2019年四川省成都市高三一诊模拟考试(文科)数学试题及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学精品复习资料

2019.5

四川省成都市高三一诊模拟考试

文科数学试题

(考试时间: 12月27日 总分:150分)

一、选择题(每小题5分,共50分) 1.不等式

2

23

x x -≤+的解集是( ) A (,8](3,)-∞-⋃-+∞ B (,8][3,)-∞-⋃-+∞ C .[3,2]- D (3,2]-

2.若复数

(,i 为虚数单位)是纯虚数,则实数a 的值为( ) A -2

B 4

C 6

D -6

3.公差不为零的等差数列第2,3,6项构成等比数列,则这三项的公比为( ) A .1 B .2 C .3 D .4

4.已知平面向量a ,b 满足||1,||2a b ==,a 与b 的夹角为60︒,则“m=1”是“()a mb a -⊥”的( )

A .充分不必要条件

B .必要不充分条件

C .充要条件

D .既不充分也不必要条件

5.关于命题p :A φφ⋂=,命题q :A A φ=,则下列说法正确的是( ) A .()p q ⌝∨为假

B .()()p q ⌝∧⌝为真

C .()()p q ⌝∨⌝为假

D .()p q ⌝∧为真

6.设函数)(|,3sin |3sin )(x f x x x f 则+=为 ( )

A .周期函数,最小正周期为

23

π B .周期函数,最小正周期为

3

π C .周期函数,最小正周期为π2

D .非周期函数

7.给出下面类比推理命题(其中Q 为有理数集,R 为实数集,C 为复数集):( )

①“若a ,b ∈R ,则a -b =0⇒a =b ”类比推出“若a ,b ∈C ,则a -b =0⇒a =b ”; ②“若a ,b ,c ,d ∈R ,则复数a +bi =c +di ⇒a =c ,b =d ”类比推出“若a ,b ,c ,d ∈Q ,则a +b 2=c +d 2⇒a =c ,b =d”;

③“若a ,b ∈R ,则a -b >0⇒a >b ”类比推出“若a ,b ∈C ,则a -b >0⇒a >b ”. 其中类比得到的结论正确的个数是( )

A .0

B .1

C .2

D .3 8.如图,在三棱柱111ABC A B C -中,侧棱垂直于底面,底面是边长为2的正三角形,侧棱长为3,则1BB 与平面11AB C 所成的角为( )

A.

6π B. 4π C. 3π D. 2

π

9.设集合11

[0,),[,1]22

A B ==,函数

1

,()()2

2(1),()

x x A f x x x B ⎧+∈⎪=⎨⎪-∈⎩00[()]x A f f x A ∈∈且,则0x 的取值范围是( ) A .(10,

4] B .(11,42] C .(11

,42

) D .[0,38] 10.定义在(1,1)-上的函数()()(

)1x y

f x f y f xy

--=-;当(1,0)()0x f x ∈->时,若111

()(),(),(0),,,5112

P f f Q f R f P Q R =+==则的大小关系为( )

A .R Q P >> B. R P Q >> C. P R Q >> D.Q P R >> 二、填空题(每小题5分,共25分) 11.若

24log 3,(22)x x x -=-=

12.某程序的框图如图所示,若执行该程序,则输出的i 值为 13.在正方体!111D C B A ABCD -中,Q P N M 、、、分别是

1111CC D C AA AB 、、、的中点,给出以下四个结论:

①1AC MN ⊥; ②1AC //平面MNPQ ; ③1AC 与PM 相交; ④1NC 与PM 异面

其中正确结论的序号是 .

14已知函数()321f x x x =---,则其最大值为 。 15.设两个向量2

2

(2cos

)a λλα=+-,和sin 2

m b m α⎛⎫

=+ ⎪⎝

,,其中m λα,,为实数.若

A B

C

1

B 1

A 1

C

2a b =,则

m

λ

的取值范围是 三、解答题(第16—第19题每小题12分,20题13分,21题14分。共75分)

16.为了了解某市工厂开展群众体育活动的情况,拟采用分层抽样的方法从A 、B 、C 三个区中抽取6个工厂进行调查.已知A 、B 、C 区中分别有18,27,9个工厂. (1)求从A 、B 、C 区中应分别抽取的工厂个数;

(2)若从抽得的6个工厂中随机地抽取2个进行调查结果的对比,求这2个工厂中至少有1个来自A 区的概率。

17.已知向量(3sin

,1)4x m =,2(cos ,cos )44

x x

n =,()f x m n =⋅ (1)若()1f x =,求cos()3

x π

+

的值;

(2)在ABC ∆中,角A B C 、、的对边分别是a b c 、、,且满足1

cos 2

a C c

b +

=,求函数()f B 的取值范围.

18.一个多面体的直观图和三视图如图所示,其中N M 、分别是AC AB 、的中点,G 是

DF 上的一动点.

(1)求证:;AC GN ⊥

(2)当GD FG =时,在棱AD 上确定一点P ,使得GP //平面FMC ,并给出证明.

相关文档
最新文档