合适的控制方式。
(3)数据采集系统:扭转试验机需要配备相应的数据采集系统,用于记录和分析实验数据。
确保数据采集系统的准确性和稳定性。
2. 试样制备设备在扭转实验中,试样的制备对于实验结果的准确性和可靠性至关重要。
试样制备设备包括切割机、车床等。
在选择试样制备设备时,需要考虑以下因素:(1)精度要求:根据实验要求确定试样的精度要求,选择能够满足要求的制备设备。
(2)操作简便性:试样制备设备的操作是否简便,是否需要专业技能,对于实验的顺利进行具有重要影响。
三、实验设备的正确使用1. 设备检查和校准在进行扭转实验之前,需要对实验设备进行检查和校准,确保设备的正常运行和准确性。
检查内容包括设备的电气连接、传感器的校准、试样夹持装置的稳定性等。
2. 实验操作规范在进行扭转实验时,需要按照操作规范进行实验操作。
包括试样的夹持、加载方式、加载速度等。
操作规范的遵守可以保证实验数据的准确性和可靠性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验编号3 低碳钢和铸铁扭转实验
低碳钢和铸铁扭转破坏试验
一、概述
工程中有许多承受扭转变形的构件,了解材料在扭转变形时的力学性能,对于构件的合理设计和选材是十分重要的。
材料在扭转变形下的力学性能只能通过试验来测定;扭转变形是构件的基本变形之一。
因此扭转试验也是材料力学基本实验之一。
二、实验目的
1、测定低碳钢的剪切屈服极限τ
s ,及低碳钢铸铁的剪切强度极限τ
b
2、铸铁的抗扭强度极限τ
b
3、观察、比较分析两种材料在扭转过程中变形和破坏形式。
4、学习自动绘制T-υ曲线及微机控制电子扭转实验机、扭角仪的操作
三、实验设备和仪器
1、CTT1000微机控制电子扭转实验机(1000N.M)
2、游标卡尺
3、低碳钢和铸铁圆形扭转试件
四、试件
扭转试验所用试件与拉伸试件的标准相同,一般使用圆形试件,d
=10mm,
标距l
=100mm,平行长度l为120mm。
其它直径的试样,其平行长度为标距长度加上两倍直径。
为防止打滑,扭转试样的夹持段宜为类矩形,如图3-1所示。
图3-1
五、实验原理
扭转试验是材料力学试验最基本、最典型的试验之一。
进行扭转试验时,把试件两夹持端分别安装于扭转试验机的固定夹头和活动夹头中,开启试验机,试件便受到了扭转荷载,试件本身也随之产生扭转变形。
扭转试验机上可以直接读出扭矩M和扭转角υ,同时试验机也自动绘出了M—υ曲线图,一般υ是试验机两夹头之间的相对扭转角。
扭转试验的标准是GB/T10128-1988。
因材料本身的差异,低碳钢扭转曲线有两种类型,如图3-2所示。
扭转曲线
表现为弹性、屈服和强化三个阶段,与低碳钢的拉伸曲线不尽相同,它的屈服过程是由表面逐渐向圆心扩展,形成环形塑性区。
当横截面的应力全部屈服后,试件才会全面进入塑性。
在屈服阶段,扭矩基本不动或呈下降趋势的轻微波动,而扭转变形继续增加。
当首次扭转角增加而扭矩不增加(或保持恒定)时的扭矩为
屈服扭矩,记为M
s ;首次下降前的最大扭矩为上屈服扭矩,记为M
su
;屈服阶段
中最小的扭矩为下屈服扭矩,记为M
sL
(不加说明时指下屈服扭矩)。
对试件连续
施加扭矩直至扭断,从试验机扭矩标识上读得最大值。
考虑到整体屈服后塑性变形对应力分布的影响,低碳钢扭转屈服点和抗扭强度理论上应按下式计算。
τs=M s/Wρτb=M b/Wρ
图3-2低碳钢图3-3铸铁铸铁试件扭转时,其扭转曲线不同于拉伸曲线,它有比较明显的非线性偏离,见图(3-3)。
但由于变形很小就突然断裂,一般仍按弹性公式计算铸铁的抗扭强度,即
τb=M b/Wρ
圆形试件受扭时,横截面上的应力应变分布如图3-4b、c所示。
在试件表面
任一点,横截面上有最大切应力τ,在与轴线成±45的截面上存在主应力σ
1
=τ,σ3=-τ(见图3-4a)。
低碳钢的抗剪能力弱于抗拉能力,试件沿横截面被剪
断。
铸铁的抗拉能力弱于抗剪能力,试件沿与σ
1
正交的方向被拉断。
图3-4
六、实验步骤
1.开机:试验机——>打印机——>计算机
注意:每次开机后,最好要预热10分钟,待系统稳定后,再进行试验工作。
若刚刚关机,需要再开机,至少保证1分钟的时间间隔。
2.双击电脑桌面图标,进入试验软件,选择好联机的用户名为:实验员;密码为:sans.
点击
3、测量试样的尺寸方法为:用游标卡尺在试样标距两端和中间三个截面上测量直径,每个截面在互相垂直方向各测量一次,取其平均值。
用三个平均值中最小者计算抗扭截面模量W
ρ
3.根据试样情况准备好夹具,,安装扭转角传感器。
点击里的新试验,选择相应的材料选择对应的试验方案,输入试样的原始直径。
4.划线:在试件的两端和中间用彩色粉笔画三个圆周线,并沿试件表面划一母线,以便观察低碳钢扭转时的变形情况(铸铁变形较小不用画此线)。
5.装夹试样
6.先按“对正”按键,使两夹头对正。
如发现夹头有明显的偏差,请按下“正传”或“反转”按键进行微调。
7.将已安装卡盘的试样的一端放入从动夹头的钳口间,推动移动支座移动,使试样的头部进入主动夹头的钳口间,扳动夹头的手柄将试样夹紧。
8.将扭转角传感器放在卡盘上。
9.按“扭矩清零”按键或试验操作界面上的扭矩“清零”按钮。
9、按“扭转角清零”按键,(点击扭角窗口的按钮)使计算机显示屏上的扭转角显示值为零。
10.点击,开始自动试验,软件自动切换到试验界面。
11.观察试验过程
12.试验结束,在试验结果栏中,程序将自动计算出结果显示在其中。
如果想清楚的观看结果,可双击试验结果区,试验结果区将放大到半屏,方便观看结果数据,再次双击,试验结果区大小复原。
如果想分析曲线,双击曲线区,曲线区将放大到半屏,方便分析曲线,再次双击,曲线区大小复原。
17、实验完成后,根据实验报告采集实验数据并进行计算。
18、关闭试验窗口及软件;
关机:试验软件——>试验机——>计算机。
七、结果整理
1、计算低碳钢的剪切屈服极限 τs =s M W ρ
强度极限 τb =
b M W ρ 2、铸铁的强度极限 τb =
s M W ρ 式中W ρ=16
π d 3是试件的抗扭截面模量。
八、预习要求:
1、复习课程中的扭转理论。
2、阅读扭转实验指导书。
九、思考题
1、低碳钢拉伸和扭转的断裂方式是否一样?破坏原因是否一样?
2、铸铁在压缩破坏和扭转破坏试验中,断口外缘与轴线夹角是否相同?破坏原因是否相同?
3、分析低碳钢拉伸曲线与扭转曲线的相似处和异同点?。